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Abstract

Virtual design analysis has become an indispensable
component in most engineering disciplines. Despite the
immense developments and availability of computational
resources, the relative computational cost of high-fidelity
simulations is getting more and more expensive. This
opened the chapter of multi-fidelity learning techniques in
the field of automated design optimisation.

This work presents a novel multi-fidelity surrogate-
assisted design optimisation approach for computationally
expensive aerospace applications under uncertainty.

The proposed optimisation framework overcomes the
challenges of probabilistic design optimisation of computa-
tionally expensive problems and is capable of finding de-
signs with optimal statistical performance for both single-
and multi-objective problems, as well as constrained prob-
lems. Our approach performs the design optimisation with
a limited computational budget using integrated multi-
fidelity surrogates for design exploration and uncertainty
quantification. The design optimisation is realised follow-
ing the principles of Bayesian optimisation. The acquisition
function balances exploration and exploitation of the de-
sign space and allocates the available budget efficiently
considering the cost and accuracy of the fidelity levels.

To validate the proposed optimisation framework, avail-
able multi-fidelity test functions were tailored for bench-
marking problems under uncertainty. The benchmarks
showed that it is profitable to use multi-fidelity surrogates
when the computational budget is too limited to allow for
the construction of an accurate surrogate with high-fidelity
simulations but is large enough to generate a great number
of low-fidelity data.

The applicability of the proposed optimisation frame-
work for aerospace applications is presented through op-
timisation studies of a propeller blade airfoil and a 3D
propeller blade.
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Introduction 1

“Nothing in life is to be feared, it is only to be under-
stood. Now is the time to understand more, so that we
may fear less.“

— Marie Skłodowska Curie

1.1 Motivation

With the recent technological improvements, electrical aviation
has become an attainable goal for our near future. To reach
this goal the research community has to address various issues
ranging from storing energy efficiently to redefining maintenance
protocols. One important factor in accomplishing this challenge is
to have more efficient propeller designs. The efficient performance
must be maintained even in uncertain conditions. Propeller ef-
ficiency earns even higher significance in distributed propulsion
applications where energy losses are multiplied by the number
of propellers. This motivates the development of more advanced
design optimisation techniques.

In the past few decades, we have witnessed the rapid de-
velopment of Computer-Aided Engineering (CAE) technologies.
Computer-based design analysis has become an indispensable
component in most engineering disciplines. The development of
advanced software tools furthered the automation of the engi-
neering design optimisation process combining the automated
evaluation of design configurations with the use of optimisation
techniques. Despite the immense developments and availability

1



1. Introduction

of computational resources, the relative computational cost of
high-fidelity simulations is getting more and more expensive. This
opened the chapter of multi-fidelity learning techniques in the field
of automated design optimisation. The main challenge here is how
to combine information stemming from various fidelity sources
in a design optimisation process in such a way that the available
computational resources are efficiently allocated.

Multi-fidelity learning techniques are gaining increasing popu-
larity in the aerospace sector. The aerodynamic design optimisa-
tion of an aerospace application involves solving the Navier-Stokes
partial differential equations. In the absence of any generally
applicable analytical solution, the Navier-Stokes equation has
to be solved numerically, which is computationally demanding.
This computational cost can render standard automated design
optimisation techniques impractical. The issue of expensive simu-
lations becomes an even more relevant factor when the underlying
problem is solved by taking uncertainties into account. Typically,
Uncertainty Quantification (UQ) requires a large set of samples
to calculate the risk measure of interest. This further motivates
the incorporation of computationally inexpensive aerodynamic
predictions into the design optimisation process.

In the scope of this dissertation, a multi-fidelity surrogate-
assisted design optimisation strategy is proposed for solving com-
putationally expensive aerospace applications.

The key findings and implications of this dissertation lies in:

• Presenting a novel multi-fidelity surrogate-assisted optimisa-
tion strategy for both single and multi-objective probabilistic
optimisation problems.

• Proposing a fidelity selection strategy for multi-fidelity Bayesian
optimisation.

• Providing a set of benchmark functions for multi-fidelity
optimisation under uncertainty.

• Providing simplified industrial case studies of solving a pro-
peller airfoil design optimisation problem under uncertainty
with multi-fidelity learning.

2



1.1. Motivation

• Providing simplified industrial case studies of solving a 3D
propeller blade optimisation problem under uncertainty with
multi-fidelity learning.

The dissertation includes the following manuscripts:

• [Paper A: Korondi et al.,2020a]:

Korondi, P. Z., Marchi, M., Parussini, L., and Poloni, C.
(2020a). Multi-fidelity design optimisation strategy under un-
certainty with limited computational budget. Optimization
and Engineering

• [Paper B: Korondi et al.,2020b]:

Korondi, P. Z., Marchi, M., Parussini, L., Quagliarella, D.,
and Poloni, C. (2020b). Multi-objective design optimisation
of an airfoil with geometrical uncertainties leveraging multi-
fidelity gaussian process regression. In UQOP:International
Conference on Uncertainty Quantification & Optimisation

• [Paper C: Morales and Korondi et al.,2020]1:

Morales, E., Korondi, P. Z., Quagliarella, D., Tognaccini,
R., Marchi, M., Parussini, L., and Poloni, C. (2020). Multi-
fidelity surrogate assisted design optimisation of an airfoil
under uncertainty using far-field drag approximation. In
UQOP:International Conference on Uncertainty Quantifica-
tion & Optimisation

• [Paper D: Korondi et al.,2019]:

Korondi, P. Z., Parussini, L., Marchi, M., and Poloni, C.
(2019b). Reliability-based design optimisation of a ducted
propeller through multi-fidelity learning. In UNCECOMP:
3rd International Conference on Uncertainty Quantification
in Computational Sciences and Engineering Proceedings

1Paper C is written in collaboration with Elisa Morales and her supervisors.
The dissertation adopts only the author’s contribution in the collaboration
work. The contribution of the collaborating authors of Paper C is properly
referenced.
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• [Paper E: Korondi et al.,2020c]:

Korondi, P. Z., Marchi, M., and Poloni, C. (2020c). Opti-
mization Under Uncertainty with Applications to Aerospace
Engineering: Response Surface Methodolgy (Ch.12). Springer

• [Paper F: Filippi et al.,2020]2:

Filippi, G., Vasile, M., Krpelik, D., Korondi, P. Z., Marchi,
M., and Poloni, C. (2019). Space systems resilience opti-
misation under epistemic uncertainty. Acta Astronautica,
165:195–210

The dissertation is organised as follows. In this chapter (Chap-
ter 1), automated design optimisation and uncertainties in engi-
neering are introduced. In Chapter 2, the multi-fidelity informa-
tion fusion is discussed by presenting the Multi-Fidelity Gaussian
Process Regression (MFGPR) surrogate technique. Chapter 3
goes into the depth of uncertainty quantification techniques and
introduces the superpercentile risk measure. A novel optimisation
strategy is proposed in Chapter 4. A set of benchmark functions
is introduced in Chapter 5 where also a series of properties of
the proposed strategy is investigated. The proposed strategy
is employed for solving airfoil design optimisation problems un-
der uncertainty in Chapter 6. A simplified industrial propeller
blade optimisation case study is detailed in Chapter 7. Finally,
the dissertation is concluded in Chapter 8. The dissertation is
complemented with an alternative multi-fidelity Gaussian process
regression formulation in Appendix A.1 and a brief summary of
a collaboration work on resilience-based optimisation of a space
systems under epistemic uncertainty in Appendix A.2.

1.2 Automated design optimisation

The primary goal of engineering design optimisation is to find
the best possible solution which satisfies all the underlying re-
quirements. Full automation of the design optimisation process

2Paper F is written in collaboration with Gianluca Filippi, Daniel Krpelik
and our supervisors. Paper F discusses how to treat epistemic uncertainty
during the early design stages of a space system. To keep the coherent
structure of the dissertation, the findings of Paper F are summarised in the
Appendix.
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1.2. Automated design optimisation

is a long-awaited goal in engineering [Bandler, 1969]. Therefore,
various techniques were developed to tackle the highly diverse
problems of engineering [Papalambros, 2002]. Automated design
optimisation techniques are a cleverly organised set of instructions,
which represent the different rationales of how to reach the best de-
sign. As the No Free Lunch theorem dictates, there is no strategy
which outperforms all the other strategies for every optimisation
problem [Wolpert and Macready, 1997]. Nevertheless, preferable
strategies have been identified over the years for solving different
classes of optimisation problems.

The optimisation problems can be grouped according to the
number of their requirements (or objectives). Consequently, we
differentiate single- and multi-objective problems.3

Single-objective optimisation focuses on improving the design
considering a single requirement (or a single objective function)
which might have a single global optimal solution. However,
formulating a real problem as single-objective usually implies a
decision making on the preferences of various requirements to
aggregate the requirements into a single objective function.

In multi-objective problems, the preferences of various require-
ments are decided after a set of Pareto optimal solutions is found
[Deb, 2014]. Consequently, in the context of multi-objective design
optimisation, we are searching for a set of designs which is Pareto
optimal for our multi-objective problem formulation. This set is
called the Pareto set and its projection into the objective space is
the Pareto front. When the objectives are conflicting, the Pareto
front contains more than one solution that cannot be improved
in any of the objectives without degrading at least one of the
others. Solutions that are optimal in respect of all objectives
simultaneously are typically non-existing.

This work focuses on solving computationally expensive aero-
dynamic design optimisation problems. The topology is predefined
and only the shape parameters are considered as variables. A possi-
ble classification of optimisation strategies is provided in Table 1.1.
This classification breaks down the optimisation algorithms into
four classes according to their information usage.

3Since recently, the multi-objective optimisation has started referring to
problems with only 2 or 3 objectives and problems with 4 or more objectives
are referred to as many-objective problems.
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1. Introduction

Global Search techniques do not exploit any relations between
design parameters and response values to drive the search for
optimal solutions. The design parameters are explored in a large
predetermined distribution whether random or fully structured.
Consequently, the required number of design evaluations makes
Global Search techniques impractical for optimising expensive
aerospace problems.

Evolutionary Algorithms consider the reflection of design pa-
rameters in the response values on the individual level. The fitness
level of designs is calculated based on their response values. In-
spired by evolution, a population of designs evolves towards the
optimum through selection, recombination and mutation. The
applicability of such a method is also impractical for expensive
problems due to the immense cost of evaluating populations over
the iterations.

Local Search techniques use the information of a handful
of design-response values. Based on the few evaluated design-
response values local properties of the problem are assumed which
drives the optimisation. Probably the most prominent members
of this class are the gradient-based techniques. They have already
been successfully applied for many expensive optimisation prob-
lems. However, the computational demand significantly increases
when no analytical gradients are available. Therefore, they are typ-
ically employed when adjoint solvers or automatic differentiation
techniques are applicable.

Surrogate-based optimisation essentially assumes a well de-
terminable relation between the design parameters and response
values. In the context of machine learning, surrogate-based optimi-
sation is called supervised learning. Alternatively, in engineering,
the Response Surface Methodology is also used to label this kind of
approaches [Korondi et al., 2020c]. The available design-response
values are used for training a statistical model of the relationship.
This is the so-called surrogate model which can be exploited to
find optimal designs. Depending on the chosen surrogate model,
this technique is highly applicable for optimising expensive prob-
lems as this technique requires the least number of observations.
However, the quality of the trained surrogate model is vital, which
can limit the applicability of this approach.

For the sake of completeness, it must be noted that the combi-
nation of the above-mentioned strategies is also possible. Indeed,

6



1.2. Automated design optimisation

some of the most successful optimisation strategies combine the
advantages of the listed techniques such as CMA-ES [Hansen,
2016], memetic algorithms [Turco, 2011; Vasile and Zuiani, 2011]
and other hybrid strategies [Korondi, 2016; Sabater et al., 2020].

In this work, a Bayesian optimisation strategy is discussed
[Frazier, 2018]. The surrogate model does not only define the
relationship between design parameters and response values, but
also calculates the uncertainty of the predicted response values.
This allows the optimisation strategy to balance between searching
for the best design parameters and improving the surrogate model
quality during the optimisation.

Furthermore, this work assumes a highly limited computational
budget. Therefore, the employed surrogate model incorporates
information from aerodynamic solvers with various levels of fidelity.
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1.3. Uncertainties in design optimisation

1.3 Uncertainties in design optimisation

Probably, the most important paradox of science is contained in
the well-known quote: "All models are wrong but some are useful."
[Box, 1976]. This motivates the scientific community to come up
with new models and update the existing ones even though we will
never reach a perfect model. Nevertheless, these imperfect models
provide us useful information to understand, explain or predict
the reality around us. The imperfection of our models cause
uncertainty (i.e. doubt) about the validity of the information
obtained with the model. Therefore, we develop additional models
and techniques to understand, explain or predict the degree of
uncertainty.

Based on their assumptions, uncertainty modelling techniques
can be labelled as aleatory or epistemic [Beyer and Sendhoff, 2007;
Helton et al., 2010]4. The aleatory uncertainty is the inherent
randomness of the system under investigation. For example, the
wind directions during a flight can be considered as aleatory
uncertainty. The complete history of weather conditions can be
collected, and the distribution of wind directions can be accurately
predicted. However, regardless of the amount of the collected data
the uncertainty of the wind direction will never reduce to zero.

On the other hand, epistemic uncertainty stems from the lack
of knowledge which can be reduced by gathering new informa-
tion. The wind directions can be treated as a source of epistemic
uncertainty as well. Imagine, only limited data of the weather
condition history is available. The probability distribution of
the wind directions cannot be determined with great certainty.
Instead, the distribution of the wind directions is enveloped by
a lower bounding belief and an upper bounding plausibility dis-
tribution. This type of uncertainty can be reduced by gathering
new information.

In this dissertation, the uncertainty is treated probabilisti-
cally considering only aleatory uncertainty. We assume that all
uncertainty can be represented by a random variable with a cor-

4Beyer and Sendhoff [2007] provide another possible classification by
grouping the uncertainty modelling techniques into three categories: deter-
ministic, probabilistic and possibilistic. In this classification the aleatory
uncertainties belong to the probabilistic type and the epistemic uncertainties
are divided into deterministic and possibilistic types.
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1. Introduction

responding probability distribution function (Probability Density
Function (PDF) or Cumulative Distribution Function (CDF)).

In engineering, the designer can have control over only a limited
number of parameters (or variables). Nevertheless, the variability
of ignored or uncontrolled parameters can result in the variability
of the response value. Therefore, the variations of the response
function are taken into account to ensure the robust and reliable
performance of real-world systems. Even when the probability
distributions of the input parameters are known, the response
probability distribution is usually unknown a priori or too costly
to determine directly. Therefore, probabilistic UQ techniques are
applied to obtain the PDF and CDF curves of the response values
of the designs.

During the design optimisation process, the probability distri-
butions of the response values are transformed into a risk-measure
value. This scalar value can be used to optimise the design pa-
rameters.
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Multi-fidelity information fusion 2

“Young man, in mathematics you don’t understand
things. You just get used to them.“

— John von Neumann

2.1 Information fusion

Surrogate-assisted optimisation is a commonly used technique for
the design optimisation of computationally expensive problems
[Forrester et al., 2008]. However, the number of attainable obser-
vations can be so sparse that standard surrogate techniques are
not able to provide an accurate approximation. In this case, infor-
mation from cheaper low-fidelity design analyses can be extracted
and fused with the information of high-fidelity design analyses
[Alexandrov et al., 2000]. Depending on whether the fidelities can
be ranked or not, one can do non-hierarchical information fusion
[Poloczek et al., 2017] or hierarchical information fusion [Kennedy
and O’Hagan, 2000; Le Gratiet, 2013].

In Computer-Aided Engineering (CAE) design optimisation,
hierarchical information fusion gained popularity due to the fact
that many numerical solvers inherently provide an approxima-
tion of their numerical error [Forrester et al., 2007; Han et al.,
2013]. This motivated the bi-fidelity hierarchical formulation of
the Gaussian Process Regression (GPR) which is also called Co-
Kriging [Myers, 1982; Xiao et al., 2018]. Co-Kriging was extended
to fuse information from multiple levels of fidelity [Kennedy and
O’Hagan, 2000] which is called Multi-Fidelity Gaussian Process

11



2. Multi-fidelity information fusion

Regression (MFGPR). The method in [Kennedy and O’Hagan,
2000] requires composing and invert a large cross-correlation ma-
trix containing the correlation information of all available fidelity
levels. To avoid the construction and inversion of this large matrix,
MFGPR was reformulated in a recursive form in [Le Gratiet, 2013].
The recursive formulation allows combining any levels of fidelities
by a sequential and hierarchical model construction. Instead of
building the model by combining the different levels of fidelities
in a single step, the multi-fidelity surrogate model is built by se-
quentially adding the fidelity levels to the model starting from the
lowest fidelity to the highest. In this work, the recursive MFGPR
technique is employed as described in [Le Gratiet, 2013].

2.2 Gaussian process regression

In design optimisation, the GPR technique (or Kriging) is often
used to predict the performance of a design. The performance of
a d-dimensional design variable x can be calculated by a function
f(x) which is often unknown. Therefore, the performance func-
tion f must be modelled based on some (empirical) observations
z. GPR models f as a random process f̃ (i.e. random field1).
Accordingly, the performance of a design can be given by f̃(x):

f̃(x) = m(x) + δ̃(x), (2.1)

where m(x) is the mean trend and represents the global variation
of the process. The mean trend is formulated as a least squares
regression m(x) = h(x)β, where h(x) is the vector of regression
functions and β is the vector of regression coefficients. The δ̃
is called local departure and represents local variations of the
process [Rasmussen, 2003]. It is modelled as a Gaussian Process
(GP) with zero mean and a corresponding covariance function ς,
δ̃ ∼ GP(0, ς), so that δ̃(x) ∼ N (0,Σ(x, x′)). The random process
f̃ can be observed with some noise conducting experiments (in
our case computer-based simulations):

z(x) = f̃(x) + ε = m(x) + δ̃(x) + ε, (2.2)

1In this dissertation, the terms random process and random field are in-
terchangable. Nevertheless, some mathematical details of the slight difference
between the two terms are given in [Adler and Taylor, 2009].
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2.2. Gaussian process regression

where ε ∼ N (0, σ2
ε ) is an independent and identically distributed

Gaussian noise with zero mean and σε variance. This independent
noise term is included in our model for numerical purposes (i.e.
to reduce the condition number of the covariance matrix) and not
for modelling the uncertainty of the performance observations due
to the variability of uncontrolled parameters.

Given n observations, the covariance matrix Σ is an n-by-n
symmetric matrix, with entries Σij = ς(xi, xj) = σ2R(xi, xj ; θ),
where σ2 is the global process variance, and R is the parametric
correlation function with hyperparameters θ.

The covariance function describes our prior knowledge of the
problem. As this knowledge is rarely complete, the covariance
function is described by a parametric function. Its parameters are
tuned based on our observations. The hyperparameter tuning of
the covariance function is described in Section 2.3.

Given z(n) observations at design locations x(n), the joint
probability distribution of the available observations and the
prediction f̃(x∗) at a new location x∗ can be given in form:(

f̃(x∗)
z(n)

)
∼ N

([
h(x∗)β
h(z(n))β

]
,

[
ς(x∗, x∗) ς(x∗, x(n))T

ς(x∗, x(n)) Σ + σ2
ε I

])
,

(2.3)
where ς(x∗, x(n)) is the covariance vector of the new design and
the evaluated designs and ς(x∗, x∗) is the value of the variance of
the new design.

Then the joint distribution in Eq. (2.3) can be reformulated as
a conditional probability distribution using the Schur complement
of the joint distribution’s covariance matrix [Von Mises, 2014]. The
conditional posterior distribution is also a Gaussian distribution:

p(f̃(x∗)|z(n), β, σ2, σ2
ε , θ) ∼ N

(
m̂z(x

∗), ŝ2z(x
∗)
)
, (2.4)

where the mean m̂z(x
∗) and variance ŝ2z(x∗) are:

m̂z(x
∗) = h(x∗)β + ς(x∗, x(n))TS−1

(
z(n) −Hβ

)
, (2.5)

ŝ2z(x
∗) = ς(x∗, x∗)− ς(x∗, x(n))TS−1ς(x∗, x(n)), (2.6)

where H = h(x(n)) is the matrix of regression functions evaluated
at sample locations. S = Σ + σ2

ε I is the covariance matrix of the
observations.
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2. Multi-fidelity information fusion

In surrogate-assisted design optimisation, the GPR mean m̂z

is calculated in every point of a finite grid of the design space to
obtain a prediction of the performance landscape. The prediction
error of this landscape can be given by the GPR variance ŝ2z which
provides useful information about how much confidence we can
have in our prediction.

2.3 Parameter estimation of Gaussian process
regression

Rasmussen [2003] and Stein [2012] provide suggestions on choosing
the family of the covariance function. The squared exponential
is a popular choice due to its strong smoothness (i.e. infinitely
differentiable). However, for modelling physical processes the
Matérn covariance family might be a more realistic choice:

ς (xi, xj) = σ2 21−ν

Γ (ν)

(√
2ν

θ
‖xi − xj‖

)ν
Kν

(√
2ν

θ
‖xi − xj‖

)
,

(2.7)
where ‖xi − xj‖ is the Euclidean distance of the design variables.
Γ is the gamma function and Kν is the modified Bessel function of
the second kind. ν is the smoothness parameter (here ν = 3/2 is
used). This covariance function is stationary (i.e. the covariance
of two designs depends only on their distance measure and not on
their positions in the design space).

The hyperparameters of the covariance function can be tuned
by maximising their likelihood conditioned on the observations.
Assuming that f̃ is a multivariate normal distribution the GPR
parameters

(
β, σ2, σ2

ε , θ
)
can be determined by the Maximum

Likelihood Estimation (MLE), where the likelihood function L has
the form:

L
(
β, σ2, σ2

ε , θ
∣∣∣z(n)) =

1

(2π)
n
2
√
|S|

exp

(
−1

2

(
z(n) −Hβ

)T
S−1

(
z(n) −Hβ

))
, (2.8)
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2.4. Multi-fidelity Gaussian process regression

where S = Σ + σ2
ε I is the covariance matrix of the observations.

The generalised least squares estimate of β is given by:

β̂ =
(
HTS−1H

)−1
HTS−1z(n). (2.9)

The other parameters: σ2, σ2
ε and hyperparameters θ are obtained

by minimising the negative log-likelihood function:

σ2, σ2
ε , θ = argmin

σ2,σ2
ε ,θ

− log L, (2.10)

where the log-likelihood function log L is:

log L
(
σ2, σ2

ε , θ
)

= −n
2

log(2π)− 1

2
log
(∣∣(Σ + σ2

ε I
)∣∣)

− 1

2

(
z(n) −Hβ̂

)T (
Σ + σ2

ε I
)−1 (

z(n) −Hβ̂
)
. (2.11)

2.4 Multi-fidelity Gaussian process regression

MFGPR can be framed in a recursive manner [Le Gratiet, 2013].
Information is ordered according to its fidelity level, where the
rank of the lowest and highest fidelity are respectively l = 1 and
l = L. The lowest fidelity information is modelled by a GPR and
denoted by f̃1. Starting from the 2nd level, an auto-regressive
model is then built at each fidelity level: f̃l(x) = ρl−1(x)f̃l−1(x) + hTl (x)βl + δ̃l(x) + εl,

f̃l−1(x)⊥δ̃l(x),
ρl−1(x) = gTl−1(x)βρl−1

,

(2.12)

where δ̃l(x) is a Gaussian process with zero mean and covariance
function σ2

l Rl(x, x
′), and ρl−1(x) is the adjustment parameter

between f̃l(x) and f̃l−1(x). gl−1(x) and hl(x) are vectors of re-
gression functions and βρl−1

and βl are the vectors of coefficients.
The εl is an independent Gaussian noise term used for numerical
regularisation. The symbol ⊥ means that f̃l−1(x) and δ̃l(x) are
assumed to be independent. This assumption and a nested de-
sign set structure are required to derive the Bayesian parameter
estimation for the recursive MFGPR [Le Gratiet, 2013]. SMT:
Surrogate Modeling Toolbox (v0.3.4) [Bouhlel et al., 2019] relaxes
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2. Multi-fidelity information fusion

the requirement of a nested design set by using low-fidelity model
predictions when a design evaluation is not available at lower
fidelity levels2.

The prediction at the lth-level is given by a conditional proba-
bility distribution:

p(f̃l(x
∗)|f̃l−1, z(nl)l , βl, ρl−1, σ

2
l , σ

2
εl
, θl) ∼ N

(
m̂l(x

∗), ŝ2l (x
∗)
)
,

(2.13)
where z(nl)l is the observation vector of nl observations at level l.
The MFGPR mean m̂l(x

∗) is:

m̂l(x
∗) = ρl−1(x∗)m̂l−1(x∗) + hTl (x∗)βl + ςTl S

−1
l Kl, (2.14)

Kl = z
(nl)
l − ρl−1(x

(nl)
l )� f̃l−1(x

(nl)
l )−Hlβl, (2.15)

where Sl = (Σl+σ
2
εl
I) is the covariance matrix of the observations

at level l and � is the Hadamard product (i.e. element-wise
product). The MFGPR variance is:

ŝ2l (x
∗) = ρ2l−1(x∗)ŝ2l−1(x∗)+

+ςl(x
∗, x∗)− ςl(x∗, x(nl)l )TS−1l ςl(x

∗, x
(nl)
l ).

(2.16)

By comparing Eqs.(2.5)-(2.6) and Eqs.(2.14)-(2.16), we can
see that the auto-regressive model solves a simple GPR problem
at each level. The random process is the sum of the adjusted
model of the previous level and a difference term (i.e. linear multi-
fidelity information fusion [Perdikaris et al., 2017]). Accordingly,
the mean and the variance of the model are also the sums of the
adjusted mean and variance of the previous level model and the
mean and variance of the difference term.

2Recently, SMT: Surrogate Modeling Toolbox was updated. Following
the version update (v0.4.2) on 20.02.2020, the code suggests to respect the
requirement of a nested design set. In this dissertation, the results are
generated with the older version (v0.3.4) employing a non-nested design
structure. This introduce an additional (unintended) numerical error in the
MFGPR model predictions.
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2.5. Parameter estimation of multi-fidelity Gaussian process regression

2.5 Parameter estimation of multi-fidelity
Gaussian process regression

Similarly to the single level GPR, the parameters can be deter-
mined by the MLE. The likelihood function has the form:

L
(
βl, ρl−1, σ

2
l , σ

2
εl
, θl

∣∣∣z(nl)l ,
)

=

=
1

(2π)
nl
2
√
|Sl|

exp

(
−1

2
KT
l S
−1
l Kl

)
. (2.17)

The generalised least squares estimate of β and ρl−1 is given by:[
ρ̂l−1
β̂l

]
=
(
ATl S

−1
l Al

)−1 (
ATl S

−1
l

[
f̃l−1

(
x
(nl)
l

)])
,

Al =
[
f̃l−1(x

(nl)
l ) Hl

]
.

(2.18)

The other parameters: σ2
l , σ

2
εl

and hyperparameters θl are ob-
tained by minimising the negative log-likelihood function:

σ2
l , σ

2
εl
, θl = argmin

σ2
l ,σ

2
εl
,θl

− log L, (2.19)

where the log-likelihood function log L is:

log L
(
σ2
l , σ

2
εl
, θl
)

=

= −nl
2

log(2π)−1

2
log
(∣∣(Σl + σ2

εl
I
)∣∣)−1

2
K̂T
l

(
Σl + σ2

εl
I
)−1

K̂l,

(2.20)

where:

K̂l = z
(nl)
l − ρ̂l−1(x

(nl)
l )� f̃l−1(x

(nl)
l )−Hlβ̂l. (2.21)
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Uncertainty quantification 3

“The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of physics
is a wonderful gift which we neither understand nor
deserve.“

— Eugene Wigner

3.1 Statistical measures

In probability theory, random values are represented by prob-
ability distributions [Maleki and Do, 2000]. Consequently, the
response values are also characterised by a probability distribution
in probabilistic design optimisation. In the scope of this disserta-
tion, the Cumulative Distribution Function (CDF) and Probability
Density Function (PDF) are used to describe random variables.
The CDF, denoted with Φ, is defined as:

Φ(y) = P [ỹ ≤ y]. (3.1)

The PDF, denoted with φ, is defined as:

φ(y) =
dΦ(y)

dy
. (3.2)

The decision making is difficult based on probability distributions
due to their multitude of possible realisations [Rockafellar and
Royset, 2015]. Therefore, various properties of the distribution,
or risk measures R, are used to quantify the uncertainty.
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3. Uncertainty quantification

Mean Expectation is probably the most used statistical measure.
It represents the average value of a large number of realisations.
It is the most intuitive outcome expectation of a random variable.

µ = E [ỹ] =

∫
yφ(y)dy. (3.3)

The probability distribution can be also characterised by its
quantile (or Value-at-Risk) function. It is defined as the inverse
of the CDF.

qζ = argmin
y

[y|Φ(y) ≥ ζ] , (3.4)

where qζ reads as the ζ-quantile and represents the value of the
random variable such that lesser or equal realisations than the
qζ value occur with ζ probability, where ζ ∈ R and 0 ≤ ζ ≤ 1.
Specialised quantile values split the domain of possible realisations
into equally probable sub-domains. For example, the domain can
be split into a hundred sub-domains. Then the values separating
the sub-domains are called 1st, 2nd, ..., 99th percentile. Essentially,
the ξth percentile corresponds to the qξ/100 value, where ξ ∈ N
and 0 ≤ ξ ≤ 100. It follows that the q0 is the minimum (i.e.
infimum) and q1 is the maximum (i.e. supremum) of the possible
realisations of the random variable.

The superquantile measure is commonly called as conditional
Value-at-Risk as well. The superquantile calculates the expected
value of the random variable when the realisation of the random
variable is higher than a certain quantile value. It is defined as
[Rockafellar and Royset, 2015]:

R = qζ = E [ỹ|ỹ ≥ qζ(ỹ)] =
1

1− ζ

∫ 1

ζ

qτ (ỹ)dτ, (3.5)

where qζ is the quantile value below which the realisations are
ignored. For instance, ζ = 0 corresponds to the mean expected
value and ζ = 1 corresponds to the worst-case scenario. In
engineering practice, the superquantile is chosen over the quantile
when the shape of the probability distribution tail is relevant as
in case of reliability-based optimisation [Rockafellar and Uryasev,
2002]. Additionally, the superquantile is a coherent and regular
measure and does not depend on scaling which properties are
preferred from a mathematical point of view [Quagliarella et al.,
2014; Rockafellar and Royset, 2015].
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3.2. Surrogate-assisted uncertainty propagation

The analytical computation of any risk measures is typically
intractable apart from some benign problems. Therefore, the
calculation of most risk measures requires a statistically significant
sample, which is impractical if the performance evaluation is
computationally expensive. For this reason, surrogate-assisted
uncertainty quantification can be used to replace the expensive
performance evaluations with cheap evaluations of the surrogate
model of the probabilistic space. In this way, a statistically
significant sample can be achieved at low cost.

3.2 Surrogate-assisted uncertainty
propagation

Ideally, the design and uncertainty space should be modelled
together. However, the construction of a surrogate directly on
the coupled space of design variables and uncertainty variables is
computationally challenging due to the high dimensionality of the
problem. Therefore, the design and probability spaces are sepa-
rated. At each design sample location, we sample the uncoupled
probabilistic space by varying only the uncertain variables and
train a surrogate model of the probabilistic space. These local
probabilistic models can be used to evaluate the high number
of samples required for the computation of the risk measure R.
With the above-described procedure, one can calculate the risk
measure for each design at a relatively low computational cost.

The domain separation is a critical step as it forces us to
train separate surrogates for the probability space at each design
sample location and an additional surrogate over the risk measure
R in the design space. This introduces additional numerical error
due to the nested approximations but allows us to optimise a
computationally heavy design problem under uncertainty.

3.3 An academic example for
surrogate-assisted uncertainty propagation

In this section the surrogate-assisted uncertainty quantification is
described by employing it on an academic example. Let us denote
the input uncertainty with ũ and the probabilistic output with ỹ.

21



3. Uncertainty quantification

The performance function is denoted by g. Then the response of
a design x can be given by:

ỹ = g(x, ũ), (3.6)

Usually, the performance function is not known. However, in
our academic example we can neglect the dependency on the
deterministic design variables and imagine that:

ỹ = sinh(ũ). (3.7)

The distribution of the input is considered to be standard nor-
mal Gaussian N (0, 1). In order to accurately approximate the
distribution of the output ỹ, we have to employ an uncertainty
quantification method. The most straightforward solution would
be to use Monte Carlo Sampling (MCS) [Lemieux, 2009]. How-
ever, the MCS technique cannot be applied directly when the
evaluation of g is computationally expensive. Therefore, a surro-
gate is trained on a sparse set of samples and a large number of
samples are obtained virtually by replacing evaluations of g with
evaluations of the surrogate model.

The surrogate model type can be chosen deliberately depend-
ing on the problem. For example, the probability space can be
modelled by a Polynomial Chaos Expansion (PCE)1. This sur-
rogate can model the probability space efficiently for a range of
probability distributions depending on the polynomial family of
the regression functions [Choi et al., 2004]. Here, in correspon-
dence with the Gaussian uncertainty, the Hermite polynomial
family is employed up to third-order functions.

The comparison between the direct sampling technique and
surrogate-assisted uncertainty quantification is displayed in Fig-
ure 3.1. We can see that PCE introduces some approximation
errors but it allows us to draw a large number of samples to
approximate the distribution of ỹ.

After obtaining the distribution of the random variable ỹ
an Empirical Cumulative Distribution Function (ECDF) can be
calculated, see Figure 3.2(a). By inverting the ECDF, we can

1Polynomial Chaos Expansion can be considered as a particular subclass
of GPR with particular regression functions and Kronecker delta covariance
function [Schobi et al., 2015].
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3.3. An academic example for surrogate-assisted uncertainty
propagation

(a) Monte Carlo
(2000 samples)

(b) Sparse
(10 samples)

(c) Polynomial Chaos
(10 true samples and 2000 virtual
samples)

Figure 3.1: Comparison of Monte Carlo sampling and virtual
sampling with PCE
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3. Uncertainty quantification

(a) ECDF (b) Quantile function

(c) Superquantile function

Figure 3.2: Superquantile calculation

obtain the quantile values of the random variable. Then the
superquantile qζ can be obtained by Eq. (3.5). Imagine that we
are interested in the q0.95 value. This requires the integration of
the quantile curve between 0.95 and 1, as depicted in Figure 3.2(b).
The superquantile values corresponding to each ζ level is given in
Figure 3.2(c) and the superquantile corresponding to level q0.95 is
3.81.
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3.4. Implications for design optimisation of real-world systems

3.4 Implications for design optimisation of
real-world systems

In the context of design optimisation, we are interested in one
or more system responses or Quantities of Interest (QoIs). The
uncertainties of input variables and environmental parameters
can result in multiple uncertain system responses ỹj (with j =
1, ..., nq), i.e. in multiple uncertain QoIs. These uncertainties
must be considered in the design optimisation process otherwise
the obtained optimum will be biased. Thus, optimisation under
uncertainty does not usually consider, as the deterministic, QoIs
to be optimised, but rather risk measures Rk (with k = 1, ..., nr)
of the QoIs. Note that the number of QoIs nq is not the same as
the number of uncertainty measures nr in the sense that various
risk measures can be calculated from the distribution of a QoI.
For example, one might be interested in optimising both the
mean q0 and the q0.95 of a random valued QoI. This results in
a multi-dimensional objective space. However, in regard the
surrogate training, the objectives are treated separately and for
each objective a surrogate model is trained.2

In the following, the qξ/100 will be called as the ξth superper-
centile and will be denoted by Sξ. In this dissertation, the 95th

superpercentile is employed for reliability-based optimisation.
The S95 risk measure is defined for minimisation. Therefore,

it provides an estimate of the expected value of the right-tail
of the distribution. To distinguish the right-tail and left-tail
superpercentile values, the Sright95 and Sleft95 notations are applied
respectively.

2It is also possible to train a multi-output GPR. However, the training
of a multi-output GPR is challenging since a kernel should be found which
can capture the correlation of both the input and output space [Press et al.,
2007].
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Optimisation framework 4

“Intelligence is the ability to adapt to change.“
— Stephen Hawking

4.1 Surrogate-assisted design optimisation

Surrogate-assisted design optimisation has three cornerstones:
data, surrogate model and model update strategy. When the data
is loaded with uncertainty an Uncertainty Quantification (UQ)
technique also complements the optimisation process. In this
dissertation, the main source of uncertainty stems from the vari-
ability of ignored or uncontrolled parameters of an aerospace
application. Due to the computationally demanding aerodynamic
simulations surrogate-based UQ techniques are used as was dis-
cussed in Chapter 3. The surrogate is a Multi-Fidelity Gaussian
Process Regression (MFGPR) model which is capable to predict
the performance of a design at various fidelity levels as was de-
tailed in Chapter 2. The model update strategy has two main
goals: evaluate designs with optimal performance and reduce the
uncertainty of the model particularly in the neighbourhood of the
optimum. These two main goals are also called exploitation and
exploration respectively.

The MFGPR model is a conditional posterior distribution and
exploits the properties of the Bayes’ theorem. A surrogate-assisted
design optimisation technique with such surrogate runs under the
name of Bayesian optimisation. In Bayesian optimisation, the
model update strategy is labelled as acquisition function which
usually also exploits the properties of the conditional distribution.
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4. Optimisation framework

For single-objective problems, Efficient Global Optimisation
(EGO) realises a Bayesian optimisation by updating the trained
Gaussian Process Regression (GPR) model at locations where
the Expected Improvement (EI) acquisition function is maximal
[Jones et al., 1998]. When EGO is employed for multi-objective
optimisation, a separate GPR is trained for each objective and
the objectives are aggregated into a single scalar measure. Then
similarly to the single-objective case, the acquisition function can
identify the location of the new design candidate. For instance,
ParEGO [Knowles, 2006] employs the Chebyshev scalarisation
and MEGO [Montrone and Rigoni, 2018] uses the Hypervolume
Improvement (HVI).

By generating the surrogate on a multi-fidelity data set, the
MFGPR model can predict the responses and their model uncer-
tainty at various levels of fidelity. The information obtained from
each fidelity level can be utilised in the acquisition function of a
multi-fidelity surrogate-based optimisation strategy. Additionally,
the acquisition function must select the fidelity of the new design
evaluation as well.

In the past years, numerous multi-fidelity surrogate-based
strategies were proposed by the research community. Ariyarit
and Kanazaki [2017] and Bonfiglio et al. [2018] propose the usage
of multi-fidelity surrogates in a Bayesian optimisation context;
however, the model updates are only realised with the high-fidelity
level. The acquisition function in [Ariyarit and Kanazaki, 2017;
Bonfiglio et al., 2018] considers only the top-level model prediction
and variance.

Huang et al. [2006] propose to select the new design location
and fidelity level simultaneously by maximising an augmented EI.
Their augmented EI function contains heuristic terms accounting
for the correlation between the fidelity levels, the data error and
cost of various fidelity levels. Sacher et al. [2020] extend the
augmented EI by taking the top-level model variance into account
as well. Similarly, Zhang et al. [2018] provide an augmented EI
which is also complemented with a constraint treatment.

In [Swersky et al., 2013; Zhang et al., 2017; Takeno et al., 2019]
various formulations of multi-fidelity entropy search acquisition
functions are detailed.

Kandasamy et al. [2016] present an in-depth discussion on
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4.1. Surrogate-assisted design optimisation

multi-fidelity bandit1 problems where a two-stage acquisition func-
tion is given. The location of the new sample is calculated by
maximising the upper confidence bound of the model prediction
in the first stage. Then the fidelity is selected following intuition-
based sequential threshold criteria.

Meliani et al. [2019] also propose a two-stage approach. The
most promising candidate is selected with the EI acquisition func-
tion. Then a model uncertainty reduction criterion selects the
fidelity exploiting the nested structure of multi-fidelity designs.
This strategy translates the suggestion of Le Gratiet [2013] for
sequentially improving the MFGPR model into a design optimisa-
tion context. To this end, Serafino et al. [2020] adopt the above
strategy with an additional preference towards the low-fidelity cal-
culation. High-fidelity calculations are selected only if the model
uncertainty of the low-fidelity is below a certain threshold level.

For reliability-based optimisation, Chaudhuri et al. [2019] pro-
pose to select the new infill location by maximising the expected
feasibility function and the fidelity selection is advised by calcu-
lating the information gain with the Kullback-Leibler divergence
of the model prediction and the hypothetical model prediction
after the update step.

The No Free Lunch theorem [Wolpert and Macready, 1997]
holds also for multi-fidelity surrogate-based strategies and no
method showed clear superiority to the other. Nevertheless, the
advantages and disadvantages of the published works helped to
develop a multi-fidelity surrogate-based optimisation strategy for
computationally expensive problems. With the suggestions of the
above-mentioned papers in mind, the proposed strategy of this
dissertation aimed to:

• find optimal designs evaluated with the highest fidelity;

• tackle uncertain problems;

• tackle computationally expensive problems;

• consider the surrogate quality of all fidelity levels during the
new design acquisition;

1The fidelity selection in a multi-fidelity surrogate-based optimisation
problem can be seen as a bandit problem [Gittins and Jones, 1979].
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4. Optimisation framework

• consider the cost and fidelity of the newly acquired designs;

• anticipate future adaptations of the workflow by means of
modularity.

Therefore, a multi-fidelity surrogate-assisted approach is developed
with a two-stage acquisition function to facilitate modularity. The
sample location selection and the fidelity selection are decoupled
in such way that the underlying sub-problems can be treated with
different rationales. The new sampling location is determined
by balancing exploration and exploitation. Then the fidelity
level is selected by comparing the amount of model uncertainty
reduction against the cost of the design evaluation. Furthermore,
the designs are evaluated with a nested surrogate-assisted UQ
process to tackle uncertain problems computationally efficiently.
An in-depth discussion of the proposed strategy is provided in the
following sections.

4.2 Proposed single-objective framework

The single-objective surrogate-assisted design optimisation under
uncertainty can be broken down to four steps: sample location
determination, design evaluation, risk measure evaluation and
surrogate training. The proposed strategy repeats these steps until
the computational budget is exhausted. The proposed framework
is illustrated in Figure 4.1. The framework is developed for the
MFGPR surrogate model. In the initial iteration, the sample
locations are determined with a Design of Experiments (DoE)
technique at each fidelity level. In this dissertation, the uniform
Latin Hypercube Sampling (LHS) is employed [McKay et al., 2000].
The uncertain responses of the designs are quantified with a
surrogate-assisted UQ technique calculating the superpercentile
risk measure introduced in Section 3.4.

The pseudo-code of the proposed single-objective strategy is
given in Algorithm 1. The DoE samples are generated for each
fidelity level x(nl)l , where nl is the number of samples generated at
fidelity l. Moreover, the uncertain space is sampled as well. For
each design sample xl,i an additional sample is generated in the
probabilistic space u(ml)l,i .
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4. Optimisation framework

Algorithm 1 Single-objective multi-fidelity surrogate-based de-
sign optimisation strategy under uncertainty. (L: top-level fidelity,
nl: number of design samples at level l, ml: number of probabilis-
tic samples)

Input: d, L, nl,ml . Problem and model properties
Output: xL,optimal,RL,optimal,MFGPR
1: for l=1:L do
2: xl ← generateDesignSample()
3: for i=1:nl do
4: ul,i ←generateProbabilisticSample(xl,i)
5: yl,i ← evaluateDesignPerformance(xl,i, ul,i)
6: Rl,i ← evaluateRiskMeasure(yl,i)
7: end for
8: end for
9: MFGPR← trainMFGPR(R1:L,1:nl)

10: flag ← True
11: while flag do
12: xl,nl+1 ← acquisitionFunction(MFGPR)
13: ul,nl+1 ←generateProbabilisticSample(xl,nl+1)
14: yl,nl+1 ← evaluateDesignPerformance(xl,nl+1)
15: Rl,nl+1 ← evaluateRiskMeasure(yl,nl+1)
16: MFGPRk ← trainMFGPR([R1:L,1:nl ,Rl,nl+1])
17: if budgetExhausted then
18: flag ← False
19: xL,optimal,RL,optimal ← findBest(xL,:,RL,:)
20: end if
21: end while
22: return xL,optimal,RL,optimal,MFGPR

At each fidelity level, every design is evaluated ml times re-
sulting in a performance matrix with entries of y(ml)l,i , where i
is the corresponding design index. To obtain the objective, the
corresponding risk measure Rl,i is calculated on the performance
values y(ml)l,i .

At this point, the performance information coming from dif-
ferent fidelities is fused together resulting in the MFGPR model.
The surrogate model provides cheap-to-evaluate approximations of
our underlying problem and helps us to identify promising design
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4.3. Single-objective acquisition function

candidates. When high fidelity evaluations are involved, the time
required for training the surrogate model is negligible compared to
the time required to evaluate the performance of a single design.

The acquisition function updates the pool of design samples
with a single design xl,nl+1, u

(ml)
l,nl+1. For the new design, the

corresponding objective can be calculated as previously described
resulting in Rl,nl+1. Then the surrogate model of the objective is
retrained on the augmented risk measure samples. We iterate the
model update process until the computational budget is exhausted
and then return the best design of all the evaluated designs.

4.3 Single-objective acquisition function

For single-objective problems, the Expected Improvement (EI)
acquisition function is employed due to its proven success for
various kind of problems. The EI calculates the expected value of
the improvement on the current best evaluation by adding a new
observation as described in [Keane, 2006]. The magnitude of the
improvement is:

Ĩ(xn+1) = max(0, zmin − z̃(xn+1)), (4.1)

where zmin = minxi=1...n
z(xi) is the current best evaluation. The

z̃(xn+1) is not known a priori. Therefore it is replaced by a
Gaussian random variable with a mean m̂(xn+1) and variance
ŝ2(xn+1) as defined by Eq. (2.14) and Eq. (2.16) respectively.
Consequently, also the improvement Ĩ is a random variable. The
probability of the improvement can be calculated, for example as
in [Emmerich et al., 2006]:

P [Ĩ(xn+1)] = P [z̃(xn+1) ≤ zmin] (4.2)

= Φ

(
zmin − m̂(x)

ŝ2(x)

)
, (4.3)

where Φ is the cumulative distribution function of the standard
normal distribution. The argument of the cumulative distribution
function is called germ and denoted by λ:

λ(x) =
zmin − m̂(x)

ŝ2(x)
, (4.4)
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4. Optimisation framework

The expectation of the improvement E[Ĩ(xn+1)] can be marginalised
out and given in closed form:

EI(xn+1) = ŝ2(xn+1) (λ(xn+1)Φ (λ(xn+1)) + φ (λ(xn+1))) ,
(4.5)

where φ is the probability density function of the standard nor-
mal distribution. The location of the new observation can be
determined by maximising the EI(x).

xn+1 = argmax
x

EI(x). (4.6)

The maximum EI acquisition function offers a great balance be-
tween evaluating designs with a potentially optimal objective
value and designs with high prediction uncertainty in unexplored
regions.

For problems with inequality constraint, the EI can be ex-
tended with a probability of feasibility term as in [Gardner et al.,
2014]. Then, the Constrained Expected Improvement (cEI) can be
formulated as:

cEI = E [max (0, zmin − z̃(xn+1))]P
[
(h̃(xn+1) ≤ h0)

]
= ŝ2(xn+1) (λ(xn+1)Φ (λ(xn+1)) + φ (λ(xn+1))) Φ (λh(xn+1)) ,

(4.7)

where h̃(x) is the constraint response function which required to
be smaller or equal to a threshold value h0. The λh is the germ
of the constraint function. It is defined as:

λh(x) =

(
h0 − ĥ(x)

ŝ2h(x)

)
, (4.8)

where ĥ and ŝ2h are the predicted mean and variance of the con-
straint response function.

To determine the fidelity of the new observation, we can define
the amount of information which can be gained for each fidelity
level by performing the observation at that level. As a gain
measure, we use the predicted variance reduction similarly to
[Le Gratiet, 2013; Meliani et al., 2019]. This gain can be scaled
with the observation cost cl of the fidelity level l. By comparing the
scaled costs of the different fidelities, we can choose the fidelity level
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4.4. Proposed multi-objective framework

which provides the highest Scaled Expected Variance Reduction
(SEVR):

l = argmax
1:L

SEVRl, (4.9)

where the variance reduction σ̃l can be recursively defined as:

σ̃1 = ρ21ŝ
2
z1(xnew), for l = 1, (4.10)

σ̃l = ρ2l−1ŝ
2
zl−1

(xnew) + ŝ2δl(xnew), for l ≥ 2. (4.11)

The SEVR is defined as:

SEVRl =
σ̃l
cl
. (4.12)

The pseudo-code of the acquisition function for single-objective
problems with fidelity level selection is given in Algorithm 2. For
constraint problems, the described fidelity selection process can be
applied without any modification as the cEI will provide feasible
design candidates or designs with negligible constraint violation.

Algorithm 2 Acquisition function for single-objective optimisa-
tion
Input: MFGPRL
Output: xl,nl+1

1: m̂L ← predictTrend(MFGPRL)
2: ŝ2L ← predictVariance(MFGPRL)
3: EI(x)← calculateExpectedImprovement(Rmin, m̂L(x), ŝ2L(x))
4: (x?,nl+1)←argmax(EI(x))
5: for l=1:L do
6: σ̃l ← predictVarianceReduction(MFGPRl, (x?,nl+1))
7: cl ← getCost(l)
8: SEVRl ← calculateSEVR(σ̃l, cl)
9: end for

10: l← argmax(SEVRl)
11: return xl,nl+1

4.4 Proposed multi-objective framework

The proposed algorithm for multi-objective problems differs from
the single-objective variant in that multiple risk measure objectives
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4. Optimisation framework

have to be calculated. Consequently, a MFGPRk model is trained
for each set of risk measure values Rl,k,: and the acquisition
function is adapted for multi-objective problems. Correspondingly,
the outcome of the multi-objective optimisation is not a single
optimal solution but a set of Pareto optimal solutions. The
multi-objective strategy is depicted in Figure 4.2 and given by
Algorithm 3. The number of response values is denoted by nq and
the number of uncertain QoIs is nr.
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4. Optimisation framework

Algorithm 3 Multi-objective multi-fidelity optimisation strategy.
(L: top-level fidelity, nl: number of design samples at level l, nq:
number of QoIs, nr: number of risk measures, ml: number of
probabilistic samples)

Input: d, L, nl, nq, nr,ml . Problem and model properties
Output: xL,pareto,RL,1:nr,pareto,MFGPR1:nr

1: for l=1:L do
2: xl ← generateDesignSample()
3: for i=1:nl do
4: ul,i ←generateProbabilisticSample(xl,i)
5: yl,1:nq,i ← evaluateDesignPerformance(xl,i, ul,i)
6: Rl,1:nr,i ← evaluateRiskMeasure(yl,1:nq,i)
7: end for
8: end for
9: for k=1:nr do

10: MFGPRk ← trainMFGPR(R1:L,k,1:nl)
11: end for
12: flag ← True
13: while flag do
14: xl,nl+1 ← acquisitionFunction(MFGPR1:nr )
15: ul,nl+1 ←generateProbabilisticSample(xl,nl+1)
16: yl,1:nq,nl+1 ← evaluateDesignPerformance(xl,nl+1)
17: Rl,1:nr,nl+1 ← evaluateRiskMeasure(yl,nl+1)
18: for k=1:nr do
19: MFGPRk ← trainMFGPR([R1:L,k,1:nl ,Rl,k,nl+1])
20: end for
21: if budgetExhausted then
22: flag ← False
23: xL,pareto,RL,1:nr,pareto ← findPareto(xL,:,RL,:,:)
24: end if
25: end while
26: return xL,pareto,RL,1:nr,pareto,MFGPR1:nr

4.5 Multi-objective acquisition function

In multi-objective optimisation, a one-step lookahead strategy
requires to aggregate the objectives into a single measure [Lam
et al., 2018]. Similarly to the single-objective case, an acquisition
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4.5. Multi-objective acquisition function

function is used to determine the location of the new observation.
Here, the HVI is adapted to scalarise the multi-objective problem.
HVI is a popular technique due to the fact that the Hypervolume
(HV) measure is a reliable performance indicator which does not
require any assumption on the true Pareto set [Emmerich et al.,
2006]. HVI is defined as:

HVI(x) = HV(P ∪ m̂(xn+1))−HV(P), (4.13)

where the HV is a Lebesgue-measure in the objective space and
P denotes the current Pareto set. The next observation is made
where the predicted mean value of the GPR maximises the HVI
measure. However, this strategy does not consider the variance
of the prediction but only exploits the input space. To introduce
some exploratory behaviour into the strategy, the Hypervolume
Improvement of the Lower Confidence Bound (HVILCB) is max-
imised instead as suggested by Emmerich et al. [2006]:

xn+1 = argmax
x

HVILCB(P ∪ m̂LCB(xn+1)), (4.14)

m̂LCB(x) = m̂(x)− αŝ(x), (4.15)

where α is a positive parameter that represents the level of op-
timism towards model uncertainty. Here, α = 2 as suggested in
[Emmerich et al., 2006]. The HVI and HVILCB are illustrated for
a bi-objective problem in Figure 4.3.

Figure 4.3: Illustration of the HVI and HVILCB for a bi-objective
problem.
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4. Optimisation framework

We generalised the SEVR measure to the multi-objective case
and introduced the Scaled Hypervariance Reduction (SHVR) for
the selection of the level of fidelity:

l = argmax
1:L

SHVRl, (4.16)

where the SHVR is defined as:

SHVR1 =
1

c1

∏
j=1...nr

ρ21(xnew)ŝ2j,z1(xnew),

for l ≥ 2 :

SHVRl =
1

cl

∏
j=1...nr

ρ2j,l−1(xnew)ŝ2j,zl−1
(xnew) + ŝ2j,δzl

(xnew),

(4.17)

The pseudo-code of the acquisition function for multi-objective
problems with fidelity level selection is given in Algorithm 4.

Algorithm 4 Acquisition function for multi-objective and multi-
fidelity optimisation.
Input: MFGPRL
Output: xl,nl+1

1: for k=1:nr do
2: m̂L,k ← predictTrend(MFGPRL,k)
3: ŝ2L,k ← predictVariance(MFGPRL,k)
4: end for
5: HV ILCB(x)← calculateHVI(P, m̂L,1:k(x), ŝ2L,1:k(x))
6: (x?,nl+1)← argmaxHV ILCB(x)
7: for l=1:L do
8: SHVRl ← calculateSHVR(MFGPRl, x?,nl+1, ŝl, cl)
9: end for

10: l← argmax(SHVRl)
11: return xl,nl+1
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Multi-fidelity benchmark functions 5

“You must be ready to give up even the most attractive
ideas when experiment shows them to be wrong.“

— Alessandro Volta

5.1 Multi-fidelity benchmark functions

The mathematical formulation of the Multi-Fidelity Gaussian
Process Regression (MFGPR) allows the combination of any level
of fidelities. Here, we limit ourselves to investigate only two-level
models. A test suite for multi-fidelity single-objective optimisation
was proposed by Wang et al. [2017]. The test suite was extended
by Habib et al. [2019] for multi-objective problems. Their work
is adopted in this dissertation with minor modifications. The
benchmark tests are complemented with a low-fidelity model
which combines residual and stochastic errors at the same time.
Moreover, the test functions are complemented with an additional
probabilistic term on both high- and low-fidelity levels to emulate
uncertain problems in Section 5.2.

The exact deterministic function of the underlying problem
is denoted by f(x). Any approximation of f(x) can be generally
described as the following:

f(x, φ) = f(x) + e(x, φ). (5.1)

where the approximation f(x, φ) is constructed as the sum of the
exact function f(x) plus some error term e(x, φ). The error term
depends on the accuracy level φ of the approximation. The error
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5. Multi-fidelity benchmark functions

term is the biggest when φ = 0. When φ = 10 the error term
becomes zero and the approximation provides exact results.

The following modified Rastrigin function is considered for
testing a single-objective optimisation:

f(x) =

d+

d∑
j=1

[
(xj − 0.5)2 − cos(20π(xj − 0.5))

] , (5.2)

where the number of design variables d can be chosen arbitrarily.
For multi-objective optimisation, the DTLZ3 [Deb et al., 2005]

test function is used. The number of objective functions can be
chosen arbitrarily with the restriction that nobj ≥ 2 and d ≥ nobj .

f(x) = DTLZ3(x). (5.3)

The error term e(x, φ) in Eq. (5.1) can take four forms: resid-
ual, stochastic, instability error and residual+stochastic. These
represent the most common error types in real-life approximation
models [Wang et al., 2017].

The residual error term takes the following form:

eres(x, φ) =

d∑
j=1

[α(φ) cos(ω(φ)xj + β(φ) + π)] , (5.4)

α(φ) = (1− 0.1φ), (5.5)
ω(φ) = 10πα(φ), (5.6)
β(φ) = 0.5πα(φ), (5.7)

where d is the number of deterministic design variables.

The stochastic error term takes the following form:

estoc(x, φ) = N (µε, σε), (5.8)

µε(x, φ) =
1

10d
ν(φ)γ(x), (5.9)

σε(φ) = 0.1ν(φ), (5.10)
ν(φ) = 1− 0.1φ, (5.11)

γ(x) =

d∑
j=1

(1− |xj |), (5.12)
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5.2. Multi-fidelity test problems under uncertainty

The instability error term takes the following form:

eins(φ) =

{
10d, if r ≤ σε(φ),

0, if r > σε(φ),
(5.13)

where r is a random number between 0 and 1.
The residual+stochastic error term is simply the superposition

of the residual and stochastic terms.

5.2 Multi-fidelity test problems under
uncertainty

To emulate uncertain problems, the single-objective test function
is extended by introducing a probabilistic term g(x, u, φu) for both
fidelity levels:

f(x, u, φu) = f(x) + g(x, u, φu), (5.14)

f(x, u, φ, φu) = f(x) + g(x, u, φu) + e(x, φ), (5.15)

where both the high-fidelity f(x, u, φu) and the low-fidelity test
function f(x, u, φ, φu) depend on controllable design x and un-
controllable uncertain variables u. The level of stochasticity is
determined by φu. When φu = 0 the problem reduces to the
previously described deterministic case.

The probabilistic term g(x, u, φu) depends on both design and
uncertain variables:

g(x, u, φu) =

du∑
i=1

[
α(φu) cosh

(
1

10
(2− γ(x))πui

)]
, (5.16)

α(φu) = 0.1φu, (5.17)

γ(x) =

d∑
j=1

(1− |xj − x∗j |), (5.18)

where du is the number of uncertain input parameters and x∗j = 0.4

is the value of the jth design vector where the uncertainty is
smallest. The deterministic function f(x) is the same as described
previously by Eq. (5.2).
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5. Multi-fidelity benchmark functions

To extend the multi-objective DTLZ3 function with uncer-
tainty, the g(u, x, φu) term is added to the each objective resulting
in the following equations:

f1(x, u, φu) = cos(x1
π

2
)(1 + ρ(xM )) + g(x, u, φu), (5.19)

f2(x, u, φu) = sin(x1
π

2
)(1 + ρ(xM )) + g(x, u, φu), (5.20)

fk(x, u, φ, φu) = fk(x) + g(x, u, φu) + e(x, φ), (5.21)

ρ(xM ) =

dM +

dM∑
j=1

[
(xj − 0.5)2 − cos(20π(xj − 0.5))

] ,

(5.22)

where 2 objectives are considered. f1 and f2 are the high-fidelity
objectives and fk is the kth low-fidelity objective.
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5.3. Comparison of single- and multi-fidelity surrogates

5.3 Comparison of single- and multi-fidelity
surrogates

When to use multi-fidelity surrogates is still an open question
[Fernández-Godino et al., 2019]. Multi-fidelity models are more
complex than their single-fidelity counterparts. Hence, the com-
parison between the two techniques is not straightforward. The
MFGPR has more parameters than the single-fidelity Gaussian
Process Regression (GPR) and therefore the relative performance
of the two techniques depends on the extra parameters of the
MFGPR. In [Wang et al., 2017], the shape and correlation proper-
ties of multi-fidelity benchmarks were investigated. In this section,
we discuss the surrogate quality of MFGPR on the proposed
benchmark functions. The parameter settings of the test cases
are described in Table 5.1.

Table 5.2 compares the accuracy of GPR and MFGPR con-
sidering the different error types of the Low-Fidelity (LF) level
defined in Section 5.1. The accuracy measure Erroravg is the mean
absolute error calculated on 2000 points generated with a Latin
Hypercube Sampling (LHS). In these simulations, the computa-
tional budget was fixed to 300 units, which corresponds exactly to
30 High-Fidelity (HF) samples. The cost of a high-fidelity evalua-
tion is 10 and the cost of a low-fidelity evaluation is 5. Moreover,

Table 5.1: List of test cases for deterministic single-objective
problems. (cHF : cost of high-fidelity evaluation, cLF : cost of
low-fidelity evaluation)

High-fidelity Low-fidelity
Test f(x) cHF e(x, φ) φ cLF

TD0 Eq.(5.2)+Eq.(5.16) 10 - - -
TD1 Eq.(5.2)+Eq.(5.16) 10 Eq.(5.4) 5 5
TD2 Eq.(5.2)+Eq.(5.16) 10 Eq.(5.8) 5 5
TD3 Eq.(5.2)+Eq.(5.16) 10 Eq.(5.13) 5 5
TD4 Eq.(5.2)+Eq.(5.16) 10 Eq.(5.4)+Eq.(5.8) 5 5
Input
x 0 ≤ x ≤ 1, d = 1
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5. Multi-fidelity benchmark functions

Table 5.2: Comparison of single- and multi-fidelity GPR for de-
terministic problems.

Test Budget LF error
type

Surrogate Samples Erroravg

TD0 300 - GPR 30(HF) 1.522e-1

TD1 300 residual MFGPR 15(HF )
30(LF )

5.480e-2

TD2 300 stochastic MFGPR 15(HF )
30(LF )

4.419e-2

TD3 300 instability MFGPR 15(HF )
30(LF )

1.545e-1

TD4 300 residual +
stochastic

MFGPR 15(HF )
30(LF )

5.930e-2

for the MFGPR model the computational budget was divided into
two equal parts, i.e. 150 and 150, to obtain high- and low-fidelity
samples.

Figure 5.1(a) shows that the landscape cannot be accurately
modelled by a standard GPR because of the limited number of
samples. By obtaining information from low-fidelity models a
better approximation can be achieved as shown in Figure 5.1(b)-
(e). The MFGPR model uses half HF samples w.r.t. classical
GPR, but the high number of LF samples provides more valuable
information about the landscape. We can see that the error type
of the low-fidelity model can have a significant effect on surrogate
quality. The MFGPR performs the best when the LF model
has only stochastic errors and performs the worst when the LF
model has instabilities. GPR is able to handle instabilities only
up to the magnitude of the regularising term σε in Eq. (2.5),
which is also called nugget, whereas higher instabilities can cause
severe approximation errors. In a MFGPR, the low-fidelity level
approximation error is propagated to the higher fidelity level.

In the previous simulations, the total computational budget
was fixed to 300. The size of the computational budget has a
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5.3. Comparison of single- and multi-fidelity surrogates

(a) Single-fidelity GPR

(b) Residual low-fidelity error

(c) Stochastic low-fidelity error

(d) Instability low-fidelity error

(e) Residual and stochastic low-fidelity error

Figure 5.1: Landscapes of the single- and multi-fidelity surrogate
models. (In the plots for the sake of better visibility the low-
fidelity curves are shifted up by 1. The true high- and low-fidelity
functions are drawn with solid and dashed black lines respectively.
The high- and low-fidelity model predictions are drawn with red
and blue respectively.)
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5. Multi-fidelity benchmark functions

Figure 5.2: Comparison of single- and multi-fidelity GPR for
single-objective deterministic case. The lines represent the abso-
lute errors of the surrogate models calculated at 2000 locations
sampled by latin hypercube sampling. The black dashed line
corresponds to the GPR model; the three differently shaded red
lines correspond to the three error levels of the low-fidelity model.

significant effect on surrogate quality. Figure 5.2 shows that the
relative performance of GPR and MFGPR changes depending on
the size of the total budget. When the budget is too small, the
available samples are not even enough to approximate well the
low-fidelity model. This causes an even higher approximation
error at the top-fidelity level. In this case, the samples from the
low-fidelity model introduce a larger error than the amount of in-
formation they provide. Similarly, when the budget is big enough
to have enough HF samples to accurately approximate the land-
scape, the low-fidelity deteriorate the multi-fidelity approximation.
Consequently, in these domains, MFGPR is not useful. MFGPR
provides significantly better results when the available budget is
not able to provide enough HF samples. In this case, instead of a
handful of HF samples, many LF samples can be generated which
can provide valuable information for the landscape approximation.
Consequently, MFGPR is recommended to be used for such a
problem setting.

5.4 Acquisition step of a multi-fidelity
surrogate-based optimisation

This section illustrates the internal processes of the proposed strat-
egy through its application to the single-objective deterministic
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5.4. Acquisition step of a multi-fidelity surrogate-based optimisation

multi-fidelity test-case represented by Eq. (5.2). To illustrate
Algorithm 1 and Algorithm 2, the progression from iteration t to
t+ 1 is shown in Figure 5.3(a)-(e). In Figure 5.3(a) the predicted
low- and high-fidelity landscapes are plotted. At iteration t the
MFGPR was trained on 15 HF and 31 LF samples. The Expected
Improvement (EI) of this prediction was calculated resulting in
the black curve plotted in Figure 5.3(b). The maximum of the EI
was located at x = 0.405. At this location, the Scaled Expected
Variance Reduction (SEVR) of each fidelity level were calculated
and compared. The low cost of the LF evaluation resulted in
a higher SEVR. Therefore, a LF fidelity sample was generated
and the MFGPR surrogate was retrained. The new landscape
prediction at t+ 1 is shown in Figure 5.3(c). Figure 5.3(d) and
(e) shows the proportions of the total budget spent on low- and
high-fidelity samples at iteration t and t+ 1 respectively.
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5. Multi-fidelity benchmark functions

(a) Landscape at iteration t

(b) Acquisition at iteration t

(c) Landscape at iteration t+ 1

(d) Budget at t (e) Budget at t+ 1

Figure 5.3: Iteration step of multi-fidelity EGO
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optimisation under uncertainty

5.5 Benchmarking the single-objective
multi-fidelity surrogate-based optimisation
under uncertainty

The parameter settings of the single-objective test problems under
uncertainty are summarised in Table 5.3. The residual+stochastic
error term is considered for the study in this section.

The evolution of the objective value obtained with the classic
GPR-based Efficient Global Optimisation (EGO) algorithm and
the proposed multi-fidelity surrogate-based approach is compared
on Figure 5.4. The computational budgets are equal in the two
optimisation runs. This results in a higher number of HF samples
for classical GPR. The higher number of HF samples provides a
better starting point for the optimisation. However, the limited
budget causes a premature stop of the optimisation algorithm.
When MFGPR is employed in the EGO algorithm, many low-
fidelity samples can be generated to explore the design landscape
and then HF samples are mostly generated to exploit the identified
region of interest.

The obtained objectives with different budgets confirm the
findings made with the deterministic simulations of the previous
subsection. Table 5.4 shows that when the budget is low (2000)
then the GPR is not able to provide an accurate approximation.

Table 5.3: List of test cases for uncertain single-objective problems

High-fidelity Low-fidelity
Test f(x) φu cHF e(x, φ) φ cLF

TU0 Eq.(5.2)+Eq.(5.16) - 10 - - -
TU1 Eq.(5.2)+Eq.(5.16) 5 10 Eq.(5.4)+Eq.(5.8) 1 5
TU2 Eq.(5.2)+Eq.(5.16) 5 10 Eq.(5.4)+Eq.(5.8) 5 5
TU3 Eq.(5.2)+Eq.(5.16) 5 10 Eq.(5.4)+Eq.(5.8) 9 5
Input
x 0 ≤ xj ≤ 1, j = 1..d, d = 1
u uj ∼ N (0, 1), j = 1..du, du = 1

R
q0.95 superquantile Eq. (3.5)
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5. Multi-fidelity benchmark functions

Figure 5.4: Comparison of single- and multi-fidelity surrogate-
assisted optimisation convergence. (The convergence histories
were obtained by a trial run of TU2 with a budget of 4000.)

For this reason, the strategy employing MFGPR outperforms the
one with GPR. We can also notice that by increasing the fidelity
of the low-level function φ = 5 and φ = 9, the obtained objective
becomes worse. The reason for this is that the budget is fixed
and by increasing the fidelity of the low-level function also its cost
increases, hence the number of LF samples becomes also sparse.
Therefore, the advantage of employing MFGPR is diminished;
however, the total number of samples is still higher than in the
GPR case resulting in a slightly better objective value.

When the budget is increased to a level that the GPR is able
to provide an accurate approximation, there is no advantage to
use MFGPR. In the cases of fidelity levels φ = 1 and φ = 5, the
obtained objective values are comparable with both GPR and
MFGPR. However, in the case of φ = 9 the low-fidelity level with
sparse samples clearly provides a bad approximation which affects
the quality on the top level as well and results in a significantly
worse objective value.
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optimisation under uncertainty

Table 5.4: Comparison of single- and multi-fidelity surrogate-
assisted optimisation results. The values in the table are averaged
over 10 independent runs.

MFGPR GPR (TU0)

Test Budget φ Samples Obj. Samples Obj.

TU1 2000 1 126(HF )
711(LF )

0.360 200 (HF) 0.425

TU2 2000 5 138(HF )
124(LF )

0.38290 200 (HF) 0.425

TU3 2000 9 60(HF )
150(LF )

0.38291 200 (HF) 0.425

TU1 4000 1 229(HF )
1686(LF )

0.363 400 (HF) 0.352

TU2 4000 5 184(HF )
432(LF )

0.364 400 (HF) 0.352

TU3 4000 9 220(HF )
190(LF )

0.38247 400 (HF) 0.352

5.6 Benchmarking the multi-objective
multi-fidelity surrogate-based optimisation
under uncertainty

The results of the multi-objective problem are in agreement with
the results obtained for the single-objective case. The parame-
ter settings of the investigated test functions are summarised in
Table 5.5.

The advantage of employing a MFGPR is significant when the
approximation on the low-fidelity is sufficiently good as shown
in Table 5.6. When the low-fidelity level is prone to instability
error the obtained Inverted Generational Distance (IGD) [Zitzler
et al., 2003] values are worse compared to when the low-fidelity
has only residual and stochastic error. Similarly to the single-
objective tests increasing the accuracy of the low-fidelity level
might decrease the overall performance of the algorithm as in the
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5. Multi-fidelity benchmark functions

Table 5.5: List of test cases for uncertain multi-objective problems

High-fidelity Low-fidelity
Test f(x) φu cHF e(x, φ) φ cLF

TMU0 Eq.(5.19)- (5.20) - 20 - - -
TMU1 Eq.(5.19)- (5.20) 5 20 Eq.(5.4)+Eq.(5.8) 5 2.5
TMU2 Eq.(5.19)- (5.20) 5 20 Eq.(5.13) 5 2.5
TMU3 Eq.(5.19)- (5.20) 5 20 Eq.(5.4)+Eq.(5.8) 9 5
Input
x 0 ≤ xj ≤ 1, j = 1, 2
u uj ∼ N (0, 1), j = 1, 2

R
q0.95 superquantile Eq. (3.5)

TMU3 case with a computational budget of 6000 units. At any
fidelity level, the accuracy can be increased typically by increasing
the computational cost too, which can result in a sparse sample
on the low-fidelity level. As expected, the IGD values decrease
with an increasing budget. Similarly to the single-objective case,
when the number of samples is high enough the GPR model
approximation becomes satisfactorily good; hence, employing the
MFGPR surrogate model is unnecessary.
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optimisation under uncertainty

Table 5.6: Comparison of single- and multi-fidelity surrogate-
assisted multi-objective optimisation under uncertainty. The IGD
values of the obtained Pareto fronts are calculated with a reference
set of 100 points. The values in the table are averaged over 10
independent runs.

MFGPR GPR (TMU0)

Test Budget φ Samples IGD Samples IGD

TMU1 6000 5 231(HF )
516(LF )

0.172 300 (HF) 0.303

TMU2 6000 5 230(HF )
540(LF )

0.233 300 (HF) 0.303

TMU3 6000 9 215(HF )
409(LF )

0.209 300 (HF) 0.303

TMU1 8000 5 273(HF )
995(LF )

0.164 400 (HF) 0.203

TMU2 8000 5 293(HF )
826(LF )

0.182 400 (HF) 0.203

TMU3 8000 9 264(HF )
658(LF )

0.163 400 (HF) 0.203

TMU1 10000 5 319(HF )
1421(LF )

0.175 500 (HF) 0.160
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Airfoil shape optimisation under uncertainty 6

“Scientists study the world as it is, engineers create
the world that never has been.“

— Theodore von Karman

6.1 Introduction to airfoil design

Shape optimisation of an airfoil is one of the most fundamental
problems in aerodynamic design optimisation. The purpose of
an airfoil is to generate a pressure difference in a flow so that a
force is generated. The force component perpendicular to the flow
direction is called lift, its magnitude and sense (in respect of the
defined force reference frame) depend on the shape of the airfoil
and on the flow conditions. Together with the lift, the presence
of the airfoil in the flow inevitably generates a force component
parallel to the flow direction, called drag. The aerodynamic forces
are depicted in Figure 6.1. Most engineering applications exploit
the lift, while the drag is an inevitable loss. Therefore, the shape
optimisation of an airfoil aims to find the optimal airfoil shape
such that the application-dependent requirements are satisfied.

Conceptually, aerodynamic design optimisation can be ap-
proached in two ways: inverse and direct [Song and Keane, 2004].
In inverse design optimisation, a desired pressure distribution is
targeted, and the optimisation algorithm seeks to find the geomet-
rical shape which produces the targeted pressure distribution or lift
force. Therefore, inverse methods are commonly applied in later
design phases when target values are known. A direct method, as
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6. Airfoil shape optimisation under uncertainty

its name suggests, directly optimises the objective without any
predefined target value. In aerodynamic shape optimisation, a
maximal lift-to-drag ratio is typically desired.

angle-of-attack

Lift
chord line

freestream 

flow direction 

Drag

Figure 6.1: Aerodynamic forces of an airfoil

One of the challenges of aerodynamic shape optimisation is that
accurate Computational Fluid Dynamics (CFD) calculations are
typically expensive in computational time [Poloni and Pediroda,
1997]. This issue can be tackled by employing surrogate models
as in [Poloni et al., 2000; Poloni, 1995]. Expensive calculations
are performed for only a handful of designs. Then a statistical
model is built to approximate the aerodynamics of airfoil designs
which have not been evaluated by the expensive CFD code. The
accuracy of the statistical model highly depends on the number of
available CFD evaluations. Consequently, sparsely sampled design
landscapes are hard to approximate accurately with standard
surrogate techniques. In such a case, aerodynamic calculations
of lower fidelity can be used to provide sufficient information for
building an accurate statistical model. The information from low-
fidelity calculations can be fused together with high-fidelity data by
using the Multi-Fidelity Gaussian Process Regression (MFGPR)
model.

There is also another issue to take into account. Often the
actual design, or operation point, and its performance are slightly
different from the optimisation solutions because of manufacturing,
wear off [Sareen et al., 2014] and other operational deformations,
like icing [Arizmendi et al., 2019] and surface pollution [Bak et al.,
2008]. In practice, our design problem is affected by various uncer-
tainty sources which affect the actual aerodynamic performance.
This issue can be addressed with Uncertainty Quantification (UQ)
techniques and optimisation under uncertainty methods. UQ can
be used to estimate statistical measures of the design performance
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that can be in turn used as reliable or robust objectives of the
optimisation under uncertainty problem (see e.g. the reviews
[Beyer and Sendhoff, 2007; Schuëller and Jensen, 2008]).

6.2 Airfoil shape optimisation: uncertainties,
reliability-based risk measure and other
details

When simulating a flow around an airfoil only a limited number
of phenomena are modelled. Therefore, the aerodynamic perfor-
mance of a real airfoil might deviate from the numerical results.
This motivates the construction of probabilistic models which can
be appended to the design optimisation workflow to predict the
variations of the aerodynamic performance.

In this study, only probabilistic uncertainties are considered.
The uncertainties are propagated through the aerodynamic solver
which will result in a probabilistic aerodynamic performance.
The comparison of two probability distributions is not a trivial
task. The possible realisations of a distribution are multiple
[Rockafellar and Royset, 2015]. Therefore, only certain properties
of a distribution are compared as discussed in Section 3.1. In this
section, the 95th superpercentile of the Cl and Cd distributions
are used for evaluating the aerodynamic performance of the airfoil.
This risk measure is defined in Equation (3.5) and employed
here to ensure reliability. The advantages of the superpercentile
measure over other risk measures for engineering applications are
discussed in [Rockafellar and Royset, 2015; Quagliarella et al.,
2020].

An analytical propagation of the uncertainty is not possible
due to the complex aerodynamics solvers. Therefore, the super-
percentile values of the Cl and Cd distributions are calculated
using empirical values obtained by sampling. To obtain a sufficient
number of samples, surrogate assisted uncertainty quantification is
performed. The probabilistic space is considered to be independent
from the design space. For each design, a local Gaussian Process
Regression (GPR) model is trained over a small sample randomly
generated around the considered design. Then, the calculation of
the superpercentile is done on a larger sample evaluated with the
trained GPR model.
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6. Airfoil shape optimisation under uncertainty

6.3 Solvers for aerodynamic force prediction
of an airfoil

To calculate the aerodynamic forces of the airfoil two solvers are
considered: XFOIL [Drela, 1989] and SU2 [Economon et al., 2016].

The former is an airfoil analysis tool based on potential flow
equations (panel methods). For viscous problems, a two-equation
integral boundary layer formulation is coupled with the inviscid
flow solution [Drela, 2001]. The transition criterion is calculated by
the eN envelope method. XFOIL has a fairly rapid calculation time
and provides sufficient accuracy for most engineering applications.

SU2 can be used to solve the compressible Reynolds-averaged
Navier–Stokes (RANS) equations. The RANS equations are closed
by Menter’s Shear Stress Transport turbulence model [Menter
et al., 2003] which efficiently blends the k-ω turbulence model of
the near-wall region to the k-ε model of the region away from any
wall. Various studies have been carried out to compare the results
of these two solvers, like e.g. [Vaithiyanathasamy, 2017; Barrett
and Ning, 2016]. Both solvers are suitable to accurately predict
the aerodynamic forces of an airfoil. For the sake of this study,
SU2 is considered as a higher fidelity solver as it implements a
more general form of the Navier-Stokes equations.

The aerodynamic evaluations with XFOIL and SU2 are per-
formed with the framework software described in [Quagliarella
et al., 2019; Quagliarella and Diez, 2020]. The modal shape
function superposition is performed with the wg2aer software1
[Quagliarella, 2016]. The modified airfoil geometry is stored in
a Selig format which can be directly processed by XFOIL. For
the CFD evaluation, the modified airfoil and its surrounding do-
main are discretised with the open-source Gmsh software which
generates the mesh in .su2 format. Finally, SU2 performs the
aerodynamic analysis of the airfoil and provides the high-fidelity
drag and lift predictions.

1Software developed at the Italian Aerospace Research Centre (CIRA)
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6.3. Solvers for aerodynamic force prediction of an airfoil

(a) Lift coefficient against angle-of-attack

(b) Drag coefficient against angle-of-attack

Figure 6.2: Comparison of lift and drag coefficient curves of
MH114 calculated with XFOIL and SU2.
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6. Airfoil shape optimisation under uncertainty

The lift and drag coefficients of the MH114 airfoil, which is
taken as the baseline in our airfoil optimisation study, are plotted
in Figures 6.2a and 6.2b. The calculations are carried out at
Reynolds number Re = 5 · 106 and Mach number M = 0.218 with
standard sea-level conditions. SU2 considers a fully turbulent
domain around the airfoil. Therefore, XFOIL was also forced
to operate in fully turbulent conditions by setting the transition
point location at the beginning of the lower and upper airfoil
sides (XTRLO and XTRUP set to 0.01). The two solvers produce
similar polar trends; however, there are some deviations in the
actual values. This makes the two solvers appropriate candidates
for a multi-fidelity optimisation.

6.3.1 Parametric geometry definition of airfoils

The geometrical shape of the airfoil is defined by superposing
modal shape functions on the baseline geometry of MH114. Eight
modal shape functions are considered. They are shown in Fig-
ure 6.3 and Table 6.1. The first two modes modify the thickness
and the camber line of the airfoil. The remaining six modes intro-
duce local shape modifications of the upper and lower side of the
airfoil at the Leading Edge (LE), mid-span and Trailing Edge (TE)
respectively. The design variables to be optimised are the scaling
parameters (xi) of the modal shape functions.

Table 6.1: Design variables of the airfoil.

Mode Function type xi Physical interpretation
mode 1 Polynomial x1 thickness
mode 2 Polynomial x2 camber
mode 3 Hicks-Henne x3 upper LE
mode 4 Hicks-Henne x4 lower LE
mode 5 Hicks-Henne x5 upper middle
mode 6 Hicks-Henne x6 lower middle
mode 7 Hicks-Henne x7 upper TE
mode 8 Hicks-Henne x8 lower TE
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(a) mode 1 (b) mode 2

(c) mode 3 (d) mode 4

(e) mode 5 (f) mode 6

(g) mode 7 (h) mode 8

Figure 6.3: Baseline design and the deformation modes of the
airfoil.

6.3.2 Mesh generation of airfoils

The parametric mesh of the airfoil designs is generated by the
in-house software of CIRA described in [Quagliarella et al., 2019;
Quagliarella and Diez, 2020]. The domain around the airfoil is
discretised with a hybrid mesh. The boundary layer is meshed
with a fine quadrilateral grid and, moving away from the boundary
layer, the domain is tessellated with triangles of increasing size. An
example is given in Figure 6.4. The depicted mesh consists of 96085
vertices and forms 87402 triangles and 48513 quadrilaterals. The
parametric mesh size is determined for each case study following
the suggestions of the software described in [Quagliarella et al.,
2019; Quagliarella and Diez, 2020].
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6. Airfoil shape optimisation under uncertainty

(a) Far-field mesh

(b) Near-field mesh (zoom on airfoil)

(c) Leading edge mesh (zoom) (d) Trailing edge mesh (zoom)

Figure 6.4: MH114 airfoil mesh64



6.3. Solvers for aerodynamic force prediction of an airfoil

6.3.3 Far-field drag prediction of coarse grids

Alternatively, different levels of accuracy can be achieved by using
different mesh sizes for the RANS simulations. In a collaboration
work [Paper C: Morales and Korondi et al.,2020], we detailed how
the mesh size influences the aerodynamic force calculation. RANS
simulations with coarse meshes provide drag predictions loaded
with spurious drag. The numerical dissipation and truncation
error become larger when coarser meshes are used. To compensate
the effect of these numerical errors the drag can be predicted with
the so-called far-field formula. This formula proved its efficiency
for solving optimisation problems under uncertainty [Morales et al.,
2019]. Nevertheless, the far-field drag prediction formula requires
a fully structured grid.The structured grids are generated with
the Construct2D open-source software [Construct2D, 2018]. The
parameters of the used meshes are given in Table 6.2. The repre-
sentation of a coarse and fine grid is given in Figures 6.5a and 6.5b
respectively.

Table 6.2: Mesh size parameters for low- and high-fidelity simula-
tions. ( Nb: number of cells on the body surface, Nw: number of
cells in the wake, Nj : number of cells in far-field direction, Ntotal:
total number of cells) [Paper C: Morales and Korondi et al.,2020]

Nb Nw Nj Ntotal
Low-fidelity (LF) 96 48 48 16384
High-fidelity (HF) 512 256 256 262144
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6. Airfoil shape optimisation under uncertainty

(a) Coarse structured mesh

(b) Fine structured mesh

Figure 6.5: Structured meshes of different size.
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6.4. Multi-objective airfoil optimisation under uncertainty with XFOIL
and SU2

6.4 Multi-objective airfoil optimisation under
uncertainty with XFOIL and SU2

In this section, the MH114 airfoil is optimised for a high-lift
propeller. We seek for a set of Pareto optimal geometries for
maximum lift (L) and minimum drag (D). Additionally, the shape
of the airfoil is considered to have some geometrical uncertainties
due to the manufacturing process. Therefore, each shape mode
is additionally superposed on the design shape with an uncertain
scaling factor (ui). The uncertain scaling factors can be described
by a Gaussian distribution with zero mean and 0.01 standard
deviation. The complete list of the considered uncertain variables
is reported in in Table 6.3.

As the lift and drag forces are uncertain due the geometri-
cal uncertainties, a reliability-based multi-objective optimisation
problem is considered here:

min
x

Sright95 (−Cl(x, ũ)) , (6.1a)

min
x

Sright95

(
Cd(x, ũ)

Cd0

)
, (6.1b)

where Cd0 = 0.01. The Sright95 denotes the right-tail 95th super-
percentile which is a reliability measure defined in Eq. (3.5) in

Table 6.3: Geometrical uncertainties of the multi-objective airfoil
design problem.

Modes Function type ui Physical interpretation
mode 1 Polynomial u1 thickness uncertainty
mode 2 Polynomial u2 camber uncertainty
mode 3 Hicks-Henne u3 upper LE uncertainty
mode 4 Hicks-Henne u4 lower LE uncertainty
mode 5 Hicks-Henne u5 upper middle uncertainty
mode 6 Hicks-Henne u6 lower middle uncertainty
mode 7 Hicks-Henne u7 upper TE uncertainty
mode 8 Hicks-Henne u8 lower TE uncertainty
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6. Airfoil shape optimisation under uncertainty

Section 3.1. The lift coefficient (Cl) and drag coefficient (Cd) are:

Cl =
L(x, ũ)

1/2ρU2
, (6.2a)

Cd =
D(x, ũ)

1/2ρU2
, (6.2b)

where ρ is the density and U is the free-stream velocity of the air.
Compared to the traditional Cl and Cd coefficient definitions, the
chord length is omitted from the above definitions as the chord
length is considered as unit throughout this section.

6.4.1 Workflow for multi-objective airfoil design
optimisation

Here, we employ the multi-objective optimisation workflow which
was introduced in Section 4.4 and published in [Paper A: Ko-
rondi et al.,2020a]. The workflow embodies a multi-fidelity Bayesian
optimisation for multi-objective problems. In this section, it is
employed for the aerodynamic design optimisation of airfoils using
XFOIL and SU2.

To initialise the optimisation workflow a Design of Experiments
(DoE) of the design space is generated at each fidelity level with
a uniform Latin Hypercube Sampling (LHS). After obtaining the
95th superpercentiles of the lift and drag of the DoE samples,
two independent multi-fidelity surrogates are trained using the
recursive formulation defined by Eq. (2.12). The two MFGPR
models are used by the acquisition function to determine which
design configuration should be evaluated in the next iteration and
which solver should perform the aerodynamic calculation. Since
it is a multi-objective problem, the decision on the next design
location is made by maximising the Hypervolume Improvement
of the Lower Confidence Bound (HVILCB) of the drag and lift
coefficients. The selection of the solver is based on the Scaled
Hypervariance Reduction (SHVR) values of the fidelity levels. The
superpercentile values of the drag and lift of the selected design is
evaluated at the selected fidelity with the surrogate-assisted UQ
approach discussed in Section 3.2.
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With the new superpercentile values the surrogate model of
the lift and drag is retrained. The surrogate is updated iteratively
with new designs until the computational budget is exhausted.

For each design configuration (during the DoE or the optimi-
sation phase), a sample of 15 elements in the probabilistic space is
generated with a uniform LHS around the selected design to train
a local GPR model. The trained model is used to evaluate a larger
virtual sample of 5000 designs of the local probabilistic space and
compute the 95th superpercentiles. The chosen sizes seemed to
be adequate after performing a few trial and error checks.

At the end of the optimisation, the set of Pareto optimal designs
are presented to decision-makers. The complete optimisation
workflow is illustrated in Figure 6.6.

6.4.2 Results of multi-objective airfoil design
optimisation

A brief summary of the solved optimisation problem is presented
in Table 6.4. The problem is bi-objective and has 8 design and 8
uncertain variables. The computational budget is set to 136500
units. The number of evaluated Low-Fidelity (LF) and High-

Table 6.4: Summary of the multi-objective airfoil design optimisa-
tion.

Number of objectives 2
Number of constraints 0
Number of design variables 8
Number of uncertain variables 8
Computational budget 136500

Fidelity (HF) samples and their cost are presented in Table 6.5.
We assigned 300 cost units for running a single evaluation of
aerodynamics forces with SU2 and 1 unit for evaluating the design
with XFOIL. Here, we determined the cost of the fidelity levels
based on the actual running times of the simulations on the used
machine. The optimisation stopped when no further high-fidelity
samples could be added to the surrogate training set. After the
435th HF simulation, only 4245 units remained in the budget
which is not sufficient for generating the required 15 samples to
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and SU2

Table 6.5: Multi-objective airfoil design optimisation: number of
LF and HF samples and their costs.

LF DoE LF total HF DoE HF total
Solver XFOIL XFOIL SU2 SU2
Evaluation cost 1 1 300 300
Total samples 450 1755 225 435
Budget spent 450 1755 67500 130500
Budget percentage 0.3% 1.2% 51.7% 95.6%

train the probabilistic model. Therefore, only 96.9 % of the budget
was used.

In Figure 6.7, it is shown that the algorithm alternates the
fidelity levels. The alternation stems from the fact that, in regions
where the expected improvement is high due to large uncertainties,
the algorithm will evaluate the new design with the low-fidelity
solver. Following this step, high expected improvement values
in the region are the results of promising performance prediction
with low-level of uncertainty. Therefore, that region is sampled
by high-fidelity simulation without risking a waste of budget.

Figure 6.7: History of fidelity selection throughout the multi-
objective design optimisation of the airfoil.

To investigate the advantage of MFGPR over single-fidelity
GPR, the relative prediction errors of the surrogates are calculated
in every iteration when a HF sample is generated. The classical
GPR model is trained in every iteration using only the HF samples
of the actual iteration. Overall, the MFGPR provides a better
prediction; however, in some iterations, GPR can temporarily be
a better predictor as shown in Figure 6.8. At each iteration, the
prediction error is calculated based on a single sample. When the
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6. Airfoil shape optimisation under uncertainty

newly evaluated design lies in a region which can be accurately
predicted by a GPR model using only HF samples, it is possi-
ble that the single-fidelity GPR model provides a slightly better
prediction. However, in the majority of the iterations MFGPR
outperforms the GPR model.

Figure 6.8: Comparing relative prediction errors of MFGPR and
GPR in every iterations when a HF evaluation was performed

In Table 6.6 the mean prediction error of the single- and multi-
fidelity surrogates are shown. Overall, both surrogate models
can provide a relatively accurate prediction of the objectives.
However, the single-fidelity surrogate model shows significantly
bigger prediction errors when the newly evaluated design lies in
a region which has not been explored by a sufficient number of
observations.

Table 6.6: Mean prediction error of the lift and drag reliability
measures in the multi-objective airfoil design problem.

GPR MF-GPR
Objective 1 (lift) 0.759 % 0.313 %
Objective 2 (drag) 2.191 % 0.989 %
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Figure 6.9: Correlation history of objectives over all iterations

Throughout the iterations, the correlation between the predic-
tions at low- and high-fidelity levels are high and steady as shown
in Figure 6.9. The high correlation is expected at the beginning of
the optimisation as the high number of LF samples in the training
data results in a MFGPR model which predicts performances
close to the LF observations. This correlation does not deteriorate
by updating the model with high-fidelity samples which suggests
that the initial MFGPR dominated by the LF samples provides a
good approximation.

The obtained Pareto optimal solutions are depicted in Fig-
ure 6.10 (red circles, Pareto front HF). The initial HF Pareto
front obtained after the DoE (dash-dotted grey line) was signif-
icantly improved. The MFGPR models of the objectives can
provide accurate predictions; hence, most of the design locations
suggested by the acquisition function are Pareto optimal. In the
same figure, the Pareto front of the LF samples is shown. It could
seem that the LF Pareto optimal solutions dominate the HF front.
However, as Figures 6.2a and 6.2b also suggest, the drag and lift
force are actually under-predicted by using XFOIL. Indeed, by
re-evaluating the Pareto optimal LF optimal designs with the HF
solver, the green circles (HF evaluations of LF Pareto front) are
found. Thus, we can conclude that the gap between the LF and
HF front is due to the approximation error of the LF evaluations.
Therefore, the introduction of the HF samples into the surrogate
model construction is beneficial for obtaining an accurate Pareto
front.

The list of design variables and objectives of the non-dominated
designs are shown in Table 6.7. Many design variables reached the
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6. Airfoil shape optimisation under uncertainty

Figure 6.10: Comparison of high- and low-fidelity Pareto fronts
of the multi-objective airfoil design optimisation problem.

boundary of the design variable limits. For instance, the design
variable of the thickness mode is −1 for every non-dominated
design. This is expected as thin airfoils produce significantly less
drag.

Depending on some further criteria on the propeller blade, the
decision-maker can choose the preferred airfoil (among the HF
Pareto optimal solutions) for further analysis. For example, Ta-
ble 6.8, lists three possible designs corresponding to the minimum
drag, highest efficiency and maximum lift design. To compare the
predicted probability distributions of their aerodynamic forces,
these designs are compared with the baseline design in Figure 6.11.
Violin plots are drawn based on the 5000 virtual samples men-
tioned in Section 6.2. By optimising the 95th superpercentile of
the aerodynamic forces, the tails of the aerodynamic performance
distributions are optimised. Due to the strong correlation of the
lift and drag forces, the optimisation of the opposite distribution
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Table 6.7: List of design variables and objectives of the non-
dominated airfoil designs.

x1 x2 x3 x4 x5 x6 x7 x8 S95 (−Cl) S95 (Cd/Cd0)
-1.000 1.000 1.000 1.000 1.000 -1.000 0.000 -1.000 -1.637 1.822
-1.000 1.000 -0.084 1.000 -0.119 -1.000 -0.526 -1.000 -1.603 1.715
-1.000 1.000 -1.000 1.000 -1.000 -0.113 -1.000 -1.000 -1.552 1.649
-1.000 0.663 -0.927 0.654 -1.000 -1.000 -0.595 -1.000 -1.536 1.608
-1.000 0.611 -0.458 -1.000 -0.659 -0.608 -0.345 -1.000 -1.501 1.578
-1.000 0.917 0.272 -1.000 -1.000 -1.000 -1.000 -0.199 -1.485 1.569
-1.000 -0.128 -1.000 0.350 -1.000 -1.000 -0.616 -0.921 -1.439 1.505
-1.000 -0.215 1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.388 1.457
-1.000 -0.717 -1.000 -1.000 -1.000 -1.000 0.020 -1.000 -1.363 1.450
-1.000 -1.000 -0.379 1.000 -1.000 -1.000 -1.000 -1.000 -1.346 1.433
-1.000 -1.000 1.000 -1.000 0.000 1.000 -1.000 -1.000 -1.288 1.418

Table 6.8: Comparison of Pareto optimal designs based on various
selection criteria.

Cl Cd η
Baseline design 1.4222 0.01646 86.4
Minimum drag design 1.2879 0.01418 90.8
Most efficient design 1.5360 0.01608 95.5
Maximum lift design 1.6371 0.01822 89.9

tails can result in more robust solutions (narrower spread of the
distribution) as we can observe in the case of maximum lift and
most efficient designs.

The optimisation problem defined with Eqs. (6.1a)-(6.1b) aims
to optimise exclusively the drag and lift forces, other aerodynamic
and structural parameters of the airfoil are neglected. This can
result in airfoil designs which are sub-optimal when structural
requirements and other aerodynamic parameters are considered.
The shape of the airfoils selected in Table 6.8 is compared with
the baseline shape in Figure 6.12. For example, the most efficient
design in Figure 6.12b has a very thin trailing edge which is
undesired from a structural point of view. Nevertheless, we can
see that the pressure distribution in Figures 6.13a, 6.13b and 6.13c
is well approximated with XFOIL. This explains the effectiveness
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(a) Comparison of the baseline and minimum drag design with uncer-
tainty prediction

(b) Comparison of the baseline and most efficient design with uncertainty
prediction

(c) Comparison of the baseline and maximum lift design with uncertainty
prediction

Figure 6.11: Comparison of the baseline and Pareto optimal
designs with uncertainty prediction

of the used multi-fidelity approach.
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(a) Minimum drag design

(b) Most efficient design

(c) Maximum lift design

Figure 6.12: Comparison of Pareto optimal design geometries
based on various selection criteria.

6.4.3 Conclusion of multi-objective airfoil design
optimisation under uncertainty

The optimisation of an aerodynamic shape is computationally ex-
pensive - the more so, when uncertainties are taken into account.
In this study, a multi-objective aerodynamic shape optimisation
under uncertainty was presented. The problem was successfully
tackled by the proposed multi-fidelity surrogate-assisted optimi-
sation framework. Combining information from XFOIL and the
RANS solver of SU2 the computational load was significantly
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reduced. Due to the multi-fidelity approach, the optimisation
became feasible even with a limited computational budget and an
accurate Pareto front approximation was found with only a limited
number of high-fidelity RANS simulations. The optimal solutions
found by the proposed approach display significant dominance
over the baseline solution in the objective space of the reliability
measures of the lift and drag.
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(a) Cp distribution of minimum drag design

(b) Cp distribution of most efficient design

(c) Cp distribution of maximum lift design

Figure 6.13: Comparison of the pressure distribution of Pareto
optimal designs based on various selection criteria.
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6.5 Constrained single-objective optimisation
of an airfoil under uncertainty

This section provides a case study of how to tackle expensive
aerodynamic shape optimisation problems with constraints.2 In
this study, the drag coefficient of the MH114 airfoil is minimised
considering constraints imposed on the lift and some geometrical
features of the airfoil. The environmental conditions are consid-
ered uncertain. Therefore, in this study, the angle-of-attack of the
airfoil is considered to have a symmetric beta distribution between
1.75 and 2.25 and shape parameters are equal to 2. The con-
strained optimisation problem under environmental uncertainty
can be formulated as follows:

min
x

Sright95 (Cd(x, u))

s.t. Sleft95 (Cl(x, u)) ≥ 1.0

t%(x) = 13.05

LER(x) ≥ 0.011377

TEA(x) ≥ 6.0◦

(6.3)

where t% is the relative thickness, LER is the leading edge radius
and TEA is the trailing edge angle of the airfoil.

To handle the constraints with a single-objective optimisation
strategy, the constrained problem is scalarised with the penalisa-
tion approach. The single-objective penalised formulation can be
expressed as:

min
x
Sright95 (Cd(x, u)) + pCl max

(
0, 1− Sleft95 (Cl(x, u))

)
+

+pLER max (0, 0.011377− LER(x)) + pTEA max (0, 6− TEA(x)) ,

(6.4)

where the penalisation factors pCl = 1000, pLER = 100000 and
pTEA = 100 are chosen by taking the magnitude of the correspond-
ing values into account. The equality constraint of the thickness

2This section discusses a collaboration work published in [Pa-
per C: Morales and Korondi et al.,2020]. The results, tables and figures
are identical to the published work. The discussion and interpretation of the
results are modified according to the individual thoughts and work of the
candidate.
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is imposed by scaling the modified airfoil shape to the prescribed
value. Only the aerodynamic force requirements (Cd and Cl) are
affected by the uncertainty of the angle-of-attack. The geometrical
properties of the airfoil are independent from the environmental
uncertainty. Therefore, they are evaluated deterministically for
each design configuration.

6.5.1 Constrained single-objective optimisation
workflow for airfoil design under uncertainty

To reduce the computational burden of the optimisation under
uncertainty, the proposed single-objective multi-fidelity surrogate-
assisted optimisation workflow is employed. The proposed work-
flow was detailed in Section 4.4. In this study, the low-fidelity
aerodynamic force predictions are calculated with the RANS solver
of SU2 using a coarse mesh. Additionally, the drag coefficient
predictions are calculated with the so-called far-field method. This
drag prediction technique compensates for the truncation error of
the numerical scheme and artificial dissipation due to the coarse
mesh as was detailed in Section 6.3.3.

The computational chain for combining the high- and low-
fidelity information is displayed in Figure 6.14. The high compu-
tational cost of RANS simulations using a fine grid motivates to
populate the design space with cheaper low-fidelity information.
Only a limited number of high-fidelity RANS simulations are
allowed during the optimisation to respect the size of the compu-
tational budget. Despite the low number of high-fidelity samples,
an accurate surrogate model of the performance landscape can be
trained with the MFGPR technique. For both the lift and drag
coefficient independent surrogates are trained.

The acquisition function presented in Section 4.3 is tailored
for the penalised objective and complemented with constraint
treatment as in Eq. (4.7). The expected improvement of the
penalised objective is calculated by considering the prediction error
of the drag prediction. The constraint is treated by multiplying
the expected improvement of the objective with the probability of
feasibility of the lift coefficient. The problem specific Constrained
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6.5. Constrained single-objective optimisation of an airfoil under
uncertainty

Expected Improvement (cEI) is formulated as:

cEI = E
[
max

(
0, F ∗obj − Fobj(C̃d, C̃l)

)]
P
[
C̃l ≥ 1

]
=

((
F ∗obj − Fobj(Ĉd, Ĉl)

)
Φ

(
F ∗obj − Fobj(Ĉd, Ĉl)

σ̂2
Cd

)
+

+σ̂2
Cd
φ

(
F ∗obj − Fobj(Ĉd, Ĉl)

σ̂2
Cd

))
Φ

(
Ĉl − 1

σ̂2
Cl

)
,

(6.5)

where σ̂2
Cd

and σ̂2
Cl

are the standard deviation of the drag and lift
coefficient respectively. Fobj is the penalised objective given by
Eq. (6.4). The best evaluated objective value is given by F ∗obj . The
Φ and φ symbols denote the cumulative distribution function and
probability density function of the standard normal distribution
respectively. In every iteration, the multi-fidelity surrogate is
updated with one additional sample. This is the design with a
predicted performance that maximises the cEI function given in
Eq. (6.5).

xnew = argmax
x

cEI(x) (6.6)

The new design is evaluated with the high- or low-fidelity level
on the basis of the Scaled Expected Variance Reduction (SEVR)
measure Eq. (4.12) of the drag coefficient. For this study, we set
the costs of the low- and high-fidelity as cLF = 1 and cHF = 10
respectively.

The calculation of the risk measures requires an additional
step to train the local probabilistic models of the lift and drag
coefficients. This surrogate-based uncertainty quantification ap-
proach overcomes the problem of querying computationally heavy
aerodynamic solver by querying the cheap to evaluate local proba-
bilistic model instead. The probabilistic model of the LF is a GPR
trained with five LF samples. For predicting the high-fidelity risk
measures, a MFGPR model is trained with five LF samples and
three HF samples. These models are cheap to evaluate and a suf-
ficiently large number of samples can be drawn to predict the risk
measure. To keep the computational demand low, the minimum
number of HF samples is used for training the local probabilistic
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6. Airfoil shape optimisation under uncertainty

model. The number of LF samples is arbitrarily increased by 20%
to ensure that the LF trend is properly captured. In Figure 6.15,
the MFGPR local probabilistic models of the baseline lift and
drag are displayed.

(a) Lift coefficient (b) Drag coefficient

Figure 6.15: MFGPR models of the aerodynamic force coeffi-
cients of the baseline configuration (The LF and HF probabilistic
models are drawn with light blue and grey lines respectively. The
LF and HF samples are displayed with black and red crosses. The
virtual samples are represented by blue dots.).

The convergence analyses of the virtual sample size are shown
in Figure 6.16. Both the lift and drag coefficient shows negligible
variation above 105 virtual samples. Therefore 105 virtual samples
are generated for calculating the superpercentile risk measures.
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uncertainty

(a) Lift coefficient

(b) Drag coefficient

Figure 6.16: Convergence of the risk measure value of the
aerodynamic force coefficients. (The figures show the averaged
value of the risk measure, where 10 independently generated
virtual sample set were used at each magnitude level of the virtual
sample size. The shaded area represents the approximated 95%
confidence interval.)

The costs of the low- and high-fidelity evaluations are deter-
mined according to their true computational time. With the used
computational infrastructure, a high-fidelity simulation takes ap-
proximately 16 times more time than a low-fidelity simulation.
This reflects in an approximated cost of 5 and 53 for calculating
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6. Airfoil shape optimisation under uncertainty

the superpercentile risk measure3. Consequently, the 1 to 10
cost-ratio was applied for this design optimisation study.

6.5.2 Results

To highlight the advantages of the proposed multi-fidelity surrogate-
assisted optimisation, the constrained airfoil optimisation problem
is first solved deterministically. For the deterministic study, the
angle-of-attack has no perturbation. The local probabilistic model
construction step and risk measure calculation are skipped.

In Table 6.9, the comparison of the obtained optimal designs is
provided by solving the deterministic problem with multi-fidelity,
single-fidelity surrogate-based and population-based techniques.

The single- and multi-fidelity surrogate-based optimisation
were conducted with a computational budget of 300 units. This
computational budget equals the total computational cost of 30
high-fidelity evaluations. To train the initial surrogates, equally
10 high-fidelity samples are generated for both the single- and
multi-fidelity approach. Additionally, the multi-fidelity approach
uses 100 LF samples for constructing the initial surrogate model.
With these settings, the single-fidelity approach has a budget for
acquiring 20 new high-fidelity samples. On the other hand, the
initial surrogate of the multi-fidelity approach requires to burn
200 units of the total computational cost due to the additional
100 LF samples. This results in an optimisation budget which
is sufficient only for 10 HF observations in the case of the multi-
fidelity approach. Despite the smaller optimisation budget, the
multi-fidelity approach finds a better design as the MFGPR can
better explore the design landscape due to the high number of LF
observations. The single-fidelity GPR model with 10 HF samples
provides performance predictions with high model uncertainty.
This forces the acquisition function to spend computational budget
on exploring designs with sub-optimal aerodynamic performances.

3The LF probabilistic model is trained with 5 LF samples which cost 5
computational units. The HF probabilistic model is trained with 5 LF and 3
HF samples. The computational time required for a single HF evaluation is
approximately 16 times slower. Therefore, to evaluate the required number of
samples for the HF probabilistic model (i.e. local MFGPR), 5 + 3 · 16 = 53
computational units must be spent.
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6. Airfoil shape optimisation under uncertainty

The limited number of allowed high-fidelity evaluations prohibits
the single-fidelity approach to converge to an optimal design.

Table 6.10: Comparison of the prediction error of MFGPR and
GPR surrogate models of the constrained single objective airfoil
design problem. (Prediction error is defined as the arithmetic
mean value of the relative error of the high-fidelity predictions
during the course of optimisation.)

Ĉd Ĉl F̂obj Fobj(Ĉd, Ĉl,
TEA,LER)

HF
iters.

MFGPR 2.04 % 0.71 % 34.51 % 5.43 % 8
GPR 3.11 % 5.65 % 17.14 % 11.53 % 20

A quantitative comparison of the single- and multi-fidelity
surrogate models is presented in Table 6.10. The mean predic-
tion errors of the surrogate models are calculated using the HF
observations evaluated during the optimisation. MFGPR predicts
the lift and the drag coefficients significantly better. The poor
performance of the single-fidelity surrogate-based optimisation
approach can be explained also by the fact that the lift coefficient
is predicted by the GPR with a relatively high error. This might
result in evaluating unfeasible designs with eventually high objec-
tive value. The results also reveal that training a surrogate directly
using the objective values results in a weak surrogate model. The
prediction error of the objective is smaller when the objective is
calculated using the independently predicted aerodynamic forces.

When the uncertainty of the angle-of-attack is taken into ac-
count, the deterministic optimum might show significant constraint
violations as displayed in Figure 6.17a. The superpercentile Sleft95

of the lift distribution of the deterministic optimum is 0.976 and
illustrated with the blue vertical line. This violates the imposed
constraint level drawn with the red vertical line at value 1.00. This
is why the design optimisation must be performed by taking the
uncertainty into account. To ensure the reliable performance of
the airfoil under various angle-of-attack values, the optimisation
problem in Eq. (6.3) is solved with a penalisation approach. To
solve the problem under uncertainty the MFGPR is employed also
to accurately model the local probabilistic space. This enables a
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fast calculation of the risk measure which allows us to perform
the optimisation under uncertainty. The advantage of performing
the design optimisation under uncertainty becomes observable in
Figure 6.17a. The probabilistic optimum respects the imposed
constraints on the lift coefficient even in the case of uncertain
environmental conditions. To gain a more reliable airfoil, the drag
coefficient must be increased due to the high correlation between
the lift and drag coefficients. This can be seen in Figure 6.17b.

(a) Lift coefficient distribution

(b) Drag coefficient distribution

Figure 6.17: Prediction of the distributions for the baseline and
optimal designs.

The design optimisation under uncertainty is performed with
an increased computational budget. To evaluate the superper-
centile risk measure of the lift and drag, the employed probabilistic
model requires the evaluation of 3 HF samples. Therefore, the
total computational budget is tripled. Nevertheless, the size of the
budget is sufficient only for 90 HF evaluations, which is still con-
sidered a limited budget. For the probabilistic optimisation, the
DoE size is set to 50 risk measure evaluations at the low-fidelity
level and 5 risk measure evaluations at the high-fidelity level. The
obtained probabilistic optimum is compared against the deter-
ministic optimum and the baseline in Table 6.11. To reach the
probabilistic optimum, 17 HF and 57 LF risk measure evaluations
are performed which means a total of 51 HF and 370 LF solver
evaluations. The geometries of the baseline, deterministic and
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6. Airfoil shape optimisation under uncertainty

probabilistic optimum are displayed in Figure 6.18. Both the
deterministic and probabilistic optimum have a decreased camber
line curvature. The imposed lift constraint stands well below the
lift generated by the MH114 airfoil. This allows the optimisation
strategy to reduce the drag by reducing the lift coefficient to the
target value. The higher reliability of the probabilistic optimum
is achieved by finding an airfoil design with a stronger S-shaped
lower side. This increases the lift and drag coefficients with the
right amount such that the constraint is satisfied. The investiga-
tion of the pressure coefficient distributions in Figure 6.19 reveals
that the probabilistic optimum has a higher expansion rate, the
maximum is reached at approximately 10% of the chord. The
deterministic optimum reaches the maximum with a smoother
expansion rate at approximately 30% of the chord.

Table 6.11: Comparison of the requirements considering environ-
mental uncertainty.

baseline
(MH114)

deterministic
optimum

probabilistic
optimum

Objective 119.07 136.55 114.89
Sright95 (C̃d) [dc] 119.07 112.87 114.89
Sleft95 (C̃l) 1.063 0.976 1.002
TEA 6.60 6.03 6.38
LER 0.014324 0.013228 0.016937

Samples [LF,HF] [5, 3] [5, 3] [370, 51]
Cost 35 35 880
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(a) Baseline design

(b) Best design of deterministic problem

(c) Best design of probabilistic problem

Figure 6.18: Comparison of optimal airfoil geometries of the
constrained single-objective problem
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6. Airfoil shape optimisation under uncertainty

(a) Pressure distribution of baseline

(b) Pressure distribution of the best design of deterministic problem

(c) Pressure distribution of the best design of probabilistic problem

Figure 6.19: Comparison of the pressure distributions of the
deterministic and probabilistic optimal designs.92



6.5. Constrained single-objective optimisation of an airfoil under
uncertainty

6.5.3 Conclusion of the constrained
single-objective airfoil design optimisation

This section discussed the constrained single-objective optimisa-
tion of the MH114 airfoil. Due to the computationally demanding
aerodynamic force analysis of an airfoil design with RANS simula-
tions, the optimisation under uncertainty was performed by using
low-fidelity aerodynamic force predictions of RANS simulations
with a coarser mesh. The drag predictions of the low-fidelity
RANS simulations were calculated with the so-called far-field for-
mula. This drag prediction technique compensates the spurious
drag stemming from the employed numerical scheme and numer-
ical dissipation; hence, it provides an accurate drag prediction
despite the coarse spatial discretisation. By using low- and high-
fidelity information, the optimisation problem under uncertainty
was solved efficiently with the proposed optimisation strategy.
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Shape optimisation of a ducted propeller blade
7

“The purpose of the experiment is not to verify a pro-
posed theory but to replace a computation from an
unquestioned theory by direct measurements. Thus,
wind tunnels are, for example, used at present, at least
in part, as computing devices of the so-called analogy
type . . . to integrate the nonlinear partial differential
equations of fluid dynamics.“

— John von Neumann

7.1 Introduction to propeller blade
optimisation

A propeller (or rotor) is an aircraft component which transforms
the engine angular kinetic energy into forward motion. The an-
gular rotation of propeller blades generates the so-called thrust.
The thrust force moves the aircraft forward in the air. To rotate
the propeller blade, the engine has to work against the drag force.
Consequently, the efficiency of a propeller can be evaluated with
the ratio of the generated thrust and the required power. The
efficiency of the propeller (i.e. propulsive efficiency) is governed
by the surface geometry of the propeller blades. Therefore, the
shape optimisation of a propeller aims to find blade geometries
which maximise the propulsive efficiency. To increase the effi-
ciency of the propeller, the propeller can be placed inside a duct
(or shroud) which typically increases the mass flow. The theo-
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7. Shape optimisation of a ducted propeller blade

retical calculations credit the increased mass flow to a reduced
slipstream contraction [Weir, 1987; Black and Rohrbach, 1968].
However, for higher Mach numbers, the slipstream contraction
decreases anyway, and the drag induced by the duct increases.
This mitigates the advantages of ducted propellers for high-speed
aircraft [El-Sayed, 2008]. Remaining in the low-speed regime al-
lows benefiting the most from the increased efficiency of a ducted
propeller propulsion unit. Therefore, ducted propellers can be
applied to small scale aircraft which operate at lower speeds. The
increased propulsion efficiency makes ducted propellers promising
candidates for electrical aircraft where the ratio of thrust and elec-
tricity consumption must be highly optimised. Due to uncertain
environmental conditions, the aerodynamic shape optimisation of
the propeller must be performed considering uncertainties. The
following section explains how the uncertainty is treated in our
propeller optimisation study.

7.2 Uncertainty quantification with local
probabilistic model

The design process of a ducted propeller aims to estimate the per-
formance of the propulsion system in various conditions. During
the operation, the loading of the blades can vary depending on
the environmental conditions. For the rotor blade optimisation
studies, the free-stream pressure, temperature and velocity are
assumed to be probabilistic. The parameters of the probabilistic
distribution is given in Table 7.1.

Similarly to the analytical function and airfoil shape optimi-
sation studies, the probabilistic space is modelled locally at each

Table 7.1: The uncertain environmental parameters of the pro-
peller blade optimisation problems

Environmental
parameter

Probability
distribution

Lower
bound

Upper
bound

Shape
parameters

pressure [Pa] Beta 96325 106325 α = β = 2
temperature [K] Beta 283.15 293.15 α = β = 2
velocity [m/s] Beta 31.53 36.53 α = β = 2
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7.2. Uncertainty quantification with local probabilistic model

blade design configuration. The expensive 3D Reynolds-averaged
Navier–Stokes (RANS) simulations make it challenging to build an
accurate probabilistic model using only High-Fidelity (HF) eval-
uations. Therefore, at high-fidelity level, the local probabilistic
space is modelled by a Multi-Fidelity Gaussian Process Regres-
sion (MFGPR) using 30 Low-Fidelity (LF) and 3 HF samples.
The number of HF samples is chosen to be as low as possible.
When constant regression functions are chosen for both the mean
trend and the low-fidelity coupling term, the MFGPR model oper-
ates with 2 regression coefficients (β and ρ) at the top-level which
requires a minimum of 3 samples to train the model. The number
of low-fidelity evaluations is determined based on the thumb rule
of Gaussian Process Regression (GPR) methods. Typically, GPR
methods scale linearly with the number of dimensions (nd). There-
fore, the suggested number of samples is 30 (considering that the
number of samples should be at least ten times the dimension
of the problem by the rule of thumb). The convergence analysis
of the number of low-fidelity samples is displayed in Figure 7.1
which suggests that even a lower number of low-fidelity samples
would provide an accurate local probabilistic model. The local
probabilistic models can be utilised to generate a larger set of
virtual samples which can be used to predict the chosen risk
measure accurately. The convergence studies in Figure 7.2 show
that the 95th superpercentile of the thrust and power coefficients
can be sufficiently accurately calculated with 105 samples using
the trained probabilistic models. Surrogate-assisted uncertainty
quantification highly depends on the quality of the surrogate. Due
to the expensive computational cost of the high-fidelity level, the
quality cannot be assessed directly with test data. However, the
presented convergence test provides a certain level of assurance
that our probabilistic models are well predicting the desired risk
measure.
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7. Shape optimisation of a ducted propeller blade

(a) Convergence of the risk measure of the thrust
in function of low-fidelity samples

(b) Convergence of the risk measure of the power
in function of low-fidelity samples.

Figure 7.1: Convergence analysis of the number of low-fidelity
samples of the local probabilistic model. (The figures show the
averaged value of the risk measure, where 10 independently gen-
erated LF sample sets were used at each level of the low-fidelity
sample size. The shaded area represents the approximated 95%
confidence interval.)
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7.2. Uncertainty quantification with local probabilistic model

(a) Convergence of the risk measure of the thrust
in function of virtual samples

(b) Convergence of the risk measure of the power
in function of virtual samples

Figure 7.2: Convergence analysis of the number of virtual sam-
ples of the local probabilistic model (The figures show the averaged
value of the risk measure, where 10 independently generated vir-
tual sample sets were used at each magnitude level of the virtual
sample size. The shaded area represents the approximated 95%
confidence interval.)

99



7. Shape optimisation of a ducted propeller blade

7.3 Aerodynamic performance prediction of a
propeller

The prediction of the aerodynamic performance of a propeller is
a challenging task. The theoretical foundation of the propeller
theory was laid down in [Betz, 1919]. The idealised models of the
propeller and the surrounding flow let the research community
construct a powerful propeller analysis tool called Blade Element
Momentum Theory (BEMT). This propeller performance predic-
tor can accurately analyse the generated aerodynamic state of
the propeller at an economic cost. The details of the technique
are discussed in Section 7.3.2. The aerodynamic performance of
a propeller can be calculated also by solving the RANS partial
differential equations. This equation has to be solved numerically
which is typically an expensive calculation due to the high number
of discretisation cells required. The necessary steps to conduct
the aerodynamic analysis of a propeller with the RANS solver of
SU2 is detailed in Section 7.3.3.

7.3.1 Parametric geometry definition of propeller
blades

In this work, the geometry of the propeller blade is defined by the
chord and twist distributions of the propeller blade. The radial
blade section distribution is considered to be constant and the
MH114 airfoil is used uniformly. The radial blade sections are
sized and twisted around the quarter-chord point of the local airfoil
section. The design variables at the root and tip are illustrated in
Figure 7.3. To provide parametric chord and twist distributions
for the design optimisation strategy, the superposition of design
shape modes is calculated. Five shape modes for the chord and
five shape modes for the twist distributions are considered. The
shape modes are selected in a way that they can be connected to
physical values. Namely, the five modes are related to the chord
and twist value at five selected locations of the blade span. The
chosen modes are listed in Table 7.2 and the design variables are
given in Table 7.3. The first mode determines the value at the
tip and the second mode adds on the top of the constant mode
to determine the value at the root. Therefore, the factor of the
second mode is the deviation of the root and tip values. The
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Figure 7.3: Design variables: twist and chord distributions

Table 7.2: Shape modes of chord and twist distribution functions
(rR is the relative radial location)

Mode Function type Physical interpretation
mode 1 Constant value at tip
mode 2 Linear deviation of the root and tip value
mode 3 Quadratic value at the middle (rR = 0.5)
mode 4 Hicks-Henne value at rR = 0.8 relative coordinate
mode 5 Hicks-Henne value at rR = 0.3 relative coordinate

other three modes can be hierarchically superposed on the two
first modes without changing the values at the root and tip. The
selected shape modes are visualised in Figure 7.4.
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7. Shape optimisation of a ducted propeller blade

Table 7.3: Design variables of the twist and chord distributions
(rR is the relative radial location)

Design var. Corresponding function Physical interpretation
x1 x1 · (mode 1) chord length at tip
x2 (x2 − x1) · (mode 2) chord length at root
x3 x3 · (mode 3) factor of quadratic chord mode
x4 x4 · (mode 4) local chord mode at rR = 0.8
x5 x5 · (mode 5) local chord mode at rR = 0.3
x6 x6 · (mode 1 twist angle at tip
x7 (x7 − x6) · (mode 2) twist angle at root
x8 x8 · (mode 3) factor of quadratic twist mode
x9 x9 · (mode 4) local twist mode at rR = 0.8
x10 x10 · (mode 5) local twist mode at rR = 0.3

Figure 7.4: Shape modes of chord and twist distribution func-
tions (mode 1: blue line, mode 2: orange line, mode 3: green line,
mode 4: red line, mode 5: purple line)
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7.3. Aerodynamic performance prediction of a propeller

7.3.2 Low-fidelity predictor: Blade element
momentum theory

Vθ

θ

α

φ
V

Vx

chord line

plane of rotation

axis of rotation

δT

δP

ω

Figure 7.5: Blade Element velocities and forces

BEMT combines the Blade Element Theory (BET) and Actuator
Disk Theory (ADT) into an iterative solver [Glauert, 1983; Veld-
huis, 2005; Hansen, 2015]. In both BET and ADT, the propeller
blade is discretised with a given number of annuli. The stream-
tubes are considered radially independent and the interaction
between the adjacent streamtubes are neglected [Whale et al.,
2000]. The effect of the actual blade elements is averaged over
time. Therefore, the technique is applicable to any number of
blades. Each annulus is characterised by their local velocities
and forces. At each radial station the velocity state is given by
Eq. (7.1):

Vx = V∞(1 + a), (7.1)
Vθ = ωr(1− b), (7.2)

V =
√
V 2
x + V 2

θ , (7.3)

where V∞ is the free-stream velocity, Vθ is the angular velocity
and V is the local velocity seen by the blade. r is the radius of
the annulus and ω is the angular velocity of the propeller. a and
b denote the induced axial and angular inflow factor respectively.
The velocity vectors and resulting forces are depicted in Figure 7.5.
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7. Shape optimisation of a ducted propeller blade

By knowing the induced velocities a and b, BET can determine
the thrust T and power P of each blade element with Eqs. (7.4),
(7.5):

δT =
1

2
ρV 2c(Cl cos(ϕ)− Cd sin(ϕ))Bdr, (7.4)

δP =
1

2
ρV 2c(Cd cos(ϕ) + Cl sin(ϕ))rωBdr, (7.5)

where ρ is the fluid density, c is the chord length and B is the
number of blades. Cl and Cd are the 2D lift and drag coefficients
of the blade element section. The lift Cl(α) and drag Cd(α) are
functions of the angle-of-attack α. Following the angle orientations
in Figure 7.5, the angle-of-attack can be calculated by the following
equations:

ϕ = tan
Vx
Vθ
, (7.6)

α = θ − ϕ, (7.7)

where ϕ is the relative flow angle seen by the blade and θ is the
geometrical twist of the blade element.
The induced velocities, however, are not known and their direct
calculation would be a tedious work. Therefore the thrust and
power are alternatively calculated according to the ADT :

δT = ρ4πrV 2
∞a(1 + a)dr, (7.8)

δP = ρ4πr3V∞b(1 + a)ω2dr, (7.9)

The Eqs. (7.4), (7.5) and (7.8), (7.9) are equated respectively in
BEMT and the a and b induced velocity factors are calculated
by iteratively minimising the deviation between the two theories.
By considering that V = Vx

sinϕ = V∞(1+a)
sinϕ and the blade solidity is

σr = Bc
2πr , the problem to be solved iteratively can be reduced to

Eqs. (7.10), (7.11):
a

1 + a
=

σr

4 sin2(ϕ)
(Cl cos(ϕ)− Cd sin(ϕ)), (7.10)

b

1− b
=

σr
4 sin(ϕ) cos(ϕ)

(Cd cos(ϕ) + Cl sin(ϕ)). (7.11)

The idealised models of BEMT allows to calculate a fast pre-
diction of the propeller performance. In this work, the BEMT
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7.3. Aerodynamic performance prediction of a propeller

predictions are done with the XROTOR [Drela and Youngren,
2013] software which has an advanced implementation of the
theory.

The computational chain for calculating the propeller aerody-
namic performance with XROTOR is illustrated in Figure 7.6.
XROTOR requires the distribution of twist and chord length as
input. Furthermore, the cross-sectional aerodynamic properties of
the blade must be also given in the XROTOR configuration file.
The aerodynamic properties of the local cross-section geometries
are calculated with XFOIL if the aerodynamic parameters are not
available.

local aerodynamic

performance

(XFOIL)

cross-sectional

geometries
propeller

analysis driver

(Python) local operational

conditions

global geometry

parameters

global operational

conditions

XROTOR

configuration

Aerodynamic force 

coefficients 

and  distributions

BEMT solver

(XROTOR)

Figure 7.6: Computational chain for calculating the propeller
aerodynamic performance with XROTOR.
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7. Shape optimisation of a ducted propeller blade

7.3.3 High-fidelity predictor: Reynolds Averaged
Navier-Stokes solver

In this study, the 3D compressible RANS equation is solved with
SU2. To perform the aerodynamic analysis of the propeller the
computational chain illustrated in Figure 7.7 is followed. The

.su2 file

parametric CAD

generation

(FreeCAD)

parametric mesh

generation

(Pointwise)

.step file

Geometry

parameters

Mesh

parameters

RANS solver

(SU2)

.szplt file

Post-processing

(Tecplot)

Aerodynamic force 

coefficients 

and  distributions

propeller

analysis driver

(Python)

SU2

configuration

Figure 7.7: Computational chain for solving RANS equations
numerically.

parametrisation of the propeller is implemented in a python script.
With the geometrical parameters, FreeCAD [FreeCAD, 2018] gen-
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7.3. Aerodynamic performance prediction of a propeller

erates the Computer-Aided Design (CAD) model of the propeller.
The CAD model alongside with the surrounding domain is meshed
with Pointwise [Pointwise, 2017] which exports the grid in .su2
format. The compressible solver of SU2 solves the RANS equa-
tions. The obtained flow field is then post-processed with Tecplot
[Tecplot, 2019] which calculates the aerodynamic coefficients and
distributions.

The thrust and power distributions of the baseline geometry
calculated with XROTOR and SU2 are compared in Figure 7.8.

(a) Thrust distribution (b) Power distribution

Figure 7.8: Comparison of thrust and power distributions of the
baseline design calculated with XROTOR and SU2.

7.3.3.1 Ducted propeller geometry

The ducted propeller geometry is illustrated in Figure 7.9. The
configuration considers a double ring mounting which avoids the
presence of energy losses due to the flow over the tip. The
parametrisation of the propeller blade geometry is detailed in
Section 7.3.1.
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7. Shape optimisation of a ducted propeller blade

Figure 7.9: Propeller blade geometry with double ring mounting.
(The rotating parts are highlighted with turquoise colour.)

7.3.3.2 Parametric mesh generation

The mesh generation process is still among the most challenging
and time-consuming pre-processing step of Computational Fluid
Dynamics (CFD). To reduce the geometrical complexity and
computational burden of the CFD simulation, only one blade and
its surrounding wedge domain are discretised. This is a common
practice for propeller simulations as the geometry is axisymmetric
and the generated wake has a cyclic nature [Klein, 2017; Gaggero
et al., 2017].

In this study, the rotor consists of 5 blades, therefore, the flow
conditions are analysed in a 72◦ wedge as shown in Figure 7.10.
The dimensions of the wedge domain are 10R, 15R and 35R in
radial, upstream and downstream directions respectively, where
R = 0.28829 is the radial position of the blade tip.
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7.3. Aerodynamic performance prediction of a propeller

Figure 7.10: Outer wedge faces.

Figure 7.11: Near propeller faces.

Due to some limitations of the SU2 solver the periodic faces
cannot share a common edge. The cells connected to one periodic
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7. Shape optimisation of a ducted propeller blade

face will be used to generate halo cells at the other periodic face.
This requires having more than one cell between the periodic faces.
Therefore, the wedge is closed by a dummy surface generated at
rdummy = 0.003 in the upstream region and by a dummy surface
extending the hub into the downstream region. The modelled
surfaces near the propeller are presented in Figure 7.11.

(a) Structured boundary layer at tip (2D top view)

(b) Structured boundary layer
at root (3D view zoom on root)

(c) Structured boundary layer at
tip (3D view zoom on tip)

Figure 7.12: Structured boundary layer mesh.

The investigated domain is meshed with a hybrid structured
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7.3. Aerodynamic performance prediction of a propeller

and unstructured grid. The advantage of a structured grid becomes
prominent when the flow physics properties are not changing in all
dimensions with the same magnitude [Tu et al., 2018]. Then it is
enough to generate a dense discretisation only in the direction of
the dominant flow physics change while the directions with lesser
flow physics changes can be sparsely discretised. Therefore, a fully
structured boundary layer grid is used to capture the near-field
flow around the blade. To properly capture the flow physics in
the boundary layer a large number of small cells are clustered
near the blade surface. The clustering is required only in the
direction perpendicular to the blade surface due to the nature
of the boundary layer profile. The structured boundary layer
mesh is shown in Figure 7.12. In other regions of the domain, an
unstructured grid has been generated. The main motivation to
facilitate the mesh generation of different blade configurations.
The side view of the full domain is presented in Figure 7.13a A
refinement box is placed around the ducted propeller in which the
maximal cell size is reduced to 0.005 as shown in Figure 7.13b.
The mesh is further refined in the regions close to the blade at the
LE and TE of the duct which is displayed in Figure 7.13c. The
fine-tuning of the mesh parameters is performed with numerous
trial and error iterations considering deformation measures of the
cells, the dimensionless wall distance number of propeller surfaces
and the aerodynamic force sensitivity of the mesh.
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7. Shape optimisation of a ducted propeller blade

(a) Mesh sizing of the outer domain

(b) Mesh sizing of the refinement box

(c) Mesh sizing near the duct and blade

Figure 7.13: Mesh sizing

7.3.3.3 Boundary conditions

To each boundary face, a boundary condition is assigned according
to Table 7.4. The free-stream fluid properties are imposed at the
inlet, outlet and top faces. The two sides of the wedge domain are
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7.4. Multi-objective optimisation under uncertainty with XROTOR
and SU2

Table 7.4: Boundary condition definition of periodic propeller
mesh.

Face SU2 Boundary Condition
inlet far-field
outlet far-field

top far-field far-field
side+ periodic
side- periodic

dummy upstream Euler
dummy downstream Euler

hub static Euler
duct static Euler

hub propeller band Euler
duct propeller band Euler

blade zero heat-flux

connected by periodic boundary enforcement. The blade surface
is treated as a no-slip wall with zero heat flux. The other faces
are set as Euler boundaries.

7.4 Multi-objective optimisation under
uncertainty with XROTOR and SU2

In this section, a multi-objective optimisation of the propeller
blade design is conducted considering uncertain environmental
conditions and a constant angular velocity. The assumed prob-
abilistic environmental conditions are given in Table 7.1. The
constant angular velocity is set to ω = 476.475 [rad/s]. Propeller
blade designs are sought with maximal thrust and minimal power
consumption. To assure the reliable operation of the propeller
over a range of uncertain environmental conditions, the 95th su-
perpercentiles of the thrust and power coefficients are optimised.
The problem is formulated as follows:

min
x

Sright95 (−Tc(x, ũ)) (7.12a)

min
x

Sright95 (Pc(x, ũ)) (7.12b)
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7. Shape optimisation of a ducted propeller blade

where the negative thrust is minimised instead of maximised;
hence, the right-tail superpercentile. The thrust coefficient (Tc)
and power coefficients (Pc) are:

Tc =
T

1
2ρV

2
∞πR

2
, (7.13)

Pc =
P

1
2ρV

3
∞πR

2
, (7.14)

where ρ is the air density. V∞ is the free-stream velocity and R is
the radius of the propeller.

7.4.1 Computational chain for multi-objective
propeller blade design optimisation under
uncertainty

The computational chain of the multi-objective propeller optimi-
sation is presented in Figure 7.14.

The acquisition function of the multi-objective propeller op-
timisation problem is based on Eq. (4.14). The Hypervolume
Improvement of the Lower Confidence Bound (HVILCB) of the
thrust and power coefficients are predicted for each candidate
design. The design which provides the maximum HVILCB. The
HVILCB measure of the problem is:

HVILCB =

HV
(
P ∪

{
−T̂S

right
95

c − 2σ̂Tc , P̂
Sright95
c − 2σ̂Pc

}
new

)
−HV(P),

(7.15)

where T̂c and P̂c denote the predicted risk measures of the thrust
and power respectively. σ̂Tc and σ̂Pc denote the Gaussian process
variance of the predicted risk measures.

The strategy of fidelity level selection is performed based on
the Scaled Hypervariance Reduction (SHVR) of the thrust and
power. The costs of the low- and high-fidelity simulations are
cLF = 1 and cHF = 200 respectively. The costs of the fidelity
levels are set after conducting some trial and error experiments
targeting an approximately equal budget allocation between the
fidelity levels.
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7. Shape optimisation of a ducted propeller blade

Table 7.5: Computational budget spent on multi-objective pro-
peller design optimisation. (Total computational budget is 21240
units which are equal to the cost of 120 LF and 22 HF reliability
samples.)

LF DoE LF total HF DoE HF total
Solver XROTOR XROTOR SU2 SU2
Evaluation cost 1 1 200 200
Reliability samples 120 294 6 18
Total samples 3780 10440 18 54
Budget spent 3780 10440 3600 10800
Budget percentage 17.8% 49.2% 16.9 % 50.8%

7.4.2 Results of multi-objective propeller
optimisation under uncertainty

The budget allocation of the multi-objective optimisation prob-
lem is given in Table 7.5. The Design of Experiments (DoE) is
composed of 120 LF and 6 HF risk measure calculations which
takes a total of 3780 LF and 18 HF aerodynamic analyses1. The
total budget is set to 21240 units which are equal to the cost of
120 LF and 22 HF risk measure calculations of the underlying
problem. The total cost of DoE is 34.70% of the total budget and
the computational resources were allocated approximately equally
between the high- and low-fidelity solvers.

The history of the multi-objective optimisation is given in
Figure 7.15. After evaluating the DoE, the optimisation strategy
performs low-fidelity calculations to identify promising design
candidates. Most of the HF evaluations are performed in the
fourth quarter of the optimisation run when the design landscape
is already explored by the low-fidelity observations.

The low- and high-fidelity Pareto fronts are shown in Fig-
ure 7.16. Out of the 18 HF reliability evaluations, 10 of them
are on the obtained Pareto front. We can see that the low- and

1The LF probabilistic model is trained with 30 LF samples resulting in
3600 LF evaluations in total for 120 LF reliability calculations. Additionally,
180 LF samples are evaluated for training 6 local probabilistic models of the
HF level (local MFGPR models). A single HF local probabilistic model is
trained with 30 LF samples and 3 HF samples.
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7. Shape optimisation of a ducted propeller blade

Figure 7.16: Pareto front of multi-objective propeller optimisa-
tion problem

high-fidelity fronts are meeting in the low-thrust-low-power side of
the objective space. The deviation of the fronts is more significant
in the high-thrust-high-power side (the Pareto fronts are displayed
for simultaneously minimising the negative thrust and power in
Figure 7.16).

The thrust and power coefficient distributions of five selected
Pareto optimal designs are displayed in Figures 7.17 and 7.18.
The designs with high power and thrust coefficients are more
sensitive to uncertainties (as indicated by the larger spread of the
distribution range). This is due to the fact that higher thrust can
be reached by bigger chord length or higher twist values. Such
blade properties are increasing the probability of flow separation in
uncertain environmental conditions. Therefore, it is not surprising
that the Pareto optimal design no. 1 and 4 shows higher response
uncertainty than design no. 6 and 8. The Pareto optimal design
no. 10 has very low thrust and power; however, with much robust
performance.

118
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and SU2

Figure 7.17: Thrust coefficient distributions of selected Pareto
optimal designs.

Figure 7.18: Power coefficient distributions of selected Pareto
optimal designs.
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7. Shape optimisation of a ducted propeller blade

The list of design variables and superpercentile values of the
Pareto optimal designs are given in Table 7.6.

By plotting the sectional properties of the Pareto optimal
designs, a further explanation can be provided why the LF and
HF Pareto fronts have a significant deviation in the high-thrust-
high-power region. In Figure 7.19k and 7.19p, the flow separation
resulted in the drop of thrust and power coefficients close to the
blade tip. The flow separation close to the tip is not predicted by
XROTOR for this blade; hence, the XROTOR and SU2 predict
significantly different aerodynamic coefficients. The Pareto opti-
mal design no.4 has smaller chord length close to the blade tip,
the flow separation is less severe. Therefore, the predicted values
of the two aerodynamic solvers are also closer to each other.

7.4.3 Conclusion of multi-objective propeller
blade optimisation study

A multi-objective propeller blade design problem under environ-
mental uncertainty was tackled by the proposed optimisation
algorithm in this section. The proposed multi-objective multi-
fidelity surrogate-assisted optimisation technique made it possible
to perform the optimisation under uncertainty despite the high
computational cost of the RANS simulations. Multi-fidelity surro-
gate models were trained with the data from high-fidelity RANS
simulations and low-fidelity XROTOR calculations. The multi-
fidelity optimisation strategy helped to allocate the computational
resources efficiently: the exploration of the propeller designs was
performed with XROTOR and only the most promising blade
designs were evaluated with SU2.
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7.5 Constrained single-objective optimisation
under uncertainty with XROTOR and
SU2

In this section, a constrained single-objective optimisation of
the rotor blade is carried out. The optimisation is performed
considering environmental uncertainties and a constant angular
velocity as in the multi-objective case study. The right-tail 95th

superpercentile of the power coefficient (Pc) is minimised such
that the left-tail 95th superpercentile of the thrust coefficient (Tc)
is required to be greater than one as given in Eq. (7.16).

min
x

Sright95 (Pc(x, u))

s.t. :
Sleft95 (Tc(x, u)) ≥ 1.0

(7.16)

To satisfy the imposed constraint on the thrust, the constrained
problem is transformed into the following minimisation problem
of a penalised objective:

min
x

Sright95 (Pc(x, u)) + pTc max
(

0, 1− Sleft95 (Tc(x, u))
)
,

(7.17)
where pTc = 100 is the penalisation factor. The single-objective
optimisation problem of the penalised objective in Eq. (7.17)
is solved with the single-objective surrogate-based optimisation
proposed in Algorithm 1.

7.5.1 Computational chain for constrained
single-objective propeller blade design
optimisation under uncertainty

The problem-specific computational chain of the constrained single-
objective optimisation problem is presented in Figure 7.20. The
computational chain resembles the one presented for the multi-
objective case; however, an additional step is added to calculate
the penalised objective function. It is important to note that the
penalised objective is calculated with the reliability measures of
the thrust and power coefficients.
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7.5. Constrained single-objective optimisation under uncertainty with
XROTOR and SU2

The acquisition function employed in this optimisation study
is formulated according to Eq.(4.7) and given by the following
equation:

cEI = E
[
max

(
0, F ∗obj − Fobj(P̃

Sright95
c , T̃

Sleft95
c )

)]
P
[
T̃
Sleft95
c ≥ 1

]
,

=

((
F ∗obj − Fobj(P̂c, T̂c)

)
Φ

(
F ∗obj − Fobj(P̂c, T̂c)

σ̂2
Pc

)
+

+σ̂2
Pcφ

(
F ∗obj − Fobj(P̂c, T̂c)

σ̂2
Pc

))
Φ

(
T̂c − 1

σ̂2
Tc

)
,

(7.18)

where Fobj(P̂c, T̂c) is the penalised objective of the superpercentiles
of the power and thrust. The T̂c and P̂c denote the predicted risk
measures of the thrust and power respectively. σ̂Tc and σ̂Pc denote
the Gaussian process variance of the predicted risk measures.

The strategy of fidelity level selection is performed based on
the variance reduction of the PS

right
95

c :

l = argmax
LF,HF

SEVRl, (7.19)

where the SEVR is defined as:

SEVRLF =
ρ2(xnew)σ̂2

Pc,LF(xnew)

cLF
, (7.20)

SEVRHF =
ρ2(xnew)σ̂2

Pc,LF(xnew) + σ̂2
Pc,δHF

(xnew)

cHF
, (7.21)

where cLF = 1 and cHF = 200 are the costs of the low- and
high-fidelity simulations respectively. The costs of the fidelity
levels are kept unchanged compared to the multi-objective study
in Section 7.4.

7.5.2 Results of constrained single-objective
propeller optimisation under uncertainty

The history of the optimisation process is displayed in Figure 7.21.
The initial multi-fidelity DoE samples provided sufficient informa-
tion to build an accurate initial MFGPR model. This helped the
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7.5. Constrained single-objective optimisation under uncertainty with
XROTOR and SU2

Table 7.7: Computational budget spent on constrained single-
objective propeller design optimisation. (Total computational
budget is 26910 units which are equal to the cost of 120 LF and
37 HF samples.)

LF DoE LF total HF DoE HF total
Solver XROTOR XROTOR SU2 SU2
Evaluation cost 1 1 200 200
Reliability samples 120 408 6 23
Total samples 3780 12930 18 69
Budget spent 3780 12930 3600 13800
Budget percentage 14.0% 48.0% 13.4 % 51.3%

identification of promising regions of the design landscape. Then
the optimisation evaluated samples from the promising regions
to find the minimum of our penalised objective. In the first part
of the optimisation (first 150 iterations), the strategy chose to
evaluate most of the samples with the low-fidelity solver. The
computationally more expensive high-fidelity simulations were
performed mostly in the second half of the optimisation run. We
can also notice that the high-fidelity evaluations were performed
only for highly promising candidate designs. Designs with high
constraint violation or high power consumption were evaluated
with the LF solver in the first half of the optimisation.

The total computational budget is set to 26910 units which are
equal to the sum of the budget required for DoE and 31 additional
HF reliability evaluations. In Table 7.7, the number of evaluations
performed with the high- and low-fidelity solver are summarised.
In total, 99.3% of the budget is spent allocating approximately
equal portions of the budget for high- and low-fidelity evaluations.

The multi-fidelity surrogate-based optimisation approach finds
a significantly better design than the available baseline design.
A comparison of the performance indicators of the baseline and
the optimal designs is provided in Table 7.8. The optimal design
slightly violates the constraint imposed on the thrust coefficient.
This is due to the penalisation approach. The level of constraint
violation acceptance can be controlled by the penalisation factor
pTc in Eq. (7.17).
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7. Shape optimisation of a ducted propeller blade

Table 7.8: Comparison of the baseline and the optimal designs of
the constrained single-objective problem

Objective T
Sleft95
c P

Sright95
c

baseline 2.49 1.14 2.486
probabilistic opt. 2.04 0.999 2.034

(a) Comparison of the chord distri-
butions along blade span

(b) Comparison of the twist distri-
butions along blade span

(c) Comparison of the thrust dis-
tributions along blade span

(d) Comparison of the power dis-
tributions along blade span

Figure 7.22: Comparison of the baseline and the probabilistic
optimum

The sectional geometrical values are compared in Figures 7.22a
and 7.22b. The chord distribution of the optimal propeller blade
design is close to the lower boundary limit of the design space.
The obtained optimal twist distribution resembles an S-shape with
a wide and plateau-like first part and a steeply decreasing second
part with rapid flattening at the tip of the blade. The sectional
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thrust and power distributions of the baseline and the optimal
design are depicted in Figures 7.22c and 7.22d. The smaller
sectional chord length values result in smaller thrust and power
coefficient values. However, the higher sectional twist angles in
the second half of the blade are compensated with the decreased
thrust coefficient values due to the shorter sectional chord length
values. This results in a significant power coefficient reduction
18.18% at the expense of reducing the thrust coefficient only by
12.36%.

The predicted aerodynamic coefficient distributions indicate
that the optimal design has a significantly smaller power coefficient
compared to the baseline while the probability of violating the
thrust constraint is kept at a predefined acceptable reliability level
(Figure 7.23). The optimal design also performs more robustly
stemming from the fact that left-tail of the thrust coefficient distri-
bution is constrained and the right-tail of the power distribution
is minimised simultaneously.

(a) Comparison of the thrust distributions

(b) Comparison of the power distributions

Figure 7.23: Comparison of the baseline and the probabilis-
tic optimum of the constrained single-objective propeller blade
optimisation
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7. Shape optimisation of a ducted propeller blade

7.5.3 Conclusion of the constrained
single-objective propeller blade optimisation
study

This section discussed a constrained single-objective optimisa-
tion case study of a propeller blade under uncertain environ-
mental conditions. The proposed single-objective multi-fidelity
surrogate-based design optimisation approach was able to tackle
the constraint optimisation problem with limited computational
resources. The obtained propeller blade design satisfies the relia-
bility constraint imposed on the thrust and significantly reduced
the required power consumption of the propeller.
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Conclusions 8

“The future cannot be predicted, but futures can be
invented.“

— Dennis Gabor

8.1 Conclusions

This dissertation presents a novel multi-fidelity surrogate-assisted
design optimisation approach targeted for computationally expen-
sive aerospace applications under uncertainty.

In aerospace engineering, the relative computational burden
of virtual aerodynamic analyses is rapidly increasing despite the
increasing availability of computational resources. This hinders
the applicability of direct uncertainty quantification techniques
and the exploration of robust and reliable designs.

The proposed optimisation framework overcomes the challenges
of probabilistic design optimisation of computationally expensive
problems and is capable of finding designs with optimal statistical
performance for both single- and multi-objective problems, as
well as constrained problems. Our approach performs the design
optimisation with a limited computational budget thanks to the
integrated multi-fidelity surrogates for design exploration and
uncertainty quantification. The design optimisation is realised
following the principles of Bayesian optimisation. The acquisition
function balances exploration and exploitation of the design space
and allocates the available budget efficiently considering the cost
and accuracy of the fidelity levels.
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8. Conclusions

To validate the proposed optimisation framework, available
multi-fidelity test functions were tailored for benchmarking prob-
lems under uncertainty. The benchmarks showed that it is prof-
itable to use multi-fidelity surrogates when the computational
budget is too limited to allow for the construction of an accurate
surrogate with high-fidelity simulations but is large enough to
generate a great number of low-fidelity data. The type of er-
ror present in the low-fidelity simulation code is non-negligible.
Surrogate training on data resulting from instable simulations
results in potentially biased predictions which eventually drive
the optimisation to sub-optimal designs. The applicability of a
multi-fidelity optimisation framework highly depends on the good
correlation between the low-fidelity models and their high-fidelity
counterparts.

To investigate the applicability of the proposed optimisation
framework to aerospace applications, we performed optimisation
studies of a propeller blade airfoil and a 3D propeller blade. The
studies revealed the advantage of multi-fidelity surrogate-assisted
optimisation. The otherwise impractical optimisation under un-
certainty with high-fidelity RANS simulations is rendered to be
feasible by using low-fidelity information, like potential flow solver
predictions or RANS simulations with coarse mesh.

We considered various optimisation problems: multi-objective
airfoil optimisation under geometric uncertainties, single-objective
airfoil optimisation under uncertain environmental conditions,
multi-objective and constrained single-objective propeller blade
optimisation under uncertain environmental conditions.

The multi-objective airfoil optimisation study considering geo-
metric uncertainties showed that an accurate Pareto front approx-
imation can be found even with a limited computational budget
combining information from XFOIL and the RANS solver of SU2.
The optimal airfoil designs found by the proposed approach display
significant dominance over the baseline solution in the objective
space of the reliability measures of the lift and drag. By optimising
the opposite tails of the conflicting lift and drag distributions, the
optimal solutions are likely to be more robust as well.

The study of a constrained single-objective airfoil optimisa-
tion under uncertain environmental conditions showed that the
computational load of the probabilistic optimisation can be signifi-
cantly reduced by using low-fidelity aerodynamic force predictions
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of RANS simulations with a coarser mesh. This is particularly
true, when a compensation technique, such as the far-field drag
prediction formula, exists to provide an accurate drag prediction
despite the coarse spatial discretisation.

We found that a multi-objective propeller blade optimisation
under uncertain environmental conditions can be efficiently carried
out with the proposed multi-fidelity approach. Our strategy
allocated the available computational resources efficiently such
that the exploration of the propeller designs is performed with
XROTOR and only the most promising blade designs are evaluated
with the RANS solver of SU2.

The discussion on a constrained single-objective propeller blade
optimisation considering environmental uncertainties found that
the proposed multi-fidelity approach can find a propeller blade
design with significantly reduced power consumption while re-
specting the imposed reliability constraint on the thrust.

8.2 Possible developments

The proposed multi-fidelity surrogate-assisted optimisation ap-
proach was developed with a modular structure which facilitates
any extensions and further improvements of the approach.

The extensions of GPR can be also applied for MFGPR such
as including the gradient information in the surrogate training
process (Gradient-Enhanced GPR). To solve high-dimensional
problems, this framework could be complemented with dimension-
ality reduction techniques, such as principal component analysis.
Nevertheless, these extensions require caution and additional con-
siderations due to the integration of low-fidelity information. For
instance, the gradient information obtained from low-fidelity data
can be severely inaccurate.

In this dissertation an auto-regressive implementation of Multi-
Fidelity Gaussian Process Regression (MFGPR) was presented.
It would be interesting to investigate the performance of the op-
timisation framework with different MFGPR formulation. For
instance, a formulation based on Gaussian Markov Random Fields
is discussed in Appendix A.1. This formulation offers a computa-
tionally cheaper training process benefiting from the sparsity of
the inverted covariance matrix.
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8. Conclusions

Alternatively, the application of deep Gaussian processes [Ko-
rondi et al., 2019a] would be also interesting in a multi-fidelity
design optimisation context, since deep learning techniques could
model nonlinear transformation between the fidelity levels.
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Appendix A

“Adventure is worthwhile in itself.“

— Amelia Earhart

A.1 An alternative Gaussian process
regression formulation

This section discusses the work published in [Korondi et al.,
2019b]. An alternative multi-fidelity surrogate model is given
here exploiting the mathematical properties of Markov random
fields. Gaussian regression models, such as Gaussian Process
Regression (GPR) and Multi-Fidelity Gaussian Process Regres-
sion (MFGPR), scale with the number of observations. The basic
complexity of Gaussian processes is O(N3) where N is the num-
ber of data points, stemming from inverting an N × N matrix.
Therefore the Gaussian Markov Random Field (GMRF) models
are introduced which assume that a random variable associated
with a local region depends primarily on its neighbours. Gaussian
regression models approximate a sampled function as a random
process with Gaussian probability density function.

A.1.1 Gaussian Markov random field

A random process can be characterised as a Markov process when
the conditional probability distribution of future states of a random
process depends only on the present state (i.e. theMarkov property
is satisfied). In a multi-dimensional space, a random process is
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commonly referred as random field and a Markov process as
Markov random field.

A Gaussian process (i.e. random field) is a random process
with Gaussian probability distribution. When a Gaussian process
also satisfies the Markov property, it is a GMRF. Following [Rue
and Held, 2005], when the realisations of a Gaussian process
z(x) ∼ N (µ,Σ) depends only on the neighbouring realisations the
Markov property is satisfied. Therefore, z(x) is a GMRF when:

P (zi|z−i) = P (zi| {zj |j ∈ Ni}), (A.1)

where {zj |j ∈ Ni} is the set of neighbouring realisations, zi =
z(si) and z−i = (z1, . . . , zi−1, zi+1, . . . , zn). As GMRF is still a
Gaussian process it can be specified by its mean and covariance
matrix. Since the mean influences the global properties (trend) of
the distribution, the additionally satisfied Markov property is fully
contained in the covariance matrix. By investigating the inverse of
the covariance matrix, it reveals that Σ−1 has non-zero elements
when the corresponding realisations are neighbours. Therefore,
the precision matrix Q = Σ−1 is defined. This allows to specify a
GMRF by its mean and precision [Rue and Held, 2005]:

E(zi|z−i) = µi −
1

Qii

∑
j:j i

Qij(xj − µj), (A.2)

Prec(zi|z−i) = Qii, (A.3)

Corr(zi, zj |z−ij) =
−Qij√
QiiQjj

(A.4)

The joint PDF of a GMRF denoted by z(x) ∼ N (µ,Q−1) can
be formulated as:

PDF(z) = (2π)
−n/2 |Q|1/2 exp

(
−1

2
(z − µ)TQ(z − µ)

)
. (A.5)

where Q is a positive definite matrix.
Consider a GMRF in a form of:

z =

(
zA
zB

)
, (A.6)

with mean:
µjoint =

[
µA
µB

]
, (A.7)
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and precision:

Qjoint =

[
QAA QAB
QBA QBB

]
. (A.8)

Then this GMRF can be transformed into a conditional distribu-
tion. The conditional distribution is also a GMRF and given by
its mean and precision:

E(zA|zB) = µA −Q−1AAQAB (zB − µB) (A.9)
Prec(zA|zB) = QAA (A.10)

At this point the question is how to construct a sparse preci-
sion matrix such that the corresponding GMRF can capture the
characteristics of the functions which we would like to surrogate.

It has been shown that a Gaussian process with Matérn covari-
ance is a stationary solution to the following Stochastic Partial
Differential Equation (SPDE) [Whittle, 1954, 1963]:(

χ2 −∆
)α/2

z(x) = W (x), (A.11)

whereW (s) is a white noise, ∆ =
∑
i
∂2

∂s2i
is the Laplacian operator

and α = ν + d/2. The parameter ν controls the smoothness and
the parameter χ controls the range. From [Rozanov, 1977], when
α is an integer the solution satisfies the Markov property, hence,
it can be modelled as a GMRF.

The solution can be approximated as a finite basis expansion
[Lindgren et al., 2011]:

z(x) =
∑
k

ϕk(x)wk, (A.12)

with a suitable distribution for the weights wk. Then, a stochastic
weak solution to the SPDE is given by:〈

ψj ,
(
χ2 −∆

)α/2
z(x)

〉
= 〈ψj ,W 〉 ∀j. (A.13)

where 〈f, g〉 =
∫
f(x)g(x)dx is the inner product over the region of

interest. The test functions are chosen according the least squares
finite element approximation ψk =

(
χ2 −∆

)1/2
ϕk when α = 1.

For α > 2, the Galerkin solution is employed ψk = ϕk. However,
when α ≥ 3 the Eq. (A.11) is modified by setting the α = 2 on
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the left-hand side and the right-hand side is replaced with a field
generated by α − 2. This recursive Galerkin formulation then
terminates in α = 1 or α = 2.

With the explicit link between Gaussian processes and GMRF
[Lindgren et al., 2011], the precision matrix for weights w for
α = 1, 2, . . . is:

Q1 = K, (A.14)
Q2 = KM−1K, (A.15)
Qα = KM−1Qα−2M

−1K, (A.16)

where M and K are required to be sparse. They are defined as:

Mij = 〈ϕi, ϕj〉 , (A.17)
Sij = 〈∇ϕi,∇ϕj〉 , (A.18)
Kij = χ2Mij + Sij , (A.19)

Additionally, to keep the sparsity of the precision matrix, the
M matrix is replaced with a diagonal matrix M̃ having M̃ii =
〈ϕi, 1〉 entries. This introduces an additional approximation error
but assures the sparsity of the precision matrix.

A.1.2 Gaussian Markov Random Field Regression

The unknown function which we would like to surrogate is assumed
to be a linear transformation of a GMRF w and some additional
noise:

z(x) = ϕT (x)w + E(x), (A.20)

with

w ∼ N (µw, Q
−1
w ), (A.21)

E(x) ∼ N
(
0, σ2

ε

)
, (A.22)

where φTw is a spatial basis expansion with k basis functions,
for instance, linear finite element basis. The noise term E(x) is
normally distributed with constant variance σ2

ε . In this model,
w is a latent field as we cannot observe it, but only its linear
transformation with some noise.

Given the observation vector z(n) = (z1, . . . , zn)T containing
the realisations of a z(x) = ϕT (x)w + E(x) at x(n) observation
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locations and the noise vector E(n) = (σεE1, . . . , σεEn)
T with

Ei=1,...,n independent and identically distributed standard normal
realisations, the following hierarchical model can be written:(

z(n)
∣∣∣w) ∼ N

(
Φw,Q−1ε

)
, (A.23)

w ∼ N (µw, Q
−1
w ), (A.24)

where Q−1ε = σ2
ε I is the n× n covariance matrix of observations.

Φ is a k × n matrix with the values of the basis functions.
The joint distribution for the observations and the latent field

w forms a GMRF [Simpson et al., 2012] with mean:

E
(

w
z(n)

)
=

(
µw

Φµw

)
, (A.25)

and precision:

Prec
(

w
z(n)

)
=

[
Qw + ΦTQεΦ −ΦTQε
−QεΦ Qε

]
. (A.26)

The conditional distribution for
(
w| z(n)

)
can be described by

Eqs. (A.9) and (A.10):

µw|z(n) =µw +Q−1
w|z(n)Φ

TQε

(
z(n) − Φµw

)
, (A.27)

Qw|z(n) =Qw + ΦTQεΦ, (A.28)

where µw|z(n) = E
(
w| z(n)

)
and Qw|z(n) = Prec

(
w| z(n)

)
are the

mean and the precision of the conditional distribution. Then,
the variance can be computed as s2

w|z(n) = diag
(
Q−1
w|z(n)

)
. The

elements ofmw|z(n) are the basis function coefficients and covariate
effect estimates in the GMRF regression predictor:

m̂z(x) = ϕ(x)µw|z(n) (A.29)

with squared error:

ŝ2z(s) = diag
(
ϕ(x)Q−1

w|z(n)ϕ
T (x)

)
. (A.30)

The hyper-parameters of the precision matrix (θ = {ν, χ}) can be
found with the MLE approach. The likelihood for w given the
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parameters θ is:

L (w| θ) =
1

(2π)
k+p
2
√
|Qw|

exp

(
−1

2
(w − µw)

T
Qw (w − µw)

)
(A.31)

so that the log-likelihood is:

log L (w| θ) = −k + p

2
log (2π) +

+
1

2
log |Qw| −

1

2
(w − µw)

T
Qw (w − µw) .

(A.32)

For known w = ŵ, the likelihood for z(n) given the parameters θ
is:

L
(
z(n)

∣∣∣ θ) =
L
(
θ| z(n)

)
L (θ)

=
L (w| θ)L

(
z(n)

∣∣ θ, w)
L
(
w| θ, z(n)

) ∣∣∣∣∣
w=ŵ

(A.33)

so that the log-likelihood is:

log L
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log L ( ŵ| θ) + log L
(
z(n)
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(ŵ − µw)

T
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(A.34)

The likelihood for z(n) given the parameters θ can be evaluated
with ŵ = µw|z(n) , so that:

log L
(
z(n)

∣∣∣ θ) =

− n

2
log (2π) +

1

2
log |Qw|+

1

2
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1
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− 1
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− 1
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)T
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(
z(n) − Φµw|z(n)

)
.

(A.35)
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A.1.3 Multi-fidelity Gaussian Markov random
field regression

The GMRF regression can be extended to train a surrogate with
multi-fidelity data. Similarly to the recursive MFGPR, there are
L levels of response zl(x) sorted by increasing order of fidelity (i.e.
l = 1 is the lowest and l = L is the highest fidelity level). An
auto-regressive model using GMRF can be formulated starting
from the 2nd level:

 zl(x) = ϕT (x)wl + El(x),
wl = ρTl−1wl−1 + δl,

wl−1⊥δl,
(A.36)

where δl is a a GMRF with mean µwl and precision matrix Qwl .
ρl−1 is the scale factor relating the consecutive fidelity levels.

Given z(nl)l observed values of zl(x), the following hierarchical
model can be written:

(
z
(nl)
l

∣∣∣wl)− ρTl−1 � ϕT (z
(nl)
l )wl−1 ∼ N

(
Φlδl, Q

−1
εl

)
, (A.37)

δl ∼ N (µwl , Q
−1
wl

), (A.38)

where Q−1εl = σ2
εl
I is the nl×nl covariance matrix of observations

and � is the Hadamard product (i.e. element-wise product). The
joint distribution for the observations and the latent variables wl
is given by:

(
wl − ρTl−1wl−1(

z
(nl)
l

∣∣∣wl)− ρTl−1 � ϕT (z
(nl)
l )wl−1

)
∼ (A.39)
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µwl

Φlµwl

)
,

[
Qwl + ΦTl QεlΦl −ΦTl Qεl
−QεlΦl Qεl

]−1)
. (A.40)
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The conditional distribution for
(
wl| z(nl)l

)
can be described with:
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(A.41)

The elements of m
wl|z

(nl)

l

are the basis function coefficients and
covariate effect estimates in the multi-fidelity GMRF regression
predictor at l level:

m̂zl(x) = ϕ(x)m
wl|z

(nl)

l

, (A.42)

with squared error:

ŝ2zl(x) = diag
(
ϕ(x)Σ

wl|z
(nl)

l

ϕT (x)
)
. (A.43)

The hyper-parameters of the precision matrix can be found
with the MLE approach. The likelihood for z(nl)l given the param-
eters θl is:
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(A.44)
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A.1.4 Comparison of multi-fidelity Gaussian
process regression and multi-fidelity
Gaussian Markov random field regression

A simple one-dimensional problem is investigated in this section.
The test function for multi-fidelity surrogates is presented in
[Forrester et al., 2007]. The high- and low-fidelity functions are
the following:

fhigh = (6x− 2)2 sin(12x− 4), (A.45)

flow =
1

2
fhigh + 10(x− 0.5)− 5. (A.46)

In this case four observations are available at the high-fidelity
level Xhigh = {0, 0.4, 0.6, 1} and eleven at the low-fidelity level
Xlow = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. The surrogate
built-on variable fidelity data is depicted in Figure A.1.
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Figure A.1: Multi-fidelity GMRF regression.
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Function flow flow fhigh fhigh
Surrogate GPR GMRF MFGPR MF-GMRF
Error 0.0389 0.0459 0.0852 0.1255

Table A.1: Comparison of MFGPR and multi-fidelity GMRF
regression. (The mean absolute error is calculated with 100 in-
stances.)

The result clearly shows that the single-fidelity learning tech-
nique GPR is not able to capture correctly the function landscape
due to the limited number of observation points. The multi-
fidelity learning technique is able to fuse the information from
the low-fidelity function into the high-fidelity approximation and
thus provides an adequate approximation of the true function.
The multi-fidelity learning technique with GMRF is not able to
properly learn the function landscape at the domain boundaries
because Neumann boundary conditions with zero value are as-
sumed. This is also confirmed by Figure A.2. This results in a
slightly higher approximation error compared to MFGPR as it
can be seen in Table A.1.

Nevertheless, MF-GMRF regression provides a viable alterna-
tive to MFGPR.
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Figure A.2: Comparison of the prediction error distribution of
MFGPR and MF-GMRF.

A.2 Space systems resilience optimisation
under epistemic uncertainty

This section summarises a collaboration work published in [Pa-
per F: Filippi et al.,2020].

The design optimisation of a space system requires a different
perspective. Our understanding of the space is significantly lim-
ited compared to our knowledge of the atmosphere of the Earth.
Additionally, the high complexity and costly physical experiment-
ing of space systems increase the uncertainty of a space mission.
Therefore, the uncertainty must be treated with more conserva-
tive approaches considering the presence of significant epistemic
uncertainty. The entire design process of a space mission can last
for several years. Traditionally, space systems are designed with
well-established safety margins and redundancies. Unfortunately,
these traditional approaches may overestimate or underestimate
the effect of uncertainties.
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In [Paper F: Filippi et al.,2020], a resilience-based design opti-
misation technique is proposed for designing space systems under
epistemic uncertainty. The resilience-based approach is introduced
through the optimisation of a five-component CubeSat. The five
components are: Attitude and Orbit Control, Telecommunication,
On Board Data Handling, Power and Payload. The Quantities of
Interest are the total mass (MTOT ) of the satellite and the total
amount of transmitted data to the ground station (V ). The Cube-
Sat is designed considering 12 design variables and 20 epistemic
uncertain variables. Additionally, the amount of transmitted data
is calculated with a stochastic dynamic model of the space system
considering time dependence and 3 operational states: system
failure, partially functional and fully functional system.

The optimisation is formulated as a constrained min-max prob-
lem. The optimal design parameters are seeked which minimise
the total mass of the satellite in a worst-case scenario (i.e. maxi-
mal mass value among all possible total mass values due to the
uncertainty of a fixed design configuration) such that the amount
of transmitted data is not smaller than a threshold value.

The resilience-based design optimisation of the satellite is
performed with the so-called Evidence-Based Robust Optimisation
technique exploiting the properties of Evidence Network Models
and the principles of Dempster-Shafer Theory. The cumulative
belief (i.e. lower bound of the CDF) of the total mass of the
obtained resilience-based design is depicted with blue colour in
Figure A.3. This resilience-based solution ensures that total mass
of the space system will be below 13.44 when the transmitted data
volume is at least 600 GB. The design solution obtained with the
margin-based approach predicts that the total mass will be 13.17
as represented by the vertical red line in Figure A.3. However, the
margin-based approach fails to properly quantify the uncertainty.
By evaluating the uncertainty of the design obtained with the
margin approach, it is revealed that the evidence supports only
a low belief (Bel=0.025) that the satellite will have a mass of
13.17. Correspondingly, the total mass of the satellite designed
with the margin approach can reach as high a value as 14.33 which
is significantly heavier than the worst-case of the resilience-based
optimum.
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Figure A.3: Comparison of the margin-based and the resilience-
based optimum when the transmitted data volume is at least 600
GB as published in [Paper F: Filippi et al.,2020].
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