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Abstract
It is known that the polarizationless P systems of the kind involved in the definition of the P conjecture are able to solve 
problems in the complexity class � by leveraging their uniformity condition. Here, we show that they are indeed able to 
simulate a deterministic Turing machine working in polynomial time with a weaker uniformity condition and using only 
one level of membrane nesting. This allows us to embed this construction into more complex membrane structures, 
possibly showing that constructions similar to the one performed for P systems with charges can be carried on.
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1 Introduction

P systems with active membranes are one of the models in 
the vast and diverse family of P systems, initially founded 
by Păun [14] with the aim of defining a parallel, nondeter-
ministic, synchronous, and distributed computational model, 
inspired by the structure and functioning of living cells.

In this kind of P systems, the space is delimited in dif-
ferent (possibly nested) regions via membranes, mimicking 
the way cellular membranes separate the inner part of a cell 
from the external environment. The biological inspiration 
does not end here: inside each membrane multiple objects, 

representing chemical substances, are transformed by rewrit-
ing rules, mimicking biochemical reactions. Moreover, each 
membrane may have an associated electrical charge, which 
typically can be negative, positive, or neutral that affects 
the applicability of the rules embedded in the membrane. 
The communication between different regions of space is 
ensured by the ability of substances to move in and out of 
membranes (also depending on the membrane charge) and, 
possibly, to even dissolve a membrane, making all its content 
“fall out” in the containing region. The name “P systems 
with active membranes” stems from the fact that membranes 
play an active role during the computations, either by influ-
encing the rules to be applied through charges, or by modi-
fying the membrane hierarchy through membrane division 
or dissolution.

During the two decades following their introduction, 
P systems with active membranes have been employed to 
solve classically intractable problems, such as ��-complete 
ones [15, 23], problems in the class ������ [2, 19, 20] or, 
more recently, problems in the complexity class �#� and in 
the entire counting hierarchy [6]. To reach these results, the 
simulation of Turing machines (TM) provides an important 
building block. In particular, the construction of P systems 
simulating TM using as few membranes (or cells) as possible 
and limiting the depth of the system is one of the “tricks” 
that allows the nesting of multiple machines to solve prob-
lems in large complexity classes. For example, nesting of 
non-deterministic machines (where the non-determinism is 
simulated by membrane division) and a counting mechanism 
allow to characterize �#� , the class of all problems solvable 
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by a deterministic TM with access to a #� oracle [6, 8]. The 
same ideas can be applied to tissue P systems [10], where 
the different communication topology makes it even more 
important to keep TM simulations compact [7]. Other works 
consider how various features of P systems with active mem-
branes influence their ability to attack computationally hard 
problems: for instance, considering systems without electri-
cal charges some authors investigated the role of elementary 
division [12], dissolution rules [3, 4] or cooperating rules 
[21, 21, 22] from the computational efficiency point of view. 

More recently, a definition of space complexity for P sys-
tems with active membranes has been proposed in [18] (and 
refined in [5]). It is known that any Turing machine working 
in space �(n) can be simulated with a polynomial space 
overhead [1]. Considering appropriate restricted uniformity 
conditions [11, 13], it is possible to prove that �������� 
–uniform P systems with active membranes only need a 
logarithmic amount of space to solve all problems in the 
class ������ , as proved in [9].

The P conjecture is a long-standing open problem in 
membrane computing, first presented in 2005 [16, Problem 
F] that, in its essence, asks what is the power of one charge 
when compared to two charges. We feel that one impor-
tant step to determine the computational power of active 
membrane systems without charges and with membrane 
dissolution is to see which is the minimal system able to 
simulate a deterministic polynomial-time TM. Here, we 
show that a shallow system is sufficient to perform such a 
simulation by delegating only a minimal amount of work 
to the Turing machines involved in the uniformity condi-
tion. Hopefully, this construction will allow us to define 
systems in which different TM can be “embedded” at dif-
ferent levels in a large membrane structure, thus making 
possible to mimic the existing constructions performed for 
P systems with charges.

One specific application of this construction is the rep-
lication of the result presented in [6] concerning P systems 
with charges to the case of P systems without charges. In 
that paper we presented a construction of “nested oracles”, 
each of them being, essentially, a simulation of a non-deter-
ministic TM with some additional “plumbing” to perform 
some kind of interaction between the different membranes. 
The ability to perform this TM simulation without charges 
is an important step in porting the same construction to an 
apparently weaker model of P systems.

This paper is organized as follows. Section 2 will recall 
some basic notions on P systems. The main construction and 
result is presented in Sect. 3, while ideas for further research 
are presented in Sect. 4.

2  Basic notions

For an introduction to membrane computing and the related 
notions of formal language theory and multiset processing, 
we refer the reader to The Oxford Handbook of Membrane 
Computing [17]. Here, we just recall the formal definition of 
P systems with active membranes, without charges [15, 24].

Definition 1 A polarizationless P system with active mem-
branes with dissolution rules, of initial degree d ≥ 1 , is a tuple

where:

• �  is an alphabet, i.e. a finite non-empty set of symbols,
usually called objects;

• � is a finite set of labels;
• � is a membrane structure (i.e. a rooted unordered tree,

usually represented by nested brackets) consisting of d
membranes labelled by elements of � in a one-to-one
way;

• wh1
,… ,whd

 , with h1,… , hd ∈ � , are multisets (finite
sets with multiplicity) of objects in �  , describing the
initial contents of each of the d regions of �;

• R is a finite set of rules.

The rules in R are of the following types:

(a) Object evolution rules, of the form [a → w]h.

They can be applied inside a membrane labelled
by h and containing an occurrence of the object a;
the object a is rewritten into the multiset w (i.e. a is
removed from the multiset in h and replaced by the
objects in w).

(b) Send-in communication rules, of the form a []
h
→ [b]

h
.

They can be applied to a membrane labelled by h
and such that the parent region, i.e. the one containing
membrane h, contains an occurrence of the object a;
the object a is sent into h, becoming b.

(c) Send-out communication rules, of the form [a]
h
→ []

h
b.

They can be applied to a membrane labelled by h and
containing an occurrence of the object a; the object a
is sent out from h to the parent region, becoming b.

(d) Dissolution rules, of the form [a]
h
→ b.

They can be applied to any membrane except the
outermost one labelled by h and containing an occur-
rence of the object a; the object a is sent out from h to
the parent region becoming b, the membrane h ceases
to exist and all the other objects it contains are sent into
the parent region.

� = (� ,�,�,wh1
,… ,whd

,R),
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A computation step changes the current configuration of 
the system according to the following set of principles:

• Each object and membrane can be subject to at most
one rule per step, except for object evolution rules:
inside each membrane, several evolution rules can be
applied simultaneously.

• The application of rules is maximally parallel: each
object appearing on the left-hand side of evolution or
communication rules must be subject to exactly one of
them. Analogously, each membrane can only be subject
to one communication or dissolution rule (types (b)–(d))
per computation step; for this reason, these rules will be
called blocking rules in the rest of the paper. As a result,
the only objects and membranes that do not evolve are
those associated with no rule.

• When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step.

• In each computation step, all the chosen rules are applied
simultaneously in an atomic way. However, to clarify the
operational semantics, each computation step is conven-
tionally described as a sequence of micro-steps, whereby
each membrane evolves only after its internal configu-
ration (including, recursively, the configurations of the
membrane substructures it contains) has been updated.

• Any object sent out from it cannot re-enter the system.

A halting computation of the P  system �  is a finite 
sequence C = (C0,… , Ck) of configurations, where C0 is the 
initial configuration, every Ci+1 is reachable from Ci via a sin-
gle computation step, and no rules of � are applicable in Ck.

P  systems can be used as language recognizers by 
employing two distinguished objects ��� and �� : we assume 
that all computations are halting, and that either one copy of 
object ��� or one of object �� is sent out from the outermost 
membrane, and only in the last computation step, to signal 
acceptance or rejection, respectively. If all computations 
starting from the same initial configuration are accepting, 
or all are rejecting, the P system is said to be confluent.

To solve decision problems (or, equivalently, decide 
languages), we use families of recognizer P  systems 
� = {𝛱x ∶ x ∈ 𝛴⋆} . Each input  x is associated with a
P system �x deciding the membership of x in a language
L ⊆ 𝛴⋆ by accepting or rejecting. The mapping x ↦ �x

must be efficiently computable for inputs of any length, as
discussed in detail in [13].

Definition 2 A family of P systems � = {𝛱x ∶ x ∈ 𝛴⋆} 
is (polynomial-time) uniform if the mapping x ↦ �x can 

be computed by two polynomial-time deterministic Turing 
machines E and F as follows:

• F(1n) = �n , where n is the length of the input x and �n

is a common P system for all inputs of length n, with a
distinguished input membrane.

• E(x) = wx , where wx is a multiset encoding the specific
input x.

• Finally, �x is simply �n with wx added to a specific mem-
brane, called the input membrane.

Any explicit encoding of �x is allowed as output of the
construction, as long as it is at most polynomially shorter 
than the one where the rules are listed one by one, the mem-
brane structure is represented in such a way that all mem-
branes are listed one by one and their content is encoded in 
unary. This restriction is enforced to mimic a (hypothetical) 
realistic process of construction of the P systems, where 
membranes and objects are presumably placed in a constant 
amount during each construction step, and require actual 
physical space proportional to their number; see also [13] 
for further details on the encoding of P systems.

Among all possible uniformity conditions, obtained by 
imposing constrains on the Turing machines E and F, we 
are interested in (�,�)-uniform families of P systems, where 
both the machine constructing the P system given the size of 
the input in unary and the machine encoding the input can 
only employ logarithmic space. This uniformity condition 
is weaker than the usual (�, �)-uniformity, but it is needed 
to avoid that the computation which is intended to be per-
formed by the P system is instead performed by the Turing 
machines E and F building it.

3  Simulation of polynomial‑time Turing 
machines

The main idea of this section is to provide a simulation of a 
deterministic TM working in polynomial time by using a P 
system with only one level of nesting, i.e, by what is usually 
called a shallow P system.

A first observation is that two objects can meaningfully 
influence each other only through dissolution: while two 
objects might interfere due to the blocking nature of commu-
nication rules, any such interaction is actually not significant 
due to the confluence of the P system. Therefore, informa-
tion between objects must be exchanged by performing dis-
solution, for example by having one of the objects “count” 
the steps needed before “falling out” in the parent region.

Let M be a polynomial-time deterministic TM hav-
ing alphabet � , set of states Q, and transition function 
� ∶ Q × � → Q × � × {−1,+1} . We assume that, for an
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input of length n machine M halts in time p(n) and, thus, it 
uses no more than p(n) + 1 cells. We define a P system � 
that simulates the computation of M in O(p(n)|�|) steps. 
That is, the simulation of every step of M will require a 
number of steps in � that is proportional to the size of the 
alphabet of M, thus providing an efficient simulation, i.e. a 
simulation that is only polynomially slower than the simu-
lated system in terms of number of steps.

The P system � has (p(n) + 1)2 + p(n)2 + p(n) + 1 labels, 
one for the skin membrane and two for each pair of time and 
position in the TM tape:

Since we assume that no kind of membrane division is 
present, in the following we can identify membranes and 
labels, since each label is used by exactly one membrane. 
The semantics of the labels is that a membrane with label 
(i, j) will represent the i-th cell of the TM tape at time j. 
The additional membrane (i, j)� is used while performing the 
transition between time j and j + 1 , which also explains why 
the label is not present for time p(n).

� ={0} ∪ {(i, j) | i, j ∈ {0,… , p(n)}}

∪ {(i, j)� | i ∈ {0,… , p(n)} j ∈ {0,… , p(n) − 1}}.

The set of objects of the simulating P system will be:

where m = |�| and qI is the initial state of the TM. The first 
three sets of the union represent, respectively, the symbols 
on the tape, the state of the TM, and the state of the TM 
together with the symbol present under the tape head. The 
last two sets are only used to encode the initial configuration 
of the TM. Let a1, a2,… , ap(n) be the initial contents of the 
TM tape. It is encoded in the initial configuration of � as the 
objects a1,1, a2,2,… , ap(n),p(n) inside the outermost membrane 
(e.g. if the initial content of the tape is abba, then it will 
be encoded by the multiset a1b2b3a4 ). The initial state qI is 
encoded as the object qI.

The rules of the P system performing the simulation of 
the TM M are presented both in the main text and grouped 
together in Fig. 1. The following rules send the objects rep-
resenting the TM tape inside the corresponding membranes: 

𝛤 ={ai,j,k | i, j ∈ {0,… , p(n)}, 0 ≤ k < m + 5, a ∈ 𝛴}

∪ {qi,j,k | i, j ∈ {0,… , p(n)}, 0 ≤ k ≤ m + 5, q ∈ Q}

∪ {qi,j,k,a | i, j ∈ {0,… , p(n)}, 0 ≤ k ≤ m + 5, q ∈ Q, a ∈ 𝛴}

∪ {ai | a ∈ 𝛴, i ∈ {0,… , p(n)}} ∪ {qI},

Fig. 1  The complete set of 
rules employed by the P system 
� that simulates the Turing
machine M, here given as a
handy reference. The number-
ing is the same as the one used
in the text when introducing
each rule
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the object ai is sent into the membrane (i, 0). At the same 
time the object qI is rewritten as qI

0,0,0
:

After this first “bookkeeping” step, the actual simulation of 
one TM step can start. The previous rules will not be further 
applied during the simulation. An example of simulation of 
one step of M by � is presented in Fig. 2.

Let � be a bijection from � to {1,… , |�|} providing a 
total ordering of the TM alphabet. The main idea is to have 
each object representing the symbol a written on position i 
at time j on the TM tape dissolving the membrane (i, j) when 
its subscript is i, j,�(a) . This means that any other object 
present in the same membrane (in our case, the object rep-
resenting the current state of the TM) can infer the symbol 
under the tape head and act accordingly. The evolution of 
the objects representing the tape content for the first m + 1 
time steps of the simulation of each TM step is described by 
the following rules:

where k goes from 0 to m and is used to decide when a 
membrane has to be dissolved. Notice how the objects sim-
ply “count” in the subscript except that when k = �(a) the 
membrane in which they are contained is dissolved. The 
application of those rules is depicted in Fig. 2 in the transi-
tions from t = 1 to t = 2 , from t = 2 to t = 3 , and from t = 3 
to t = 4 ; the dissolution of the containing membranes hap-
pens from t = 2 to t = 3 for objects representing the tape 
symbol a, and from t = 3 to t = 4 for objects representing 
the tape symbol b.

At the same time, the object representing the TM state 
enters the membrane (i, j), representing that the tape head 
at time j is in position i and starts to count. When membrane 
(i, j) is dissolved, it is possible to infer the object that dis-
solved it and, thus, the symbol on the tape under the tape 
head, which is represented by �−1(a) (which is well defined, 
since � is a bijection between � and {1,… ,m} ). The cor-
responding rules are:

(1)ai [](i,0) → [ai,0,0](i,0) for a ∈ �

(2)[qI → qI
0,0,0

]0.

(3)[ai,j,k → ai,j,k+1](i.j) for 0 ≤ k < 𝜑(a) and a ∈ 𝛴,

(4)[ai,j,k](i,j) → ai,j,k+1 for k = �(a) and a ∈ �,

(5)[ai,j,k → ai,j,k+1]0 for 𝜑(a) < k ≤ m and a ∈ 𝛴,

(6)qi,j,0 [](i,j) → [qi,j,1](i,j) for q ∈ Q,

(7)[qi,j,k → qi,j,k+1](i,j) for 1 ≤ k ≤ m and q ∈ Q,

The application of those rules is depicted in Fig. 2 in all 
the transitions from t = 1 to t = 4 . At time step m + 1 in 
the simulation of the current TM step, all membranes with 
label (i, j) (for all i and with j the current TM step being 
simulated) have been dissolved. Now the object representing 
the TM state continues to wait in the outermost membrane, 
while all the objects representing the TM tape are sent in 
into the corresponding membranes (i, j)� . These membranes 
will be employed to delete the current content of the cell 
under the TM head and to replace it with the new symbol. 
The rules applied at time step m + 1 are the following:

In Fig. 2 the application of these rules is in the transition 
t = 4 to t = 5 . Once all the objects of the form ai,j,k for a ∈ � 
have entered the membranes (i, j)� , they wait for the object 
representing the TM state to enter:

These rules are applied in the transition from t = 5 to t = 6 
in Fig. 2. At time step m + 3, the membrane containing the 
object representing the TM state is dissolved. In all other 
membranes, the objects representing the TM tape wait for 
one more step:

In Fig. 2, these rules are applied in the transition from t = 6 
to t = 7 . One of the focal points of this simulation algorithm 
happens at time step m + 4 (always relative to the start of 
the simulation of the current TM step). Here, all the objects 
representing the tape content dissolve the membrane (i, j)� in 
which they are located. The only object not performing this 
step is the one that was sent into the outermost membrane 
by the dissolution triggered by the object representing the 
TM state. The object representing the old content of the 
tape cell is deleted (by rewriting it to the empty multiset � ) 
and the one encoding the TM state produces its replacement 
according to the transition function � of the TM:

(8)[qi,j,k → qi,j,k+1,�−1(k)]0 for 1 ≤ k ≤ m, and q ∈ Q,

(9)[qi,j,k,a → qi,j,k+1,a]0 for 1 ≤ k ≤ m, a ∈ �, and q ∈ Q.

(10)ai,j,m+1 [](i,j)� → [ai,j,m+2](i,j)� for a ∈ �,

(11)[qi,j,m+1,a → qi,j,m+2,a]0 for q ∈ Q and for a ∈ �.

(12)[ai,j,m+2 → ai,j,m+3](i,j)� for a ∈ �,

(13)qi,j,m+2,a [](i,j)� → [qi,j,m+3,a](i,j)� for q ∈ Q and a ∈ �.

(14)[ai,j,m+3 → ai,j,m+4](i,j)� for a ∈ �,

(15)[qi,j,m+3,a](i,j)� → qi,j,m+4,a for q ∈ Q and a ∈ �.
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(0,0) (1,0) (2,0) (3,0)

0

a0,0,0 b1,0,0 b2,0,0 a3,0,0

q0,0,0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

q0,0,1
(0,0) (1,0) (2,0) (3,0)

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,1 b1,0,1 b2,0,1 a3,0,1

t = 1 t = 2

q0,0,2,a
(1,0) (2,0)

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,2 b1,0,2 b2,0,2 a3,0,2
q0,0,3,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,3 b1,0,3 b2,0,3 a3,0,3

t = 3 t = 4

a0,0,4 b1,0,4 b2,0,4 a3,0,4

q0,0,4,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

a0,0,5 b1,0,5 b2,0,5 a3,0,5q0,0,5,a

0

(0,0)′ (1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

t = 5 t = 6

a0,0,6 b1,0,6 b2,0,6 a3,0,6q0,0,6,a

0

(1,0)′ (2,0)′ (3,0)′

(0,1) (1,1) (2,1) (3,1)

b0,0,7 b1,0,7 b2,0,7 a3,0,7q0,0,7,a

0
(0,1) (1,1) (2,1) (3,1)

t = 7 t = 8

b0,1,0 b1,1,0 b2,1,0 a3,1,0

r0,0,0

0
(0,1) (1,1) (2,1) (3,1)

b0,1,1 b1,1,1 b2,1,1 a3,1,1r0,0,1

0
(0,1) (1,1) (2,1) (3,1)

t = 9 t = 10

Fig. 2  The simulation of one computation step of the TM M by means of the P system � . In this example the alphabet � is {a, b} and the tape
contains four cells
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These rules are applied in the transition from t = 7 to t = 8 
in Fig. 2. Finally, a new simulation step can start by sending 
in all the objects representing the TM tape to the membranes 
(i, j + 1) and resetting the last component of their subscript. 
At the same time, the object representing the TM state actu-
ally applies the transition function � and rewrites itself:

The application of these rules happens in the transition from 
t = 8 to t = 9 in Fig. 2. The last transition (from t = 9 to 
t = 10 ) is the beginning of the simulation of the next step.

Notice that all rules, labels, and objects can be constructed 
by a logarithmic space TM. In fact, most of them are con-
structed by iterating either a constant or a polynomial number 
of times to produce the necessary subscripts. Since the coun-
ters are all at most polynomial in the number that they contain, 
they can be encoded using a logarithmic number of bits.

We can thus state the main result:

Theorem 1 (�,�)-uniform families of confluent shallow 
polarizationless P systems with active membranes with dis-
solution can solve all problems in �.

This result was already known for non-shallow systems 
[13], but here there are two main innovations: the systems 
here are shallow, i.e. of depth 1, and the construction is via 
a direct simulation of a Turing machine, which allows one to 
embed this construction into more complex membrane struc-
tures. Furthermore, notice how the construction makes no use 
of rules duplicating the membranes and their contents (i.e. 
division rules), which are a common way of increasing the 
computational power of P systems.

Notice that the above construction can be modified to simu-
late a non-deterministic TM, by replacing the only two types 
of rules that involve the transition function of the TM in such 
a way as to allow for a non-deterministic choice (due to having 
multiple rules in conflict):

(16)[ai,j,m+4](i,j)� → ai,j,m+5 for a ∈ �,

(17)[ai,j,m+4 → �]0 for a ∈ �,

(18)
[qi,j,m+4,a → qi,j,m+5,a, bi+d,j,m+5]0 for q ∈ Q, a ∈ �,

and �(q, a) = (r, b, d).

(19)ai,j,m+5 [](i,j+1) → [ai,j+1,0](i,j+1) for a ∈ �,

(20)
[qi,j,m+5,a → ri+d,j+1,0]0 for q ∈ Q, a ∈ �,

and �(q, a) = (r, b, d).

In the first rule, the non-deterministic choice is remembered 
by writing it in the subscript; in this way, the only rule of 
the second kind that can fire is the one corresponding to the 
non-deterministic choice performed. We can then state the 
following theorem showing that a weaker uniformity condi-
tion is still sufficient to reach �� for non-confluent systems:

Theorem 2 (�,�)-uniform families of non-confluent shallow 
polarizationless P systems with active membranes with dis-
solution and without division can solve all problems in ��.

4  Conclusions and open problems

In this paper, we showed that P systems without charges can 
still solve all problems in the complexity class � even when 
the power of the machines in the uniformity condition is 
reduced. The TM simulation presented is quite modular and 
can be embedded in more complex membrane structures. 
The resulting simulation is also efficient, requiring a slow-
down of only a constant multiplicative factor.

Among the open problems, the most prominent one is 
to study if the construction presented in [6] can be repli-
cated for systems with charges, possibly adding an additional 
nesting level to accommodate for the different TM simula-
tion technique. Such a result would show that even without 
charges, the entirety of the counting hierarchy is reachable in 
constant depth. This is another step in trying to understand 
what are the features that actually grant P systems the power 
to reach beyond � and, in some cases, beyond the entire poly-
nomial hierarchy. It would also be interesting to modify the 
simulation to reduce the number of labels and, consequently, 
membranes employed: the current construction uses O(p(n)2) 
membranes (i.e. one for every pair of tape cell and time 
step). However, the number of cells that are rewritten dur-
ing a computation of the TM halting in p(n) steps is at most 
p(n). Can we reduce the number of membrane labels to this 
quantity? Finally, we have shown that (�,�)-uniformity is 
sufficient to construct the P system. We conjecture that this 
is not necessary and that, in fact, the construction might be 
possible with even weaker uniformity conditions; it remains 
open to find what those conditions are.

[qi,j,m+4,a → qi,j,m+5,(r,b,i+d), bi+d,j,m+5]0 for q ∈ Q, a ∈ �,

and (r, b, d) ∈ �(q, a)

[qi,j,m+5,(r,b,i+d) → ri+d,j+1,0]0 for q ∈ Q and a ∈ �.
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