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“Without deviation from the norm, progress is not possible.”

Frank Zappa
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Abstract

Most of the theoretical foundations which have contributed to shape Artificial Intelli-
gence (AI) as we know it come from the last century. The technological advancement
of the last decades however, mainly in the form of faster parallel computation, larger
memory units, and Big Data, has dramatically increased the popularity of AI within
the research community.

Far from being only a pure object of research, AI has been successful in many
fields of applications, and it has become deeply integrated into our daily experiences.
We live in a society in which on-demand content suggestions are tailored for each
customer, where it is possible to order products online by chatting with bots. Smart
devices adapts to the owner behavior, the stock exchange brokers are algorithm based
on predictive models, and the computers are able to discover new medicines and
new materials.

Despite the amount of knowledge acquired on AI, there are still many aspects of it
that we do not fully understand, such as the interplays within multiple autonomous
agents scenarios, in which AIs learn and interact in a shared environment, while
possibly being subjected to different goals. In these scenarios the communication and
the regulation of the autonomous agents are both extremely relevant aspects.

In this work we analyze in which way the language expressiveness affect how
agents learn to communicate, to which extent the learned communication is affected
by the scenario, and how to allow them to learn the optimal one. We then investigate
which communication strategies might be developed in different scenarios when
driven by the individual goal, which might lead to improved equality in a cooperative
scenario, or more inequality in a competitive one. Another aspect that we consider
is the ethics of multiple agents, to which we contribute by proposing a way to
discourage unethical behaviors without disabling them, but instead enforcing a set of
flexible rules to guide the agents learning.

AI success can be determined by its ability to adapt, which is an aspect that
we consider in this work, relatively to the adaptation of autonomous soft robotic
agents. Soft robots are a new generation of nature-inspired robots more versatile
and adaptable than the ones made of rigid joints, but the design and the control
of soft robots can not be easily done manually. To this extent we investigate the
possibility of mimicking the evolution of biological beings, by adopting evolutionary
meta-heuristics for optimizing these robots. Specifically we propose to evolve a
control algorithm that leverages the body complexity inherent to the soft robots
through sensory data collected from the environment. Considering the problem of
designing adaptable soft robots, we propose an approach that allows to automatically
synthesize robotic agents for solving different tasks, without needing to know them
in advance.

Agent-based scenarios are powerful research tools that can be adopted also for
approximating the behavior of biological actors. Based on this possibility, we propose
a model for the assessment of the publishing system indicators, which are currently
used to evaluate authors and journals.
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Summary

In the early days of AI, computers were used to solve tasks considered difficult by
humans, or too time consuming for them. In order to be understood by the computers,
this kind of tasks required to be carefully expressed in the form of algorithms, defined
through mathematical rules that are complex for us to understand.

On the other side, the computers struggled at accomplishing tasks which formu-
lation is immediately understandable by humans, and which require reasoning and
decision making skills. This second kind of tasks, on the contrary, are difficult to ex-
press in the form of algorithms and could be very heterogeneous, but they all require
some kind of perception and cognitive capabilities. It is precisely within this context,
that AI was considered promising at overcoming the human limits, by proposing
mathematical abstractions inspired by the cognitive features of the biological brain.

Despite the development of many AI techniques, for a long time it was not pos-
sible to use them to solve these kind of tasks, since both their formalization and
the optimization were too computationally demanding for the resources available.
During the last century, these limitations led to periods of reduced funds and interest
among the researchers, also known as the AI winters. This issue seems to be partially
overcome during the past decades, thanks to the technological advancement in the
manufacturing of Graphic Processing Units (GPUs) for optimized parallel computa-
tion, to the availability of larger memories which have allowed to operate with bigger
collections of data, and finally thanks to the digitalization of society and Big Data,
which has allowed to collect huge collection of data to make the machines learn from.

In this work we employ AI for solving problems that require cognitive capabilities,
where the goal of the AI is to find an optimal strategy, without any prior knowledge
on the task, provided only with an environment in which it can make decisions
and observe the consequences. Approaching these cognitive problems using AI is
extremely relevant because, on one side it does not require the engineers or researchers
to manually design the algorithm corresponding to the optimal strategy, and on the
other side because the AI might discover a different solution to a task w.r.t. the ones
that we expect.

Reinforcement Learning (RL) is an AI approach that allows machines to learn
decision making by directly interacting with the environment. According to RL, an
artificial agent improves its skills through trial and error, guided only by a reward
signal, in a way that is inspired by how animals learn. The goal of the RL agent is
therefore to maximize not the immediate reward, but instead the cumulative reward
collected after a series of interactions with the environment. For this reason, in such a
long term perspective, a decision leading to an higher cumulative reward might be
preferred over an immediately higher rewarding one.

We must notice that RL is not a form of Supervised Learning: no label for the
correct decision for the current input is given, but instead the machine updates its
strategy guided only by the maximization of its cumulative reward throughout all
the possible trajectories of sensory inputs and corresponding actions.

According to RL, the agent is not aware of the underlying physical laws of the
environment, and typically it does not even know the complete state in which the
environment is at a certain time, but rather it senses only part of it.

The environment in RL is typically expressed in the form of a Markov Decision
Process (MDP), according to which all the possible states are the nodes of a graph,
connected by directed edges which represents the action performed by the agent,
the state transition probability, and a reward consequent to the transition from the
previous state. In a MDP it holds the Markov property, which guarantees that the
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state transition probability is influenced only by the current state of the environment,
and by the action taken in that state, while all the previous states and actions are
irrelevant for that transition.

The formalization of the RL problem requires an MDP which defines the envi-
ronment, a reward function, and a policy function. Specifically, the reward signal is
responsible for driving the agent strategy to the optimal one, and since the reward
signal is problem-dependent, its design can be challenging, since there might be
many solutions for a specific task. The strategy of an agent in RL is represented by a
policy function which maps each observation to an action. A policy is optimal if an
agent, following that policy, is able to collect the maximum cumulative reward over a
trajectory of states and actions.

RL has showed promising results in wide fields of decision making that are
worth to mention, such as playing Atari video games at human-level through visual
inputs. Games are extremely relevant as AI benchmarks, since they can be viewed as
simulation of real life tasks, on which we can measure the AI performance, and then
we can compare them with other AIs and humans.

More recently RL was able to beat Go world champion, without any prior knowl-
edge of the game, and being limited to observing the chessboard. Analyzing the
matches in which the AI played against the world champion, it has been possible
for Go masters to learn from the machine successful strategies that were previously
underestimated.

Another direction of AI research is using this framework for solving problems
that are challenging and not intuitive for humans, which typically require to find
a solution in an extremely high-dimensional space. One of these problems is the
adaptation of robotic agents, a possibly large scale process that allows to assess the
ability of these robots to succeed in a given environment. Seeking to bridge the
gap between machines and living beings, these nature-inspired robots are designed
in such a way to exhibit almost infinite degrees of freedom, thus allowing them
to interact with humans in a safe way, and making them capable of performing
movements and interactions with the environment inspired by the way plants and
animals do. Despite being free from most of the constraints that affect traditional
robots, soft robots are extremely difficult to design and control using traditional
robotics techniques. Several researches for this reason have suggested that these
robots design and control should be done by means of meta-heuristics.

Evolutionary Computation (EC) is an optimization algorithm inspired by the
biological evolution. EC allows to find optimal solutions by modeling the search
within the solution space through a dynamic populations of individuals that compete
for limited resources, where only the fittest individuals survive and reproduce, and
where the offspring inherit some traits from the parents. The population dynamics
in EC occurs in a form inspired by the natural selection, where the new individuals
are generated from the initial ones by means of the genetic operators, which allow to
implement the trade-off exploration-exploitation.

This optimization approach need no prior on the nature of the solution, nor on
the fitness landscape, but instead requires the researcher to develop a way to assess
candidate solutions, and a mapping function from the EC internal representation of
the solutions to its actual form.

Throughout this document we present a number of contributions specific to the
communication and the regulation in multi-agent systems, and about the adaptation
of robotic agents. Here we briefly list the contributions of this work:
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i We design a multi-agent cooperative game, in which the autonomous agents
learn to develop a simple form of communication in order to tell necessary
information to succeed at the game. In this scenario we investigate the impact of
the expressiveness of the language used for the communication, both in terms of
the efficiency and effectiveness of the learned strategies. The results show how
the language expressiveness should be designed in a given scenario to allow
both the highest effectiveness and efficiency.

ii We consider three different scenarios for a resources collection game, in which a
form of broadcast communication is necessary for performing optimally. In this
game we investigate the impact of communication on the individual strategies
that are developed by the agents in the different scenarios, where each scenario
is defined by a different relationship individual-collective goal. The results show
that in the cooperative scenario the learned communication strategy lead to an
evenly distribution of the resources among the agents, while in the competitive
scenario each agent develops a selfish strategy which favors the inequality.

iii Motivated by the lack of regulations for self-driving cars, we consider the prob-
lem of enforcing traffic rules on agent-based autonomous vehicles as part of the
learning process. To tackle this problem we design a simple road traffic simulator,
in which each driver is able to update the speed and the currently-occupied lane
of its vehicle. The traffic rules are expressed in the form of a negative feedback
assigned to the drivers for breaking the corresponding rule, and thus the agents
are trained with these additional rewards. The experimental results show that
such rules result into a safer, but slightly less efficient traffic flow, w.r.t. the one
resulting without rules. The most relevant aspect of this approach however is
that the compliance to these relies only on the optimal policy learned, meaning
that these rules might be evaded in favor of a greater good.

iv We consider the problem of finding the optimal control law for robotic agents
in the form voxel-based soft-robots. These extremely versatile robots are made
of flexible building blocks called voxels, which can expand or contract when
controlled by an external signal, and are motivated by the idea of shifting the
robot complexity from the controller to the body. We explore the possibility of
taking advantage of this paradigm by providing these robots with distributed
sensing, and a controller based on an artificial neural network. We compare this
control approach with another non-sensing one from the literature, by manually
crafting a series of robotic bodies on which we evaluate both controllers, by
optimizing each one on locomotion tasks. The experimental results show that
the sensing controller proposed in this work is a promising approach, which
outperforms the non-sensing counterpart, despite computationally expensive to
optimize.

v We focus on the problem of automatically discover adaptable soft-robots bodies
that allow to succeed at many different tasks. To solve this problem, we define a
measure of adaptability corresponding to the self-organized criticality condition,
which is proper of the dynamical systems, and that allows the most adaptable
and complex behaviors. A number of robotic bodies are evolved towards this
condition, and we then compare the resulting bodies on three tasks, against
several other bodies, some of them inspired by the ones from the previous work,
as well as some others randomly generated. We conclude showing that our
approach for estimating adaptability allows to evolve bodies that are versatile,
and successful at different tasks.



xvi

vi The tools adopted in the previous investigations can be used not only for syn-
thesizing artificial agents, but also for analyzing scenarios with biological, and
indeed human agents. Specifically we consider the problem of the publishing
system assessment, where non-observable quantities are explained by some indi-
cators, namely the H-index for the authors, and the Impact factor for the journals.
We design a model of the publishing system, in which all the actors (authors
and editors) are embodied by artificial agents, and we let the system evolve over
time. Through the data collected from this model we estimate the effectiveness
of the currently used indicators, showing that H-index is a good proxy for the
non-observable authors quality. On the contrary, the Impact factor seems not to
be a good predictor of the journals quality in general, but only under specific
conditions.
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Chapter 1

Background

1.1 Reinforcement Learning

Reinforcement Learning (RL) is a computational approach that allows to learn an
agent behavior through the interaction with the environment, by taking into account
the consequences of the actions, and by building the connection between actions and
rewards. This approach is indeed very rooted in the way animals learn throughout
their life, but here adopting the perspective of artificial intelligence research. In this
framework there is no teacher, and the agent must discover by itself the behaviour that
leads to the highest reward. RL is a term that indicates a problem, a class of solution
methods for that problem, and the research field that studies both the problem and
the class of solutions as well.

According to the agent-environment interface (Figure 1.1), at time t the agent
takes action At, given the current environment state St, which might not necessarily
be completely known by the agent. The action At affects the environment at time
t + 1, thus the agent is then rewarded with Rt+1, and observes the new environment
state St+1.

At time t the agent objective is to maximize the expected future return over time,
namely Gt, as:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞

∑
k=0

γkRt+k+1 (1.1)

Here γ ∈ [0, 1] is called discount factor, and it defines how far in the future the agent
strategy can reach. If γ = 0 the agent is myopic: it only cares of the immediate reward,
and thus its actions will be directed to maximize Rt+1, since all the future rewards are
worth 0. If γ = 1 the agent is farsighted: it cares of all the future rewards regardless
of their position in the future, as if the episode would last forever. The choice of γ
therefore determines the optimal behavior the agent is able to find, and is typically
set to 0 < γ < 1.

F I G U R E 1 . 1 : Agent-environment interface
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F I G U R E 1 . 2 : A MDP example.

The agent-environment interaction in RL is formalized by using the concept of
Markov Decision Process (MDP) framework. Given an MDP, it holds the Markov
property, that is the state transition function of the process depends only upon the
present state, and not on the sequence of past visited states. In a MDP the state
transitions are ruled by a transition function p : S× R× S× A 7→ [0, 1]. According
to this function p, the probability of transitioning to state s′ and receiving reward r,
being in state s and taking action a is indicated by p(s′, r|s, a). It holds that:

∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1, ∀s ∈ S, a ∈ A (1.2)

An example of MDP is showed in figure Figure 1.2, where the states S0, S1, and
S2 are coloured in blue, and the possible actions from a certain state are denoted by
orange arrows. The agent policy therefore associates a probability value for each
orange arrow originated from the same state. The possible state transitions given a
starting state and the action taken is indicated by a black arrow, therefore the state
transition probability function associate a probability value to each arrow with the
same origin.

In general the agent policy π is a mapping from each state s ∈ S to the probability
of taking each possible action a ∈ A. If the agent follows policy π at time t, the
chance of taking action a = At being in state s = St is denoted by π(a|s). Since π is a
probability distribution, it follows that ∑a∈A π(a|s) = 1.

The state-value function for the agent being in a state St = s at time t, and following
policy π is evaluated as the expectation of the return achieved by following π, that is:

Vπ(s) = Eπ[
∞

∑
k=0

γkRt+k+1|St = s] (1.3)

Starting from this formula we can use the definition of expected future return Gt at
time t, to present the Bellman equation for the state-value function:

Vπ(s) = ∑
a∈A

π(a|s)∑
s′,r

p(s′, r|s, a)[r + γVπ(s′)] (1.4)

Here we indicate Rt+1 = r, St+1 = s′, and At = a for brevity. The Bellman equation
allows to recursively define the relationship between the value of a state St and the
value of the following state St+1 under a policy π.

It is possible to establish a partial ordering among all the policies, such that
the policy π is better than policy π′, if the expected return of π is greater or equal
than the one of π′ for all the possible states. In other words π is better than π′ if
Vπ(s) ≥ Vπ′(s), ∀s ∈ S. This means that there is an optimal policy that we call π∗ that
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is better than all the others. The optimal policy π∗ state-value function is defined for
state s by the Bellman optimality equation as:

V∗(s) = max
π∈Π

Vπ(s) (1.5)

Which can be expanded into:

Vπ∗(s) = max
a ∑

s′,r
p(s′, r|s, a)[r + γVπ∗(s′)] (1.6)

1.1.1 Dynamic Programming

Dynamic Programming (DP) is a collection of algorithms that make it possible to find
the agent optimal policy for a task, if the environment model is completely known,
and the environment is in the form of a MDP. These algorithms are not always useful
since they are computationally expensive, and also because they require perfect
knowledge of the environment, i.e., the transition probability function p, which is
something that most real life problems lack of.

The value iteration algorithm is obtained by turning the Bellman optimality equa-
tion into an update rule. If a policy is obtained by blindly following the current state
value function, thus exploiting the knowledge on the solution space that are known
at that time we call it a greedy policy. This algorithm makes the policy greedy w.r.t.
the current state-value function, and it is defined for each s ∈ S as:

Vk+1(s) = max
a ∑

s′,r
p(s′, r|s, a)[r + γVk(s′)] (1.7)

Given an initial guess V0(s) at time t = 0, ∀s ∈ S, this algorithm converges to the
optimal state-value function V∗(s).

It is therefore possible to explicitly define the optimal policy π∗ as:

π∗(s) = arg max
a ∑

s′,r
p(s′, r|s, a)[r + V∗(s′)] (1.8)

1.1.2 Monte Carlo Methods

Monte Carlo (MC) methods are a collection of algorithms that do not assume complete
knowledge of the environment, but instead the update rules of these methods are
based on the experiences collected. These methods are based on estimating the
expected future returns by means of averaging the returns observed after visiting a
certain state. The more returns are observed for each state, the more this estimate
converges to the expected value. One downside of these methods is that they do not
allow online updates, but the policies are updated only through complete episodes
sampling.

Without a model however, estimating the state-value function is not sufficient to
find the optimal policy. The state-action value function for being in a state St = s at
time t, and taking action At = a, and following the optimal policy, is evaluated as:

Q∗(s, a) = ∑
r,s′

p(s′, r|s, a)[r + γ max
a′

Q∗(s′, a′)] (1.9)

This function is estimated using MC methods, by sampling k complete episodes,
in which a random policy is employed, and the return for each pair state-action
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encountered is averaged through the episodes as:

Qk(s, a) = Ek[Gt|St = s, At = a] (1.10)

This estimate converges to the true underlying return, for each state-action pair, and
given an infinite number of episodes.

It is therefore possible to explicitly compute the optimal policy π∗ as:

π∗(s) = arg max
a

Q∗(s, a) (1.11)

This is an on-policy algorithm, since it improves and evaluates the same policy that is
used to sample the episodes state-action trajectory, i.e. that is used to make decisions.
Differently the off-policy algorithms optimize one policy, while they sample the
episodes state-action trajectory with another.

1.1.3 Temporal Difference Learning

Temporal Difference (TD) approach is a based on the MC idea of directly interacting
with the environment rather than learning from a model of the environment, and
is based on the DP idea of learning from previous estimates, without needing to
complete the episode.

TD methods are based on the TD-error, which is the difference between return
estimates at different times into the episode. TD(0) methods update the state-action
value function in a one-step fashion, which is based on its value at time k, and the
reward received at time k + 1, updating the estimate with a learning rate α ∈ [0, 1].
TD(0) algorithms have been proved to converge to the optimal policy, under the
condition of a sufficiently small learning rate.

The Q-learning is a TD(0) algorithm that updates the current estimate of the
state-action value function being in state Sk = s and taking action Ak = a at time k,
through the reward Rk+1 = r experienced at time k + 1, regardless of the policy being
followed:

Qk+1(s, a) = Qk(s, a) + α

(
r + γ max

a′
Qk(s′, a′)−Qk(s, a)

)
(1.12)

Here the TD-error at time k measures the difference between the return estimate
r + γ maxa′ Qk(s′, a′) that is available at time k + 1, and the less accurate estimate
Qk(s, a) at time k, and is defined as:

δt = r + γ max
a′

Qk(s′, a′)−Qk(s, a) (1.13)

1.2 Evolutionary Computation

Evolutionary Computation (EC) is a family of optimization algorithms inspired by
biological evolution observed in nature. According to EC, an initial population
of candidate solutions compete for limited resources, and therefore is subjected to
natural selection (individuals die and are born). Fittest individuals survive and
reproduce more than others, and the offspring inherit some traits from their parents,
thus gradually moving to regions of the solutions space with higher fitness values.
The quality of the solutions w.r.t. a certain problem is determined by the fitness value
of that solution, therefore the fitness function drives the evolutionary process. No
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assumptions on the fitness landscape, nor on the nature of solution are necessary for
solving the problem.

Each individual of the population is internally represented by its genotype, which is
a convenient representation used by EC. The genotype is subjected to the evolutionary
operators (the search for optimal solutions occurs in the genotype space). The same
individual is also represented by its phenotype, which is the actual candidate solution
for the considered problem. The fitness of an individual is computed upon its
phenotype. The genotype-phenotype mapping is demanded to the user, and occurs
by mapping the genotype space into any arbitrary phenotype space, thus allowing
the re-use of EC, regardless of the nature of the problem.

1.2.1 Population Dynamics

In EC individuals life span is instantaneous, and so is the fitness calculation, and
therefore the flow of time is determined by the births and deaths.

According to the overlapping generational model, at each time a population of m
parents produces a population of n offspring, and the two populations are merged
together. From this newly generated population of m + n individuals, only m are
selected to survive and become the new population.

On the other side, according to the non-overlapping generational model, at each
time a population of m parents produces a population of n ≥ m offspring. All the n
parents die, and from the n offspring only m are selected to survive and become the
new population.

There are many possible selection criteria, but most of the time they are fitness-
based criteria. Arguably the most common one is tournament selection, according
to which nsize individuals are randomly sampled from the population with uniform
probability, and among them only survives, that is the one with the higher fitness.

1.2.2 Genetic operators

Reproduction occurs from the initial population of n individuals, where the m off-
spring genotype is obtained by selecting one or more parents and applying the genetic
operators, namely mutation and crossover. The mutation is an unary operator that
randomly changes one or more values in the individual genotype. This operator
promotes the exploitation of the currently known good solutions, by searching for
better solutions close to these in the genotype space.

The crossover is a binary operator that generates an offspring as a recombination
of the parents genotype. An offsrping generated using crossover inherits half of its
genetic material from each of its parents, but its genotype is very different from both
parents. This operator indeed promotes the exploration in the solutions space, by
searching for good solutions in very different solutions w.r.t. the currently known
ones.

An example of EC pseudocode is presented in Algorithm 1: an initial population
is randomly sampled from the solution space using the Initialize() function. An
condition based on the number of individuals generated npopngen forces the algorithm
to exit the main loop, where parents are selected using SelectTournament(). The
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selected parents are then variated using the genetic operators om, and oc, and these
new individuals are used to produce the new population.

1 b← 0
2 I = Initialize()
3 while b ≤ npopngen do
4 I’ = ∅;
5 for i ∈ 1, . . . , npop do
6 (gp1 , pp1 , fp1)← SelectTournament(l)
7 (gp2 , pp2 , fp2)← SelectTournament(l)
8 gc ← om(oc(gp1 , gp2))
9 I’← I’ ∪(gc, φ(gc), f (φ(gc)))

10 b← b + 1
11 end
12 I← I ∪ I’
13 while |l| > npop do
14 I← I
15 SelWorst(l)
16 end
17 end

Algorithm 1: An EC pseudocode example

1.3 Multi-agent System

A multi-agent system (MAS) is a mathematical abstraction of a certain aspect of reality,
in which multiple intelligent agents interact. Multi-agent might be an inherent prop-
erty belonging to the model considered, but might also be a convenient representation
for dividing a complex problem into its simple constitutive parts. A multi-agent
system might contain passive objects and active agents. The passive objects do not
interact in any way with the environment, and represent simply obstacles, resources,
or goals for the agents, while the active agents are actually the only entities capable
of interacting with the passive objects of the environment, and with other agents to
some extent, and are typically subjected to a learning process. Let us consider the
MAS example of the predator-prey model. In this MAS, the active agents, namely
predators and preys, are designed with a certain degree of autonomy, i.e. they are
free to act on its own, without no need for an external control. The agents within the
environment might be defined by different features and different goals, i.e. preys and
predators are by design different kinds of agents, and have different goals: the preys
aim at their own survival, while the predators aim at catching them. Moreover the
formalization of the MAS might not allow the agents to have a complete knowledge
of the system internal state, i.e. the predators might not be able to sense the preys if
they are not close enough. Another relevant aspect for MAS is the decentralization,
according to which each agent is responsible for the scope of its learning, and there is
no central authority responsible for supervising each agent. Finally MAS can mani-
fest self-organization and self-direction, which allow to promote complex collective
behaviors even when the individual strategies are simple. This complexity aspect
is enforced in particular when the agents are provided with a way to share their
knowledge, as it occurs when employing communication: the predators might emit
sounds to establish a hunting strategy, and conversely the preys might communicate
the presence of a predator to alert the others.
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1.4 Research Questions

In this work we consider relevant and partially unexplored aspects of multi-agent
scenarios, such as the optimal communication setting for improving both efficiency
and effectiveness of RL, or such as the impact of communication on the trade-off
individual-collective behavior that is developed by RL in different scenarios, or finally
such as the regulation of AIs by teaching them, through a framework of flexible rules
based on RL, to avoid the disallowed behaviors. We then investigate the possibility
of automatically design and control the next generation of nature-inspired soft robots
through EC, by proposing a sensing control strategy which might take advantage of
the body complexity, and we compare its performance with the one of a controller
from the literature, and finally by suggesting an approach to automatically design
adaptable soft robot bodies that are successful in tasks requiring different skills.
Finally we adopt the multi-agent framework for assessing the effectiveness of the
currently used indicators for assessing the quality of the publishing system actors.
We formalize here each one of these aspects in the form of research questions, and
we briefly introduce the content of each chapter that is relevant to each one of these
questions.

1.4.1 Research Question 1

Which is the optimal language expressiveness for learning the most effective and efficient
behaviors in a cooperative multi-agent RL?

This question is addressed in Chapter 2, in which for a given a cooperative multi-
agent communication game in which each agent strategy is learned through RL, the
language expressiveness is function of the vocabulary size and of the problem com-
plexity as well. Different scenarios and communication settings for the same game
allow to train the agents under different condition, which are indeed responsible for
defining the training complexity. Each value of language expressiveness considered
is evaluated in terms of both learning efficiency, i.e. how many learning iterations are
necessary for the agents to develop the optimal strategy, and effectiveness, i.e. how
good is the agents learned strategy.

1.4.2 Research Question 2

What is the impact on the individual-collective reward relationship of learning the communi-
cation strategies within a Multi-Agent RL game?

In Chapter 3 we consider three different scenarios for a multi-agent resources col-
lection game, namely a cooperative, a competitive, and a mixed one. Each scenario
is designed in a way to drive the agents learning towards a different optimal be-
havior w.r.t. the individual and collective goal. In all these scenarios presented, the
interaction among agents is possible only in the form of a hard-coded broadcast
communication. Every agent independently learns an optimal behavior for each
presented game, where the individual policy includes the possibility to enable or
disable the broadcast communication at any step of the game. We then investigate
the impact of the individually learned communication strategies on the overall col-
lective behavior, by measuring the individual return of the learned policies and the
inequality in the resources allocation.
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1.4.3 Research Question 3

Is it possible to provide regulations for autonomous vehicles without explicitly disabling
unethical behaviors?

To answer this question, we consider a simulated version of a road traffic scenario,
in which each driver interacts with its vehicle by means of updating the speed and
by changing lanes, and where each vehicle is controlled by a RL agent, as described
in Chapter 4. A form of regulation inspired by the real traffic rules is enforced as
negative reward received by the agents when evading any of the rules, while being
trained towards traffic efficiency, i.e. high average speed, and safety, i.e. no collisions.
In Chapter 4 we stress the importance of this flexible AI regulation approach, which
might be relevant to the ethical problem of autonomous vehicles. We thus compare
the results of this regulation approach with another variant of the training, in which
the rules enforcement is missing, and we measure the impact of the rules on the
validation results.

1.4.4 Research Question 4

Is it possible to take advantage of the body complexity by evolving a sensing neural controller
for voxel-based soft robots?

One of the underlying ideas of the voxel-based soft robot technology is the shift of
complexity from the brain to the body of these robots. Due to this complexity, finding
the optimal control algorithm for such robots is a challenging task that has been
automatically solved in the literature through EC. The form of control proposed in
other works are often based on non-sensing time signals, which are responsible for
actuating each voxel accordingly. In Chapter 6 we propose to leverage on the body
complexity by providing sensors placed in each voxel of the robot body, and a control
algorithm in the form of an artificial neural network. We then estimate the capabilities
of the sensing approach, by comparing the performance of the two control variants
on a set of manually designed bodies, and different environments for a locomotion
task.

1.4.5 Research Question 5

Is it possible to automatically design a body for voxel-based soft robots that can adapt to
differnt tasks?

In Chapter 6 we consider adaptability as a property belonging to a voxel-based robot
body, and defined as the ability to perform well at tasks that require different skills.
A body that lacks this property might possess only the skills necessary to accomplish
a subset of these tasks, while performing poorly on the others. In this chapter we
propose a way to measure adaptability based on the self-organized criticality, which
is a property of systems which allows the most complex dynamics. A number of
bodies are optimized by means of EC, using the definition of self-organized criticality
as a proxy for the adaptability. We design several other bodies, using the results from
Chapter 5 as well as others from the literature, together with other baselines, and
we experimentally compare all of them on different tasks, in order to validate this
optimization approach for designing adaptable bodies.
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1.4.6 Research Question 6

Are the currently employed publishing system indicators effective proxies for the correspond-
ing non-observable quantities they embody?

To answer this research question, in Chapter 8 we design a simulation of the publish-
ing system, where the authors and the editors are modeled by artificial agents. In
this simulation the authors write and submit their papers, while the editors either
accept or reject the papers submitted to their journal. Agents are provided with
some manually designed policies, and with others learned by means of RL as well.
Given each combination of policies employed by the agents, we let the system evolve
over time, and we collect the resulting data from the simulation. From the data
collected using this model, we empirically measure the effectiveness of the currently
employed indicators for assessing respectively the authors through the H-index, and
the journals through the Impact factor.
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Chapter 2

How the Language Expressiveness
affects Reinforcement Learning

A cooperative multi-agent system is a category of multi-agent systems in which agents
individual and collective goals are the same. In this chapter we consider a coopera-
tive multi-agent system, in which cooperation may be enforced by communication
between agents but in which agents must learn to communicate. The system consists of
a game in which agents may move in a 2D world and are given the task of reaching
specified targets. Each agent knows the target of another agent but not its own,
thus the only way to solve the task is for the agents to guide one another using
communication and, in particular, by learning how to communicate. We cast this
game in terms of a partially observed Markov game and show that agents may learn
policies for moving and communicating in the form of a neural network by means of
reinforcement learning. We investigate in depth the impact on the learning quality of
the expressiveness of the language, which is a function of vocabulary size, number of
agents and number of targets.
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2.1 Introduction

Artificial intelligence nowadays plays an increasingly pervasive role in everyday
life and what was only a research topic a few years ago is now an essential part
of the technology industry (Syam and Sharma, 2018). An important goal in this
scenario consists in the creation of artificial agents able to solve complex problems
requiring forms of perception of the surrounding environment. Multi-agent systems,
in particular, involve many artificial agents interacting in the same environment
with common and/or conflicting goals, resulting in cooperative and/or competitive
scenarios.

For example, the controller of an autonomous vehicle can be modeled as a multi-
agent system of sensors and actuators that work together, so that collective perfor-
mance depends on the cooperation among all of them. The cooperation involves the
exchange of information between agents along with the evaluation of the action to
take, based on the received information.

Language interpretability and efficiency are important requirements in this con-
text. Natural language has the advantage of being understandable by humans, but
its complexity and the fact that the meaning of a term may depend on the context
in which it appears (i.e., on nearby terms) may nullify the potential benefits of the
learning process (Szabó, 2017).

A symbol-based language, with no predefined meaning for symbols, is not easily
interpretable by humans, but could lead to more efficient cooperation among artificial
agents and could be more appropriate for a learning task than natural language.

Motivated by recent works on multi-agent systems (Lowe et al., 2017; Mordatch
and Abbeel, 2017), we consider a symbol-based approach to solve a cooperative multi-
agent task in which agents learn to communicate using reinforcement learning (RL).
We consider a multi-agent scenario in which agents may move in a 2D world and are
given the task of reaching specified targets. Each agent knows the target of another
agent but not its own, thus the only way to solve the task is for the agents to guide one
another using communication and, in particular, by learning how to communicate.

We use the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) learning
algorithm (Lowe et al., 2017) for learning the control policy of the agents in a fully
decentralized way. We focus on investigating the relation between vocabulary size
(number of communication symbols available), number of agents, and number of
possible targets. To this end, we define a single expressiveness numerical index that
depends on these quantities and investigate its effect on the degree of accomplishment
of the cooperative task at the end of the learning process.

Given an instance of the problem, with a fixed number of agents and targets,
we find a vocabulary size that leads to best rewards w.r.t. the number of agents
and targets. We compare these results to two baselines that model the two extreme
scenarios: one in which agents cannot communicate and another in which agents have
a predefined ability to communicate. Finally we show that, if expressiveness is beyond
a certain threshold, the learning process struggles to learn how to communicate and,
consequently, performs poorly.

2.2 Related work

Our work concerns the language used for communication among agents in a coop-
erative scenario where the learning of agent controllers is tackled with RL. In the
following sections, we briefly survey relevant previous studies related this scenario.
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In particular, we focus on language and communication in multi-agent systems
(Section 2.2.1) and on RL as tool for training the agent controllers in these settings
(Section 2.2.2). Indeed, most of the cited works involve both aspects. We decide
to present each work in the section related to the work most relevant part of the
contribution.

It is worth to note that our work somewhat investigates the broader field studying
how the (natural) language has evolved. The reader may find in Christiansen and
Kirby, 2003 a comprehensive analysis of that field.

2.2.1 Language and communication

In many works the agents are viewed as a complex adaptive system which collectively
solves the problem of developing a shared communication model (Steels, 2000a).
To do so, the community must reach an agreement on a repertoire of forms, of
meanings, and of form-meaning pairs (the lexicon and grammar). In general, this
task may be hard: the authors of Kirby, Griffiths, and Smith, 2014 discuss the learning
bottleneck and its relation with the phrase structure and, more broadly, with language
compositionality.

In the communication-oriented multi-agent scenario of Havrylov and Titov, 2017,
the authors implement the agents through recurrent neural networks, allowing lan-
guage compositionality and variability. Their focus is on the development of natural
language, and the results are obtained by fixing the vocabulary size to an arbitrary
value. The works cited above are based on language compositionality and grammar
complexity, an aspect we do not deal with.

In Yamada et al., 2017 the authors train a robotic agent controlled by a recurrent
neural network to learn the relationship between sequences of words and correspond-
ing actions. They consider a symbol-based language in which every word is encoded
as one-hot vector and visualize the agent internal representation of the state after
the training. In the cited work there is no multi-agent interaction, as in our work,
but a single agent model is trained to learn sentence-action associations. Moreover,
rather than focusing on expressiveness, Yamada et al., 2017 assesses the quality of
the learning w.r.t. the presence of specific logical expression in the uttered word
sequences.

In Bachwerk and Vogel, 2011 the authors claim that language is a mechanism that
emerges for coordinating the solution of complex tasks among agents. In Bachwerk
and Vogel, 2012 the same authors show that different level of “friendship” between
agents co-evolve with a system of linguistic conventions: agents decisions during
individual interactions influence the overall social structure of the population. Both
works consider a tool, called Language Evolution Workbench (LEW), which defines the
task, the scenario, and the learning procedure. Based on simulations using LEW, they
study the impact of the probability of communication success on the task achievement:
moreover, they characterize the former in terms of lexicon size and amount of lexicon
actually used. This analysis is similar to the one we do, even if the scenario and the
task are different.

2.2.2 Reinforcement learning for agent controllers

RL has reached outstanding results in single-agent control domain (Duan et al., 2016)
and several recent works have extended this approach to the training of cooperative
multi-agent systems, also when communication among agents plays a role (Steels,
2000a). In Steels, 2000a and in Havrylov and Titov, 2017 communication is enforced
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in a referential game between two cooperating agents: one agent goal is to explain
which image the other agent should select from a pool of images.

In Foerster et al., 2016 the authors investigate the process of learning to communi-
cate and how this occurs among agents. To this extent they propose two multi-agent
frameworks for communicative tasks based on reinforcement learning.

The focus of Steels, 2000b is on the meaning-word association in a population
of autonomous real robots. The robots play a guessing game in which one has to
communicate the other that he identified an object, acquired through a camera. The
works cited above use RL to learn the agent controllers, including the communication
part, but focus on different scenarios: in particular, they deal with cases where the
communication involves two agents.

Recently, another RL variant tailored to communication-based tasks has been
presented in Bahdanau et al., 2018. The authors propose to approximate the reward
function, used to assess the agent behaviour, with a discriminator neural network
trained on a data set of states. In this way, the representation of the solved task is
separated from how to solve it. This approach has been showed to outperform vanilla
RL on a range of tasks, and combines RL with supervised learning.

Another fully decentralized multi-agent RL approach for commu-nication-based
tasks has been proposed by Vrieze et al., 2018. The cited work shows that agents may
indeed learn to communicate without any prior information. Agents learn a low-level
wireless protocol with bidirectional communication. As in our work, the authors also
provide baselines for both transmitter and receiver, and they learn only one of the
two. Training quality is assessed with varying levels of noise in the communication
channel.

The approach that we use for training the agents is Multi-Agent Deep Deter-
ministic Policy Gradient (MADDPG) (Lowe et al., 2017), a multi-agent variation
of deterministic policy gradient (Silver et al., 2014). The cited work shown that
MADDPG fits several different RL scenarios, and proposed its application in many
cooperative and competitive multi-agent settings.

In Mordatch and Abbeel, 2017 and Havrylov and Titov, 2017 the authors present
multi-agent scenarios with communication, in which an end-to-end differentiable
model is trained through backpropagation. In particular in Havrylov and Titov, 2017
this type of learning is compared with standard RL.

We consider a scenario similar to the one in Mordatch and Abbeel, 2017, in which
agents move in a 2D word and communicate using symbol-based language and agent
controllers are implemented by neural networks. In the cited work, the authors con-
sider an end-to-end differentiable approach for training: they assume differentiable
system dynamics, so that the networks can be updated back-propagating an arbitrary
reward scalar. This work is different from our work in terms of learning approach.
Also the cited work does not evaluate the impact of expressiveness on the training
results, focusing instead on analyzing the actual number of words emitted by the
agents with varying vocabulary size.

A mixed cooperative-competitive scenario has been studied by Lewis et al., 2017,
where two opposing agents have to negotiate a deal, in order to maximize their
opposite goals. The two agents use natural language for the communication and
the baseline for the training is supervised learning using a data set of dialogues on
negotiation tasks. The agents are then trained from this baseline by using RL and
self-play. Again we do not use supervised learning, nor natural language, and the
agents in our work play a cooperative game, instead of competing against each other.
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2.3 Background

2.3.1 Markov game

We consider a multi-agent version of a Markov Decision Process (MDP), called
partially observed Markov game Littman, 1994 (or, here briefly, Markov game), in which
a number of agents interact in the same discrete-time environment.

A Markov game involving n agents is described by a tuple (S, φ, ρ, O,A, Ω, Π, R),
where S is the set of possible states of the game, φ is the stochastic state transition
function, ρ is the stochastic initial state function, O = (O1, . . . , On) is the set of agent-
dependent observations sets, A = (A1, . . . , An) is the set of agent-dependent actions
sets, Ω = (ω1, . . . , ωn) is the set of agent-dependent stochastic observation functions,
Π = (π1, . . . , πn) is the set of agent-dependent stochastic policies, and R = (r1, . . . , rn)
is the set of agent-dependent reward functions.

The state transition function φ : S × S × A1 × · · · × An 7→ [0, 1] stochastically
determines the evolution of the game, i.e., φ(s′|s, a1, . . . , an) is the probability that the
game goes from state s to state s′ given that the agents performed the actions a1, . . . , an.
It holds that ∀s ∈ S, ∀(a1, . . . , an) ∈ A1 × · · · × An : ∑s′∈S φ(s′|s, a1, . . . , an) = 1.

The initial state function ρ : S 7→ [0, 1] stochastically determines the initial state
of the game, i.e., ρ(s) is the probability that the game starts from the state s. It holds
that ∑s∈S ρ(s) = 1.

Each observation function ωi : Oi × S × Ai 7→ [0, 1] stochastically determines
the observation of the corresponding agent, i.e., ωi(o|s, a) is the probability that
the ith agent observes the observation o ∈ Oi, given that it performed the action
a ∈ Ai with the game being in state s. It holds that ∀i ∈ {1, . . . , n}, ∀s ∈ S, ∀a ∈ Ai :
∑o∈Oi

ωi(o|s, a) = 1.
Each policy πi : Oi × Ai 7→ [0, 1] stochastically determines the behavior of the

corresponding agent, i.e., πi(a|o) is the probability that the ith agent performs the
action a ∈ Ai given that it observed the observation o ∈ Oi. It holds that ∀i ∈
{1, . . . , n}, ∀o ∈ Oi : ∑a∈Ai

πi(a|o) = 1.
Each reward function ri : S× Ai 7→ R determines the reward an agent receives,

i.e., ri(s, a) is the reward the ith agent receives for having performed the action a ∈ Ai
with the game in state s ∈ S.

2.3.2 Policy learning

Let γ ∈ [0, 1] be a predefined constant called discount factor and let T be a predefined
time length called the time horizon. The policy learning problem consists in finding,
given S,O,A, R and γ, T, the optimal policies Π? which maximize the expectation
E[r̄t0 ], of the overall reward r̄t0 for any t0, defined as

r̄t0 = ∑
i∈{1,...,n}

t=t0+T

∑
t=t0

γtri(st, at
i) (2.1)

where st is the state of the game at the tth step and at
i is the action performed by

the ith agent at the tth step. Parameters γ and T specify to which degree the agents
employing the optimal policies Π? act towards an immediate reward (short T, small
γ) or a future reward (long T, γ ≈ 1).

It can be noted that the state transition function φ, the initial state function ρ, and
the observation functions Ω are not available in the policy learning problem. Instead,
it is possible to sample the corresponding distribution by playing the game as many
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times as needed. That is, given a policies set Π, it is possible to play the game for a
finite number Tepisode of time steps (i.e., an episode) and obtaining the corresponding
values of st, ot

i , at
i for t ∈ {0, . . . , Tepisode}—and, as a consequence, the rewards ri(st, at

i)
for t ∈ {0, . . . , Tepisode} and the overall rewards r̄t for t ∈ {0, . . . , Tepisode − T}.

In many cases of interest, the policies to be learned have all the same form (e.g., a
neural network) which can be modeled by a finite set θ of numerical policy parameters.
In those cases, the policy learning problem consists in learning the optimal values
Θ? = {θ?1 , . . . , θ?n} of the policy parameters.

The policy learning problem can be solved using RL, a form of machine learning
which tries to balance exploration (i.e., sampling φ, ρ, and Ω) and exploitation (i.e.,
maximizing the overall rewards r̄) while searching in the space of the policy param-
eters by varying Θ. In this work, we use a RL technique called Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) Lowe et al., 2017 which has been shown to
be effective for scenarios similar to the one considered in this work.

2.4 The Cooperative Unknown Target game

We consider a cooperative game similar to the one presented in Mordatch and Abbeel,
2017, which we call the Cooperative Unknown Target (CUT) game. The game is based
on 2D world in which nr robots move and communicate. The goal of each robot is to
reach one among nt target positions in the world, the association between robot and
target being statically determined before the game starts. Each robot knows the target
of one robot but not its own target. It is guaranteed that the target of each robot is
known to exactly one robot. Robots communicate by sending and receiving symbols
of a finite alphabet W (the language). At each time step, a robot broadcasts exactly one
symbol: each sent symbol is received by every robot and the sender is known to the
receivers. Robots are stateless: in particular, they do not remember the symbols they
received before the current time step.

Communication among robots is thus essential for allowing each robot to reach
its own target, which characterizes the CUT game as a cooperative one. The game
is challenging because a robot should learn to: (i) move toward its target, to be
deduced from what it hears; (ii) broadcast a symbol describing the single robot-target
association that it knows.

The CUT game can be modeled as a Markov game. In the following sections, we
detail how the CUT game maps to the Markov game abstraction and which is the
form we chose for the corresponding policies, that we then learned using MADDPG.
As anticipated in Section 5.1, the aim of the present paper is to investigate the impact
of the language size on the effectiveness and efficiency of the policy learning; we
do not insist on discussing the optimality of the game mapping, nor on thoroughly
evaluating the MADDPG performance on the CUT game.

2.4.1 The CUT game as a Markov game

The key idea behind the mapping of the CUT game to the Markov game abstraction
is to represent each robot in the former as two separate agents in the latter: one (the
movement-agent) determines the movements of the robot, the other (the communication-
agent) determines the output communication of (i.e., the symbols sent by) the robot.
The motivation for this choice is to allow for the decoupling of the two different
goals of the robot: (i) moving towards its target and (ii) communicating the known



2.4. The Cooperative Unknown Target game 17

robot-target association. In particular, the two corresponding reward functions can
be hence defined to reflect the two goals.

More in detail, the state of the CUT game encodes:

• the positions xr,1, . . . , xr,nr of the nr robots, with xr,i ∈ R2 for each i;

• the speeds v1, . . . , vnr of the nr robots, with vi ∈ R2 for each i;

• the positions xt,1, . . . , xt,nt of the nt targets, with xt,i ∈ [0, 1]2 for each i;

• the robot-target associations (τr,1, τt,1), . . . , (τr,nr , τt,nt)
known by each robot, with τr,i ∈ {1, . . . , nr} and τt,i ∈ {1, . . . , nt} for each i;

• the symbols w1, . . . , wnr sent by nr robots at the previous time step, with wi ∈
W ∪∅ for each i.

All the robots in the CUT game can move and communicate in the same way. Let
Amove = {↑,→, ↓,←,∅} be the set containing the actions which can be performed
by the movement-agent of a robot. Values of Amove represent the changes of speed in
the direction, while ∅ representing the null change. Let Acomm = W ∪∅ be the set
containing the symbols which can be sent by the communication-agent of a robot, ∅
representing no sent symbol.

The mapping between the CUT game and the tuple (S, φ, ρ,O,A, Ω, Π, R) defin-
ing a Markov game is as follows. The set A of action sets of the Markov game
is composed of nr copies of Amove and nr copies of Acomm. Similarly, the set O of
observation sets of the Markov game is composed of nr copies of the set Omove =
R2 × · · · ×R2 ×W ∪∅× · · · ×W ∪∅, where R2 is repeated nt times and W ∪∅ is
repeated nr times, and nr copies of Ocomm = {1, . . . , nr} × {1, . . . , nt}. The semantics
of the two sets Omove, Ocomm is explained below in terms of the observation functions
Ω.

The initial state function ρ of the Markov game sets the state variables xr,i, xt,i
randomly in [0, 1]2, (τr,i, τt,i) randomly in the corresponding domains, vi = (0, 0),
and wi = ∅, for each i (we do not formalize this function for the sake of brevity).
Concerning the robot-target associations (τr,i, τt,i), ρ ensures that (i) no robots know
their robot-association and (ii) each robot-target association is known by at least one
robot, i.e., ∀i, τr,i 6= i and ∀i, ∃!j 6= i : τr,j = i.

The state transition function φ of the Markov game is not actually stochastic
(we do not formalize this function for the sake of brevity). It updates the state
variables corresponding to the robot positions xr,i according to the actions performed
by the corresponding movement-agents and updates the state variables wi according
to the symbols sent by the communication-agents. The other state variables are
never affected, i.e., targets do not move and robot-target associations do not change.
Concerning robot positions, xr,i becomes xr,i + vi and vi becomes vi + ∆v with ∆v
being (−δ, 0), (0, δ), (δ, 0), (0,−δ), (0, 0) for, respectively, ↑,→, ↓,←, ∅. Parameter δ
represents the robots acceleration.

The observation functions of the Markov game are not actually stochastic and
depend only on the state (not on the performed action). We denote the state with
s. For movement-agents, ωmove

i : S 7→ Omove gives the offset of the ith agent from
each target along the two axes (a pair of values in R for each target) and the symbols
emitted at the previous step by each agent (one symbol in W ∪∅):

ωmove
i (s) = (xt,1 − xr,i, . . . , xt,nt − xr,i, w1, . . . , wnr) (2.2)
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For communication-agents, ωcomm
i : S 7→ Ocomm gives the robot-target association

known to the ith robot:
ωcomm

i (s) = (τr,i, τt,i) (2.3)

The robot-target associations τr,i, τt,i never change, thus every communication-agent
observes a constant observation during the game.

Finally, the reward functions of the Markov game are defined so as to capture the
goal of the CUT game. For the movement-agents, rmove

i rewards the agent when it is
able to get closer to its target. For communication-agents, rcomm

i rewards the iagent
when it is able to make its “recipient” jth to get closer to its target, with j = τr,i. In
detail, rmove

i : S 7→ R gives the opposite of the Manhattan distance (i.e., the closer, the
greater the reward) of the corresponding ith robot from its target:

rmove
i (s) =

j=nr

∑
j=1
−d1(xr,i, xt,τt,j)1i(s, j) (2.4)

where:

1i(s, j) =

{
1 if τr,j = i
0 otherwise

(2.5)

The reward function rcomm
i : S 7→ R gives the opposite of the Manhattan distance of

the robot whose target association is known to the ith robot from its target:

rcomm
i (s) = −d1(xr,τr,i , xt,τt,i) (2.6)

Both reward functions depend only on the state (not on the performed action) and
are deterministic.

2.4.2 Policies form

We consider policies in the form of a neural network, thus the policy learning problem
consists in learning the optimal values Θ? = {θ?1 , . . . , θ?n} of the parameters of the
network. We opted for a Multi-Layer Perceptron (MLP) as the form of the policies
for the movement- and communication-agents, which can hence be denoted as
πmove

θi
: Omove 7→ Amove and πcomm

θi
: Ocomm 7→ Acomm, respectively. We chose

to use the same MLP topology for all the movement-agents policies and the same
MLP topology for all the communication-agents policies.

The input of πmove
θi

consists of a tuple of 2nt + nr elements, as defined in Section
2.4.1. The first 2nt elements are the offset of the ith agent from each target along the
two axes; each of these elements is mapped to the input layer directly. The remaining
nr elements are the symbols emitted at the previous step by each agent (i.e., one
symbol in W ∪∅); each of these elements is represented in one-hot encoding, thus
each of these elements correspond to |W|+ 1 input values. The resulting size for the
input layer will be 2nt + nr(|W|+ 1). The output of πmove

θi
is an element of Amove

(Section 2.4.1). This element is represented in one-hot encoding, thereby resulting in
|Amove| = 5 output neurons.

The input of πcomm
θi

consists of a pair of elements corresponding to the robot-target
association known to the ith agent τr,i, τt,i, as defined in Section 2.4.1. Both elements
are represented in one-hot encoding, resulting in nr + nt input values. The output of
πcomm

θi
is an element of Acomm = W ∪∅ (Section 2.4.1). This element is mapped to

|W|+ 1 output neurons with one-hot encoding.



2.5. Experimental evaluation 19

For both the policies, we set 2 fully connected hidden layers, each with 64 neurons,
and we used the Rectifier Linear Unit (ReLU) activation function as done in Lowe
et al., 2017. Finally, the policies output are sampled from the Gumbel-Softmax
distribution Jang, Gu, and Poole, 2016 which makes the policies actually stochastic:
this, in turn, allows for a better exploration of the search space while learning the
policies with MADDPG.

2.4.3 Hand-made communication-agents policies

In order to allow for a more insightful investigation of the impact of the language size
on the policy learning effectiveness and efficiency, we designed two communication-
agents policies to use as baselines. The two policies represent two extreme cases, one
of non-communicating agents and one of agents which optimally communicate with
a language of predefined size.

The first hand-made policy, which we denote with NoComm, is defined by:

πcomm
NoComm(τr,i, τt,i) = ∅ (2.7)

Note that, since the output of πcomm
NoComm is always ∅, this policy works with any W: in

particular, it works with W = ∅.
The second hand-made policy, which we denote with Opt, is defined by:

πcomm
Opt (τr,i, τt,i) = wOpt

τr,i ,τt,i (2.8)

where wOpt
τr,i ,τt,i is a symbol of a language WOpt that can express all the possible robot-

agent associations. That is, in WOpt each robot-agent association is unequivocally
encoded by one symbol: WOpt = {wi,j, i ∈ {1, . . . , nr}, j ∈ {1, . . . , nt}}.

2.5 Experimental evaluation

2.5.1 Procedure

We emphasize that each agent learns to communicate and to understand the received
symbols independently of the other agents. Thus, a given symbol could be associated
with different meanings by the communication-agent policy πcomm

θi
of different agents.

It is thus important to gain insights into the relation between the number of symbols
available for communication |W|, the number of robots nr, and the number of targets
nt.

In order to decouple the experimental findings from the size of the policy learning
problem (i.e., the number nr of robots and the number nt of targets), we define the
expressiveness of the language as e = |W|

nrnt
. Others may define expressiveness in

different ways, for instance as the number of times symbols have been uttered. We
investigated the impact of expressiveness on the e and efficiency of the policy learning
in the CUT problem.

We performed policy learning of both πmove and πcomm for a number of different
combinations of (nr, nt, |W|) corresponding to e ∈ [0, 4], as follows. We considered
all combinations of (nr, nt) ∈ {2, 3, 4} × {2, 3, 4}; for each such combination we
considered all values for |W| ∈ {0, . . . , 4nrnt}.

For each combination of (nr, nt, |W|), we executed an experiment consisting of
20 000 learning episodes followed by the evaluation of the resulting policies for 100
validation episodes. The learning parameters are listed in table 6.1.
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TA B L E 2 . 1 : Parameters.

Parameter Value

Po
l.

l. Discount factor γ 0.95
Time horizon T 25
Episode time steps Tepisode 25

C
U

T Number of robots nr ∈ {2, 3, 4}
Number of targets nt ∈ {2, 3, 4}
Language size |W| ∈ {0, . . . , 4nrnt}

M
A

D
D

PG

Batch size 512
Replay memory size 106

Optimizer Adam
Learning rate 10−2

Gradient norm clipping 0.5

For the baseline policies we performed policy learning only for the agent move-
ment policy πmove

θi
, because agent communication policies πcomm

NoComm and πcomm
Opt were

specified in advance. We considered all combinations of (nr, nt) ∈ {2, 3, 4} × {2, 3, 4},
each combination with a single value for |W|, as follows. With πcomm

NoComm the language
is W = ∅, thus |W| = e = 0. With πcomm

Opt the language size is |W| = nrnt, thus the
expressiveness is e = 1.

2.5.2 Results and discussion: effectiveness

In this section we assess the effectiveness of the policy learning in all the problem
settings of the experimental campaign. To this end, we computed the validation reward
Rval for each experiment, defined as the average overall reward of the agents on the
validation episodes. Figure 2.1 shows the normalized validation reward averaged
across all the experiments—i.e., for each (nr, nt) the values of Rval for different e are
adjusted to have null mean and standard deviation equal to 1.

The most important finding is that the highest validation reward corresponds to
values of e close to 1, i.e., when |W| is close to nrnt. On the other hand, when e� 1
the action space grows unnecessarily and the learning process is negatively affected.
In principle, one could try to tackle the growth of the action space by increasing the
size of the MLP: we did not perform any experiments to investigate this opportunity.

Figure 2.1 also shows that the validation reward with e = 0 is poor. This is not
surprising, because when the language does not allow to communicate, an agent
does not have any information about its target, thus the learned policy can only
tend to minimize the distance between a robot and all targets. In summary, this
figure shows that the policy learning process is indeed effective in learning how to
communicate, in order to solve the specific cooperative task. Furthermore, it shows
that the policy learning is most effective when the size of the language is sufficiently
large to (potentially) allow associating approximately one symbol with each possible
robot-target association.

Figure 2.2 provides the relation between validation reward and expressiveness in
a more granular form. The figure contains a curve for each pair (nr, nt) considered
(in each curve, the number of symbols |W| varies so as to span the interval [0, 4] for
the expressiveness). The validation reward for πcomm

Opt is represented by a dot lying at
e = 1.
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F I G U R E 2 . 1 : Normalized validation reward Rval vs. the expressive-
ness e, average across all the experiments.

The impact of expressiveness on validation reward is more evident for larger
values of nr and nt: it can be seen that the upper lines (corresponding to lower
values of nr and nt) tend to exhibit a constant validation reward, except for very low
values of expressiveness, while the bottom lines show a degrading behavior when
expressiveness grows. It can also be seen that the gap between πcomm

Opt and the learned
policies is higher for larger values of nr and nt.

Further insights on the relation between validation reward and expressiveness
can be obtained from Table 2.2 and Figure 2.3. In particular, Table 2.2 shows that when
e is sufficiently large (i.e., when |W| is at least equal to nrnt) Rval is higher if nt is low
and viceversa. This result confirms the intuition that cooperating toward reaching
less targets is easier than toward reaching more targets. On the other hand, when the
language is not expressive enough (i.e., when e is too small), the resulting behavior
is unpredictable in the sense that there is no intuitive relationship between nrnt and
Rval. Interestingly, though, Figure 2.3 shows that there is significant variability in the
outcome of policy learning, more so when expressiveness is large: the first quartile
of the distribution for e = 3.0 spans nearly the same range of values as the whole
distribution.

2.5.3 Results and discussion: efficiency

In this section we assess the efficiency of the policy learning. To this end, we computed
the average episode reward (the learning reward Rlearn) every 512 episodes of the
learning process.
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F I G U R E 2 . 2 : Validation reward Rval of the learned policies and of
the Opt baseline vs. the expressiveness e.
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TA B L E 2 . 2 : Validation reward for selected values of expressiveness.

e = 0.25 e = 1.0 e = 3.0

nr nt µ σ µ σ µ σ

2
2 −37.84 0.10 −13.80 0.02 −13.03 0.02
3 −40.89 0.12 −15.48 0.03 −14.78 0.03
4 −28.80 0.03 −16.02 0.02 −15.47 0.02

3
2 −53.87 0.17 −24.92 0.08 −26.84 0.04
3 −36.75 0.12 −30.32 0.05 −32.48 0.23
4 −47.66 0.10 −41.72 0.10 −45.34 0.15

4
2 −51.85 0.08 −47.31 0.12 −53.56 0.12
3 −65.58 0.08 −63.20 0.08 −72.10 0.20
4 −74.47 0.39 −82.20 0.20 −88.40 0.09
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e = 0.25 e = 1.0 e = 3.0

F I G U R E 2 . 3 : Boxplot of the normalized validation reward Rval for
selected values of expressiveness e.

Figure 2.4 shows how Rlearn changes during the learning for 3 combinations of
nr, nt (one for each plot). For each combination we considered 3 values for expres-
siveness and the baseline policies.

With nr = nt = 2, all policies reach the respective maximal learning reward
relatively quickly, thus very efficiently. It can also be observed a sharp separation
between two groups of policies, one including πcomm

NoComm and the learned policy with
e = 0.25 and another including all the other policies. With nr = nt = 3, the baseline
policies exhibit the same efficiency as in the previous scenario, while the learned
policies require more episodes to converge to their maximal learning reward. The
fact that the baseline policies converge more quickly may be explained with the fact
that these policies have to learn only a movement policy. Interestingly, in this case
the learned policies always exhibit a learning reward in between the two baselines.
With nr = nt = 4, on the other hand, πcomm

Opt is much slower for reaching its maximal
learning reward, while all the other policies converge more quickly. We interpret this
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F I G U R E 2 . 4 : Learning reward Rlearn during the learning, one curve
for each of three selected expressiveness values e and each baseline,

one plot for each combination of nr, nt.

result as a combination of the larger size of the search space coupled with the ability
of πcomm

Opt to indeed cope with such a larger space better than the other policies, i.e.,
still being able to learn.

Table 2.3 shows similar information of Figure 2.3 for all the experiments. For each
combination of nr, nt and each value of e in a set of three selected values (and each
of the two baselines), the table shows the number of episodes (in thousands) the
learning took to reach 95% of the final value of the learning reward Rlearn.

TA B L E 2 . 3 : Number of episodes (103) required for reaching 95% of
the final learning reward.

Baseline e

nr nt NoComm Opt 0.25 1 3

2
2 2 3 2 3 4
3 3 3 16 6 8
4 3 5 13 6 8

3
2 2 3 6 6 6
3 3 4 12 9 9
4 3 8 11 13 15

4
2 3 3 5 10 9
3 3 10 10 9 13
4 3 14 12 16 3

2.6 Concluding remarks

We considered a cooperative multi-agent system in which communication between
agents is required for accomplishing the task but in which agents must learn to
communicate. Specifically, each agent must learn its target from what it hears, learn
to move toward that target, and learn to broadcast information useful to other agents.
We have considered a symbol-based language and investigated the impact of the
expressiveness of the language, which is a function of vocabulary size, number of
agents, and number of targets, on both effectiveness and efficiency of the learning
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process. We have shown that agents including two separate neural networks, one
for encoding a movement policy and another for encoding a communication policy,
may indeed learn policies for moving and communicating by means of reinforcement
learning. We have also shown that the best effectiveness is obtained when the
vocabulary size is close to the product between number of agents and number of
targets: a smaller vocabulary is not expressive enough while a larger vocabulary
makes it more difficult to explore the resulting larger search space.
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Chapter 3

Communication in Decision
Making: Competition favors
Inequality

We consider a multi-agent system in which the individual goal is to collect resources,
but where the amount of collected resources depends also on others decision. Agents
can communicate and can take advantage of being communicated other agents plan:
therefore they may develop more profitable strategies. We wonder if some kind of
collective behaviour, with respect to communication, emerges in this system without
being explicitly promoted. To investigate this aspect, we design 3 different scenarios,
respectively a cooperative, a competitive, and a mixed one, in which agents behaviors
are individually learned by means of reinforcement learning. We consider different
strategies concerning communication and learning, including no-communication,
always-communication, and optional-communication. Experimental results show
that always-communication leads to a collective behaviour with the best results in
terms of both overall earned resources and equality between agents. On the other
hand optional-communication strategy leads to similar collective strategies in some
of these scenarios, but in other scenarios some agents develop individual behaviours
that oppose to the collective welfare and thus result in high inequality.
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3.1 Introduction

The role of autonomous machines in our society is becoming more and more impor-
tant. Robotic and software agents will be performing tasks of increasing complexity
with a concrete impact on our life as, e.g., autonomously delivering goods Arbanas
et al., 2016 or providing feedback to learners Johnson, Gratch, and DeVault, 2017.

In complex scenarios, agents interact among themselves, constituting a multi-
agent system Schatten, Ševa, and Tomičić, 2016; Calvaresi et al., 2016, and it is often
the case that they may communicate to each other to better perform their task Cao
et al., 2012. When agents learn, instead of being statically endowed with, their
behavior, they also have to learn communication skills, resulting in the emergence of
communication in the system Mordatch and Abbeel, 2018. On the other hand, single
agents do not always pursue a common goal. In facts multi-agent systems may be
roughly classified as cooperative, when the common goal is also the goal of single
agents, competitive, when goals cannot be achieved by all agents together, along
with intermediate blends. An interesting question is hence whether and how the
nature of the system in terms of existence of a common goal affects the emergence of
communication: do agents learn to communicate when it is useful for all of them?
what if they are not directly rewarded for communicating?

In order to investigate this matter, in this paper we propose and experiment with a
multi-agent system that is simple enough to allow for a detailed analysis, but tunable
in terms of competition/cooperation trade-off, profitability of communication, and
learnability of communication. Our system models a scenario where an agent is
rewarded for accessing a resource, but the reward depends also on whether other
agents are accessing the same resource, i.e., on resource occupancy. Agents may
communicate their willingness to access a resource and tunable partial observability
of resource occupancy makes this communication more or less important to others.

We perform several experiments on the many variants of the proposed multi-
agent and analyze the outcome in terms of overall reward of the agents and inequality
among agent rewards. Experimental results show that agents forced to communicate
obtain the best results in terms of both overall reward and inequality in all the
scenarios. When they cannot communicate, agents individually perform almost in
the same way, but, in most cases, they exhibit higher inequality. Surprisingly, agents
that may or may not communicate perform like those forced to communicate only
in the cooperative scenario; in competitive scenarios, the overall reward of these
agents is lower and the inequality is higher, despite the fact that, sometimes, some
of them individually outperform the ones employing others strategies in terms of
reward. These results show that collective behaviour is influenced by the scenario
and the communication strategy. From our experiments we find that collective
behaviour emerges in two cases: (i) in a cooperative scenario, even in presence of
optional-communication strategy, and (ii) in a competitive scenario with the always-
communication strategy. On the other hand, in a competitive scenario in which agents
can decide whether to communicate or not, selfish behaviours appear to be more
convenient, despite introducing an higher inequality.

3.2 Related works

Collective behaviour has been studied for a long time and from many points of view.
However, we are not aware of any study concerned specifically on how emergence
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of communication is affected by the type of collective framework (cooperative vs.
competitive), which is the research question we attempt to address in this paper.

In the following sections, we briefly survey relevant works concerning scenarios
and methods similar to the ones considered and used here.

3.2.1 Collective behavior

The authors of one of the seminal works Turner, Killian, et al., 1957 about collective
behavior address the emergence of behaviour, considering both the environmental
and the social factors, and the role of communication in it. Plenty of collective
behaviour algorithms have been proposed in the literature Rossi et al., 2018, and have
been extensively used in applications that require coordination algorithms. Many
recent works have considered computational models for studying the emergence
of collective behaviour, since they can give solutions to current real world complex
problems Zhang et al., 2019, but can also be used to study future scenarios involving
by intelligent machines Rahwan et al., 2019. As in Seredyński and Gąsior, 2019, in
our work the agents are individually rewarded, but we investigate the collective
behaviour and the overall rewards.

3.2.2 Communication

In this work, the way we define communication is inspired by consensus algo-
rithms Ren, Beard, and Atkins, 2007: each agent shares its state with all the others
and the next action is influenced by all the previous states. One relevant aspect in
multi-agent systems dealing with communication is the learning of a communication
protocol. Some works have treated this aspect in details Foerster et al., 2016; Mordatch
and Abbeel, 2018; Talamini, Medvet, and Bartoli, 2019, and provided solutions based
on differentiation of the communication error, or based on centralized learning and
decentralized execution. Aware of the challenges, we do not focus on learning a way
to communicate, but we investigate the impact of communication on a system-wise
level.

3.2.3 Cooperative systems

Multi agent systems can be broadly divided into two groups: cooperative and com-
petitive ones. An extensive study about collaboration in multi agent system has
been presented in the cooperative framework described in Elkind, Chalkiadakis,
and Wooldridge, 2012. More in detail, how agents group together in order to to
improve their performance and creating coalition structure as been largely described
in Rahwan et al., 2015. Differently from the works cited in Rahwan et al., 2015, in this
paper we focus on the analysis of behaviours, instead of on the algorithms for effi-
ciently creating collective structure. On the impact of communication in coordinating
agents, Jaques et al., 2019 simulates alternate actions a single agent could have taken,
and compute their effect on the behaviour of others; the more an action influences
others in terms of changes in their behaviour, the more that action is rewarded. More
on the importance of communication, Naghizadeh et al., 2019 focuses on the benefits
of sharing information when agents have to coordinate, and their observations are
heterogeneous. Concerning the problem of minimizing the amount of communication
required for coordinating agents, in Zhang and Lesser, 2013 for instance, agents are
allowed to learn to dynamically identify whom to coordinate with. This constraint is
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not explicitly presented to the agents in our work, but the amount of communication
is directly influenced by the individual objective.

3.2.4 Competitive systems

A different type of multi-agent systems are those defined as competitive, in which
agents rival against each other. Authors of a recent study Singh, Jain, and Sukhbaatar,
2018 claim that multi-agent systems other than cooperative ones, namely competitive
or mixed, have not been extensively studied. As for the cooperative ones, a key
aspect in competitive system is the communication between agents, in particular
the trust model, which define how and when to trust the information obtained
from another agent Yu et al., 2013. In McPartland, Nolfi, and Abbass, 2005 agents
are divided in teams where teammates are allowed to communicate and teams are
given a competitive task. Results show that communication improves team overall
strategy. Again on emergence of communication in competitive scenarios, Lehman
et al., 2018 robots were evolved to find food sources while avoiding poison. In some
cases, when robots adapted to understand blue as a signal of food, competing robots
evolved to signal blue at poison instead. In other experiments robots literally hide the
information from others. Overall, a simple on-off switch for communication revealed
a surprisingly rich evolutionary potential. In Bansal et al., 2017 the authors prove
that emergence of complex behaviour does not require a complex environment, but
can be induced by having learning agents competing in the same scenario.

3.2.5 Reinforcement learning

An extensive study on the different machine learning techniques available for opti-
mization in multi-agent systems, including both single learners and multiple simulta-
neous learners, has been reported in Panait and Luke, 2005. Among these techniques,
Reinforcement Learning (RL) has recently attracted a lot of interest, due to the out-
standing results of Mnih et al., 2015; Silver et al., 2016 and the recent advances of
Deep Learning. Mostly for this reason, we chose to use RL as the algorithm under
the hood of the agent learning. RL has been extensively applied for finding optimal
policies in multi-agent systems, from Littman, 1994; Tan, 1993 to more recently Leibo
et al., 2017; Shoham, Powers, and Grenager, 2007, and also when communication is
involved Talamini, Medvet, and Bartoli, 2019. In this context, the same policy may
be employed for all the agents, if diversity of behaviour and social aspects are not
relevant aspects. On the contrary, when considering independent policies for all the
agents, different role may be assigned to agents, like in Ahilan and Dayan, 2019,
where the authors consider a hierarchical society with a manager and subordinates,
or like in Zhang, Lesser, and Abdallah, 2010, where to improve the learning speed,
multi-agent RL is managed by a hierarchical organization, where groups of interact-
ing agents learning together are coordinated by supervisors. Differently from Ahilan
and Dayan, 2019; Zhang, Lesser, and Abdallah, 2010, in this work we treat agents
with the same role and as independent learners, meaning that every agent has its
own policy Tan, 1993. When employing independent learners, due to the continually
changing policies of agents during training Papoudakis et al., 2019, most of the RL
algorithms incur into non-stationarity issues, that make the training more difficult.
This problems have been tackled in Lowe et al., 2017 by introducing a centralized
entity, that helps stabilizing the training.
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3.2.6 Inequality

For what concerns inequality, many works have been proposed to study how to
mitigate this phenomenon, and to promote altruistic behaviour. In Hughes et al.,
2018; Mazzolini and Celani, 2020; Wang et al., 2019 the authors consider multi-agent
systems, in which agents learn optimal behaviour, subjected to a trade-off between
the short-term individual reward and long-term collective interest. The emergence of
inequality-averse behaviour depends on the environment-related aspects, like the
abundance of resources, as highlighted in Mazzolini and Celani, 2020. For contrasting
inequality, Hughes et al., 2018 introduces the possibility for an agent to punish another
one. Results show that most of the agents end up developing inequality-aversion
behaviours, and the pro-social agents punish the defectors. Finally, in Wang et al.,
2019 the cooperation is promoted by sharing among the agents the same reward
function, that is optimized to maximize the collective return of the agents. With
respect to previous articles, in this work we identify mandatory communication for
all the agents as a valuable countermeasure for contrasting inequality.

3.3 Model

3.3.1 System state

We consider a discrete time dynamic multi-agent system with na agents and nr
resources.

We denote by R(t) =
(

R(t)
1 , . . . , R(t)

nr

)
the distribution of agents on resources at

time t, where R(t)
i ⊆ {1, . . . , na} is the set of agents accessing i-th resource. It holds

that ∀i, j, t : R(t)
i ∩ R(t)

j = ∅, i.e., each agent can access at most one resource at the
same time. We say that an agent is inactive when it is not accessing any resource: i.e.,
if ∀i : R(t)

i 63 j, then the j-th agent is inactive at time t. Consequently, we say that the

j-th agent is active if ∃i : R(t)
i 3 j. We call the filling of the i-th resource the number

ρ
(t)
i =

∣∣∣R(t)
i

∣∣∣ of agents accessing that resource at a given time.

We denote by U(t) =
(

U(t)
1 , . . . , U(t)

na

)
the agent states, where U(t)

i =
(

u′(t)i , u′′(t)i

)
is the i-th agent state at time t. The i-th agent state is a pair composed by u′(t)i ∈
{1, . . . , nr} ∪ {⊥}, that defines the resource the i-th agent is active at time t, and
u′′(t)i ∈ {1, . . . , nr} ∪ {⊥}, that defines the i-th agent preference between resources at

time t. Intuitively, u′(t)i is where the agent is and u′′(t)i is where the agent wants to go.

Communication consists in a tuple W(t)
i = (w′(t)i , w′′(t)i ), which we call word,

emitted by each agent at each time step and heard by all the other agents. We denote
by W (t) =

(
W(t)

1 , . . . , W(t)
na

)
the words emitted at time t. The communication W(t)

i

emitted by i-th agent at time t is composed by w′(t)i ∈ {1, . . . , nr} ∪ {⊥} and by

w′′(t)i ) ∈ {1, . . . , nr} ∪ {⊥}: the semantics of W (t) is the same one of U(t).
Given these definitions, the system state at time t is described by:

s(t) =
(

R(t), U(t), W (t)
)

(3.1)

At the initial time t = 0, the system state is s(0) =
(

R(0), U(0), W (0)
)

, with R(0) =

{∅, . . . , ∅}, U(0) = {{⊥,⊥}, . . . , {⊥,⊥}} and W (0) = {{⊥,⊥}, . . . , {⊥,⊥}}. That
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is, all the agents are inactive, they have all default initial state, and no words have
been spoken so far.

3.3.2 System dynamics

Observation

The agents do not have full knowledge of the system state. Instead, i-th agent
observes—i.e., knows—the filling of the resources ρ(t), its own state U(t)

i , and an
aggregate V (t) of the words W (t) spoken at previous time step. In particular, the i-th
agent at time t observes V (t) =

(
v(t)1 , . . . , v(t)nr

)
, where:

v(t)j =
na

∑
i=1

(na + 1)I
(

w′(t)i = w′′(t)i = j
)

+ I
(

w′(t)i 6= w′′(t)i ∧ w′′(t)i = j
)

(3.2)

where I : {true, false} → {0, 1} is an indicator function. Intuitively v(t)j is a weighted
sum of the number of agents accessing, and willing to access, the j-th resource and the
number of agents not currently accessing but willing to access the same j-th resource.
In other words, v(t)j acts as a predictor for ρ

(t+1)
i .

Formally, the information available to the i-th agent at time t is a triplet o(t)i =(
ρ(t), U(t)

i , V (t)
)

, therefore oi ∈ O = {1, . . . , na}nr × ({1, . . . , nr} ∪ {⊥})2×{1, . . . , na(na +

1)}nr .

Action

Every i-th agent at time t, can take an action a(t)i =
(

a′(t)i , a′′(t)i

)
, where a′(t)i ∈

{0, . . . , nr}, controls which resource to set the preference to, and a′′(t)i ∈ {0, 1} controls

whether to communicate or not, therefore a(t)i ∈ A = {1, . . . , nr} × {0, 1}.
Actions change the state of the system as follows. The i-th agent state U(t+1)

i at
time t + 1, is updated as:

u′(t+1)
i =

{
a′(t)i if a′(t)i = u′′(t)i

u′(t) otherwise
(3.3)

u′′(t+1)
i = a′(t)i (3.4)

That is, the agent changes the resource it is accessing only if it confirms its previous
preference; the preference itself is always updated. The i-th agent word W(t+1)

i
emitted at time t, is updated as:

W(t+1)
i =

{
U(t+1)

i if a′′(t)i = 1
⊥ otherwise

(3.5)

That is, the agent emits a word only if the second element of the action pair is 1.
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F I G U R E 3 . 1 : Reward functions in 3 scenarios.

Policy

Agents take actions according to their policy function. The i-th agent policy at
time t can be any function that outputs an action a(t)i ∈ A, given the current agent

observation o(t)i ∈ O.

Reward

We define a reward function for the i-th agent, and the system in state s(t) at time t, as
ri(s(t)) : [0, na]→ [0, 1]. We differentiate the actual form of ri(s(t)) depending on the
kind of scenario, i.e., cooperative, competitive, or mixed, as follows:

ri,coop

(
s(t)
)
=

ρ
(t)
j

nanr
(3.6)

ri,comp

(
s(t)
)
= max

0,
na
nr
+ 1− ρ

(t)
j

na
nr

 (3.7)

ri,mixed

(
s(t)
)

ρ
(t)
j

nanr
if ρ

(t)
j ≤

na
nr

max
(

0, na
nr
− ρ

(t)
j + 1

)
otherwise

(3.8)

where j = u′(t)i is the index of the resource being accessed by the i-th agent. Figure 3.1
shows the plots for the three considered reward functions. The semantics is clearly
visible in the shape of each plot. The reward based on the resource filling is: the most
crowded, the better, for the cooperative scenario; the least crowded, the better, for the
competitive scenario; and the closer to the optimal capacity, the better, for the mixed
scenario.

The goal of the game is to find for every i-th agent, the policies that maximize its
individual reward starting from time t0, for a number Tepisode of time steps, defined
as:

J(t0)
i =

t=t0+Tepisode

∑
t=t0

ri(s(t)) (3.9)

The overall reward J for a group of na agents with individual rewards Ji, . . . , Jna is
therefore:

J(t0) =
1
na

∑
i∈{1,...,na}

J(t0)
i (3.10)
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The inequality I for a group of na agents with individual rewards J1, . . . , Jna is the
standard deviation of individual rewards:

I(t0) =

√
1

na − 1

na

∑
i=1

(
J(t0)
i − J(t0)

)2
(3.11)

3.3.3 Policy learning

We consider agents as independent learners and, since both the observation space
O and the action space A are discrete, we do not use function approximates. Each
agent is given a sparse tabular policy characterized by state-action value function
Qi : O× A 7→ R.

At time t the i-th agent picks action a(t)i using an ε-greedy policy, given p ∼
U ([0, 1]), and exploration probability εk after k training iterations, defined as:

a(t)i =

{
arg maxa∈A Qk

i

(
o(t)i , a

)
if p < εk

a ∼ U (A) otherwise
(3.12)

where U(A) is the uniform distribution over A. At the initial training iteration k0,
∀i ∈ {1, . . . , na}, ∀t ∈ t0, . . . , Tepisode, ∀o(t)i ∈ O, ∀a ∈ A, Qk0

i

(
o(t)i , a

)
= 0.

We perform policy learning of the values stored in Q1, . . . , Qna by means of Q-
learning Watkins and Dayan, 1992. For every k-th training iteration, the i-th agent
state-action value function Qi is updated with learning rate α and discount factor
γ ∈ [0, 1], as:

Qk
i

(
o(t)i , a(t)i

)
=Qk−1

i

(
o(t)i , a(t)i

)
+ α

(
ri

(
s(t)
)

+ γ max
a∈A

Qk−1
i

(
o(t+1)

i , a
)
−Qk−1

i

(
o(t)i , a(t)i

))
(3.13)

For every k-th training iteration, exploration rate for every agent is exponentially
decreased from εi to ε f with decay δε.

3.4 Experiments

We wanted to investigate if and how the emergence of communication is impacted
by the type of collective framework. To this end, we explored 3 different strategies
concerning the communication part of the action. Two of them do not allow the agent
to choose: no-communication, i.e., a′′(t)i = 0, and always-communication, i.e., a′′(t)i = 1.
One, that we call the optional-communication strategy, allows to choose and the actual
way of choosing is learned. Finally, as a baseline we considered a fourth case in which
the entire policy of the agent is random, instead of being learned, i.e., a(t)i ∼ U(A).

We consider also the non-observable filling variation for each scenario, that is,
a scenario in which the filling is not available to the agents, i.e., o(t)i =

(
U(t)

i , V(t)
)

.
Intuitively, this variant is important because communicating is the only way, for the
agents, to know where it is convenient to go.

For each combination of collective framework (cooperative, competitive, mixed),
each strategy (always, optional, no-comm, random), and each variant (with filling in
o, without), we performed ntrials training lasting ntrain episodes. Table 6.1 shows the
training parameters used in the experimental campaign.
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TA B L E 3 . 1 : Experiments parameters.

Parameter Value

Si
m

.

Trials ntrials 20
Training episodes ntrain 20 000
Validation episodes nval 100
Episode time steps Tepisode 100
Number of agents na 10
Number of resources nr 2

A
ge

nt

Initial exploration rate εi 1.0
Final exploration rate ε f 0.01
Exploration decay δε 0.9995
Learning rate α 0.1
Discount factor γ 0.9
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F I G U R E 3 . 2 : Overall reward J over ntrain training episodes.
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F I G U R E 3 . 3 : Inequality I over ntrain training episodes.

3.4.1 Strategies effectiveness

Figures 3.2 and 3.3 show the training results. From these figures it can be seen
that agents employing always-communication strategy achieve the best overall re-
ward J, and the lowest inequality I among agents. This result confirms that indeed
communication is needed for reaching the best overall results.

The importance of communication is more evident in scenarios with non-observable
filling, where agents can only rely on what they listen, in order to gain information
on the system state. In these scenarios, the gap between always-communication
and no-communication strategy in terms of overall reward and inequality is more
noticeable. Considering observable filling cases, there is still an advantage of always-
communication strategy in terms of overall reward J and inequality I with respect to
the no-communication strategy.

Optional-communication strategy results lay in between the always-communication
and no-communication ones, depending on the scenario considered. This strategy
achieves best overall reward in the cooperative scenarios, even with non-observable
filling, where the emergence of communication is needed. In this scenario optional-
communication are equally good as always-communication in terms of both overall
reward and inequality. On the other hand this strategy performs poorly in the com-
petitive and mixed scenarios with non-observable filling, in terms of both overall
reward and inequality.

Finally, it is important to note that the random strategy is always worst than all
the other ones, both in terms of overall reward J and inequality I: the learning helps
agents to make better decision than choosing at random, even if in presence of a
no-communication strategy.

3.4.2 Strategies efficiency

In order to measure how far is the current resources filling from the uniform distri-
bution of agents, we introduce a distance we call displacement. For na agents and
nr resources, we define the displacement d(t) at time t, averaged on nval validation
episodes, as:

d(t) =
1

nval

nval

∑
e=1

nr

∑
j=1

∣∣∣∣ρ(t)j −
na

nr

∣∣∣∣ (3.14)
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In Figure 3.4 we show the displacement d(t), with t = 1, . . . , 10, and nval = 100
episodes, where each line represents a different strategy employed; we compute the
displacement for all the scenarios.

In competitive and mixed scenarios, with na agents and nr resources, the overall
optimal displacement at time t is d(t) = 0, that is the agents are uniformly active on
the resources. Differently in the cooperative scenario, with na agents and nr resources,
the overall optimal displacement at time t is d(t) = na, that is the agents are all active
on 1 resource.

From Figure 3.4 we can see that also in validation episodes the always-communication
strategy is not only the most effective, but also the most efficient collective strategy
for reaching the overall optimal displacement value in all the scenarios. Also from
this figure we can see that agents displacement converges to the final value within
the first 10 steps of an episode, regardless of the strategy considered. Motivated by
this finding, in Figure 3.5 and tables 3.3 and 3.4 we consider only the first 10 steps of
validation episodes.
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3.4.3 Optional-communication results

Collective considerations

Given na agents, nval validation episodes, we denote the average communication c(t)

at time t as:

c(t) =
1

nanval

nval

∑
e=1

na

∑
i=1

a′′(t)i (3.15)

Given na agents, nval validation episodes, we denote the average reward r(t) at time t
as:

r(t) =
1

nanval

nval

∑
e=1

na

∑
i=1

ri(s(t)) (3.16)

In Figure 3.5 we show the average communication c(t) and the average reward r(t),
for t = 1, . . . , 10 steps of nval validation episodes. From the same figure, it can be
seen that in the cooperative scenarios, the average communication c has is higher in
the first couple of steps, and the amount of communication provided in these steps
is sufficient to achieve nearly maximum average reward r in few steps. This means
that optional-communication agents can achieve always-communication level results
in cooperative scenarios, in particular with non-observable filling, in terms of both
overall reward (Figure 3.2) and inequality (Figure 3.3) during the training phase, and
from the validation (Figure 3.5) we can see that a smaller amount of communication
is needed to perform like always-communication agents.

Individual considerations

In Figure 3.6 we show the distribution of individual validation reward for respec-
tively the always-communication, optional-communication, and no-communication
strategy. Table 3.2 reports the maximum reward value reached for each scenario in the
validation. From Figure 3.6 appears that the competitive observable filling scenario
is the most interesting to us: in some validation episodes, it occurs that few agents
employing optional-communication strategy achieve higher individual reward with
respect to the majority of the agents. Moreover, these agents in this scenario outper-
form agents employing any other strategy in terms of individual reward. In other
words, if considering overall reward (Figure 3.2) optional-communication performs
poorly in this scenario, but from an individual point of view, the single agents achieve
highly unbalanced rewards.

Tables 3.3 and 3.4 show the sequence of actions of na optional-communication
agents during the first 10 steps of a validation episode, respectively in the cooperative
non-observable filling scenario (Table 3.3), and in the competitive observable filling
scenario (Table 3.4). Here we aim to capture relevant information on the system state
and agents policy by introducing a simpler notation: we consider the i-th agent state
U(t)

i at time t, we say that the i-th agent changes its preference if: u′(t)i 6= u′(t−1)
i . In

the same way we say that the i-th agent communicates at time t if: a′′(t)i = 1. In this
table, the i-th agent confirming its preference for resources at time t is indicated by
the© symbol in i-th line of the table, at the t-th position of the sequence of actions,
regardless of its color. The i-th agent changing its state, by setting its preference
to resource 1 (or similarly over resource 2) at time t is indicated by the

`
symbol

(or similarly the
a

symbol) in the i-th line of the table, at the t-th position of the
sequence of actions, regardless of its color. The i-th agent is active on resource 1 (or
similarly on resource 2) at time t, when on the i-th line of the table, the symbol

`



3.4. Experiments 39

0

50

100

C
oo

pe
ra

ti
ve

Non-obs. filling Obs. filling

0

50

100
M

ix
ed

0

50

100

C
om

pe
ti

ti
ve

Always Optional No-comm

F I G U R E 3 . 6 : Individual reward distribution in validation episodes.

TA B L E 3 . 2 : Max validation return.

Agent Non-obs. filling Obs. filling

C
oo

p. Always 99.0 99.0
No-comm 79.3 99.0
Optional 98.8 99.0

M
ix

ed Always 99.0 99.0
No-comm 89.0 99.0
Optional 93.6 95.0

C
om

p. Always 25.4 21.6
No-comm 69.4 21.4
Optional 49.8 59.4
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TA B L E 3 . 3 : Optional-communication policies in a cooperative non-
observable filling scenario.

Agent Actions

1
a
©

`
©©©

a
©©

`

2
a
©

`
©©

a
©©©©

3
`
©©©©

a ` a
©©

4
a
©©©©©

`
©©©

5
a
©

`
©©©©

a
©©

6
`
©©©©

a ` a
©©

7
a
©

`
©©©©

a
©©

8
`
©©©©

a
©©©©

9
a
©©©©

` a `
©©

10
`
©©©©

a
©©©©

© confirm, no-comm.
© confirm, comm.`

change to 1, no-comm.`
change to 1, comm.a
change to 2, no-comm.a
change to 2, comm.

TA B L E 3 . 4 : Optional-communication policies in a competitive ob-
servable filling scenario.

Agent Actions

1
a
©©©©©

` a
©©

2
`
©©©©

a `
©

a `

3
`
©©©©©©

a
©©

4
`
©

a `
©©

a `
©

a

5
a
©

` a
©©©

` a `

6*
`
©

a `
©

a `
©©©

7
a
©

` a ` a
©

` a `

8
a
©©

` a
©©©

` a

9
`
©©©©

a ` a ` a

10
`
©©©©

a
©©©

`

(or similarly
a

) is at the t− 1-th position of the sequence of actions, immediately
followed by the symbol© at the t-th position, regardless of their color. The i-th agent
is communicating its state at time t, when on the i-th line of the table, the symbol at
the t-th position of the sequence of actions is green. The i-th agent communicating
while not changing preference at time t, is indicated by the© symbol in the i-th line
of the table, at the t-th position of the sequence of actions, at time t + 1 will be active
on the same resource, regardless of its next decision at time t + 1. Differently, the
i-th agent communicating while changing preference for resource 1 (or similarly for
resource 2) at time t, is indicated by the

`
symbol (or similarly the

a
symbol) in the

i-th line of the table, at the t-th position of the sequence of actions, at time t + 1 will
be active on a different resource depending on its next decision at time t + 1.

From Table 3.3 we can see that agents seem to have learned that communicating
while confirming their preference, denoted by©, is more helpful for the listeners,
rather than communicating while changing their preference, denoted by

a
or

`
.

This finding is supported by the high number of© symbol, in contrast with the low
number of

a
and

`
.

In Table 3.4 we show actions taken by optional-communication agents in observ-
able filling competitive scenario during the first 10 steps of a validation episode. We
indicate with ∗ the agent collecting the highest individual reward in this episode. In
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this case agents seem to learn that communicating while changing their preference,
for instance from resource 1 to resource 2, denoted by

a
, gives ambiguous informa-

tion for the listeners, and therefore it can be used to trick the others. On the other side,
© is less frequently used, since it would give useful information to the competitors.
Also agents communicate less frequently, and change preference more often than
in the cooperative case. This finding is supported by the high number of

a
and

`

symbols.

3.5 Concluding remarks

We considered a multi-agent system in which communication among agents is re-
quired for learning the system-wise best policies. We investigated the role of com-
munication in the emergence a of collective behaviour in such system, by designing
3 scenarios in which different strategies are employed by agents, and where agent
policies are learned by means of reinforcement learning. The experimental results
show that communication is, in general, a way for reducing inequality. Moreover,
agents with optional communication capabilities develop a collective behaviour in co-
operative scenarios, whereas in competitive scenarios they exhibit a selfish behaviour
that leverages on communication to promote their individual goal and thus resulting
in high inequality.

Future ideas for expanding this study, in particular in the competitive scenarios,
include the possibility of enforcing some kind of regulation (e.g., as in Lombardi,
Medvet, and Bartoli, 2017) for softening selfish tendency after the learning, or employ-
ing some form of reward shaping Devlin and Kudenko, 2016 (or equivalent strategies
in non-RL learning of the agent policy Talamini et al., 2018) during the learning, in
order to discourage selfish behaviors.
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Chapter 4

On the Impact of the Rules on
Autonomous Drive Learning

Autonomous vehicles raise many ethical and moral issues that are not easy to deal
with and that, if not addressed correctly, might be an obstacle to the advent of such a
technological revolution. These issues are critical because autonomous vehicles will
interact with human road users in new ways and current traffic rules might not be
suitable for the resulting environment. We consider the problem of learning optimal
behavior for autonomous vehicles using Reinforcement Learning in a simple road
graph environment. In particular, we investigate the impact of traffic rules on the
learned behaviors and consider a scenario where drivers are punished when they
are not compliant with the rules, i.e., a scenario in which violation of traffic rules
cannot be fully prevented. We performed an extensive experimental campaign, in a
simulated environment, in which drivers were trained with and without rules, and
assessed the learned behaviors in terms of efficiency and safety. The results show
that drivers trained with rules enforcement are willing to reduce their efficiency in
exchange for being compliant to the rules, thus leading to higher overall safety.

4.1 Introduction

In recent years, autonomous vehicles have attracted a lot of interest from both indus-
trial and research groups Howard and Dai, 2014; Skrickij, Sabanovic, and Zuraulis,
2020. The reasons for this growth are the technological advancement in the automo-
tive field, the availability of faster computing units, and the increasing diffusion of
the so-called Internet of Things. Autonomous vehicles collect a huge amount of data
from the vehicle and from the outside environment, and are capable of processing
these data in real-time to assist decision-making on the road. The amount of collected
information and the need for real-time computing make the design of the driving
algorithms a complex task to carry out with traditional techniques. Moreover, the
sources of information may be noisy or may provide ambiguous information that
could therefore negatively affect the outcome of the driving algorithm. The combina-
tion of these factors makes it very hard, if not unfeasible, to define the driver behavior
by developing a set of hand-crafted rules. On the other side, the huge amount of data
available can be leveraged by suitable machine learning techniques. The rise of deep
learning in the last decade has proven its power in many fields, including self-driving
cars development, and enabled the development of machines that take actions based
on images collected by a front camera as the only source of information Bojarski et al.,
2016, or even using a biological inspired event-driven camera Maqueda et al., 2018.
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The use of simulations and synthetic data Sharifzadeh et al., 2016 for training
have allowed to assess neural networks capabilities in many different realistic envi-
ronments and different degrees of complexity. Many driving simulators have been
designed, from the low-level ones that allow the drivers to control the hand brake
of their car Jaritz et al., 2018, to higher-level ones, in which the drivers can control
their car acceleration and lane-change Bouton et al., 2019. Some simulators model the
traffic in an urban road network Wang, Liu, and Xu, 2020, some others model car’s
intersection access Qiao et al., 2018; Tram et al., 2018; Liebner et al., 2012; Isele et al.,
2017, or roundabout insertion Capasso, Bacchiani, and Molinari, 2020.

In a near future scenario, the first autonomous vehicles on the roads will have to
make decisions in a mixed traffic environment. Autonomous vehicles will have to be
able to cope with radically different road agents, i.e., agents powered by machines
capable of processing information way more quickly than human drivers and human
drivers that could occasionally take unexpected actions. There will hardly be a single
authority to control each car in a centralized fashion and thus every autonomous
vehicle will have to take decisions on its own, treating all the other road agents as
part of the environment. It may very well be the case that current traffic rules do not
fit a scenario with self-driving cars.

In this work, we investigate to which extent the traffic rules affect the drivers
optimization process. The problem of finding the optimal driving behavior subjected
to some traffic rules is highly relevant because it provides a way to define allowed
behaviors for autonomous drivers, possibly without the need to manually craft
those behaviors. A first approach for solving this problem consists of defining hard
constraints on driver behavior and replacing forbidden actions with fallback ones
Shalev-Shwartz, Shammah, and Shashua, 2016. Such an approach leads to drivers
which are not explicitly aware of the rules. If those hard constraints were removed,
driver behavior could change in unpredictable ways. Another approach consists in
punishing behaviors that are not compliant with the rules, thus discouraging drivers
from taking those behaviors again. In this work, we investigate this second approach
based on punishing undesired behaviors. In this scenario, drivers have to learn the
optimal behavior that balances a trade-off between being compliant with the rules
and driving fast while avoiding collisions. A scenario in which drivers have the
chance of breaking the rules is particularly relevant because it could address the
complex ethics issues regarding self-driving cars in a more flexible way (those issues
are fully orthogonal to our work, however).

We perform the optimization of the self-driving controllers using Reinforcement
Learning (RL), which is a powerful framework used to find the optimal policy for a
given task according to a trial-and-error paradigm. In this framework, we consider
the possibility of enforcing traffic rules directly into the optimization process, as part
of the reward function. Experimental results show that it is therefore possible to
reduce unwanted behaviors with such approach.

4.2 Related Works

The rise of Reinforcement Learning (RL) Sutton and Barto, 2018 as an optimization
framework for learning artificial agents, and the outstanding results of its combination
with neural networks Mnih et al., 2013, have recently reached many new grounds,
becoming a promising technique for the automation of driving tasks. Deep learning
advances have proved that a neural network is highly effective in automatically
extracting relevant features from raw data Krizhevsky, Sutskever, and Hinton, 2012,
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as well as allowing an autonomous vehicle to take decisions based on information
provided by a camera Bojarski et al., 2016; Maqueda et al., 2018. However, these
approaches may not capture the complexity of planning decisions or predicting other
drivers’ behavior, and their underlying supervised learning approach could be unable
to cope with multiple complex sub-problems at once, including sub-problems not
relevant to the driving task itself Sallab et al., 2017. There are thus many reasons
to consider a RL self-driving framework, which can tackle driving problems by
interacting with an environment and learning from experience Sallab et al., 2017.

An example of an autonomous driving task implementation, based on Inverse
Reinforcement Learning (IRL), was proposed by Sharifzadeh et al. (2016). The authors
claimed that, in such a large state space task as driving, IRL can be effective in
extracting the reward signal, using driving data from experts demonstrations. End-
to-end low-level control through a RL driver was done by Jaritz et al. (2018), in a
simulated environment, based on the racing game TORCS, in which the driver has to
learn full control of its car, that is steering, brake, gas, and even hand brake to enforce
drifting. Autonomous driving is a challenging task for RL because it needs to ensure
functional safety and every driver has to deal with the potentially unpredictable
behavior of others Shalev-Shwartz, Shammah, and Shashua, 2016. One of the most
interesting aspects of autonomous driving is learning how to efficiently cross an
intersection, which requires providing suitable information on the intersection to the
RL drivers Qiao et al., 2018, as well as correctly negotiating the access with other
non-learning drivers and observing their trajectory Tram et al., 2018; Liebner et al.,
2012. Safely accessing to an intersection is a challenging task for RL drivers, due to
the nature of the intersection itself, which may be occluded, and possible obstacles
might not be clearly visible Isele et al., 2017. Another interesting aspect for RL
drivers is learning to overtake other cars, which can be a particularly challenging task,
depending on the shape of the road section in which the cars are placed Loiacono
et al., 2010, but also depending on the vehicles size, as in Hoel, Wolff, and Laine,
2018, where a RL driver learns to control a truck-trailer vehicle in an highway with
other regular cars. The authors of Grigorescu et al., 2019; Kiran et al., 2020 provided
extensive classifications of the AI state-of-the-art techniques employed in autonomous
driving, together with the degrees of automation that are possible for self-driving
cars.

Despite the engineering advancements in designing self-driving cars, a lack of
legal framework for these vehicles might slow down their coming Brodsky, 2016.
There are also important ethical and social considerations. It has been proposed to
address the corresponding issues as an engineering problem, by translating them into
algorithms to be handled by the embedded software of a self-driving car Holstein,
Dodig-Crnkovic, and Pelliccione, 2018. This way the solution of a moral dilemma
should be calculated based on a given set of rules or other mechanisms—although
the exact practical details and, most importantly, their corresponding implications,
are unclear. The problem of autonomous vehicles regulation is particularly relevant
in mixed-traffic scenarios, as stated by Nyholm and Smids (2018) and Kirkpatrick
(2015), as human drivers may behave in unpredictable ways to the machines. This
problem could be mitigated by providing human drivers with more technological
devices to help them drive more similar to robotic drivers, but mixed traffic ethics
certainly introduce much deeper and more difficult problems Nyholm and Smids,
2018.

A formalization of traffic rules for autonomous vehicles was provided by Rizaldi
and Althoff (2015), according to which a vehicle is not responsible for a collision
if satisfying all the rules while colliding. Another driving automation approach
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based on mixed traffic rules is proposed in Vanholme et al., 2013, where the rules are
inspired by current traffic regulation. Traffic rules synthesis could even be automated,
as proposed in Medvet, Bartoli, and Talamini, 2017, where a set of rules is evolved
to ensure traffic efficiency and safety. The authors considered rules expressed by
means of a language generated from a Backus–Naur Form grammar O’Neill and
Ryan, 2001, but other ways to express spatiotemporal properties have been proposed
Nenzi et al., 2015; Bartocci et al., 2017. Given the rules, the task of automatically
finding the control strategy for robotics systems with safety rules is considered in
Tumova et al., 2013, where the agents have to solve the task while minimizing the
number of violated rules. AI safety can be inspired by humans, who intervene on
agents in order to prevent unsafe situations, and then by training an algorithm to
imitate the human intervention Saunders et al., 2018, thus reducing the amount of
human labour required. A different strategy is followed by Mirchevska et al., 2018,
where the authors defined a custom set of traffic rules based on the environment,
the driver, and the road graph. With these rules, a RL driver learns to safely make
lane-changing decisions, where the driver’s decision making is combined with the
formal safety verification of the rules, to ensure that only safe actions are taken by
the driver A similar approach is considered in Bouton et al., 2019, where the authors
replaced the formal safety verification with a learnable safety belief module, as part
of the driver’s policy.

4.3 Model

We consider a simple road traffic scenario in the form of a directed graph where
the road sections are edges, and the intersections are vertices. Each road element
is defined by continuous linear space in the direction of its length, and an integer
number of lanes. In this scenario, a fixed number of cars move on the road graph
according to their driver decisions for a given number of discrete time steps.

4.3.1 Road Graph

A road graph is a directed graph G = (S, I) in which edges E represent road sections,
and vertices I represent road intersections. Each road element p ∈ G is connected
to the next elements n(p) ⊂ G, with n(p) 6= ∅. Edges are straight one-way roads
with one or more lanes. For each edge p, it holds that n(p) ⊂ I. Vertices can be either
turns or crossroads, have exactly one lane, and are used to connect road sections. For
each vertex p it holds that n(p) ⊂ S, and |n(p)| = 1. Every road element p ∈ G is
defined by its length l(p) ∈ R+, and its number of lanes w(p) ∈ N, w > 0. We do
not take into account traffic lights or roundabouts in this scenario.

4.3.2 Cars

A car simulates a real vehicle that moves on the road graph G: its position can
be determined at any time of the simulation in terms of the currently occupied
road element and current lane. The car movement is determined in terms of two
speeds—the linear speed along the road element and the lane-changing speed along the
lanes of the same element. At each time step, the car state is defined by the tuple
(p, x, y, vx, vy, s), where p ∈ {S, I} is the current road element, x ∈ [0, l(p)] is the
position on the road element, y ∈ {1, . . . , w(p)} is the current lane, vx ∈ [0, vmax] is
the linear speed, vy ∈ {−1, 0, 1} is the lane-changing speed, and s ∈ {alive, dead} is
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the status (time reference is omitted for brevity). All the cars have the same length
lcar and the same maximum speed vmax.

At the beginning of a simulation, all cars are placed uniformly among the road
sections, on all the lanes, ensuring that a minimum distance exists between cars i, j
on the same road element pi = pj, such that: |xi − xj| > xgap. The initial speeds for
all the cars are vx = vy = 0, and the status is s = alive.

At the next time steps, if the status of a car is s = dead, the position is not updated.
Otherwise, if the status is s = alive, the position of a car is updated as follows. Let(

a(t)x , a(t)y

)
∈ {−1, 0, 1} × {−1, 0, 1} be the driver action composed, respectively, of

a(t)x accelerating action and a(t)y lane-changing action (see details below). The linear
speed and the lane-changing speed at time t + 1 are updated accordingly with the
driver action

(
a(t)x , a(t)y

)
at time t as:

v(t+1)
x = min

(
vmax, max

(
v(t)x + a(t)x amax∆t, 0

))
(4.1)

v(t+1)
y = a(t)y (4.2)

where amax is the intensity of the instant acceleration and ∆t is the discrete time step
duration. The car linear position on the road graph at time t + 1 is updated as:

x(t+1) =

{
x(t) + v(t+1)

x ∆t if v(t+1)
x ∆t ≤ x(t)stop

v(t+1)
x ∆t− x(t)stop otherwise

(4.3)

where xstop is the distance ahead to the next road element, and is computed as:

x(t+1)
stop = l

(
p(t+1)

)
− x(t+1) (4.4)

The car lane position at time t + 1 is updated as:

y(t+1) = min
(

w(p(t+1)), max
(

y(t) + v(t+1)
y , 1

))
(4.5)

The road element at time t + 1 is computed as:

p(t+1) =

p(t) if v(t)x ∆t ≤ x(t)stop

∼ U
(

n
(

p(t)
))

otherwise
(4.6)

where U is the uniform distribution over the next road elements coming from p In
other words, when exiting from an intersection, a car enters an intersection chosen
randomly from n

(
p(t)
)

.
Two cars collide, if the distance between them is smaller than the cars length lcar.

In particular, for any cars (p, x, y, vx, vy, s), (p′, x′, y′, v′x, v′y, s′), the status at time t + 1
is updated as (we omit the time superscript for readability):

s =

{
dead if

(
p = p′ ∧ |x− x′| < lcar

)
∨
(

p′ ∈ n(p) ∧ xstop + x′ < lcar
)

alive otherwise
(4.7)

When a collision occurs, we simulate an impact by giving the leading car a positive
acceleration of intensity acoll, while giving the following car a negative acceleration of
intensity −acoll, for the next tcoll time steps. Collided cars are kept in the simulation
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for the next tdead > tcoll time steps of the simulation, thus acting as obstacles for the
alive ones.

4.3.3 Drivers

A driver is an algorithm that is associated to a car. Each driver is able to sense part
of its car variables and information from the road environment, and takes driving
actions that affect its car state. Every driver ability to see obstacles on the road graph
is limited to the distance of view dview.

Observation

For the driver of a car (p, x, y, vx, vy, s), the set of visible cars in the jth relative lane,
with j ∈ {−1, 0, 1}, is the union of the set Vsame,j of cars that are in the same segment
and the same or adjacent lane and the set Vnext of cars that are in one of the next
segments p′ ∈ n(p), in both cases with a distance shorter than dview:

Vsame,j =
{
(p′, x′, y′, v′x, v′y, s′) : p′ = p ∧ 0 < x′ − x ≤ dview ∧ y′ = y + j

}
(4.8)

Vnext =
{
(p′, x′, y′, v′x, v′y, s′) : p′ ∈ n(p) ∧ xstop + x′ ≤ dview

}
(4.9)

We remark that the set of cars Vj = Vsame,j ∪Vnext includes also the cars in the next
segments: the current car is hence able to perceive cars in a intersection, when in a
segment, or in the connected sections, when in an intersection, provided that they are
closer than dview.

The driver’s observation is based on the concept of jth lane closest car cclosest
j , based

on the set Vj defined above. For each driver, cclosest
j is the closest one in Vj:

cclosest
j =

 arg min
(p′,x′,y′,v′x ,v′y,s′)∈Vj

1(p′ = p)(x′ − x) + 1(p′ 6= p)(xstop + x′) if Vj 6= ∅

∅ otherwise
(4.10)

where Vj = Vsame,j ∪ Vnext and 1 : {false, true} → {0, 1} is the indicator function.
Figure 4.1 illustrates two different examples of jth lane closest car, with j = 0. We can
see that the cclosest

j might not exist for some j, either if there is no car closer than dview

or if there is no such jth lane.
d

x′ − x

xstop

x′

xstop

F I G U R E 4 . 1 : Distance between cars in different cases.

We define the closeness variables δx,j ∈ [0, dview], with j ∈ {−1, 0, 1}, as the
distances to the jth lane closest cars cclosest

j , if any, or dview, otherwise. Similarly, we
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define the relative speed variables δv,j ∈ [−vmax, vmax], with j ∈ {−1, 0, 1}, as the speed
difference of the current car with respect to the jth lane closest cars cclosest

j , if any, or
vmax, otherwise.

At each time step of the simulation, each driver observes the distance from its car
to the next road element, indicated by xstop, the current lane y, the current linear speed
vx, the status of its vehicle s, the road element type e = 1(p ∈ S) its car is currently on,
the closeness variables δx,j, and the relative speed variable δv,j. We define each driver
observation as: o =

(
xstop, y, vx, s, e, δx,−1, δx,0, δx,1, δv,−1, δv,0, δv,1

)
, therefore o ∈ O =

[0, lmax]× {1, wmax} × [0, vmax]× {alive, dead} × {0, 1} × [0, dview]
3 × [−vmax, vmax]3.

Action

Each agent action is a =
(
ax, xy

)
∈ A = {−1, 0, 1} × {−1, 0, 1}. Intuitively ax is

responsible for updating the linear speed in the following way: ax = 1 corresponds
to accelerating, ax = −1 corresponds to breaking, and ax = 0 keeps the linear speed
unchanged. On the other hand ay is responsible for updating the lane-position in the
following way: ay = 1 corresponds to moving to the left lane, ay = −1 corresponds
to moving to the right lane, and ay = 0 to keeping the lane-position unchanged.

4.3.4 Rules

A traffic rule is a tuple (b, w) where b : O→ { f alse, true} is the rule predicate, defined
on the drivers observation space O, and w ∈ R is the rule weighting factor. The ith
driver breaks a rule at a given time step t if the statement b that defines the rule is
b(o(t)i ) = 1. We define a set of three rules ((b1, w1), (b2, w2), (b3, w3)), described in the
next sections, that we use to simulate the real-world traffic rules for the drivers. All
the drivers are subjected to the rules.

Intersection Rule

In this road scenario, we do not enforce any junction access negotiation protocol, nor
we consider traffic lights, and cars access interactions as in Figure 4.2. That is, there is
no explicit reason for drivers to slow down when approaching a junction, other than
the chances of collisions with other cars crossing the intersection at the same time.
Motivated by this lack of safety at intersections, we define a traffic rule that punishes
drivers approaching or crossing an intersection at high linear speed.

F I G U R E 4 . 2 : Cars approaching intersections.
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In particular, the driver in road element p such that p ∈ I is an intersection, or
equivalently p ∈ S and its car is in the proximity of an intersection, denoted by
xstop < 2lcar, breaks the intersection rule indicated by (b1, w1) if traveling at linear
speed vx > 10:

b1(o) =

{
1 if

(
p ∈ I ∨ xstop < 2lcar

)
∧ vx > 10

0 otherwise
(4.11)

Distance Rule

Collisions may occur when traveling with insufficient distance from the car ahead,
since it is difficult to predict the leading car behavior in advance. For this reason, we
introduce a rule that punishes drivers that travel too close to the car ahead.

In particular, the driver observing cclosest
0 closest car on the same lane breaks the

distance rule indicated by (b2, w2) if traveling at linear speed vx such that the distance
traveled before arresting the vehicle is greater than δx,0 − lcar, or, in other words:

b2(o) =

{
1 if δx,0 − lcar < 2amaxv2

x

0 otherwise
(4.12)

Right Lane Rule

In this scenario, cars might occupy any lane on a road segment, without any specific
constraint. This freedom might cause the drivers to unpredictably change lanes while
traveling, thus endangering other drivers, who might not have the chance to avoid
the oncoming collision. Motivated by this potentially dangerous behaviors, we define
a rule that allows drivers to overtake when close to the car ahead, but punishes the
ones leaving the right-most free lane on a road section.

In particular, the driver occupying road section p ∈ S, on non-rightmost lane
y > 1, breaks the right lane rule indicated by (b3, w3) if the closest car on the right
lane cclosest

−1 is traveling at a distance δx,−1 = dview:

b3(o) =

{
1 if p ∈ S ∧ y > 1∧ δx,−1 = dview

0 otherwise
(4.13)

4.3.5 Reward

Drivers are rewarded according to their linear speed, thus promoting efficiency. All cars
involved in a collision, denoted by state s = dead, are then arrested after the impact,
thus resulting in zero reward for the next tdead − tcoll time steps, which implicitly
promotes safety. Each driver reward at time t is:

r(t) =
v(t)x

vmax
−

3

∑
i=1

wibi(o(t)) (4.14)

where w are the weights of the rules.

4.3.6 Policy Learning

Each driver’s goal is to maximize the return over a simulation, indicated by ∑T
t=0 γtr(t+1),

where γ ∈ [0, 1] is the discount factor and T > 0 is the number of time steps of the
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simulation. The driver policy is the function πθ : O → A that maps observations to
actions. We parameterize the drivers’ policy in the form of a feed-forward neural
network, where θ is the set of parameters of the neural network. Learning the optimal
policy corresponds to the problem of finding the values of θ that maximize the return
over an entire simulation. We perform policy learning by means of RL.

4.4 Experiments

Our goal was to experimentally assess the impact of the traffic rules on the optimized
policies, in terms of overall efficiency and safety. To this aim, we defined 3 tuples,
which are, respectively, the reward tuple R, the efficiency tuple E, and the collision
tuple C.

The reward tuple R ∈ Rncar is the tuple of individual rewards collected by the
drivers during an episode, from t = 0 to t = T, and is defined as:

R =

(
T

∑
t=0

r(t)1 , . . . ,
T

∑
t=0

r(t)ncars

)
(4.15)

The efficiency tuple E ∈ Rncar is the tuple of sums of individual instant linear speed
vx for each driver during an episode, from t = 0 to t = T, and is defined as:

E =

(
T

∑
t=0

v(t)x1 , . . . ,
T

∑
t=0

v(t)xncars

)
(4.16)

The collision tuple C ∈ Nncar is the tuple of individual collisions for each driver
during an episode, from t = 0 to t = T, and is defined as:

C =

(
T

∑
t=0

1{s(t−1)
1 = alive∧ s(t)1 = dead}, . . . ,

T

∑
t=0

1{s(t−1)
ncars = alive∧ s(t)ncars = dead}

)
(4.17)

Each ith element ci of this tuple is defined as the number of times in which the
ith driver change its car status si from si = alive to si = dead between 2 consecutive
time steps t− 1 and t.

We considered 2 different driving scenarios in which we aimed at finding optimal
policy parameters:y “no-rules”, in which traffic rules weighting factors are w1 =
w1 = w3 = 0, such that drivers are not punished for breaking the rules, and “rules”,
in which traffic rules weighting factors are w1 = w2 = w3 = 1, such that drivers are
punished for breaking the rules, and all the rules have the same relevance.

Moreover, we considered 2 different collision scenarios:

(a) cars are kept with status s = dead in the road graph for tdead time steps, and
then are removed; and

(b) cars are kept with status s = dead in the road graph for tdead time steps, and
then their status is changed back into s = alive.

The rationale for considering the second option is that the condition in which we
remove collided cars after tdead time steps may not be good enough for finding the
optimal policy. This assumption could ease the task of driving for the non-collided
cars, when the number of collided cars grows, and, on the other side, it might provide
too few collisions to learn from.
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We simulated ncars cars sharing the same driver policy parameters and moving
in the simple road graph in Figure 4.3 for T time steps. This road graph has 1 main
intersection at the center, and 4 three-way intersections. All road segments p ∈ S
have the same length l(p) and same number of lanes w(p). We used the model
parameters shown in Table 4.1 and performed the simulations using Flow Wu et al.,
2017, a microscopic discrete-time continuous-space road traffic simulator that allows
implementing our scenarios.

F I G U R E 4 . 3 : The road graph used in the experiments.

TA B L E 4 . 1 : Model and simulation parameters.

Param Meaning Value

lcar Car length 7
tcoll Impact duration 10
tdead Collision duration 20
dview Driver’s view distance 50
vmax Driver’s maximum speed 50
amax Driver’s acceleration (deceleration) 2
∆t Time step duration 0.2
|S| Number of road sections 12
|I| Number of road intersections 9
w(p), p ∈ G Number of lanes ∈ {1, 2}
l(p), p ∈ S Section length 100
ncar Cars in the simulation 40
T Simulation time steps 500

We repeated ntrials experiments in which we performed ntrain training iterations
in order to optimize the initial random policy parameters θno-rules and θrules. We
collected the values, across the ntrials repetitions, of R, E, and C during the training.

We employed Proximal Policy Optimization (PPO) Schulman et al., 2017 as the
RL policy optimization algorithm: PPO is a state-of-the-art actor-critic algorithm that
is highly effective, while being almost parameters-free. We used the PPO default
configuration (https://ray.readthedocs.io/en/latest/rllib-algorithms.html)
with the parameters shown in Table 4.2. The drivers policy is in the form of an

https://ray.readthedocs.io/en/latest/rllib-algorithms.html
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actor-critic neural networks model, where each of the 2 neural networks is made
of 2 hidden layers, each one with 256 neurons and hyperbolic tangent as activation
function. The hidden layer parameters are shared between the actor and the critic
networks: this is a common practice introduced by Mnih et al. (2016) that helps to
improve the overall performances of the model. The parameters of the actor network
as well as the ones of the critic network are initially distributed according to the
Xavier initializer Glorot and Bengio, 2010.

TA B L E 4 . 2 : Policy learning algorithm parameters.

Param Meaning Value

ntrial Number of trials 20
ntrain Training iterations 500
ncar Cars in the simulation 40
γ Discount factor 0.999

4.5 Results

Figures 4.4 and 4.5 show the training results in terms of the tuples R, E, and C for the
2 policies θno-rules and θrules in the two collision scenarios considered.

0 2000 4000
−200

−100

0

100

Episode

Reward (R)

0 2000 4000

0

2000

4000

6000

8000

Episode

Efficiency (E)

0 2000 4000

0

0.5

1

Episode

Collisions (C)

No-rules Rules

F I G U R E 4 . 4 : Training results with cars removed after tdead time
steps. Here, we draw the training values of R, E, and C, at a certain
training episode, averaged on ntrial experiments. We indicate with
solid lines the mean of R,E, and C among the ncar vehicles, and with

shaded areas their standard deviation among the ncar vehicles.
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F I G U R E 4 . 5 : Training results with cars restored after tdead time steps.
Here, we draw the training values of R, E, and C, at a certain training
episode, averaged on ntrial experiments. We indicate with solid lines
the mean of R,E, and C among the ncar vehicles, and with shaded areas

their standard deviation among the ncar vehicles.

In all experimental scenarios, the policy learned with rules shows driving be-
haviors that are less efficient than the ones achieved by the one without rules. On
the other hand, the policy learned without rules is not even as efficient as it could
theoretically be, due to the high number of collisions that make it difficult to avoid
collided cars. Moreover, the values of E for the drivers employing the rules are
distributed closer to the mean efficiency value, and thus we can assume this is due to
the fact that the rules limit the space of possible behaviors to a smaller space with
respect to the case without rules. In other words, rules seems to favor equity among
drivers.

On the other hand, the policy learned with rules shows driving behaviors that are
safer than the ones achieved by the one without rules. This may be due to the fact that
training every single driver to avoid collisions based only on the efficiency reward is
a difficult learning task, as well as because agents are not capable of predicting the
other agents’ trajectories. On the other hand, we can see that the simple traffic rules
that we have designed are effective at improving the overall safety.

In other words, these results show that, as expected, policies learned with rules
are safer but less efficient than the ones without rules. Interestingly, the rules act also
as a proxy for equality, as shown in Figures 4.4 and 4.5, in particular for the efficiency
values of E, where the blue shaded area is much thinner than the red one, meaning
that all the ncar vehicles have similar efficiency.

4.5.1 Robustness to traffic level

With the aim of investigating the impact of the traffic level on the behavior observed
with the learned policies (in the second learning scenario), we performed several other
simulations by varying the number of cars in the road graph. Upon each simulation,
we measured the overall distance traveled ∑ncar

i=1 Ei∆t and overall collisions ∑ncar
i=1 Ci.

We considered the overall sums, instead of the average, of these indexes in order
to investigate the impact of the variable number of cars in the graph: in principle,
the larger is this number, the longer is the overall distance that can be potentially
traveled, and, likely, the larger is the number of collisions.
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We show the results of this experiment in Figure 4.6, where each point corresponds
to indexes observed in a simulation with a given traffic level ncar: we considered
values in 10, 20, . . . , 80. We repeated the same procedure for both the drivers trained
with and without the rules, using the same road graph in which the drivers have
been trained. For each level of traffic injected, we simulated T time steps and we
measured the overall distance and overall number of collisions occurred.
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F I G U R E 4 . 6 : Overall number of collisions in the simulation against
the overall traveled distance in the simulation, averaged across sim-
ulations with the same ncar. Each dot is drawn from the sum of the

values computed on the ncar vehicles.

As shown in Figure 4.6, the two policies (corresponding to learning with and
without rules) exhibit very different outcomes as the injected traffic increases. In
particular, the policy optimized without rules results in an overall number of collisions
that increases, apparently without any bound in these experiments, as the traffic level
increases. Conversely, the policy learned with the rules keeps the overall number of
collisions much lower also with heavy traffic. Interestingly, the limited increase in
collisions is obtained by the policy with the rules at the expense of overall traveled
distance, i.e., of traveling capacity of the traffic system.

From another point of view, Figure 4.6 shows that a traffic system where drivers
learned to comply with the rules is subjected to congestion: when the traffic level
exceeds a given threshold, introducing more cars in the system does not allow ob-
taining a longer traveled distance. Congestion is instead not visible (at least not in
the range of traffic levels that we experimented with) with policies learned without
rules; the resulting system, however, is unsafe. Overall, congestion acts here as a
mechanism, induced by rules applied during the learning, for improving the safety
of the traffic system.

4.6 Conclusions

We investigated the impact of imposing traffic rules while learning the policy for AI-
powered drivers in a simulated road traffic system. To this aim, we designed a road
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traffic model that allows analyzing system-wide properties, such as efficiency and
safety, and, at the same time, permits learning using a state-of-the-art RL algorithm.

We considered a set of rules inspired by real traffic rules and performed the
learning with a positive reward for traveled distance and a negative reward that
punishes driving behaviors that are not compliant with the rules. We performed a
number of experiments and compared them with the case where rules compliance
does not impact on the reward function.

The experimental results show that imposing the rules during learning results
in learned policies that gives safer traffic. The increase in safety is obtained at the
expense of efficiency, i.e., drivers travel, on average, slower. Interestingly, the safety
is also improved after the learning—i.e., when no reward exists, either positive or
negative—and despite the fact that, while training, rules are not enforced. The flexible
way in which rules are taken into account is relevant because it allows the drivers
to learn whether to evade a certain rule or not, depending on the current situation,
and no action is prohibited by design: rules stand hence as guidelines, rather then
obligation, for the drivers. For instance, a driver might have to overtake another
vehicle in a situation in which overtaking is punished by the rules, if this decision is
the only one that allows avoiding a forthcoming collision.

Our work can be extended in many ways. One theme of investigation is the
robustness of policies learned with rules in the presence of other drivers, either AI-
driven or human, who are not subjected to rules or perform risky actions. It would
be interesting to assess how the driving policies learned with the approach presented
in this study operate in such situations.

From a broader point of view, our findings may be useful in the situations where
there is a trade-off between compliance with the rules and a greater good. With
the ever increasing pervasiveness of AI-driven automation in many domains (e.g.,
robotics and content generation), relevance and quantity of these kinds of situations
will increase.
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Chapter 5

Sensing Controllers for
Voxel-based Soft Robots

Soft robots allow for interesting morphological and behavioral designs because they
exhibit more degrees of freedom than robots composed of rigid parts. In particular,
voxel-based soft robots (VSRs)—aggregations of elastic cubic building blocks—have
attracted the interest of Robotics and Artificial Life researchers. VSRs can be controlled
by changing the volume of individual blocks: simple, yet effective controllers that do
not exploit the feedback of the environment, have been automatically designed by
means of Evolutionary Algorithms (EAs).

In this work we explore the possibility of evolving sensing controllers in the form
of artificial neural networks: we hence allow the robot to sense the environment in
which it moves. Although the search space for a sensing controller is larger than its
non-sensing counterpart, we show that effective sensing controllers can be evolved
which realize interesting locomotion behaviors. We also experimentally investigate
the impact of the VSR morphology on the effectiveness of the search and verify that
the sensing controllers are indeed able to exploit their sensing ability for better solving
the locomotion task.

5.1 Introduction

Traditionally, robots have been made using rigid parts connected by joints. This
allowed engineers to model robots behaviour and eased the design of body and
controllers for the robots. On the other hand, creatures in nature are composed also,
or mainly, of soft tissues and are quite effective in solving many complex tasks which
are still utterly hard for robots (Kim, Laschi, and Trimmer, 2013). Inspired by nature
(Lin, Leisk, and Trimmer, 2011), in the recent years many researchers focused on
robots made on soft tissues, called soft robots (Rus and Tolley, 2015). The efforts
concerned methods for the assisted or automated design of soft robot bodies (Cheney
et al., 2013; Cheney, Clune, and Lipson, 2014) and controllers (Braganza et al., 2007;
Vaughan, 2018), often by means of simulation, and techniques for building actual soft
robots (Iida and Laschi, 2011; Shepherd et al., 2011).

Voxel-based Soft Robots (VSRs) are a particular category of soft robots. They are
aggregations of small elastic cubic building blocks called voxels (Hiller and Lipson,
2012). VSRs have been important for the raise of the embodied cognition paradigm
according to which the complexity of behavior of a (virtual) creature depends on both
its brain and its body (Pfeifer and Bongard, 2006). According to this paradigm, a robot
should be designed by considering brain and body together rather than by focusing
only on its brain, i.e., on its controller. This research path has been particularly
significant for VSRs, within a common framework in which the ability of the VSR
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to interact with the environment derived mainly from its body (Cheney et al., 2013;
Cheney, Clune, and Lipson, 2014).

In this paper, we explore the possibility of automatically synthesizing sensing
controllers for simple VSRs, i.e., controllers which can sense the environment and
exploit the gathered information for guiding the robot movements. We consider VSRs
in which the sensing is distributed across the full body, i.e., on each voxel composing
the VSR. In other words, we consider a VSR as an aggregation of simple parts that
can be used both as actuators and as sensors.

We consider three different VSRs, i.e., with different bodies, and synthesize the
corresponding controllers for solving a locomotion task. For each VSR we evolved a
sensing controller and a more traditional, non-sensing controller. We represent sens-
ing controllers as artificial neural networks (ANNs) whose topology is determined
by the body of the robot, while for non-sensing controller we use a simpler represen-
tation which has already been already successfully adopted (Kriegman, Cheney, and
Bongard, 2018). We synthesize both kinds of controllers with the same EA where, as
we will show, the sensing controller corresponds to a larger search space than the
non-sensing one, having more parameters. We evolved each VSR in two different
environments, i.e, an even surface and an uneven surface.

Our experimental results, obtained by simulation, show that sensing controllers
are always more effective than non-sensing ones, regardless of the body of the VSR
and of the environment in which they evolved. Moreover, we also find that sensing
controllers exhibit behaviors that are more heterogeneous than those of their non-
sensing counterparts. Most importantly, we also assess the behavior of controllers in
environments different from those in which they were evolved and found that sensing
controllers are more effective even in such scenarios. This result suggests that sensing
controllers are indeed able to exploit their peculiar ability to sense the environment
in which they are immersed.

5.2 Related work

The idea of evolving the body and the controller of simulated creatures dates back to
’90s (Sims, 1994). In the cited work, the creatures body is modular, and the controller,
in the form of an ANN, is distributed among their body components, capable of
sensing the environment.

Other attempts to optimize ANNs controlling soft robots have been done later.
For instance, Braganza et al., 2007 consider a tentacle-like manipulator which is
controlled by an ANN, since the design of a traditional closed-loop controller for this
specific robot was considered unfeasible. Another example is the optimization of a
locomotion controller in the form of an ANN for a quadruped simulated creature
(Vaughan, 2018).

On the other hand, control strategies different than ANNs have led to interesting
results. Bruder et al., 2019, for example, have recently designed a linear dynamical
model for controlling soft robots, based on a data-driven model: the authors claim
that the proposed method, being more traditional and control-oriented, avoids issues
of the ANNs acting as the black-boxes.

We remark that the works cited above face the problem of sensing, but are not
based on VSRs. Research on VSRs focused more on how to design (often by means
of evolutionary computation) the body of the robot: when the controller was of a
non-trivial complexity, it had no sensing ability. Nevertheless, interesting behaviors
have been found.
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First attempts of morphological optimization of VSRs were done by Hiller and
Lipson, 2012 and, later, by Cheney et al., 2013. In the latter work, the novelty was
mainly in the representation of the morphology and in the corresponding EA, both
achieved with CPPN-NEAT (Neuroevolution of Augmented Topologies applied to
Compositional Pattern-Producing Networks, Stanley, 2007): because of their ability
to compactly describe patterns with repetitions and symmetries (which resemble
nature), CPPN proved to be useful for evolving effective VSR morphologies. In that
case, the task was locomotion and the controller was actually determined by the
morphology, since different materials statically corresponded to different actuations.
A similar approach has been applied later by Cheney, Bongard, and Lipson, 2015 for
evolving VSRs able to escape from a tight space.

A different kind of control of the VSR, but still not able to sense the environment,
has been studied by Cheney, Clune, and Lipson, 2014. The authors proposed to
define materials for the voxels in terms of their ability to propagate and react to an
activation signal, inspired by properties of real, biological tissues. Morphologies were
then evolved with CPPN-NEAT for the locomotion task.

Materials composing VSRs, in particular soft vs. stiff ones, are also the focus of
(Bongard et al., 2016). The authors implemented a distributed growth mechanism, in
place of actuation by oscillating global signals. The development of VSRs is allowed
during their entire life span, acting at a lower time scale than the oscillation. The
task is inspired by plants, and consists in growing towards static (possibly multiple)
source of light in the environment, thus allowing the VSRs the ability to sense to a
certain extent.

VSRs have been used as a case of study also for reasoning about the evolution in
different environment (Corucci et al., 2018). The authors of the cited work evolved
morphologies on a land environment in comparison with the ones in a water envi-
ronment. Subsequently, they investigated the effects of an environmental transition,
from land to water and the opposite, during the evolution, and they try to explain
morphological results. To some degree, we too experiment with VSRs facing different
environment: we assess their ability to move in environments which were not seen
during the evolution and we show that sensing is beneficial in this scenario.

5.3 Scenario: controlling VSRs

5.3.1 Voxel-based soft robots (VSRs)

A voxel-based soft robot (VSR) is an assembly of one or more voxels, i.e., cubic building
blocks, each linked to up to 6 neighbour voxels. Voxels are also elastic in the sense
that their volume may either contract or expand with respect to the resting volume;
the volume of each voxel may vary independently of the volume of any other voxel.
We consider VSRs composed of a predefined number of voxels n. The morphology of a
VSR is the way in which its voxels are linked.

We assume a discrete-time physics model in which scale values are set at regular
intervals t = k∆t, k ∈N, where ∆t is a parameter.

At any time, each voxel is defined by s, x, v, v′, where: s is the scale, i.e., the ratio
between the current and resting volume of the voxel; x, v, and v′ are the position,
velocity, and acceleration of its center.

The behavior of the robot can be determined by imposing a value for the scale of
each of its voxels. By varying the scale for each voxel over time, the corresponding
positions, velocities and accelerations will vary over time as well depending on how
voxels are linked together. In this work we use the physics model presented by
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Kriegman et al., 2017. The behavior of the VSR derives hence from the positions,
velocities, and acceleration of its composing voxels, which themselves derive from
the values imposed to the scale. We call controller of the VSR the way in which scale
values are set over the time.

In general, a controller may set the values of the scale over the time basing on
external input related to the interactions of the VSR with the environment; or, it may
set the scale regardless of those interactions. We call the two approaches sensing and
non-sensing controllers, respectively. In the next sections we describe the two specific
controllers that we consider in this work.

5.3.2 Non-sensing controller

We consider the simple non-sensing controller proposed by Kriegman, Cheney, and
Bongard, 2018 in which the scale si of the i-th voxel varies over time according to a
sinusoidal signal, which determines the relative scale with respect to a resting value:

si(k) = s0
i + a sin(2π f k∆t + φi) (5.1)

Frequency f and amplitude a are predefined and identical for all the voxels. Phase
φi and resting value s0

i are instead defined separately for each voxel and constitute
the parameters θNS = (s0

1, φ1, . . . , s0
n, φn) of the controller. It can be seen, hence, that

the number of parameters of this non-sensing controller, and therefore the size of the
space of the corresponding controller instances, grows linearly with the number n of
voxels in the VSR, i.e., |θNS| = 2n ∼ O(n).

5.3.3 Sensing controller

We consider a sensing controller in which the VSR senses the environment in terms
of the actual scale, velocity, and acceleration of each of its voxels: since these figures
are determined also by how the VSR interacts with the environment, e.g., by pushing
on the floor, they correspond to sensing the environment. These inputs, along with a
single sinusoidal signal sin(2π f k∆t), are fed to a feed-forward ANN whose output
layer determines the values of the scale to be set for each of the voxels.

More in detail, the ANN is composed of an input layer of 3n + 1 neurons (the
+1 being fed with the sinusoidal signal), an hidden layer of h neurons, and an
output layer of n neurons. The activation function is the Rectified Linear Unit (ReLU).
The input layer is fed with the values s1(k − 1), ‖v1(k − 1)‖, ‖v′1(k − 1)‖ of each
voxel. Each output neuron emits a value oi ∈ [−1, 1] which is then mapped to
[s0 − ∆s, s0 + ∆s], where s0 and ∆s are pre-defined values which are the same for all
the voxels. The output of the i-th neuron at time k∆t determines the scale si(k) of the
i-th voxel:

si(k) = s0 + ∆soi (5.2)
oi = f i(s1(k− 1), ‖v1(k− 1)‖, ‖v′1(k− 1)‖, . . . , (5.3)

sn(k− 1), ‖vn(k− 1)‖, ‖v′n(k− 1)‖; θS)

where ‖vi(k− 1)‖ is the norm of the velocity of the i-th voxel at time (k− 1)∆t, f :
R3n+1 → [0, 1]n represents the ANN, and θS are the ANN parameters (i.e., weights).

Concerning the number of neurons in the hidden layer, we set h = 0.65n. It can
be seen that the number of parameters of this sensing controller grows with n2, i.e.,
|θS| = 3(n + 1)h + hn ∼ O(n2).
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5.3.4 Instantiating the controller

We instantiate the two controllers, i.e., we determine the values for their parameters
θNS and θS, by means of evolutionary computation. To this end, we use for both
controllers the Evolutionary Algorithm (EA) shown in Algorithm 2, already used by
Kriegman, Cheney, and Bongard, 2018 for evolving a non-sensing controller. This
EA evolves a fixed size of npop individuals for ngen generations, each individual
being a vector θ of values (θ = θNS and θ = θS for the non-sensing and for the
sensing controller, respectively). Only a unary genetic operator (mutation) is used:
the mutation consists in perturbing each parameter in θ with probability pmut, the
amount of perturbation being with a random value randomly sampled from a normal
distribution N(0, σmut). When evolving the non-sensing controller, we limit the values
of each s0

i ∈ θNS parameter, after the mutation, to the interval [s0 − ∆s, s0 − ∆s].
The generational model is a n+m with overlapping and individuals are compared

using Pareto dominance applied on their fitness and age: the age of the individual is
incremented at each generation, whereas new individuals have the age set to 0. In
case of tie in a selection (i.e., when one individual has to be selected from a set of
individuals on the same Pareto front), individuals with the best fitness are preferred;
in case of further tie, the individual is chosen at random. The same criterion is used
to determine the best individual at the end of the evolution.

1 P← ∅
2 foreach i ∈ {1, . . . , npop} do
3 P← P ∪ (random(), 0)
4 end
5 foreach i ∈ {1, . . . , ngen} do
6 P′ ← ∅
7 foreach (θ, a) ∈ P do
8 θ′ ← mutate(θ)
9 P′ ← P′ ∪ (θ, a + 1)

10 P′ ← P′ ∪ (θ′, a + 1)
11 end
12 P′ ← P′ ∪ (random(), 0)
13 P← select(P′, npop)

14 end
Algorithm 2: The EA for evolving the controller.

The fitness of an individual θ, i.e., a controller for a VSR, measures its ability
to perform a given task. In this work, we consider the locomotion task and set the
fitness to the distance that the VSR corresponding to the individual travels along
the x-axis during a simulation of a predefined amount of nsim time steps. Despite its
apparent simplicity, locomotion is considered a benchmark for VSRs (Cheney et al.,
2013; Cheney, Clune, and Lipson, 2014; Kriegman, Cheney, and Bongard, 2018).

We remark that other techniques might be used for the purpose of instantiating
a controller, given a morphology and a simulator. In particular, for learning the
sensing-controller, which is based on ANN, EAs operating on ANNs might be used,
e.g., NEAT (Stanley and Miikkulainen, 2002) or CPPN-NEAT (Stanley, 2007). Or,
since the considered scenario consists in an autonomous agent that interacts with the
environment trying to maximizing a reward (here, the traveled distance), Reinforce-
ment Learning techniques might be used (Duan et al., 2016). However, we leave the
exploration of these alternative options to future work, since here we are interested
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( A )
Worm

( B )
Biped

( C )
Tri-
pod

F I G U R E 5 . 1 : The three different VSR morphologies.

Param. Value

∆t 0.14 ms

a 0.001 m3

f 40 Hz
s0 0.01 m3

∆s 0.001 m3

Param. Value

npop 30
ngen 200
pmut

1
|θ|

σmut 1
nsim 10 000

TA B L E 5 . 1 : Parameters of the physics model (top left), morphologies
(bottom left), and EA (right) used in the experiments.

in comparing the nature of the controller, and the information it can exploit, rather
than the learning technique.

5.4 Experiments and results

We performed an experimental evaluation aimed at investigating the effectiveness of
the sensing controller with respect to the non-sensing one. In particular, we aimed at
answering the following research questions: (RQ1) Is a sensing controller better than
a non-sensing one? (RQ2) Does the larger size of the search space for the sensing
controller affect the search effectiveness? (RQ3) Is a sensing controller actually able
to exploit its ability to sense the environment? For answering these questions, we
considered three different VSR morphologies and two different environments.

Morphologies are shown in Figure 5.1: we call the corresponding VSRs worm,
biped, and tripod. They differ in the number of composing voxels (n ∈ {4, 6, 8}) and
hence correspond to different numbers of parameters for defining the controllers.

Concerning the environment, we simulated the movement of the VSR on an even
surface and on an uneven surface. In all cases, we performed 30 evolutionary runs
(i.e., 30 independent executions of Algorithm 2) for each combination of morphology
and environment. We used the implementation made available by Kriegman, Cheney,
and Bongard, 20181, with the parameters of the physics model, morphologies, and
EA shown in Table 5.1. We run the experiments using AWS EC2 on the c4.8xlarge
EC2 instances, each equipped with 36 vCPU based on 2.9 GHz Intel Xeon E5-2666
and with 60 G RAM; we distributed the fitness evaluation across the vCPUs and runs
across instances.

In each run, the VSR was put in the environment with its main dimension lay-
ing on the x-axis, the same axis along which the traveled distance is measured for
computing the fitness.

1https://github.com/skriegman/how-devo-can-guide-evo

https://github.com/skriegman/how-devo-can-guide-evo
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TA B L E 5 . 2 : Fitness (in mm, mean µ and standard deviation σ across
the 30 runs) of the best individual at the end of the evolution in the
environment with even surface. The p-value is computed with the

Mann-Whitney U-test (see text).

Non-sensing Sensing p-value

Morph. µ σ µ σ [×10−3]

Worm 146 8 3012 329 0.002
Biped 69 19 931 74 0.006
Tripod 550 26 636 76 0.024

5.4.1 Environment: even surface

Table 5.2 presents the main results obtained in the environment with even surface,
with the three morphologies. The table shows the mean µ and the standard deviation
σ of the fitness of the best individual at the last generation across the 30 runs. The table
also shows the p-values obtained with the Mann-Whitney U-test that we performed
for each morphology in order to verify if the samples have the same median.

The foremost finding is that sensing controllers clearly outperform non-sensing
ones. That is, a VSR controlled by a sensing controller is in general better in per-
forming the locomotion task, regardless of the morphology. The difference is always
statistically significant (with a significance level of α = 0.05) and substantial in two
on three cases, the worm and the biped.

Concerning the tripod, the sensing controller is still better, in terms of the final best
fitness, than the non-sensing one, but the difference is lower (636± 76 vs. 550± 263)
with respect to the worm and biped (for which traveled distance difference is of an
order of magnitude). We interpret this finding as a consequence of the fact that the
number of voxels in the tripod is larger: the complexity of the controller is O(n) for
the non-sensing case and O(n2) for the sensing case, and the same applies for the size
of the search space. As a further evidence for this interpretation, we show in Figure 5.2
how the fitness of the best individual varies during the evolution (mean across the
30 runs) for the three morphologies. Beyond highlighting the lower difference for
the tripod, Figure 5.2 suggests that the evolution of a sensing controller has not yet
stopped at the end of the evolution (200-th generation), for this case; on the other end,
this does not occur with the non-sensing controller. In other words, the larger search
space makes finding the optimum harder. We remark, however, that other techniques
exist for evolving ANNs which are suitable for scenarios like the one considered in
this work. In particular, we argue that NEAT (or its recent variants as, e.g., the one of
Silva et al., 2015) might be a way to address the issue of the large search space, thanks
to its ability to progressively increase the expressiveness of the representation—i.e.,
complexification.

Analysis of the behaviors

In order to further investigate the differences between the sensing and non-sensing
controllers, we observed the resulting behaviors during the simulations: i.e., we
looked at the way best evolved controllers moved and drawn qualitative reasoning
(see Figure 5.3). We found that sensing controllers resulted, in general, in a broader
set of behaviors, the difference being more apparent for the worm. Interestingly, for
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F I G U R E 5 . 2 : Fitness (in m, mean across the 30 runs) of the best
individual during the evolution.
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F I G U R E 5 . 3 : Frames capturing the behavior of a biped with one of
the evolved sensing controller in the environment with even surface.
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F I G U R E 5 . 4 : Trajectory xCM(k) of the center of mass, shown sepa-
rately for the two salient axes (scale is ×10−3 for the z-axis), of a worm
with one of the evolved sensing controller in the environment with

even surface.

this morphology the behaviors exhibited by the sensing controllers often visually
resembled those of the real biological counterpart.

In an attempt of quantifying the result of this qualitative analysis, we devised a
way of systematically capturing and describing the behaviors of the VSR—similar
procedures have been already used for analyzing the behavior of robots with evolved
controllers, e.g., in Silva, Correia, and Christensen, 2017. We proceeded as follows.
(1) For each morphology, we considered all and only the 60 best controllers (sensing
and non-sensing) obtained at the last generation. (2) We considered the discrete
signals corresponding to the position xCM(k) of the center of mass of the VSR during
fitness evaluation. Figure 5.4 shows an example trajectory of one of the best sensing
controllers for the worm morphology. (3) We computed the discrete Fourier transform
(DFT) coefficients dx and dz, with dx, dz ∈ Rnsim , of the x- and z-components of xCM(k);
we did not consider the y-component since VSRs do not move significantly along
that axis (see Figure 5.4). (4) We concatenated dx and dy, hence obtaining a vector
d ∈ R2nsim for each observed behavior. (5) Finally, we mapped all the behaviors from
R2nsim to R2 using Multidimensional Scaling (MDS) (Cox and Cox, 2000). We explored
different dimensionality reduction techniques, e.g., t-SNE (Maaten and Hinton, 2008):
the qualitative observations presented below did not change.

Figure 5.5 shows the results of the analysis of the behaviors: for each morphology,
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Worm Biped Tripod

Non-sensing Sensing

F I G U R E 5 . 5 : Behaviors resulting from the 60 best controllers evolved
in the environment with even surface, with the three morphologies.

the figure includes a plot where each behavior is a marker positioned according to
the first two MDS coordinates. Three observations can be done based Figure 5.5.
First, for the two simplest morphologies (worm and biped) the behaviors obtained
with sensing and non-sensing controllers look clearly dissimilar: the red cloud is far
from the blue cloud. Second, non-sensing controllers result in more homogeneous
behaviors than sensing controllers: the red cloud is in general larger than the blue
cloud. Third, the tripod case is, consistently with the previous findings, different from
the other two cases: the difference of behaviors is fuzzier and similar behaviors can be
found which are obtained with different controllers. We think that the motivation for
this finding is twofold. On one hand, the larger complexity of the morphology may
result in a larger set of interactions between the VSR and the environment, that is,
in a larger expressiveness. On the other hand, as already observed above, the larger
search space of this case may take longer to converge to a good controller; i.e., from
another point of view, within the same number of generations, different evolutionary
runs may follow different paths in the search space which do not end in the same
“point”.

5.4.2 Environment: uneven surface

For the purpose of answering (RQ3), we considered a second case in which some
aspect of the environment changes over the time. Differently than in the environment
with even surface, variable environmental conditions constitute an opportunity for
the sensing controller to exploit its peculiar ability of sensing the environment: that
ability is instead not available for VSRs with the non-sensing controller.

For easing the experimentation, we introduced the variable conditions as a varying
vector for the gravity acceleration. In particular, we varied the direction of the gravity
vector during the simulation and kept constant its norm ‖g‖ = 9.8 m s−2. The
condition can be expressed as a function describing the value of the x-component
gx(k) of the gravity vector g over the time—assuming that the y-component is always
equal to 0.

We proceeded as follows. First, we performed the evolutionary runs imposing a
sinusoidal signal for the x-component of the gravity:

gevo
x = sin

(
2π fgevok∆t

)
(5.4)
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TA B L E 5 . 3 : Fitness of the best individual at the end of the evolution
and its traveled distance in the validation scenarios (both in mm, mean
µ and standard deviation σ across the 30 runs) in the uneven environ-
ment. ρ is the ratio between the traveled distance in the validation

scenario and the fitness value.

Non-sensing Sensing

Morph. µ σ ρ µ σ ρ
Fi

tn
es

s Worm 120 8 3050 358
Biped 78 19 873 180
Tripod 556 60 620 378

Fl
at

Worm 138 5 1.15 3132 498 1.02
Biped 73 30 0.93 2228 187 2.55
Tripod 528 43 0.95 727 100 1.17

St
ep

Worm 111 56 0.92 3543 412 1.16
Biped 69 20 0.88 1010 226 1.15
Tripod 539 160 0.96 870 213 1.40

Si
n

Worm 104 7 0.86 3194 281 1.04
Biped 77 17 0.99 446 151 0.51
Tripod 505 48 0.91 512 175 0.82

where fgevo=2 1
∆tnsim

=1.43 Hz. Then, we assessed each evolved controller (i.e., the best

individual at the last evolution) in three different validation scenarios:

gflat
x (k) = 0 (5.5)

gstep
x (k) =

{
0 if k ≤ nsim

2

3 otherwise
(5.6)

gsin
x (k) = sin

(
5π fgevok∆t

)
(5.7)

By considering validation scenarios which are different from the one using during
the evolution, we hence also assessed the generalization ability of the EA in evolving
the VSR controllers. Note that varying the direction of the gravity vector basically
corresponds to considering an uneven, instead of flat, surface on which the VSR
moves.

Table 5.3 shows the results of the experiments in the uneven environment.
It can be seen that, also in this environment, the sensing controller is always

more effective than the non-sensing one. VSRs moved by the former travel a longer
distance in any condition: both when computing the fitness (i.e., with gevo

x ) and in
the validation scenarios (i.e., with gflat

x , gstep
x , and gsin

x ). As for the even environment,
differences are in general less apparent for the tripod than for the other two morpholo-
gies. All the differences are statistically significant according to the Mann-Whitney
U-test (α = 0.05): we do not show the values in the table.

Of more interest are the findings concerning the comparison between the fitness of
the best individual and its performance in the validation scenario. Table 5.3 captures
the outcome of this comparison in the two ρ columns: for a given morphology,
controller, and validation scenario, ρ is the ratio of the distance traveled in the
validation scenario and the fitness value, i.e., the one traveled with gevo

x .
The key finding is that ρ is lower than 1 in most cases (8 on 9) for the non-sensing

controller and greater than 1 in most cases for the sensing controller (7 on 9). VSRs
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F I G U R E 5 . 6 : Behaviors resulting from the 60 best controllers evolved
in the environment with uneven surface, with the three morphologies

when testing them in the three validation scenarios.

equipped with the sensing controllers are hence able to move well on scenarios
different than the one used for their evolution, whereas VSRs with non-sensing
controller are not. We explain this clear difference with the fact that the sensing ability
allows to react to an environment different from the one the controlled evolved and
to adapt the VSR behavior.

Finally, Table 5.3 shows that, not surprisingly, the Sin validation scenario is the
most difficult for all the VSRs: still, the worm equipped with a sensing controller is
able to perform not worse on this scenario than on the one seen during the evolution
(ρ = 1.04).

Analysis of the behaviors

We performed the same analysis of the behaviors as for the environment with the
even surface. The results are shown in Figure 5.6.

The findings are similar to the previous case. Sensing controllers exhibit, in
general, more various behaviors and this difference is less apparent for the tripod than
for the worm and the biped. However, Figure 5.6 also highlights that the behaviors
resulting from sensing controllers differ among the three validation scenarios. The
difference is more apparent for the biped. We motivate this latter finding with the fact
that this morphology is a good trade-off in complexity: it is not too simple to prevent
large variation in the behaviors (like the worm), nor too complex to make harder the
evolution of controller able to exhibit a well-defined behavior (like the tripod).

5.5 Conclusions

Voxel-based soft robots are a promising framework in which the behavior of a robot
is determined by both its brain, i.e., its controller, and its body. In this work we have
explored a form of holistic design in which the controller is equipped with sensing
capabilities distributed across the full body of the robot. We have considered a sens-
ing controller represented as a neural network and have considered the problem of
synthesizing such a controller automatically, by means of an Evolutionary Algorithm.
We have exercised such an algorithm on three different bodies, each in two different
environments, with the aim of solving a locomotion task. We have compared the
resulting sensing controller to a more traditional one, also synthesized automatically
with the same Evolutionary Algorithm, and we have found that the sensing con-
troller is more effective than its non-sensing counterpart, also when immersed in an
environment different from the one in which it evolved.
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We believe these results are very promising and suggest that the shifting of
complexity from the controller to the body intrinsic to voxel-based soft robots, should
be carefully coupled with forms of distributed sensing. We intend to investigate
the potential of sensing controllers on larger robots and more complex tasks. In
order to cope with the resulting complexity of the search space, we plan to rely on
a more efficient evolutionary framework, such as, e.g., CPPN-NEAT, as well as a
modular design in which robots are assembled out of smaller (parts of) robots evolved
separately.
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Chapter 6

Voxel-Based Soft-Robots
Optimization towards Criticality

The development of voxel-based soft robots has allowed to shift the complexity
from the control algorithm to the robot body itself, which is extremely versatile and
more adaptable than the one of traditional robots, since it is made of soft materials.
Nonetheless it is still not clear which are the factors responsible for the adaptability
of the body, which we define as the ability to cope with tasks requiring different
skills. In this work we propose a task-agnostic approach for automatically designing
adaptable soft robotic bodies, based on the concept of self-organized criticality. This is
a property belonging to systems close to a phase transition between the ordered and
the chaotic regime. We let these bodies evolve towards self-organized criticality, and
we then validate the impact of this approach on the actual adaptability by measuring
the resulting bodies performance on three different tasks designed to require different
skills. The validation results confirm that self-organized criticality is indeed one of
the factors responsible for the adaptability of a soft robotic body, and that this is a
promising approach for adaptability assessment.

6.1 Introduction

Traditionally, engineers have designed robotic systems modeled by connected joints
made of rigid materials. These rigid-body robots can be programmed to efficiently
perform a single task in a predictable way, but often with limited adaptability (Rus
and Tolley, 2015).

Soft robots, on the contrary, are designed using soft material, in order to mimic
nature in the way they interact with the environment. Since they are made of soft
materials, soft robots are provided with almost infinite degrees of freedom and thus
are capable of more natural movements. This allows a variety of different behaviors
that were not possible with traditional robots, such as greater adaptability and many
new opportunities for robotics (Lipson, 2014). Soft robotic bodies are able to bend and
twist with high curvatures, through deforming part of their body in a continuous way
(Mazzolai et al., 2012), and thus can move in confined spaces. Since they can adapt
their body shape to the environment, soft robots are thus able to manipulate objects,
move on rough terrain, and finally execute rapid and agile manoeuvres underwater.
However, due to this complexity within their body, the design and control of soft
robot is a challenging task, which suggests that traditional robotics techniques might
not be effective.

Among the existing categories, Voxel-based Soft Robots (VSR) are made of many
elastic blocks called voxels, defined by mechanical properties similar to those of
biological tissues, which allow them to expand or contract when controlled by an
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external signal. A VSR is defined by a body, which is simply an aggregate of voxels,
and a brain, which is the control algorithm responsible for actuating its body. Bio-
logical inspired meta-heuristics such as Evolutionary Computation (EC) have been
extensively applied (Hiller and Lipson, 2011; Cheney et al., 2013; Cheney, Bongard,
and Lipson, 2015) and it has showed to be a promising approach for the design and
control of VSR. However the optimization of these robots is often oriented towards a
specific task, i.e. a locomotion task, which provides no guarantee on the effectiveness
of the resulting bodies when subjected to a different task.

In this work we explore the possibility of automatically designing adaptable
soft-robotic bodies by means of EC, such that the resulting bodies are able to suc-
cessfully accomplish tasks requiring different motor skills. A simple way to find
such bodies might proceed by evaluating each candidate solution on all the given
tasks, and optimizing the body towards the maximization of the overall performance.
This approach does not work in general, because we need to know in advance all
the possible tasks, and the definition of a new one would make the results of the
optimization pointless.

We propose here a task-agnostic approach for automatically designing adaptable
bodies without requiring any information on the tasks, and instead based on the defi-
nition of self-organized criticality (Bak, Tang, and Wiesenfeld, 1988). In this approach
we provide a criticality score value, based on the fitting of the empirical avalanches
distribution (Bak, Tang, and Wiesenfeld, 1988), coming from the assessment of a body,
with a target distribution. Given this fitness score, we then let the EC optimize the
body towards higher values of this score.

To validate the bodies resulting from the evolution, we design three reasonably
different tasks: a locomotion task on a plain ground, a jump task, and a task of
escape from a narrow cave-like environment, and we test the bodies on these tasks by
optimizing their controller on each task. Several other bodies have been considered for
this validation, some of them inspired by previous works such as Talamini et al., 2019,
while others automatically generated thorough algorithms based on randomness. We
compare all the robots on these tasks, and we draw an overall ranking that show that
self-organized criticality is a relevant aspect for the design of robots that are among
the most adaptable. We notice also that designing bodies by means of an random
algorithm, in some cases allows to obtain bodies with comparably high adaptability.
Finally we notice that bodies designed to perform optimally on a single task exhibit
almost no adaptability.

6.2 Related work

Seeking radical breakthroughs towards more adaptable machines and inspired by the
biological systems, engineers have developed robots made of soft materials (Trimmer,
2013), which interact with the environment in a more natural way.

According to Rus and Tolley, 2015, these robotic systems are more adaptable and
versatile than traditional ones made of rigid joints. However, this aspect has never
been completely explored, since most of the research in the literature has dealt with
the automatic design of robots for a very specific tasks: in Kriegman, Cheney, and
Bongard, 2018 and Cheney et al., 2013 different aspects of soft robots such as the
lifetime development and an effective representation are consider and the results
are evaluated on their locomotion performance, in Sadeghi, Mondini, and Mazzolai,
2017 a soft robot inspired by the plants is engineered for growing, and finally in Shen,
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Na, and Wang, 2017 a cephalopod molluscs inspired robot is developed to exhibit
interesting underwater propulsion and manouvering mechanisms.

Reservoir Computing (RC) is a computational framework derived from echo state
networks (Jaeger, 2002) and liquid state machines (Fernando and Sojakka, 2003),
which leverages on the high-dimensionality of a dynamical system, i.e. its substrate,
to produce training-efficient machine learning algorithms. Another remarkable
property of RC is that the requirements for computationally powerful reservoirs turn
out to be rather general and belonging to many different systems, as demonstrated
in Schrauwen, Verstraeten, and Van Campenhout, 2007. Recent works on Reservoir
Computing (RC) such as Li et al., 2012; Tanaka et al., 2019 and Nakajima et al., 2013,
suggest that soft robotic systems, thanks to the intrinsically high-dimensionality,
non-linearity, and elasticity proper of soft materials, which lead to overall highly
complex and time-varying dynamics under actuation, are perfect substrates for RC.
Specifically these works (Li et al., 2012; Nakajima et al., 2013) show that the structure
of an octopus arm inspired soft robot can be exploited as a computational resource.

Self-organized criticality (SOC) is a property typically observed in slowly driven
non-equilibrium systems with many degrees of freedom and strongly nonlinear
dynamics (Bak, Tang, and Wiesenfeld, 1988), which naturally evolve towards a critical
point of phase transition between chaotic and non-chaotic regimes (Bertschinger and
Natschläger, 2004). Being close to this phase transition allows systems in which
complex computation is possible, as presented in Langton, 1990, where the authors
investigate the conditions that allow computation in Cellular Automata (CA). SOC is
also inherently connected to the separation property, used in Gibbons, 2010 for the
assessment of neural reservoirs, and it has been demonstrated by Brodeur and Rouat,
2012 and successfully by Heiney et al., 2019 for spiking neural networks, that the
regulation of a RC substrate towards SOC allows to obtain a more powerful reservoir.

In this work we suggest that self-organized criticality is responsible for guiding the
design of a soft robotic systems capable of complex and versatile behaviors, and we
provide a metric for self-organized criticality that estimates how close is the empirical
avalanches distribution (Bak, Tang, and Wiesenfeld, 1988) observed in a robot body
to a target power-law distribution, where we use a convenient representation for
the distributions based on the method explained in Clauset, Shalizi, and Newman,
2009. We consider the simulation tool for the optimization of 2-D voxel-based soft
robots described and validated in Medvet et al., 2020b; Medvet et al., 2020a, and
we let the EC find the body that maximize the SOC score, where the estimate of the
avalanches spatial extension is based on the approach presented in Heiney et al., 2019
for biological neural networks as RC substrate, and the fitness function is inspired
by the empirical estimate for evolving CA towards SOC done in Pontes-Filho et al.,
2020. We consider also other bodies, some of from Talamini et al., 2019, and some
others based on randomness, and we compare the adaptability of the bodies on three
different tasks.

6.3 Model

6.3.1 Voxel-based Soft Robot

We assume a discrete time physics model in which time scale through regular
intervals of time δt. Within this physics model, a voxel at time t is defined as
v(t) =

(
x, y, a(t), i(t)

)
∈ V, where V is the space of all possible voxels states, (x, y) ∈

{0, ngrid}2 are the 2-D coordinates of the voxel withing a grid of side ngrid, a(t) ∈
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[amin, amax] indicates the current ratio of the voxel area w.rt. its resting one, and
i(t) ∈ Rnsens is the list of inputs collected at time t from the nsens sensors.

We define a robot made of nvoxel voxels at time t as the pair p(t) =
(

p(t)
body, pbrain

)
,

where p(t)
body =

(
v(t)1 , . . . , v(t)nvoxel

)
⊆ Vnvoxel is a set of connected voxels at time t, and

pbrain : Vnvoxel ×Rnparam ×R 7→ Vnvoxel is the brain of the robot, defined by nparam

real-valued parameters list θ = (θ1, . . . , θnparam), such that p(t+1)
body = p(t)brain(p(t)body, θ, t)

provides a control signals for each voxel at a given time t, and actuates the body
accordingly.

A body of voxel voxels is connected if the following property holds ∀u ∈ {1, . . . , nvoxel},
such that:

∃v ∈ {1, . . . , nvoxel}, v 6= u : (|xu − xv| = 1∧ yu = yv) ∨ (|yu − yv| = 1∧ xu = xv)
(6.1)

We formalize the body initializer as a function φ : R2 7→ Vnvoxel , which given
the pair

(
ngrid, nvoxel

)
at time t = 0 initializes a body pbody, where we omit the time

reference for the sake of simplicity. For each voxel of pbody, it holds that its area ratio

at time t = 0 is initialized as resting, that is a(0) = 1, and its 2D coordinates (x, y) are
statically and uniquely defined.

Simulating the robot p(t) at each time t means applying the function pbrain to the
body p(t)

body, which updates its state at the next time t + 1 into p(t+1)
body .

6.3.2 Adaptability

A voxel of the robot p(t) is called active at time t if it satifsy the condition on the area
ratio |a(t) − a(t−1)| > τactive, where τactive it a dynamically computed threshold based
on nvoxel of robot p(t).

We define the spatial extension s ∈ {0, nvoxel} of an avalanche of a robot which
body is initialized by φ(nvoxel, ngrid) = p(0)

body, and is simulated for Tadapt time, as the

count of the voxels of p(0)
body active at least once from t = 0 to t = Tadapt, in which

pbrain actuates one voxel of the body with a pulse control signal at time t = 0.
By initializing and simulating from t = 0 to t = Tadapt the same body nvoxel times,

each time actuating a different voxel with a pulse control signal at time t = 0, it is
possible to collect an empirical avalanches distribution S , which is an approximation
of a theoretical one. Through the notion of self-organized criticality, we define the
degree of adaptability of a body, as the proximity of the corresponding avalanches
distribution S to a power-law αx−k, defined by parameters α, k, and independent
variable x. For an adaptable body, it holds that S ∼ αx−k, that is S is smpled from a
power-law distribution.

6.4 Experiments

6.4.1 Adaptability

Activity threshold

The design of the activity threshold τactive is extremely important for the correct
estimate of adaptability of a body, since some τactive do not even allow to satisfy the
adaptability condition.
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F I G U R E 6 . 1 : Polynomial fitting of the activity threshold τactive cor-
responding to the highest variance avalanches distribution for each

value of nvoxel.

F I G U R E 6 . 2 : Each plot shows nthr avalanches distributions obtained
with a different activity threshold τactive ∈ [τall

active, τone
active], given a ngrid

value.
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We call τone
active the value of activity threshold that produces always avalanches of

spatial extension 1, which means that only the voxels that are actuated with the pulse
are affected by the avalanches. On the other hand, we call τall

active the value of activity
threshold that produces always avalanches of spatial extension nvoxel, which means
that all the voxels are affected by the avalanches.

Ideally the optimal value of τactive is the one that produces the avalanches distri-
bution with the greatest variance for all the possible nvoxel values.

To meet this condition, we consider all the robots with square bodies initialized
with ngrid ∈ {nmin

grid, nmax
grid}, and where each body is made of nvoxel = n2

grid, and we
collect nthr avalanches distributions, each one corresponding to a different value of
τactive ∈ [τall

active, τone
active]. Each plot in Figure 6.2 show the resulting distributions for

a specific value of ngrid, where each distribution correspond to a different value of
τactive. As ngrid increases, the avalanches distributions with highest variance within
the plots in Figure 6.2 shift towards lower threshold values.

Among the nthr values of activity threshold, we pick one for each robot, corre-
sponding to the avalanches distibutions with the greatest variance, which results in
the list of pairs

(
((nmin

grid)
2, τ1

active), . . . , ((nmax
grid)

2, τnthr
active)

)
, which we represent as blue

dots in Figure 6.1. Given these dots, we perform a degree-two polynomial interpola-
tion, which provide us an empirical way to estimate the optimal activity threshold
for a givben body of nvoxel voxels, as τnvoxel

active = λ1 + λ2nvoxel + λ3n2
voxel.

Adaptability assessment

When we place the robots on the ground for assessing their adaptability, the impact
of external forces, i.e. gravity, might affect the simulation by introducing undesired
dynamics which have nothing to do with the avalanches estimate. In order to cir-
cumvent this problem, while avoiding to waste computational time waiting for this
dynamic to end, we simulate the robots in absence of gravity.

To assess the adaptability of a body pbody = φ(ngrid, nvoxel), we simulate the
robot for nvoxel times, each time for Tadapt time steps, with activity threshold τnvoxel

active,
and we collect the corresponding empirical avalanches distribution S . An empirical
distribution fits a power-law distribution if the log-log plot of this distribution is a line
with negative slope. Therefore we compute the log-log of S , which we call S ′, and
we fit it with a linear regression, that we call the underlying theoretical distribution Q.

We consider fdet : R|S|×|S| 7→ [0, 1], which computes the coefficient of de-
termination (Nagelkerke et al., 1991) from the distributions S ′ and Q, and the
fks : R|S|×|S| 7→ R, which computes the Kolmogorov-Smirnov statistic (Drew, Glen,
and Leemis, 2000), and we conclude that the degree of adaptability of the body that
has generated S is fadapt = (e− fks)2 + fdet ∈ [0, 2].

Adaptability optimization

We consider a population-based evolutionary algorithm, where each individual
phenotype is a robot body pbody = φ(ngrid, nvoxel), internally represented by its genotype

g ∈ [0, 1]n
2
grid .

The genotype-phenotype mapping function m : [0, 1]n
2
grid 7→ Vk, for each i-th ele-

ment of the genotype, if gi > τmap, places a voxel p(0)
body∪{v(0)(

i
ngrid

, i mod ngrid, a(0), i(0))}
in the body, where τmap is the mapping threshold

τmap = arg maxj

(∣∣∣⋃|g|i=1{gi > gj}
∣∣∣ ≥ nvoxel

)
.
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The fitness function is the value fadapt of adaptability of the body.
A population of npop individuals is randomly sampled, and evolved by means of

genetic operators, namely uniform crossover and gaussian mutation with probability
pmut, a tournament selection is applied with size ntourn, and the evolutionary loop is
repeated for niter iterations. We perform nrun experimental runs and we collect the
best performing body from each of them.

6.4.2 Validation

Controllers

We consider 2 controllers variants:

• Phase controller pphase
brain , is a stateless non-sensing brain, in which the control

signal is function of t and of the nparam = nvoxel parameters, each corresponding
to the phase of the sine wave applied to one voxel.

• Neural network controller pnn
brain, is a stateful sensing brain in the form of a

neural network with nvoxelnsens inputs, one hidden layer of 0.65nvoxelnsens neu-
rons and hyperbolic tangent activation function, and nvoxel outputs. The control
signal is function of t, of the nparam = 0.65n2

voxelnsens(1 + nsens) parameters of

the neural network, and of the inputs
(

i(t)1 , . . . , i(t)nvoxel

)
coming from each voxel

sensors at time t.

Tasks

We consider 3 tasks, where each one is defined within a different environment, by
its own length expressed in time steps, and by task-specific metrics used for the
assessment:

• Locomotion on a flat ground, in which each brain is evaluated upon the fitness
floc : R×R 7→ R, difference between the x-coordinate of the center of mass of
its body at time Tloc from the one at time t = 0.

• Jump, in which each brain is evaluated upon the fitness fjmp : R
Tjmp

δt 7→ R

maximum height reached w.r.t. the initial position of its body, considering the
trajectory along the y-axis of the center of mass from t = 0 to Tjmp, with a time
step δt.

• Escape from narrow environment, in which each brain is evaluated upon the
fitness fesc : R×R 7→ R, difference between the x-coordinate of the center of
mass of its body at time Tesc from the one at time t = 0.

Baselines

We consider a grid of size ngrid, and a desired number of voxels nvoxel, and we define
the following body initializer baselines:

• Pseudo-random initializer φps-rnd, which starts from generating an initial ran-
domly positioned voxel, and recursively adds a new voxel to the body in a
random position next to the most recently added one, until the number of
voxels in the body is nvoxel. This initializer often generates solid bodies (second
row in Figure 6.3), where all the voxels are close to each others.
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TA B L E 6 . 1 : Experiments parameters.

Description Parameter Value

Sim.
Minimum area ratio amin 0.75
Maximum area ratio amax 1.25
Time step length δt 0.1

Adapt.

Grid side ngrid 20
Voxels in a body nvoxel 20
Activity thr. all voxels τall

active 0.008
Activity thr. one voxels τone

active 0.00005
Threshold sampled nthr 11
Avalanche estimate time Tadapt 30
Population size npop 1000
Iterations niter 200
Mutation probability pmut 0.01
Tournament size ntourn 10
Experimental runs nrun 10
alpha1
alpha2
alpha3

Valid.

Locomotion assessment time Tlocom 20
Jump assessment time Tjump 20
Escape assessment time Tescape 40
Births nbirth 10000

• Random initializer φrnd, which iteratively creates new voxels with uniformly
sampled coordinates, until the number of voxels in the body is at least nvoxel.
This initializer often generates irregular bodies of unpredictable sizes (third row
in Figure 6.3), and these bodies exhibit on average higher adaptability w.r.t. the
ones generated with φpsrnd.

We consider also bodies manually initialized using the domain knowledge (fourth
row in Figure 6.3). The worm and the biped robots have been inspired by the results of
Talamini et al., 2019; Medvet et al., 2020a; Medvet et al., 2020b, while the box and revT
are some of the simplest body that can be manually designed. All these robots are
made of exactly nvoxel, and they all exhibit a low adaptability score.

Controller optimization

We consider an evolutionary algorithm based on a Covariance Matrix Adaptation
Evolutionary Strategies (CMA-ES) (Hansen, Müller, and Koumoutsakos, 2003), where
each individual phenotype represents the nparam parameters of a robot brain, and is
internally represented by its genotype g ∈ [0, 1]nparam.

The genotype-phenotype mapping is the identity function, and the fitness function
is one among ( floc, fjmp, fesc), depending on the specific task.

A number of individuals nbirth are sampled from a multivariate gaussian distri-
bution using CMA-ES, and evolved by means of genetic operators. We perform nrun
experimental runs, and we collect the best performing brain from each of them.
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F I G U R E 6 . 3 : Value of criticality for all the different bodies.
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F I G U R E 6 . 4 : Adaptability of the best performing individual of the
current population during niter evolutionary iterations among nrun

experimental trials.

6.5 Results

6.5.1 Adaptability

The configuration employed in this experimental campaign can be seen in Table 6.1.
The results of the nrun experimental runs for evolving the robot bodies towards
the adaptability condition can be seen in Figure 6.4. From these results it can be
seen that, despite the use of a dynamic activity threshold, there is still an intrinsic
boundary which prevents the evolution to find a body with maximum adaptability
value. However these bodies obtained from the evolutionary process, (first row in
Figure 6.3) have reached higher adaptability values than all the other baselines. By
looking at Figure 6.3, it seems that, despite being radically different, all these bodies
have all developed some limbs resembling arms or legs. This aspect is missing in all
the baselines, and is probably relevant for the higher adaptability score.
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TA B L E 6 . 2 : Validation results comparing the bodies optimized for
adaptability and the manually designed ones using a phase controller

pphase
brain . All the values in the table are multiplied by 103.

Locomotion Jump Escape Overall
Rank Body f ∗loc σ Body f ∗jmp σ Body f ∗esc σ Body fadapt

1 worm 6.31 0.6 opt-1 3.03 0.3 opt-2 1.64 0.4 opt-1 0.78
2 biped 5.96 1.3 biped 2.85 0.3 opt-6 1.20 3.2 biped 0.26
3 revT 4.44 5.2 box 2.50 0.4 opt-1 0.82 0.3 opt-9 0.75
4 box 4.41 1.0 worm 2.40 0.6 opt-9 0.79 0.1 worm 0.21
5 opt-1 2.54 0.2 revT 2.23 0.2 opt-8 0.75 0.1 revT 0.28
6 opt-4 2.41 0.6 opt-9 2.14 0.4 opt-0 0.73 0.1 opt-6 0.76
7 opt-9 2.33 0.6 opt-3 2.14 0.3 opt-7 0.67 0.1 box 0.17
8 opt-5 2.27 0.5 opt-6 2.03 0.4 opt-5 0.52 0.2 opt-2 0.77
9 opt-6 2.16 0.5 opt-5 1.69 0.3 opt-3 0.43 0.2 opt-5 0.78
10 opt-2 1.81 0.5 opt-0 1.58 0.2 opt-4 0.42 0.2 opt-4 0.77
11 opt-3 1.20 0.2 opt-4 1.57 0.3 revT 0.34 0.0 opt-3 0.79
12 opt-7 1.01 0.4 opt-7 1.46 0.1 biped 0.08 0.0 opt-0 0.78
13 opt-0 0.93 0.4 opt-2 0.79 0.0 box 0.04 0.0 opt-7 0.77
14 opt-8 0.72 0.1 opt-8 0.74 0.4 worm 0.04 0.0 opt-8 0.77

6.5.2 Validation

Manually designed baselines

In Table 6.2 we present the result of the validation of the bodies optimized towards
adaptability, where each i-th body is indicated as opt-i, and the manually engineered
ones, which we call worm, biped, revT, and box. These results are obtained by optimiz-
ing nrun possibly different phase controllers for each body considered, and for each
task. Specifically, the values of f ∗loc, f ∗jmp, and f ∗esc showed in this table represent the
median value of the best fitness value among the nrun experimental trials, for each of
the 3 tasks.

Considering only the results on the locomotion task, it is clear from the table 6.2
that the manually designed bodies, namely worm, biped,revT, and box, are actually
the 4 most effective ones, in terms of the value of f ∗loc they achieve. However, it can
be also seen from Table 6.2 that some of the manually designed bodies, while being
often extremely effective on a specific task, i.e. the worm robot is the best performing
one on the locomotion task, they might be slightly less performing or even the less
effective ones on other tasks, i.e. the worm robot is the least effective one considering
the value of f ∗esc measured on the escape task. Therefore we claim that the manually
designed robots are therefore hardly adaptable, and this is confirmed also by their
extremely low fadapt score.

To better understand this aspect, we compute the average ranking occupied by
each body, and we show the overall ranking on the rightmost part of Table 6.2, and
we use this value as a proxy for the validation of the adaptability. This ranking
suggests that the overall most adaptable body is therefore opt-1, thus confirming that
the approach proposed allows to generate adaptable robotic bodies.
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TA B L E 6 . 3 : Validation results comparing the bodies optimized for
adaptability and the randomly designed ones using a phase controller

pphase
brain . All the values in the table are multiplied by 103.

Locomotion Jump Escape Overall
Rank Body f ∗loc σ Body f ∗jmp σ Body fes σ Body f ∗adapt

1 rnd-4 3.02 0.9 rnd-5 3.37 1.0 psrnd-6 2.09 0.1 rnd-4 0.35
2 rnd-0 2.97 0.3 opt-1 3.03 0.3 psrnd-5 1.66 0.2 rnd-5 0.34
3 rnd-9 2.94 0.3 rnd-4 2.89 0.8 opt-2 1.64 0.4 opt-1 0.78
4 rnd-5 2.86 0.5 opt-9 2.14 0.4 psrnd-8 1.60 0.2 opt-6 0.76
5 opt-1 2.54 0.2 opt-3 2.14 0.3 psrnd-3 1.58 0.3 rnd-9 0.31
6 rnd-8 2.46 0.4 rnd-1 2.06 0.3 rnd-3 1.23 0.4 psrnd-6 0.26
7 opt-4 2.41 0.6 opt-6 2.03 0.4 rnd-4 1.21 0.2 opt-9 0.75
8 opt-9 2.31 0.7 rnd-0 2.00 0.5 opt-6 1.20 0.3 psrnd-5 0.28
9 opt-5 2.27 0.5 rnd-9 1.98 0.3 psrnd-2 1.16 0.1 rnd-0 0.28

10 opt-6 2.16 0.5 rnd-2 1.71 0.5 rnd-7 1.15 0.1 psrnd-8 0.29
11 psrnd-6 2.03 0.2 opt-5 1.69 0.3 rnd-5 1.07 0.3 opt-2 0.77
12 rnd-1 1.90 0.3 psrnd-5 1.66 0.2 psrnd-0 1.07 0.1 rnd-1 0.34
13 opt-2 1.81 0.5 rnd-8 1.62 0.1 psrnd-4 1.03 0.1 psrnd-3 0.22
14 psrnd-5 1.54 0.2 opt-0 1.58 0.2 rnd-9 1.02 0.2 opt-5 0.78
15 psrnd-1 1.47 0.1 psrnd-6 1.58 0.2 opt-1 0.82 0.3 rnd-8 0.34
16 rnd-6 1.46 0.4 opt-4 1.57 0.3 opt-9 0.79 0.1 opt-4 0.77
17 psrnd-3 1.42 0.2 psrnd-0 1.46 0.2 psrnd-7 0.78 0.0 opt-3 0.79
18 psrnd-8 1.35 0.2 opt-7 1.46 0.1 psrnd-1 0.77 0.0 psrnd-0 27
19 opt-3 1.20 0.2 psrnd-8 1.42 0.2 opt-8 0.75 0.1 rnd-3 0.30
20 rnd-2 1.17 0.4 rnd-3 1.39 0.4 opt-0 0.73 0.1 psrnd-2 0.19
21 rnd-7 1.13 0.1 psrnd-3 1.32 0.2 psrnd-9 0.70 0.1 rnd-2 0.35
22 psrnd-0 1.01 0.1 psrnd-2 1.24 0.1 rnd-0 0.69 0.2 psrnd-1 0.26
23 opt-7 1.01 0.36 psrnd-7 1.18 0.19 opt-7 0.67 0.1 rnd-7 0.26
24 psrnd-2 1.01 0.0 psrnd-1 1.12 0.2 opt-5 0.52 0.2 opt-0 0.77
25 rnd-3 0.98 0.4 psrnd-4 0.89 0.0 rnd-1 0.51 0.1 opt-7 0.77
26 opt-0 0.93 0.4 opt-2 0.79 0.0 rnd-2 0.43 0.1 psrnd-4 0.25
27 psrnd-4 0.78 0.1 rnd-7 0.77 0.2 opt-3 0.43 0.2 psrnd-7 0.13
28 opt-8 0.72 0.1 rnd-6 0.77 0.2 opt-4 0.42 0.2 rnd-6 0.38
29 psrnd-7 0.65 0.0 opt-8 0.74 0.4 rnd-6 0.32 0.2 opt-8 0.77
30 psrnd-9 0.58 0.0 psrnd-9 0.54 0.0 rnd-8 0.20 0.0 psrnd-9 0.45
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TA B L E 6 . 4 : Validation results comparing the bodies optimized for
adaptability with the manually designed ones, and the ones generated
with φrnd and φpsrnd, using a neural sensing controller pnn

brain. All the
values in the table are multiplied by 103.

Opt-vs-manual Opt-vs-random
Rank Body fadapt Body fadapt

1 opt-5 0.78 opt-5 0.78
2 opt-7 0.77 rnd-5 0.34
3 opt-1 0.78 opt-1 0.78
4 opt-6 0.76 opt-7 0.77
5 opt-9 0.75 psrnd-0 0.28
6 opt-4 0.77 psrnd-9 0.46
7 worm 0.22 psrnd-1 0.26
8 opt-8 0.76 opt-6 0.76
9 revT 0.28 psrnd-5 0.28
10 biped 0.26 opt-9 0.76
11 opt-2 0.78 rnd-2 0.35
12 box 0.17 opt-4 0.77
13 opt-0 0.78 rnd-4 0.35
14 opt-3 0.79 psrnd-8 0.30

Adaptability approximation through randomness

Despite the promising results of the proposed strategy for optimizing body adaptabil-
ity, the evolution towards self-organized criticality is a resources intensive process.
Seeking for obtaining similar results with a less expensive approach, we consider two
different body initialization algorithm based on randomness, namely φrnd and φpsrnd,
resulting respectively into the i-th body rnd-i, and psrnd-i. The results presented
in Table 6.3 show that these two initialization strategies produce highly adaptable
bodies. In particular, the φrnd generates bodies which in the case of rnd-4 and rnd-5
outperform even the ones evolved towards self-organized criticality, in terms of
overall ranking. Looking at the Figure 6.3 we can see that these bodies on average
show higher adaptability score w.r.t. the ones generated with φpsrnd, which is indeed
not as effective for generating adaptable bodies.

Neural sensing controller

We then further investigate the limitations of the proposed method based on the
phase controller, by repeating the same validation process with a sensing controller
pnn

brain based on an artificial neural network. This control variant allows the robots to
take even more advantage of the body complexity, by providing a number of sensors
distributed through the body, and therefore it might privilege the most irregular
bodies. In Table 6.4 we show the overall robots ranking, where in the first part of the
table the values comes from considering the bodies resulting from optimization and
the manually designed ones, and in the second part we compare the adaptable bodies
and ones generated by means of φrnd and φpsrnd. Looking at the results presented in
Table 6.4 they support this claim, by showing that almost each i-th adaptable body
opt-i is more adaptable than the manually designed ones. From the results showed in
Table 6.4 it seems also that one of these bodies, namely opt-5, successfully elaborates
the data collected by the sensors distributed through its body, allowing to reach the
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highest ranking. This final result might suggest that the initializers φrnd and φpsrnd
are slightly less powerful when distributed sensing is employed.

6.6 Conclusions

In this work we have proposed an approach for measuring the adaptability of a
soft robotic body towards different tasks, based on the definition of self-organized
criticality. To this extent have proposed an algorithm for guiding the automatic design
of adaptable soft robotic bodies by means of EC. We have then validated the resulting
bodies on three tasks requiring different skills, against some manually designed
bodies inspired by previous works, using a simple non-sensing control algorithm. The
results show that this approach results into more adaptable robots, w.r.t. the manually
crafted ones. Motivated by the computational cost of this optimization, we have
considered other design algorithms based on randomness, which on the contrary are
not computationally expensive, and allows to produce even more adaptable bodies.
Finally we have repeated the validation process, now considering a sensing controller
variant, which allows the bodies optimized for adaptability to leverage the body
complexity. Provided with distributed sensing, these bodies reach the highest overall
ranking w.r.t. any baseline.





85

Chapter 7

Assessing Actors in the Academic
Publishing System

When it comes to analyze scientific production, some measurable quantities can be
considered good proxies for understanding other non-measurable ones, whereas
some other measurable quantities may not be a good choice. H-index and Impact
factor are measurable quantities used to explain, respectively, the quality of an author
and the quality of a journal. Are H-index and Impact factor good proxies? We
investigate these research questions by designing a simulation of a simple scientific
scenario that we let evolve over time, and we consider different strategies for authors
and editors. In this simulated scenario we show that H-index seems to be a good
predictor of an author quality, whereas the Impact factor as well as the number of
papers published by a journal are not good predictors of the quality of that journal,
except when a mild—but not too strict—scrutiny is applied by the editor.

7.1 Introduction

The results and the impact of a paper could be in practice be biased by a series of
Questionable Research Practices (QRPs), i.e., a series of design choices, data, analysis,
or results that should not be produced. These practices make the results of the papers
in which they are employed impossible to be reproduced, and therefore invalidate
their findings, and undermine their authors credibility. Regarding the problem
of authors employing QRPs, the work by Agnoli et al., 2017 showed, through an
extensive survey, that this kind of behavior could be generalized to different countries.

The peer review process is considered an important phase in the publication of an
article, and ideally it is necessary to ensure the quality of a paper. Unfortunately the
actors involved in this process may express a biased judgment, motivated by unethical
reasons, like increasing the prestige of the program committees or the editorial
boards in which they are involved or, in the case of publishers, the opportunity to
make greater profit. Computer-generated published papers have been detected by
Springer and IEEE in the past years (Van Noorden, 2014), thus proving that it is
therefore possible to publish fake researches. In the age of AI, Bartoli et al., 2016 have
investigated the feasibility of automatic generation of fake scientific reviews. This
strategy allows the researchers to produce reviews without even reading the papers
they should base the reviews on, and thus being involved in as many reviewing
committees as possible, and it allows predatory publishers (Herron, 2017) to improve
their credibility by sending many reviews to the authors.
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7.2 Related work

Some publications have had a huge impact on the progress of sciences, and they have
dramatically changed the direction of the future scientific researches. The value of
these works has been recognized by most researchers and their authors have been
awarded for their discoveries. Unfortunately these works are very few and distinct
ones, while the majority of the other papers brings more limited innovations, and
they represent a valuable contribution for only groups of researchers of a specific
field Hirsch, 2005.

A fair and reliable metric for evaluating research papers impact and relevance for
author belonging to the second category is therefore required (Hirsch, 2005). This
quantification is necessary when more researchers have to be compared for university
faculty recruitment and advancement, award of grants, etc. This quantification of
the published papers might work as a proxy for evaluating also the authors who
have produced those papers, and the journals who have published them as well.
Specifically the authors are evaluated for the quality of the papers they have produced,
and the journals are evaluated according to the quality of their published papers.

The necessity of finding the most suitable bibliometric indicators for scientific
researches assessment has become even more relevant due to the growth of scientific
literature in the last decades (Bornmann and Mutz, 2015).

7.2.1 Authors indicators

Many author-level bibliometric indicators have been proposed over time, as the
demand of quantitative tools for assessing individual authors has increased during
the last years.

A bibliometric index widely used for assessing the research output of individual
authors is the well-known H-index, defined as the number of papers that have
received as many citations as that number Hirsch, 2005. This index captures both the
productivity of an author and the citation impact of his/her papers, irrespective of
the publication venue of those papers and of the citing ones.

One obvious potential drawback of the H-index is that an highly productive
author may strive to cite his/her own papers systematically: a moderate amount
of papers with carefully chosen self-citations may boost the H-index of an author,
irrespective of the actual quality of both the citing and cited papers. Indeed, the very
same proposal by Hirsch, 2005 suggests to exclude self-citations from the computation
of citations used for determining the H-index of an author.

Van Raan, 2006 has made a comparison between the H-index (and few other
bibliometrics measures) and the peer reviewers judgment, received by the scientific
output in the period 1991–2000. The individual results have been grouped w.r.t.
the research group, i.e. university department they belong to, and the citations
were limited to 3 a years window, instead of the entire lifetime. The results of this
comparison have showed that H-index is indeed a reliable way to measure the peers
judgment.

An overview of the existing bibliometric measures has been done by Todeschini
and Baccini, 2016, where the authors have presented all the known bibliometric
indicators in an encyclopedic form. Another significant work in this area is Wildgaard,
Schneider, and Larsen, 2014, that has reviewed 108 indicators for evaluating the
performances of scientific authors, by focusing on the ease of use of indicators as
well as on the complexity of their calculations in relation to what they are supposed
to reflect. An important contribution by the cited work is the distinction between
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indicators that qualify the research output (on the author and on the publication
venue) and indicators that measure the effects of output on the other researchers over
time, that is the number of citations received.

Many criticisms have been made toward the practice of assessing authors mainly
or solely by means of bibliometric indicators (Ruocco et al., 2017), including the fact
that indicators may be used in a way that does not reflect their actual meaning, e.g.,
(Hicks et al., 2015; Corrall, Kennan, and Afzal, 2013; Barnes, 2017).

In this respect it has also been observed that the web and academic search engines
have radically changed the behavior of researchers including, in particular, the choice
of which papers to cite. Such choice is increasingly based on ease of access and
discoverability by search engines, which may be loosely related to the actual quality
of a paper, thereby making the practice of using the number of citations as a proxy
for quality less justified (Bartoli and Medvet, 2014).

Another potential drawback of assessing authors by means of their bibliometric
indicators, that is particularly relevant for our work, is that authors may modify
their behavior in order to optimize those indicators at the expense of other features
more tightly linked to the real quality of a research output, e.g., rigor, accuracy, and
depth of the reviewing process of a publication venue. An important analysis in this
respect has been provided by Baccini, De Nicolao, and Petrovich, 2019. The cited
work defined a new inwardness indicator for a country, as the proportion of citations
coming from authors in the same country, over the total number of citations gathered
by the papers produced in that country. Through a comparative study on all the G10
countries in the period 2000–2016, this study has revealed that Italy was the country
with the highest inwardness value. The key point is that this trend has started in
the period 2011–2012, that is, exactly when new national regulations for personal
careers of academic researchers introduced necessary conditions based mainly on
the comparison between certain bibliometric indicators and a predefined threshold
(Peroni et al., 2020).

7.2.2 Editors indicators

A key bibliometric index for scientific journals is the impact factor, defined as the ratio
between the number of citations received, and the number of papers published in a 2
years window (Garfield, 1972). This quantitative index is widely used as a proxy for
the scientific quality of the corresponding journal. It is often used also for quantitative
assessment of research outputs by individual authors, on the assumption that all the
papers published on a given journal are of the same the quality, as captured by the
journal impact factor. Amin and Mabe, 2004; Andrés, 2009 analyzed the common
usages of the impact factor and provided suggestions for preventing or mitigating
the effects of its misuse.

In this respect, it is important to consider that the distribution of citations across
papers in the same journal is highly skewed, and that this property holds regardless
of the impact factor of that journal (Seglen, 1992), and therefore it follows that the
impact factor of a journal is not representative of the quality of the individual articles.

Irrespective of the actual relation between impact factor of a journal and quality
of the corresponding papers, the former has become a crucial tool for many academic
communities (Ellegaard and Wallin, 2015) and it is important to remark that this fact
has contributed to shape the behavior of both authors and journal editors accordingly.

On one hand, the use of journal-level bibliometric indicators has increasingly be-
come a crucial element that authors use for choosing where to submit their manuscripts
(Huggett, 2013). On the other hand, editors have started considering the improvement
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of a journal impact factor an essential part of their editorial duty (Shanta, Pradhan,
and Sharma, 2013). Editors may use several strategies, such as publishing an annual
editorial referencing numerous articles published in the same journal in recent years
or declining categories of publications that are unlikely to be cited (Huggett, 2013).
Another strategy consists of requests asked by the editor during the reviewing process
that make no suggestions to specific parts of a manuscript that need to be improved
or papers that need to be cited, but only guide authors to add citations to papers in
the journal handling the submission. This phenomenon of coercitive citations appears
to occur in different scientific areas (Wilhite and Fong, 2012).

The relationships between actors of the publishing system w.r.t. the bibliometric
indicators have been studied through models designed with the aim of capturing
the mechanisms of the real academic system. With this concern in mind, Milojević,
2014 have presented a statistical model that showed the scientific research evolution
through time, in which it was possible to investigate the difference in the growth of
researchers groups in the different fields of science during the last decades. Other
models of academic system have been made by Fortunato et al., 2018; Zeng et al.,
2017, in which the authors have analyzed scientific and bibliometric data through
network theory, in order to capture the trends in the evolution of science. These
models could—as suggested by their authors—be used for improving the scientific
enterprise and careers, for better performance evaluation of the productions, for
discovering novel effective funding vehicles, and even for identifying promising
research groups.

7.3 Model

7.3.1 Overview of the model

We model the academic publishing system as a discrete-time stochastic system where
two kinds of actors, authors and editors, take actions in order to deal with two kinds of
resources, papers and journals. Authors write papers and submit them to journals for
publication. Editor are associated with journals and decide which papers submitted
to their journal are to be published. The sets of authors, editors, and journals is
defined statically.

We associate each paper with a numerical index that quantifies its scientific quality.
We consider quality as an abstract notion, that is, we leave the features of a paper
that influence its quality unspecified. We also associate each author with a numerical
index, the author quality, that determines the quality of the papers produced by that
author: the quality of a paper is drawn from a normal distribution parametrized by
the author quality (for simplicity, we assume that each paper has a single author). We
assume that author quality and paper quality do not change over time.

At each time step, each author can either submit the paper he/she is working on
to a journal or write a new paper. Whenever a paper is submitted to a journal, the
editor associated with that journal can either accept or reject the paper. Each paper
is statically associated with (a) a number that quantifies its quality, and (b) a set of
references, i.e., the papers cited by this paper. The papers in the set of references
are selected at random, with the probability of selecting a paper proportional to the
product of its quality and its recency.

In the following sections, we describe in details actors and resources involved
in the model and how the system evolves over time. Moreover, we describe the
bibliometric indexes that can be used to assess the state of the model.
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7.3.2 Actors and resources

The system includes a set A of authors, a set P of papers, a set J of journals, and a set
E of editors.

An author a ∈ A is defined by its quality qA(a) ∈ [0, qmax] and by its working
paper pA(a) ∈ P: the quality of an author do not change over time, whereas the
working paper may change. The quality of an author determines the quality of the
working paper, as specified in the next section.

A paper p ∈ P has the following attributes: author aP(p) ∈ A ∪ {∅} (where
aP(p) = ∅ means that p has no authors); quality qP(p) ∈ [0, qmax]; set of references
C(p) ∈ P(PW), i.e., set of papers cited by p (where PW = {p ∈ P : y(p) 6= ∅}
is the set of published papers) number of rejections rP(p) ∈ N; publication year
y(p) ∈N∪ {∅} (where y(p) = ∅ means that p is not published). Quality of a paper,
author, set of references do not change over time, while number of rejections and
publication year may change over time.

A journal j ∈ J has the following attributes: number of rejections rJ(j) ∈N; set of
published papers W(j) ∈ P(PW). Both attributes may change over time.

Finally, an editor e ∈ E has a single attribute, that is the journal jE(e) ∈ J he/she is
responsible for. This attribute does not change over time.

7.3.3 Bibliometric indexes

We consider three bibliometric indexes that are actually used for research assessment
and apply them in our model.

For the assessment of authors, we consider the h-index (McDonald, 2005), com-
puted for an author a as:

H(a) = max
i∈N

min (|{p ∈ PW : C(p) 3 pa,i}|, i) (7.1)

where (pa,1, pa,2, . . . ) is the sequence of papers published by a (i.e., such that aP(p) = a
and y(p) 6= ∅) sorted by decreasing number of citations. We remark that in our model
the h-index of an author can never decrease over time.

For the assessment of journals, we consider the impact factor and the acceptance
rate. Given a journal j, its acceptance rate is computed as:

AR(j) =
|W(j)|

rJ(j) + |W(j)| (7.2)

Given a journal j, its impact factor is computed as:

IF(j) =
∑p∈P0

|C(p) ∩ Pj,−1 ∩ Pj,−2|
|Pj,−1|+ |Pj,−2|

(7.3)

where P0 = {p ∈ P : y(p) = y} is the set of papers published at the current year y
and Pj,−k = {p ∈ W(j) : y(p) = y− k} is the set of papers published by journal j
at year y− k. In other words, the impact factor is the ratio between the number of
citations received this year by papers published by the journal in the last two years
and the numbers of papers published by the journal in the last two years.
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7.3.4 System evolution

The system starts at time t = 0 with sets A, J, E, P for authors, journals, editors, and
papers, respectively. The initialization of these sets is described later. Then, the
system evolves as follows, depending stochastically on the actions of authors and
editors.

At each time step, each author has a working paper and takes an action based on a
specified author policy. There are 1 + |J| possible actions, that may be “rewrite” (i.e.,
start working on a new paper) or “submit working paper to journal j” (“submit to j”
in brief).

The “rewrite” action consists in removing the current working paper from P and
creating a new working paper pA(a)← p. The attributes of p are set as follows: no
publication year (y(p) = ∅); zero rejections (rP(p) = 0); paper quality randomly set
as qP(p) ∼ N(qA(a), σ), that is, sampled from the normal distribution parametrized
with mean qA(a) (the author’s quality) and variance σ, where σ is a model-wise
parameter; set of references C(p) composed of ncit papers obtained by randomly
sampling PW with a probability of taking a paper p′ proportional to the product of its
quality qP(p′) and recency 1

max(1,(y−y(p′))3)
, where y =

⌊ t
10

⌋
is the current year—ncit is

a model-wise parameter.
The “submit to j” action triggers the immediate execution of an action by the

editor of j. The actions available to an editor are either “accept” or “reject” and the
editor selects the action based on a specified editor policy.

The “accept” action consists in publishing the corresponding paper p. That is, the
paper publication is set to the current year (y(p)← y), the journal set of published
papers is updated by including p (W(j)← W(j) ∪ {p}). Execution of this action also
provokes the creation of a new working paper for the corresponding author a.

The “reject” action consists in increasing the number of rejections of both the
paper (rP(p)← rP(p) + 1) and the journal (rJ(j)← rJ(j) + 1).

We defined several different author policies and editor policies and analyzed the
corresponding system evolution for a number of different combinations. We focused
our analysis on the point of view of authors (evolution of h-index), of editors (evolu-
tion of journal impact factors), and of the publishing system as a whole (evolution of
the overall quality of published papers). We considered only scenarios with the same
policy for all the authors and the same policy for all the editors.

We considered two kinds of policies: static policies, that model simple yet repre-
sentative behaviors of actors of the academic publishing system, and learnable policies,
that are obtained by optimizing two template policies in order to achieve realistic
goals of actors.

We defined all policies in such a way that authors are not aware of editor policies
and vice versa. In other words, the behavior of authors is not influenced by the
knowledge of how editors decide whether to accept a given submission. Similarly,
editors are not aware of author policies, i.e., of the reason why an author has chosen
to submit to a specific journal.

Static policies

As static policies for the authors, we considered the following two policies:

• Random. If the number of rejections of the working paper is greater than a
specified system-wide threshold τr, then the action is “rewrite”. Otherwise, the
action is “submit to j” and j is chosen randomly with uniform probability in J.
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• Minded. The action is always “submit to j” and j is chosen as follows. First,
all journals are sorted according to their IF and grouped in nbin bins, each bin
containing

⌊
|J|

nbin

⌋
journals. Then, the k-th bin is selected based on the working

paper quality and its number of rejections, as k = min
(

1,
⌊

qP(p)
qmax

⌋
− rP(p)

)
.

Finally, the journal j is chosen randomly with uniform probability in the k-th
bin.

The Random policy models the behavior of authors that are not interested in the
bibliometric indexes associated with journals: authors keep on trying to have their
current working paper published on some journal and give up after too many re-
jections. Furthermore, with this policy, authors do not take into account the quality
of their papers in any way. The Minded policy instead models a scenario in which
authors are aware of the quality of their papers and attempt to exploit this knowledge
for publishing on journals with better bibliometric indexes. The choice of the journal
where to submit a given paper is made by matching the paper quality to the journal
IF, in terms of relative, discrete ranking.

As static policies for the editors, we considered the following three policies:

• Accept-everything. The action is always “accept”.

• Mild-scrutiny. Given the paper p submitted to the journal j, the action is “accept”
if qP(p) ≥ q̄25 %(j) and “reject” otherwise, where q̄25 %(j) is the first quartile of
the quality of the papers W(j) published by j.

• Improve-only. Given the paper p submitted to the journal j, the action is “accept”
if qP(p) ≥ q̄50 %(j) and “reject” otherwise, where q̄50 %(j) is the median quality
of the papers W(j) published by j.

The Accept-everything policy does not take into account the quality of published
papers in any way. The Mild-scrutiny policy models a behavior of editors that
determine the quality of a submitted paper and accept a submission only if its quality
is not exceedingly low with respect to the quality of the papers already published.
Improve-only is similar to Mild-scrutiny, except that editors are only willing to
publish papers that may improve the overall quality of the set of published papers.

Learnable policies

Concerning the learnable policies, we cast our model as a reinforcemente learning (RL)
problem where the goal is to optimize a template policy for maximizing an objective
function. The objective function for authors is the h-index while the objective function
for editors is the impact factor. The template policy wraps a RL policy that takes an
action in the set {↑, ↓,©}. The RL policy is described at the end of this section.

The template policy for authors is the same as the Minded static policy, except
that the choice of the bin k of the journal ranking is based on the ambition α(a) of the
author a, i.e., k = α(a). The ambition α(a) ∈ {1, . . . , nbin} is part of the state of the RL
agent associated with the author a. The RL agent takes an action at each time step
and α(a) is incremented, decremented, or kept unchanged depending on the action
selected by the RL policy, ↑, ↓, and©, respectively.

The template policy for editors is the same as the Mild-scrutiny policy, except that
the quality threshold over the distributions of already published papers for deciding
whether to accept a submission is not specified statically: it is instead based on the
selectivity β(e) of editor e. The selectivity β(e) ∈ {1, . . . , nbin} is part of he state of the
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RL agent associated with the editor e. The RL agent takes an action at each time step
and β(e) is incremented, decremented, or kept unchanged depending on the action
selected by the RL policy, ↑, ↓, and©, respectively—we remark that the editor may
take zero or more actions at each time step, whereas its corresponding RL agent takes
exactly one action at each time step.

Finally, the RL policy is obtained by means of Q-learning (Watkins and Dayan,
1992) and represented in a tabular form with different information available to authors
and editors, as follows. For authors, the available knowledge is α(a), qP(pA(a)), rP(pA(a)),
i.e., current ambition, quality of the current working paper, and number of re-
jections of the current working paper. For editors, the available knowledge is
β(e), IF(j), |W(j)|, i.e., current selectivity, current impact factor of the journal, and
current number of published papers.

We remark that the template policies are sufficiently expressive to model realistic
and interesting behaviors. For example, authors might always keep a low ambition
and submit their papers to journal with a low impact factor, regardless of the paper
quality, or the opposite. Editors might increase or decrease selectivity based on the
number of published papers, the impact factor, or both.

7.3.5 Model initialization

The model must be initialized with non-empty sets J, P, A (set E is implicitly specified
by J). The size of these sets is a parameter. The content of P determines the initial
IF of each element of J. We assume that, initially, each author has not published any
paper. In order to initialize the model, thus, we need to select the quality of authors
and, for each published paper, its quality, set of references and journal where the
paper is published.

We assume that both the quality of authors and the quality of published papers
is described by a power law distribution parameterized by (θ, k): intuitively, many
authors and papers with low quality, few authors and papers with very high quality.
The quality of authors and of papers are determined by sampling that distribution.
For assigning a paper to a journal at initialization, we used a procedure aimed at
obtaining, just after the initialization, a distribution of the (rounded) impact factors
which resembles the real one, as measured in 2018 (see Figure 7.1). In particular,
for each paper p being generated, we (1) compute the |J| different IF distributions
obtainable by adding p to each journal j ∈ J and (2) actually add p to the journal for
which the resulting distribution is the closest to the real IF distribution according to
the Euclidean distance.

7.4 Experiments

We considered scenarios with NA = 100 authors, NE = 20 editors and N0
P = 1000

initial number of papers. The simulation length was ymax = 20 years, with every year
taking 10 time step. We analyzed 8 different scenarios corresponding to different
combinations of policies for authors and editors, as follows.

• Initially, we executed a suite of 4 simulations, one for each combination of the
two policies Random, Minded for authors with Improve-only, Mild-scrutiny for
editors.

• Then, we executed 2 further simulations with policies based on reinforcement
learning: RL editor with Minded author and Improve-only editor with RL
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F I G U R E 7 . 1 : Impact factor distribution in 2018 according to Scimago.

TA B L E 7 . 1 : Predefined parameters

Parameter Meaning Value

NA Number of authors 100, 1000
NE Number of editors 20, 40
nref Number of references in each

paper
10

θ Power law domain maximum 5
k Power law slope 1.5
σ Author variance 1
Q̄P Maximum value for p-quality 15
N0

P Initial number of accepted pa-
pers

1000, 10000

k, u Author intrinsic quality
params.

ymax Simulation last year 20
qmax Maximum paper quality 15
Imax Maximum impact factor 20
nrejects Maximum number of rejects 10
nbins Number of bins 10
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Mild-scrutiny editor - random author

F I G U R E 7 . 2 : Experimental results with NE = 20 editors employing
the mild-scrutiny policy and NA = 100 authors employing the random

policy, and with N0
P = 1000 initially published papers.

author. We chose these two specific combinations after analyzing the results of
the first set of simulations.

• Finally, we executed 2 further simulations: Improve-Only-Minded and Mild
Scrutiny-Minded with greater parameter values: NA = 1000 authors, NE = 40
editors, N0

P = 10000 initial number of papers.

For each scenario, we analyzed a number of different indexes and their evolution
across time. We describe each scenario by means of a figure containing a set of
diagrams arranged as a grid, as follows (please refer to Figure 7.2). Each column
corresponds to a specific analysis while the first five rows correspond to snapshots
taken at years 1, 4, 8, 12, 15 and 20, respectively. In detail, the first four columns plot
distributions: paper quality, author h-index, journal impact factor, journal acceptance
rate; the fifth column plots the number of published papers by each journal; the
remaining columns provide relations between pairs of indexes: h-index vs. author
quality (one point for each author), impact factor vs. quality of published papers,
number of published papers vs. quality for journals, acceptance rate vs. quality of
published papers for journals. Finally, the last row provides the time evolution of the
following indexes: average value of distribution across time, for the first five columns;
correlation between the pair of indexes, for the remaining three columns.

7.5 Results

7.5.1 Empirical findings about the authors

A key finding is that there is a strong correlation between author quality and h-index
in all the scenarios that we considered (column 6, H-Q authors in Figure 7.2 through
Figure 7.9). Thus, according to our model, using h-index as a proxy for estimating
author quality is justified. It is important to emphasize, though, that our model
embeds the assumption that the choice of references is indeed biased by the quality
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Mild-scrutiny editor - minded author

F I G U R E 7 . 3 : Experimental results with NE = 20 editors employing
the mild-scrutiny policy and NA = 100 authors employing the minded

policy, and with N0
P = 1000 initially published papers.

Improve-only editor - random author

F I G U R E 7 . 4 : Experimental results with NE = 20 editors employing
the improve-only policy and NA = 100 authors employing the random

policy, and with N0
P = 1000 initially published papers.
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Improve-only editor - minded author

F I G U R E 7 . 5 : Experimental results with NE = 20 editors employing
the improve-only policy and NA = 100 authors employing the minded

policy, and with N0
P = 1000 initially published papers.

Mild-scrutiny editor - Minded author [Big Exp]

F I G U R E 7 . 6 : Experimental results with NE = 40 editors employ-
ing the mild-scrutiny policy and NA = 1000 authors employing the

minded policy, and with N0
P = 10000 initially published papers.
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Improve-only editor - Minded author [Big Exp]

F I G U R E 7 . 7 : Experimental results with NE = 40 editors employ-
ing the improve-only policy and NA = 1000 authors employing the

minded policy, and with N0
P = 10000 initially published papers.

RL editor - minded author

F I G U R E 7 . 8 : Experimental results with NE = 20 editors employing
the RL policy and NA = 100 authors employing the minded policy,

and with N0
P = 1000 initially published papers.
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Mild-scrutiny editor - RL author

F I G U R E 7 . 9 : Experimental results with NE = 20 editors employing
the mild-scrutiny policy and NA = 100 authors employing the RL

policy, and with N0
P = 1000 initially published papers.

of references themselves. This assumption has been often criticized in the literature,
on the grounds that the choice of references may be influenced by several additional
factors that have little to do with the intrinsic quality of those references, such as, e.g.,
discoverability by search engines and research trends.

Investigating further the impact of the authors policy on the overall system
evolution, in the scenarios in which the authors employ respectively the random and
the minded policy, it seems that there are few major qualitative differences in the
experimental results, that we briefly present here. The first main difference is that
if the authors employ the random policy (Figure 7.2, and Figure 7.4), it holds that
the resulting published papers distribution is uniform w.r.t. the journals. In other
words each journal is as likely as the others to publish a paper, regardless of its impact
factor, past published papers, and even regardless of its editor policy. Otherwise if
the authors employ the minded policy (Figure 7.3, and Figure 7.5), this leads to a
published papers distribution such that few journals are responsible for most of the
published papers, while the majority of the journals publish few, or even no paper at
all.

The second main difference is that when each author submits its papers to random
journals, as it occurs in Figure 7.2 and Figure 7.4, it holds that the mean published
papers quality is anti-correlated with the journals acceptance-rate. Each editor often
ends up rejecting papers submitted to its journal, especially when applying a strict
scrutiny like in Figure 7.4, thus decreasing its journal acceptance-rate, and then
resulting in overall higher published papers quality. On the other hand, if the authors
employ the minded policy, like in Figure 7.3 and Figure 7.5, each journal mean
published papers quality is loosely correlated with its acceptance-rate w.r.t. the
submissions received, and this correlation decreases as the editors employ a more
strict policy, from Figure 7.2 to Figure 7.4.
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7.5.2 Empirical findings about the editors

In this paragraph we consider the impact of the editors policy on the experiments
outcome. To do so we compare the experimental results in which the editors employ
different scrutiny severity, given the same policy employed by authors.

The main finding that we present here is that the evolution over time of the
published papers quality distribution seems to be affected mostly by the editors policy,
and more specifically depending on the scrutiny employed. In particular, for all the
scenarios in which the editors employ a strict scrutiny (Figure 7.4, Figure 7.5, and
Figure 7.7), the number of published papers decreases over time, and the published
papers quality distribution changes from the initial power-law distribution, to look
like a Gaussian distribution with mean value close to the center of the papers quality
range qmax

2 . On the other hand, if the editors employ a not too strict scrutiny (Figure 7.2,
Figure 7.3, Figure 7.6), it can be observed that the mean published papers quality
of a journal is a good predictor of its impact-factor. This result suggests that the
impact-factor of a journal is almost never a good proxy for its mean published papers
quality, except in specific scenarios in which the editors employ a mild scrutiny policy.

7.5.3 Empirical findings about the learnable policies

In this last section we consider the outcome of the experiments in which the actors
policies are optimized by means of RL. From all the results discussed so far it seems
that there is no strong correlation between the number of papers published by a
journal and its mean published papers quality. Surprisingly, the only scenario in
which the number of papers published by a journal is highly correlated to the quality
of that journal, is the one in which the authors employ the learnable policy, as showed
in Figure 7.9.

Moreover it seems that H-index optimization and impact-factor optimization are
conflicting objectives, at least as far as concern the correlation between the journals
mean published papers quality and their impact-factor. Specifically, by looking at the
results at the end of the training in Figure 7.9, where each author goal is to optimize
its H-index, it seems that the published papers quality is not a good predictor of the
journals impact-factor. This means that having the editors employing a not too strict
scrutiny is a necessary—but not sufficient—condition for allowing the correlation
between the mean published papers quality of a journal and its impact-factor. In
other words, even if the editors employ a not too strict policy, and the authors aim at
improving their H-index, the authors resulting behavior opposes to the correlation
between journals impact-factor and their mean published papers quality. Otherwise
if the editors employ the learnable policy, and the authors employ the minded policy,
like in Figure 7.8, the correlation between the journals impact-factor and their mean
published papers quality at the end of the training is high.

To sum up this last finding, it seems that when actors employ the learnable policies,
the authors decrease the correlation between impact-factor and mean published
quality, in order to improve their H-index, whereas the editors increase this correlation
when aiming at improving their impact-factor.

7.6 Concluding remarks

A correct assessment of the scientific production is extremely important for the
progress of knowledge, but it is at the same time a challenging problem. To this
extent we have considered a model of the publishing system, in which the scientific
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actors assessment is done using some measurable quantities, that act as proxies
for other non-measurable ones. We have investigate the suitability of the currently
used indicators, namely H-index and Impact factor, which are respectively used for
measuring the quality of authors and journals. We have simulated the evolution of
the publishing system, where the actors are provided with predefined strategies and
learnable ones as well. The experimental results show that H-index is indeed a good
indicator, since its fairly represent its author non-observable quality. On the other side,
the Impact factor seems in general not as good as a predictor of the non-observable
quality of its journal. However, if the editors employ a mild scrutiny on the submitted
papers, the consequent journals Impact factor seems to be meaningful of the quality
of those journals.
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Chapter 8

Concluding Discussion

8.1 Research Questions

8.1.1 Answering Research Question 1

Which is the optimal language expressiveness for learning the most effective and efficient
behaviors in a cooperative multi-agent RL?

To answer this research question, we have considered a cooperative multi-agent
scenario, in which all the agents must learn to communicate in order to succeed at
the game. Specifically, each agent must learn to recognize its own target from what it
hears, to move toward that target, and finally to communicate useful information to
guide the other agents.

In Chapter 2 we showed that the optimal language expressiveness is the one that
can be obtained when the vocabulary size, that is the number of words that can be
produced, is close to the product between number of agents and number of targets,
which are all the entities within the game. In other words a vocabulary size smaller
than this value defines a language that is not expressive enough for that problem
complexity. On the other side, a vocabulary size bigger than this number allows
too many words to be generated, thus making it difficult for the RL to explore the
resulting larger search space, and thus negatively affecting the learned policies.

While these results present an approach for correctly designing a language that
allows the agents to optimally learn to communicate in this simple game, there are a
few limitations that we are aware of, and that we briefly list here:

• The form of communication defined in Chapter 2 allows only one-hot words to
be uttered. Despite simplifying the communication learning, this design choice
limits the number of words that can be expressed with a fixed vocabulary size.
An interesting aspect that might be worth to investigate is the possibility to
allow more words, by removing the constraint of them being one-hot, and then
measuring the effectiveness and efficiency of the policies learned through RL
with an increasingly limited vocabulary size.

• Another aspect that might limit the scope of these results is that the communica-
tion in Chapter 2 is broadcast by design. It might be interesting to extend these
results with non-broadcast form of communications, where the agents able to
hear are defined by the game, i.e. communication based on the agents position
within the game, where agents have to be close enough to communicate, or this
aspect might be treated as part of the optimization, i.e. including in the agents
policy the possibility to choose who to direct their communication to.
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8.1.2 Answering Research Question 2

What is the impact on the individual-collective reward relationship of learning the communi-
cation strategies within a Multi-Agent RL game?

This aspect has been investigated in Chapter 3, where we have experimentally as-
sessed the role of communication in the emergence a of collective behaviour in
multi-agent systems. In this game, each agent policy is learned by means of RL,
and different scenarios w.r.t. the individual goal are given to the agents, where each
scenario is characterized by a different relationship between individual and collective
behavior. It is worth to notice also that in this work the agents policy learning occurs
in a completely decentralized way, differently from what we did in Chapter 2, where
only the validation was completely decentralized.

The experimental results presented in Chapter 3 show that the agents which learn
to communicate, have developed a collective behaviour in the cooperative scenarios,
and the resulting communication is indeed responsible for the equal allocation of
resources among the agents, and the maximization of the individual goal as well. On
the other side, the agents who learned to communicate in the competitive scenarios,
developed a selfish behaviour and used their communication to promote inequality.
This last result is motivated by the nature of the competitive scenario, since there
is a conflict between the individual goal, which opposes to the equal allocation of
resources, and the collective goal, which aims at minimizing the inequality.

Despite being extremely simple, this work provides some contributions to the
understanding of multi-agent RL and towards the ethics of AI. However there are
still many aspects worth to consider in a future work:

• In the work presented in Chapter 3 there is no form of regulation for assuring a
minimum level of equality among the agents. It might be relevant in a future
work to include a way to soften or punish the selfish tendency which arise in the
competitive scenario, in order to discourage those behaviors, and investigate
whether or not is possible to balance selfishness and equality in this way. This
regulation might be enforced by means of a negative reward provided to the
agents, similar to what we did in Chapter 4.

• Another aspect worth of considering, which is relevant to the ethics of AI
discussed more in details in Chapter 4, is the possibility of letting the agents
use communication to fake or to lie to others for their own profit. This aspect
might allow even more complex selfish strategies in the competitive scenarios,
but it requires to formalize the communication in a different way.

• Since in this work the focus was not on the development of the communication
itself, but on the implications of learning to enable and disable the communica-
tion in a multi-agent system, the form of broadcasting employed in Chapter 3 is
extremely simple. An aspect which has already been discussed in the section
above, when we discussed about the limits of Chapter 2, is that also in Chapter 3
the communication is is very limited by design.

8.1.3 Answering Research Question 3

Is it possible to provide regulations for autonomous vehicles without explicitly disabling
unethical behaviors?

To provide an answer to this question, in Chapter 4 we have designed a road traffic
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model in which we have analyzed the system-wide indexes, namely efficiency and
safety. In this scenario we have trained RL agents by providing them a form of
traffic regulation inspired by the real traffic rules, while learning the optimal policy
in this simulated system. The rules enforcement has been realized by providing a
negative reward to the drivers that were not compliant with the regulation, in order
to discourage those behaviors in the future. We have then experimentally measured
the impact of these rules, by comparing this learning approach with another variant
in which rules compliance does not impact on the reward function.

According to the experimental results, it is possible to improve the traffic safety by
imposing these regulation during the RL agents policy learning, even if the increase in
safety is obtained at the expense of the overall efficiency. This approach for enforcing
the rules allows the drivers to learn whether to evade a certain rule or not, based
on the current situation, and therefore this aspect is also useful to tackle the ethical
problems specifics to the field of self-driving cars regulation. The most interesting
aspect of this approach is therefore that no action is prohibited by design, but instead
the rules that we provide are flexible, and the only principle guides the RL agents
compliance to them is the maximization of the expected future return. In other words,
a driver might have to overtake another vehicle in a situation in which overtaking is
punished by the rules by a negative immediate reward, if this decision is the only one
that allows avoiding a forthcoming collision, which in terms of reward corresponds
to a higher penalty.

This work main contribution is therefore this flexible form of autonomous vehicles
regulation, which can be extended in future works:

• The road traffic scenario considered in Chapter 4 is a very simple one, in which
vehicles are all alike, and where the only drivers are the RL agents. We might
investigate the robustness of the policies learned by the RL agents with these
rules, while sharing the environment drivers of a different kind, i.e. human
drivers or deterministic driving algorithm, who are not subjected to the same
rules or perform risky actions. It would be interesting to assess how the driving
policies learned with the approach presented in this study operate in such
situations.

• It might be relevant to focus more deeply on this regulation approach, by con-
sidering a scenario tailored to clearly exhibit the trade-off between compliance
with the rules and a greater good, and in which it would be possible to assess
the effectiveness of the form of regulation employed.

8.1.4 Answering Research Question 4

Is it possible to take advantage of the body complexity by evolving a sensing neural controller
for voxel-based soft robots?

We have provided an answer to this question in Chapter 5, where a form of control
based on an artificial neural network, equipped with sensing capabilities distributed
across the full body of the robot, has been proposed as an alternative to the non-
sensing counterpart from the literature.

Given a fixed body and a task as a benchmark, we have synthesizing the optimal
control algorithm by means of EC, for the sensing neural controller and the non-
sensing one as well. In order to compare the performance of the two controllers, we
have manually designed three different bodies and two different environments, in
which we have evaluated the robots on a locomotion task. From the results of this
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comparison, we have found that the sensing controller is generally more effective
than its non-sensing counterpart, also when the robot is evaluated in a validation
environment which is different from the one in which it has been evolved.

The idea of shifting the complexity from the controller to the body is one of the key
elements that has motivated the development of voxel-based soft robots. However,
based on the very promising results described in Chapter 5, we suggest that in order
to successfully take advantage of the complexity of the body, these robots should be
provided with a form of distributed sensing. We conclude by providing some ideas
for future works:

• In Chapter 5 we have considered only simple bodies that could be manually
designed, and such that their optimization required a relatively limited com-
putational effort. Besides a set of benchmark tasks for voxel-based soft robots
is currently missing, being most of the works in the literature based on the
locomotion. As a future work, we plan to investigate the potential of sensing
controllers on larger robots and more complex tasks.

• Considering bigger robots alone would result in a higher complexity algorithm
for searching within the solutions space, which might not be efficiently done by
the standard evolutionary algorithm used in this work. Therefore we plan to
cope with this increased complexity by relying on a more efficient evolutionary
framework, as well as a modular design for the robot bodies.

• The experimental results described in Chapter 5 show that another aspect
worth to investigate might be the extension of the distributed sensing paradigm
through the implementation of a distributed sensing controller. Such controller
might allow to take even more advantage of the complexity of the body, and
might improve the robot modularity as well.

8.1.5 Answering Research Question 5

Is it possible to automatically design a body for voxel-based soft robots that can adapt to
differnt tasks?

To answer this question, in Chapter 6 we have provided a definition of adaptability, as
the ability to perform fairly good on tasks requiring different skills. Consequently we
we have defined a way to measure the adaptability of a body, based on the concept of
self-organized criticality. We have optimized a number of soft-robots bodies towards
adaptability by means of EC, and we have manually designed several other bodies,
some of them inspired by the ones used in Chapter 5, while some others from the
literature, and finally some others automatically generated using algorithm based
on randomness. We have considered three tasks which require different motor skills,
and we have optimized the same control variants defined in Chapter 5 for each body
considered. The experimental results show that this approach based on the propery
of self-organized criticality produces bodies that are generally more adaptable than
the others. Specifically this bodies are more versatile than manually engineered
bodies. The evolution towards adaptability is however a resources intensive process,
therefore we show that it is possible to generate comparably adaptable bodies by
means of algorithms involving randomness, if a sine wave is employed as control
algorithm. However it seems also that when a sensing controller is employed, the
bodies evolved towards self-organized criticality are able to take advantage of the
distributed sensing to perform better than any other approach.
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This result thus demonstrate that self-organized criticality is a factor responsible
for granting adaptability to bodies, and it provides a guideline for the development of
versatile bodies for voxel-based soft-robots. We plan to further explore this promising
approach, in particular concerning the following research aspects:

• In this work three different tasks have been proposed to evaluate the adaptabil-
ity. The choice of the tasks in Chapter 6 is arbitrary and based on qualitative
observation of the robots behavior that has been observed when optimizing
the controllers. Future works might consider a metric for the assessment of
the difference between behaviors, and use it to design tasks that actually are
proved to require different skills, in order to ensure a fair assessment of the
adaptability.

• The adaptability assessment for a body in chapter 6 is based on fitting an
empirical distribution which sample size depends on the number of voxels
that body is made of, with a theoretical distribution obtained through linear
regression. The correctness of the adaptability assessment is higher with a
bigger sample size available. It might be worth to investigate the impact of
the distribution resolution on the self-criticality assessment, and on the actual
adaptability of a certain body. To investigate this aspect we might repeat the
experiments done in Chapter 6, by considering bodies made of a higher number
of voxels.

8.1.6 Answering Research Question 6

Are the currently employed publishing system indicators effective proxies for the corresponding
non-observable quantities they embody?

An answer to this question, based on a simulated model of the publishing system,
has been presented in Chapter 8. According to the model presented in Chapter 8,
the authors and editors are modeled by artificial agents that are evaluated using
the indexes currently adopted by the publishing system, which are respectively the
H-index for the authors, and the Impact factor for the journals. These indicators stand
for non-measurable quantities such as the quality of an author scientific production,
and the quality of the papers published to a journal. In this simulated system we
have defined many different policies for both the authors and the editors as well. By
simulating the evolution of this dynamical system we have investigated the suitability
of the indexes w.r.t. the agents policy. According to the experimental results, it seems
that the H-index is a good approximation of the non-observable quality of the authors.
The results on the Impact factor instead suggest that, if the editors employ a mild
scrutiny, which is not too strict, but not even too loose, the Impact factor behaves as
a good proxy for the journals non-observable quality. Therefore we have observed
that in general the Impact factor is not a good index for the journals assessment, but
instead it is a fair predictor only under a very specific condition.

The results showed in Chapter 8 suggest that the tool of multi-agent system is
extremely versatile, and enables to study very complex phenomena, such as the
dynamics of the publishing system. Despite the promising results of the proposed
approach, we might consider some improvements:

• For instance we might focus on the development of unethical behaviors, mo-
tivated by the actors goal of maximizing their own indicator. This aspect is
indeed very relevant, since the practice of unethical behaviors is a real problem
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that affects the publishing system. By focusing on this aspect we might have a
better understanding of what causes these behaviors, and in which way we can
discourage them.
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