
A Turing machine simulation by P systems without charges

Alberto Leporati1 · Luca Manzoni2 · Giancarlo Mauri1 · Antonio E. Porreca3 · Claudio Zandron1

Abstract
It is known that the polarizationless P systems of the kind involved in the definition of the P conjecture are able to solve
problems in the complexity class � by leveraging their uniformity condition. Here, we show that they are indeed able to
simulate a deterministic Turing machine working in polynomial time with a weaker uniformity condition and using only
one level of membrane nesting. This allows us to embed this construction into more complex membrane structures,
possibly showing that constructions similar to the one performed for P systems with charges can be carried on.

Keywords Polarizationless P systems · Turing machine simulation · (�, �)-uniformity

1 Introduction

P systems with active membranes are one of the models in
the vast and diverse family of P systems, initially founded
by Păun [14] with the aim of defining a parallel, nondeter-
ministic, synchronous, and distributed computational model,
inspired by the structure and functioning of living cells.

In this kind of P systems, the space is delimited in dif-
ferent (possibly nested) regions via membranes, mimicking
the way cellular membranes separate the inner part of a cell
from the external environment. The biological inspiration
does not end here: inside each membrane multiple objects,

representing chemical substances, are transformed by rewrit-
ing rules, mimicking biochemical reactions. Moreover, each
membrane may have an associated electrical charge, which
typically can be negative, positive, or neutral that affects
the applicability of the rules embedded in the membrane.
The communication between different regions of space is
ensured by the ability of substances to move in and out of
membranes (also depending on the membrane charge) and,
possibly, to even dissolve a membrane, making all its content
“fall out” in the containing region. The name “P systems
with active membranes” stems from the fact that membranes
play an active role during the computations, either by influ-
encing the rules to be applied through charges, or by modi-
fying the membrane hierarchy through membrane division
or dissolution.

During the two decades following their introduction,
P systems with active membranes have been employed to
solve classically intractable problems, such as ��-complete
ones [15, 23], problems in the class ������ [2, 19, 20] or,
more recently, problems in the complexity class �#� and in
the entire counting hierarchy [6]. To reach these results, the
simulation of Turing machines (TM) provides an important
building block. In particular, the construction of P systems
simulating TM using as few membranes (or cells) as possible
and limiting the depth of the system is one of the “tricks”
that allows the nesting of multiple machines to solve prob-
lems in large complexity classes. For example, nesting of
non-deterministic machines (where the non-determinism is
simulated by membrane division) and a counting mechanism
allow to characterize �#� , the class of all problems solvable

 * Alberto Leporati
alberto.leporati@unimib.it

Luca Manzoni
lmanzoni@units.it

Giancarlo Mauri
giancarlo.mauri@unimib.it

Antonio E. Porreca
antonio.porreca@lis-lab.fr

Claudio Zandron
claudio.zandron@unimib.it

1 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Viale Sarca 336,
20126 Milan, Italy

2 Dipartimento di Matematica e Geoscienze, Università degli
Studi di Trieste, Via Valerio 12/1, 34127 Trieste, Italy

3 Aix Marseille Université, Université de Toulon, CNRS, LIS,
Marseille, France

1

http://orcid.org/0000-0002-8105-4371
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00031-5&domain=pdf

by a deterministic TM with access to a #� oracle [6, 8]. The
same ideas can be applied to tissue P systems [10], where
the different communication topology makes it even more
important to keep TM simulations compact [7]. Other works
consider how various features of P systems with active mem-
branes influence their ability to attack computationally hard
problems: for instance, considering systems without electri-
cal charges some authors investigated the role of elementary
division [12], dissolution rules [3, 4] or cooperating rules
[21, 21, 22] from the computational efficiency point of view.

More recently, a definition of space complexity for P sys-
tems with active membranes has been proposed in [18] (and
refined in [5]). It is known that any Turing machine working
in space �(n) can be simulated with a polynomial space
overhead [1]. Considering appropriate restricted uniformity
conditions [11, 13], it is possible to prove that ��������
–uniform P systems with active membranes only need a
logarithmic amount of space to solve all problems in the
class ������ , as proved in [9].

The P conjecture is a long-standing open problem in
membrane computing, first presented in 2005 [16, Problem
F] that, in its essence, asks what is the power of one charge
when compared to two charges. We feel that one impor-
tant step to determine the computational power of active
membrane systems without charges and with membrane
dissolution is to see which is the minimal system able to
simulate a deterministic polynomial-time TM. Here, we
show that a shallow system is sufficient to perform such a
simulation by delegating only a minimal amount of work
to the Turing machines involved in the uniformity condi-
tion. Hopefully, this construction will allow us to define
systems in which different TM can be “embedded” at dif-
ferent levels in a large membrane structure, thus making
possible to mimic the existing constructions performed for
P systems with charges.

One specific application of this construction is the rep-
lication of the result presented in [6] concerning P systems
with charges to the case of P systems without charges. In
that paper we presented a construction of “nested oracles”,
each of them being, essentially, a simulation of a non-deter-
ministic TM with some additional “plumbing” to perform
some kind of interaction between the different membranes.
The ability to perform this TM simulation without charges
is an important step in porting the same construction to an
apparently weaker model of P systems.

This paper is organized as follows. Section 2 will recall
some basic notions on P systems. The main construction and
result is presented in Sect. 3, while ideas for further research
are presented in Sect. 4.

2 Basic notions

For an introduction to membrane computing and the related
notions of formal language theory and multiset processing,
we refer the reader to The Oxford Handbook of Membrane
Computing [17]. Here, we just recall the formal definition of
P systems with active membranes, without charges [15, 24].

Definition 1 A polarizationless P system with active mem-
branes with dissolution rules, of initial degree d ≥ 1 , is a tuple

where:

• � is an alphabet, i.e. a finite non-empty set of symbols,
usually called objects;

• � is a finite set of labels;
• � is a membrane structure (i.e. a rooted unordered tree,

usually represented by nested brackets) consisting of d
membranes labelled by elements of � in a one-to-one
way;

• wh1
,… ,whd

 , with h1,… , hd ∈ � , are multisets (finite
sets with multiplicity) of objects in � , describing the
initial contents of each of the d regions of �;

• R is a finite set of rules.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a → w]h.

They can be applied inside a membrane labelled
by h and containing an occurrence of the object a;
the object a is rewritten into the multiset w (i.e. a is
removed from the multiset in h and replaced by the
objects in w).

(b) Send-in communication rules, of the form a []
h
→ [b]

h
.

They can be applied to a membrane labelled by h
and such that the parent region, i.e. the one containing
membrane h, contains an occurrence of the object a;
the object a is sent into h, becoming b.

(c) Send-out communication rules, of the form [a]
h
→ []

h
b.

They can be applied to a membrane labelled by h and
containing an occurrence of the object a; the object a
is sent out from h to the parent region, becoming b.

(d) Dissolution rules, of the form [a]
h
→ b.

They can be applied to any membrane except the
outermost one labelled by h and containing an occur-
rence of the object a; the object a is sent out from h to
the parent region becoming b, the membrane h ceases
to exist and all the other objects it contains are sent into
the parent region.

� = (� ,�,�,wh1
,… ,whd

,R),

2

A computation step changes the current configuration of
the system according to the following set of principles:

• Each object and membrane can be subject to at most
one rule per step, except for object evolution rules:
inside each membrane, several evolution rules can be
applied simultaneously.

• The application of rules is maximally parallel: each
object appearing on the left-hand side of evolution or
communication rules must be subject to exactly one of
them. Analogously, each membrane can only be subject
to one communication or dissolution rule (types (b)–(d))
per computation step; for this reason, these rules will be
called blocking rules in the rest of the paper. As a result,
the only objects and membranes that do not evolve are
those associated with no rule.

• When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step.

• In each computation step, all the chosen rules are applied
simultaneously in an atomic way. However, to clarify the
operational semantics, each computation step is conven-
tionally described as a sequence of micro-steps, whereby
each membrane evolves only after its internal configu-
ration (including, recursively, the configurations of the
membrane substructures it contains) has been updated.

• Any object sent out from it cannot re-enter the system.

A halting computation of the P system � is a finite
sequence C = (C0,… , Ck) of configurations, where C0 is the
initial configuration, every Ci+1 is reachable from Ci via a sin-
gle computation step, and no rules of � are applicable in Ck.

P systems can be used as language recognizers by
employing two distinguished objects ��� and �� : we assume
that all computations are halting, and that either one copy of
object ��� or one of object �� is sent out from the outermost
membrane, and only in the last computation step, to signal
acceptance or rejection, respectively. If all computations
starting from the same initial configuration are accepting,
or all are rejecting, the P system is said to be confluent.

To solve decision problems (or, equivalently, decide
languages), we use families of recognizer P systems
� = {𝛱x ∶ x ∈ 𝛴⋆} . Each input x is associated with a
P system �x deciding the membership of x in a language
L ⊆ 𝛴⋆ by accepting or rejecting. The mapping x ↦ �x

must be efficiently computable for inputs of any length, as
discussed in detail in [13].

Definition 2 A family of P systems � = {𝛱x ∶ x ∈ 𝛴⋆}
is (polynomial-time) uniform if the mapping x ↦ �x can

be computed by two polynomial-time deterministic Turing
machines E and F as follows:

• F(1n) = �n , where n is the length of the input x and �n

is a common P system for all inputs of length n, with a
distinguished input membrane.

• E(x) = wx , where wx is a multiset encoding the specific
input x.

• Finally, �x is simply �n with wx added to a specific mem-
brane, called the input membrane.

Any explicit encoding of �x is allowed as output of the
construction, as long as it is at most polynomially shorter
than the one where the rules are listed one by one, the mem-
brane structure is represented in such a way that all mem-
branes are listed one by one and their content is encoded in
unary. This restriction is enforced to mimic a (hypothetical)
realistic process of construction of the P systems, where
membranes and objects are presumably placed in a constant
amount during each construction step, and require actual
physical space proportional to their number; see also [13]
for further details on the encoding of P systems.

Among all possible uniformity conditions, obtained by
imposing constrains on the Turing machines E and F, we
are interested in (�,�)-uniform families of P systems, where
both the machine constructing the P system given the size of
the input in unary and the machine encoding the input can
only employ logarithmic space. This uniformity condition
is weaker than the usual (�, �)-uniformity, but it is needed
to avoid that the computation which is intended to be per-
formed by the P system is instead performed by the Turing
machines E and F building it.

3 Simulation of polynomial‑time Turing
machines

The main idea of this section is to provide a simulation of a
deterministic TM working in polynomial time by using a P
system with only one level of nesting, i.e, by what is usually
called a shallow P system.

A first observation is that two objects can meaningfully
influence each other only through dissolution: while two
objects might interfere due to the blocking nature of commu-
nication rules, any such interaction is actually not significant
due to the confluence of the P system. Therefore, informa-
tion between objects must be exchanged by performing dis-
solution, for example by having one of the objects “count”
the steps needed before “falling out” in the parent region.

Let M be a polynomial-time deterministic TM hav-
ing alphabet � , set of states Q, and transition function
� ∶ Q × � → Q × � × {−1,+1} . We assume that, for an

3

input of length n machine M halts in time p(n) and, thus, it
uses no more than p(n) + 1 cells. We define a P system �
that simulates the computation of M in O(p(n)|�|) steps.
That is, the simulation of every step of M will require a
number of steps in � that is proportional to the size of the
alphabet of M, thus providing an efficient simulation, i.e. a
simulation that is only polynomially slower than the simu-
lated system in terms of number of steps.

The P system � has (p(n) + 1)2 + p(n)2 + p(n) + 1 labels,
one for the skin membrane and two for each pair of time and
position in the TM tape:

Since we assume that no kind of membrane division is
present, in the following we can identify membranes and
labels, since each label is used by exactly one membrane.
The semantics of the labels is that a membrane with label
(i, j) will represent the i-th cell of the TM tape at time j.
The additional membrane (i, j)� is used while performing the
transition between time j and j + 1 , which also explains why
the label is not present for time p(n).

� ={0} ∪ {(i, j) | i, j ∈ {0,… , p(n)}}

∪ {(i, j)� | i ∈ {0,… , p(n)} j ∈ {0,… , p(n) − 1}}.

The set of objects of the simulating P system will be:

where m = |�| and qI is the initial state of the TM. The first
three sets of the union represent, respectively, the symbols
on the tape, the state of the TM, and the state of the TM
together with the symbol present under the tape head. The
last two sets are only used to encode the initial configuration
of the TM. Let a1, a2,… , ap(n) be the initial contents of the
TM tape. It is encoded in the initial configuration of � as the
objects a1,1, a2,2,… , ap(n),p(n) inside the outermost membrane
(e.g. if the initial content of the tape is abba, then it will
be encoded by the multiset a1b2b3a4). The initial state qI is
encoded as the object qI.

The rules of the P system performing the simulation of
the TM M are presented both in the main text and grouped
together in Fig. 1. The following rules send the objects rep-
resenting the TM tape inside the corresponding membranes:

𝛤 ={ai,j,k | i, j ∈ {0,… , p(n)}, 0 ≤ k < m + 5, a ∈ 𝛴}

∪ {qi,j,k | i, j ∈ {0,… , p(n)}, 0 ≤ k ≤ m + 5, q ∈ Q}

∪ {qi,j,k,a | i, j ∈ {0,… , p(n)}, 0 ≤ k ≤ m + 5, q ∈ Q, a ∈ 𝛴}

∪ {ai | a ∈ 𝛴, i ∈ {0,… , p(n)}} ∪ {qI},

Fig. 1 The complete set of
rules employed by the P system
� that simulates the Turing
machine M, here given as a
handy reference. The number-
ing is the same as the one used
in the text when introducing
each rule

4

the object ai is sent into the membrane (i, 0). At the same
time the object qI is rewritten as qI

0,0,0
:

After this first “bookkeeping” step, the actual simulation of
one TM step can start. The previous rules will not be further
applied during the simulation. An example of simulation of
one step of M by � is presented in Fig. 2.

Let � be a bijection from � to {1,… , |�|} providing a
total ordering of the TM alphabet. The main idea is to have
each object representing the symbol a written on position i
at time j on the TM tape dissolving the membrane (i, j) when
its subscript is i, j,�(a) . This means that any other object
present in the same membrane (in our case, the object rep-
resenting the current state of the TM) can infer the symbol
under the tape head and act accordingly. The evolution of
the objects representing the tape content for the first m + 1
time steps of the simulation of each TM step is described by
the following rules:

where k goes from 0 to m and is used to decide when a
membrane has to be dissolved. Notice how the objects sim-
ply “count” in the subscript except that when k = �(a) the
membrane in which they are contained is dissolved. The
application of those rules is depicted in Fig. 2 in the transi-
tions from t = 1 to t = 2 , from t = 2 to t = 3 , and from t = 3
to t = 4 ; the dissolution of the containing membranes hap-
pens from t = 2 to t = 3 for objects representing the tape
symbol a, and from t = 3 to t = 4 for objects representing
the tape symbol b.

At the same time, the object representing the TM state
enters the membrane (i, j), representing that the tape head
at time j is in position i and starts to count. When membrane
(i, j) is dissolved, it is possible to infer the object that dis-
solved it and, thus, the symbol on the tape under the tape
head, which is represented by �−1(a) (which is well defined,
since � is a bijection between � and {1,… ,m}). The cor-
responding rules are:

(1)ai [](i,0) → [ai,0,0](i,0) for a ∈ �

(2)[qI → qI
0,0,0

]0.

(3)[ai,j,k → ai,j,k+1](i.j) for 0 ≤ k < 𝜑(a) and a ∈ 𝛴,

(4)[ai,j,k](i,j) → ai,j,k+1 for k = �(a) and a ∈ �,

(5)[ai,j,k → ai,j,k+1]0 for 𝜑(a) < k ≤ m and a ∈ 𝛴,

(6)qi,j,0 [](i,j) → [qi,j,1](i,j) for q ∈ Q,

(7)[qi,j,k → qi,j,k+1](i,j) for 1 ≤ k ≤ m and q ∈ Q,

The application of those rules is depicted in Fig. 2 in all
the transitions from t = 1 to t = 4 . At time step m + 1 in
the simulation of the current TM step, all membranes with
label (i, j) (for all i and with j the current TM step being
simulated) have been dissolved. Now the object representing
the TM state continues to wait in the outermost membrane,
while all the objects representing the TM tape are sent in
into the corresponding membranes (i, j)� . These membranes
will be employed to delete the current content of the cell
under the TM head and to replace it with the new symbol.
The rules applied at time step m + 1 are the following:

In Fig. 2 the application of these rules is in the transition
t = 4 to t = 5 . Once all the objects of the form ai,j,k for a ∈ �
have entered the membranes (i, j)� , they wait for the object
representing the TM state to enter:

These rules are applied in the transition from t = 5 to t = 6
in Fig. 2. At time step m + 3, the membrane containing the
object representing the TM state is dissolved. In all other
membranes, the objects representing the TM tape wait for
one more step:

In Fig. 2, these rules are applied in the transition from t = 6
to t = 7 . One of the focal points of this simulation algorithm
happens at time step m + 4 (always relative to the start of
the simulation of the current TM step). Here, all the objects
representing the tape content dissolve the membrane (i, j)� in
which they are located. The only object not performing this
step is the one that was sent into the outermost membrane
by the dissolution triggered by the object representing the
TM state. The object representing the old content of the
tape cell is deleted (by rewriting it to the empty multiset �)
and the one encoding the TM state produces its replacement
according to the transition function � of the TM:

(8)[qi,j,k → qi,j,k+1,�−1(k)]0 for 1 ≤ k ≤ m, and q ∈ Q,

(9)[qi,j,k,a → qi,j,k+1,a]0 for 1 ≤ k ≤ m, a ∈ �, and q ∈ Q.

(10)ai,j,m+1 [](i,j)� → [ai,j,m+2](i,j)� for a ∈ �,

(11)[qi,j,m+1,a → qi,j,m+2,a]0 for q ∈ Q and for a ∈ �.

(12)[ai,j,m+2 → ai,j,m+3](i,j)� for a ∈ �,

(13)qi,j,m+2,a [](i,j)� → [qi,j,m+3,a](i,j)� for q ∈ Q and a ∈ �.

(14)[ai,j,m+3 → ai,j,m+4](i,j)� for a ∈ �,

(15)[qi,j,m+3,a](i,j)� → qi,j,m+4,a for q ∈ Q and a ∈ �.

5

(0,0) (1,0) (2,0) (3,0)

0

a0,0,0 b1,0,0 b2,0,0 a3,0,0

q0,0,0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

q0,0,1
(0,0) (1,0) (2,0) (3,0)

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,1 b1,0,1 b2,0,1 a3,0,1

t = 1 t = 2

q0,0,2,a
(1,0) (2,0)

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,2 b1,0,2 b2,0,2 a3,0,2
q0,0,3,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,3 b1,0,3 b2,0,3 a3,0,3

t = 3 t = 4

a0,0,4 b1,0,4 b2,0,4 a3,0,4

q0,0,4,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,5 b1,0,5 b2,0,5 a3,0,5q0,0,5,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

t = 5 t = 6

a0,0,6 b1,0,6 b2,0,6 a3,0,6q0,0,6,a

0

(1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

b0,0,7 b1,0,7 b2,0,7 a3,0,7q0,0,7,a

0
(0,1) (1,1) (2,1) (3,1)

t = 7 t = 8

b0,1,0 b1,1,0 b2,1,0 a3,1,0

r0,0,0

0
(0,1) (1,1) (2,1) (3,1)

b0,1,1 b1,1,1 b2,1,1 a3,1,1r0,0,1

0
(0,1) (1,1) (2,1) (3,1)

t = 9 t = 10

Fig. 2 The simulation of one computation step of the TM M by means of the P system � . In this example the alphabet � is {a, b} and the tape
contains four cells

6

These rules are applied in the transition from t = 7 to t = 8
in Fig. 2. Finally, a new simulation step can start by sending
in all the objects representing the TM tape to the membranes
(i, j + 1) and resetting the last component of their subscript.
At the same time, the object representing the TM state actu-
ally applies the transition function � and rewrites itself:

The application of these rules happens in the transition from
t = 8 to t = 9 in Fig. 2. The last transition (from t = 9 to
t = 10) is the beginning of the simulation of the next step.

Notice that all rules, labels, and objects can be constructed
by a logarithmic space TM. In fact, most of them are con-
structed by iterating either a constant or a polynomial number
of times to produce the necessary subscripts. Since the coun-
ters are all at most polynomial in the number that they contain,
they can be encoded using a logarithmic number of bits.

We can thus state the main result:

Theorem 1 (�,�)-uniform families of confluent shallow
polarizationless P systems with active membranes with dis-
solution can solve all problems in �.

This result was already known for non-shallow systems
[13], but here there are two main innovations: the systems
here are shallow, i.e. of depth 1, and the construction is via
a direct simulation of a Turing machine, which allows one to
embed this construction into more complex membrane struc-
tures. Furthermore, notice how the construction makes no use
of rules duplicating the membranes and their contents (i.e.
division rules), which are a common way of increasing the
computational power of P systems.

Notice that the above construction can be modified to simu-
late a non-deterministic TM, by replacing the only two types
of rules that involve the transition function of the TM in such
a way as to allow for a non-deterministic choice (due to having
multiple rules in conflict):

(16)[ai,j,m+4](i,j)� → ai,j,m+5 for a ∈ �,

(17)[ai,j,m+4 → �]0 for a ∈ �,

(18)
[qi,j,m+4,a → qi,j,m+5,a, bi+d,j,m+5]0 for q ∈ Q, a ∈ �,

and �(q, a) = (r, b, d).

(19)ai,j,m+5 [](i,j+1) → [ai,j+1,0](i,j+1) for a ∈ �,

(20)
[qi,j,m+5,a → ri+d,j+1,0]0 for q ∈ Q, a ∈ �,

and �(q, a) = (r, b, d).

In the first rule, the non-deterministic choice is remembered
by writing it in the subscript; in this way, the only rule of
the second kind that can fire is the one corresponding to the
non-deterministic choice performed. We can then state the
following theorem showing that a weaker uniformity condi-
tion is still sufficient to reach �� for non-confluent systems:

Theorem 2 (�,�)-uniform families of non-confluent shallow
polarizationless P systems with active membranes with dis-
solution and without division can solve all problems in ��.

4 Conclusions and open problems

In this paper, we showed that P systems without charges can
still solve all problems in the complexity class � even when
the power of the machines in the uniformity condition is
reduced. The TM simulation presented is quite modular and
can be embedded in more complex membrane structures.
The resulting simulation is also efficient, requiring a slow-
down of only a constant multiplicative factor.

Among the open problems, the most prominent one is
to study if the construction presented in [6] can be repli-
cated for systems with charges, possibly adding an additional
nesting level to accommodate for the different TM simula-
tion technique. Such a result would show that even without
charges, the entirety of the counting hierarchy is reachable in
constant depth. This is another step in trying to understand
what are the features that actually grant P systems the power
to reach beyond � and, in some cases, beyond the entire poly-
nomial hierarchy. It would also be interesting to modify the
simulation to reduce the number of labels and, consequently,
membranes employed: the current construction uses O(p(n)2)
membranes (i.e. one for every pair of tape cell and time
step). However, the number of cells that are rewritten dur-
ing a computation of the TM halting in p(n) steps is at most
p(n). Can we reduce the number of membrane labels to this
quantity? Finally, we have shown that (�,�)-uniformity is
sufficient to construct the P system. We conjecture that this
is not necessary and that, in fact, the construction might be
possible with even weaker uniformity conditions; it remains
open to find what those conditions are.

[qi,j,m+4,a → qi,j,m+5,(r,b,i+d), bi+d,j,m+5]0 for q ∈ Q, a ∈ �,

and (r, b, d) ∈ �(q, a)

[qi,j,m+5,(r,b,i+d) → ri+d,j+1,0]0 for q ∈ Q and a ∈ �.

7

References

1. Alhazov, A., Leporati, A., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Space complexity equivalence of P systems with active
membranes and Turing machines. Theoretical Computer Science,
529, 69–81. https ://doi.org/10.1016/j.tcs.2013.11.015.

2. Alhazov, A., Martín-Vide, C., Pan, L. (2003). Solving a PSPACE-
complete problem by recognizing P systems with restricted active
membranes. Fundamenta Informaticae,58(2), 67–77. http://iospr
ess.metap ress.com/conte nt/99n72 anvn6 bkl4m m/.

3. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Núñez,
A., & Romero-Campero, F. J. (2006). On the power of dissolu-
tion in P systems with active membranes. In R. Freund, G. Păun,
G. Rozenberg, & A. Salomaa (Eds.), Membrane computing, 6th
international workshop, WMC 2005. Lecture notes in computer
science (Vol. 3850, pp. 224–240). Berlin: Springer. https ://doi.
org/10.1007/11603 047.

4. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Riscos-Nuñez,
A., & Romero-Campero, F. J. (2006). Computational efficiency
of dissolution rules in membrane systems. International Jour-
nal of Computer Mathematics, 83(7), 593–611. https ://doi.
org/10.1080/00207 16060 10654 13.

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2014). Constant-space P systems with active membranes.
Fundamenta Informaticae, 134(1–2), 111–128. https ://doi.
org/10.3233/FI-2014-1094.

6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2015). Membrane division, oracles, and the counting hier-
archy. Fundamenta Informaticae, 138(1–2), 97–111. https ://doi.
org/10.3233/FI-2015-1201.

7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zandron,
C. (2017). Characterising the complexity of tissue P systems
with fission rules. Journal of Computer and System Sciences, 90,
115–128. https ://doi.org/10.1016/j.jcss.2017.06.008.

8. Leporati, A., Manzoni, L., Mauri, G., Porreca, A. E., & Zan-
dron, C. (2017). The counting power of P systems with antimat-
ter. Theoretical Computer Science, 701, 161–173. https ://doi.
org/10.1016/j.tcs.2017.03.045.

9. Leporati, A., Mauri, G., Porreca, A. E., & Zandron, C. (2014). A
gap in the space hierarchy of P systems with active membranes.
Journal of Automata, Languages and Combinatorics,19(1–4),
173–184. http://theo.cs.ovgu.de/jalc/searc h/j19_i.html.

 10. Martín-Vide, C., Păun, G., Pazos, J., & Rodríguez-Patón, A.
(2003). Tissue P systems. Theoretical Computer Science, 296(2),
295–326. https ://doi.org/10.1016/S0304 -3975(02)00659 -X.

 11. Murphy, N. (2010). Uniformity conditions in membrane comput-
ing: Uncovering complexity below P. Ph.D. thesis, National Uni-
versity of Ireland, Maynooth. http://eprin ts.nuim.ie/2006/1/Thesi
s.pdf.

 12. Murphy, N., Woods, D. (2007). Active membrane systems without
charges and using only symmetric elementary division character-
ise P. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozenberg, & A.
Salomaa (Eds.), Membrane computing, 8th international work-
shop, WMC 2007. Lecture notes in computer science (Vol. 4860,
pp. 367–384). https ://doi.org/10.1007/978-3-540-77312 -2_23.

 13. Murphy, N., & Woods, D. (2011). The computational power
of membrane systems under tight uniformity conditions. Natu-
ral Computing, 10(1), 613–632. https ://doi.org/10.1007/s1104
7-010-9244-7.

 14. Păun, G. (2000). Computing with membranes. Journal of
Computer and System Sciences, 61(1), 108–143. https ://doi.
org/10.1006/jcss.1999.1693.

 15. Păun, G. (2001). P systems with active membranes: Attacking
NP-complete problems. Journal of Automata, Languages and
Combinatorics, 6(1), 75–90.

 16. Păun, G. (2005). Further twenty six open problems in membrane
computing. In: M. A. Gutíerrez-Naranjo, A. Riscos-Nuñez, F. J.
Romero-Campero, D. Sburlan (Eds.), Proceedings of the third
brainstorming week on membrane computing, pp. 249–262. Fénix
Editora. http://www.gcn.us.es/3BWMC /Volum en.htm.

 17. Păun, G., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The
Oxford handbook of membrane computing. Oxford: Oxford Uni-
versity Press.

 18. Porreca, A. E., Leporati, A., Mauri, G., & Zandron, C. (2009).
Introducing a space complexity measure for P systems. Inter-
national Journal of Computers, Communications and Con-
trol,4(3), 301–310. http://univa gora.ro/jour/index .php/ijccc /artic
le/view/2779.

 19. Sosík, P. (2003). The computational power of cell division in P
systems: Beating down parallel computers? Natural Computing,
2(3), 287–298. https ://doi.org/10.1023/A:10254 01325 428.

 20. Sosík, P., & Rodríguez-Patón, A. (2007). Membrane computing
and complexity theory: A characterization of PSPACE. Journal
of Computer and System Sciences, 73(1), 137–152. https ://doi.
org/10.1016/j.jcss.2006.10.001.

 21. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Com-
putational efficiency of minimal cooperation and distribution in
polarizationless P systems with active membranes. Fundamenta
Informaticae, 153(1–2), 147–172. https ://doi.org/10.3233/
FI-2017-1535.

 22. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. A., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017). Reach-
ing efficiency through collaboration in membrane systems: Dis-
solution, polarization and cooperation. Theoretical Computer
Science, 701, 226–234. https ://doi.org/10.1016/j.tcs.2017.04.015.

 23. Zandron, C., Ferretti, C., & Mauri, G. (2001). Solving NP-com-
plete problems using P systems with active membranes. In I.
Antoniou, C. S. Calude, & M. J. Dinneen (Eds.), Unconventional
models of computation, UMC’2K, proceedings of the second
international conference (pp. 289–301). Berlin: Springer. https
://doi.org/10.1007/978-1-4471-0313-4_21.

 24. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez,
M. J. (2008). On the computational efficiency of polarizationless
recognizer P systems with strong division and dissolution. Fun-
damenta Informaticae,87, 79–91. http://conte nt.iospr ess.com/artic
les/funda menta -infor matic ae/fi87-1-06.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Alberto Leporati, Ph.D., is an
associate professor at the Univer-
sity of Milano-Bicocca, at the
Department of Informatics, Sys-
tems and Communication. His
research activity concerns the
theory of computational com-
plexity. In particular, he studies
the computational power of
models of computation which
are inspired by the working of
living cells (membrane comput-
ing) and the laws of quantum
mechanics (quantum comput-
ing). On these subjects, he has
published more than 90 papers in

international journals and in peer-reviewed proceedings of international
conferences. He is also a member of the Steering Committee for the

8

https://doi.org/10.1016/j.tcs.2013.11.015
http://iospress.metapress.com/content/99n72anvn6bkl4mm/
http://iospress.metapress.com/content/99n72anvn6bkl4mm/
https://doi.org/10.1007/11603047
https://doi.org/10.1007/11603047
https://doi.org/10.1080/00207160601065413
https://doi.org/10.1080/00207160601065413
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2014-1094
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.3233/FI-2015-1201
https://doi.org/10.1016/j.jcss.2017.06.008
https://doi.org/10.1016/j.tcs.2017.03.045
https://doi.org/10.1016/j.tcs.2017.03.045
http://theo.cs.ovgu.de/jalc/search/j19_i.html
https://doi.org/10.1016/S0304-3975(02)00659-X
http://eprints.nuim.ie/2006/1/Thesis.pdf
http://eprints.nuim.ie/2006/1/Thesis.pdf
https://doi.org/10.1007/978-3-540-77312-2_23
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1007/s11047-010-9244-7
https://doi.org/10.1006/jcss.1999.1693
https://doi.org/10.1006/jcss.1999.1693
http://www.gcn.us.es/3BWMC/Volumen.htm
http://univagora.ro/jour/index.php/ijccc/article/view/2779
http://univagora.ro/jour/index.php/ijccc/article/view/2779
https://doi.org/10.1023/A:1025401325428
https://doi.org/10.1016/j.jcss.2006.10.001
https://doi.org/10.1016/j.jcss.2006.10.001
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.3233/FI-2017-1535
https://doi.org/10.1016/j.tcs.2017.04.015
https://doi.org/10.1007/978-1-4471-0313-4_21
https://doi.org/10.1007/978-1-4471-0313-4_21
http://content.iospress.com/articles/fundamenta-informaticae/fi87-1-06
http://content.iospress.com/articles/fundamenta-informaticae/fi87-1-06

CMC and ACMC international conference series, and he serves as
Vice-President of the International Membrane Computing Society.

Luca Manzoni is an assistant pro-
fessor at the University of Tri-
este, Italy. He obtained his Ph.D.
in computer science at the Uni-
versity of Milano-Bicocca in
2013. In 2012, he obtained a
JSPS postdoctoral fellowship. In
2017, he obtained an award as
the best young postdoc in com-
puter science and mathematics at
the University of Milano-Bico-
cca. He has published more than
80 papers in international jour-
nal, conferences, and workshops.
His interests are in the areas of
natural computing models, such

as P systems, reactions systems, and cellular automata and in the area
of evolutionary computation, and genetic programming in particular.

Giancarlo Mauri is full professor
of computer science at the Uni-
versity of Milano-Bicocca. His
research interests include: natu-
ral computing and unconven-
tional computing models, in par-
ticular membrane systems and
splicing systems; bioinformatics,
in particular algorithms for NGS
data analysis; computational sys-
tems biology, in particular sto-
chastic modeling and simulation
of biological systems and pro-
cesses. On these subjects, he has
published about 350 scientific
papers in international journals,

and contributed volumes and conference proceedings. He is or has been
member of the steering committees of the international conferences on

DNA computing, on membrane computing, on unconventional comput-
ing and natural computing on developments in language theory, and of
the International Workshop on Cellular Automata.

Antonio E. Porreca is a maître de
conférences (lecturer) in com-
puter science at Aix-Marseille
Université and a member of the
CANA research group on natural
computing at Laboratoire
d’Informatique et Systèmes,
Marseille, France. His main
research topic is the computa-
tional complexity theory of bio-
inspired computing devices and
discrete dynamical systems.

Claudio Zandron got his Ph.D.
in computer science from the
University of Milan in 2002.
Since 2006, he is Associate Pro-
fessor at the Department of
Informatics, Systems and Com-
munication of the University of
Milano-Bicocca, Italy. His
research interests concern the
areas of formal languages,
molecular computing models,
DNA computing, membrane
computing and computational
complexity.

9

	A Turing machine simulation by P systems without charges
	Abstract
	1 Introduction
	2 Basic notions
	3 Simulation of polynomial-time Turing machines
	4 Conclusions and open problems
	References

	Pagina vuota

