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ABSTRACT
We employ a set of Magneticum cosmological hydrodynamic simulations that span over 15 different cosmologies, and extract
masses and concentrations of all well-resolved haloes between z = 0 and 1 for critical overdensities �vir,�200c,�500c,�2500c

and mean overdensity �200m. We provide the first mass–concentration (Mc) relation and sparsity relation (i.e. M�1 − M�2

mass conversion) of hydrodynamic simulations that is modelled by mass, redshift, and cosmological parameters �m, �b, σ 8,
h0 as a tool for observational studies. We also quantify the impact that the Mc relation scatter and the assumption of Navarro–
Frank–White (NFW) density profiles have on the uncertainty of the sparsity relation. We find that converting masses with the
aid of an Mc relation carries an additional fractional scatter (≈ 4 per cent) originated from deviations from the assumed NFW
density profile. For this reason, we provide a direct mass–mass conversion relation fit that depends on redshift and cosmological
parameters. We release the package HYDRO MC, a PYTHON tool that perform all kind of conversions presented in this paper.

Key words: Galaxy: halo – cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

Early studies of numerical N-body simulations of cosmic structures
embedded in cosmological volumes (see e.g. Kravtsov, Klypin &
Khokhlov 1997; Navarro, Frenk & White 1997) showed that dark
matter haloes can be described by the so-called Navarro–Frank–
White (NFW) profile (Navarro, Frenk & White 1996). The NFW
density profile ρ(r) is modelled by a characteristic density ρ0 and a
scale radius rs in the following way:

ρ (r) = ρ0

r

rs

(
1 + r

rs

)2. (1)

The NFW profile proved to match density profiles of dark matter
haloes of dark matter-only (DMO) simulations (see e.g. Bullock et al.
2001; Suto 2003; Prada et al. 2012; Meneghetti et al. 2014; Klypin
et al. 2016; Gupta et al. 2017; Brainerd 2019) up to the largest
and most resolved ones whose analyses trace the route for the next
generation of (pre-)Exascale simulations. However, density profiles
of hydrodynamic simulations have small deviations from the NFW
profile (see e.g. Balmès et al. 2014; Tollet et al. 2016).

Since this kind of density profile does not have a cut-off radius,
the radius of a halo is often chosen as the virial radius Rvir (see e.g.
Ghigna et al. 1998; Frenk et al. 1999), namely the radius at which the
mean density crosses the one of a theoretical virialized homogeneous
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top-hat overdensity. Bryan & Norman (1998) showed that the virial
overdensity can be written as

�vir(a) ≈ 18π2 + 82� (a) − 39� (a) , (2)

where a is the scale factor and �(a) is the energy density parameter
(see Dodelson 2003, for a review), namely

�(a) = �ma3 ×
(

�m

a3
+ �r

a4
+ �k

a2
+ ��

)−1

, (3)

where �m, �r, �k, and �� are the density fractions of the total
matter, radiation, curvature, and cosmological constant, respectively.
Numerical cosmological simulations, as in this work, typically use
negligible radiation and curvature terms (they set �r = �k = 0 in
equation 3).

Observational studies typically define galaxy cluster (GC) radii as
R�c, where � is an arbitrary overdensity and the ‘c’ suffix indicates
that the overdensity is relative to the critical overdensity given by

M(r < R�c) = � × 4

3
πR3

�cρc. (4)

X-ray observations typically use overdensities �500c and �2500c

and the corresponding radii R500c and R2500c (see e.g. Bocquet
et al. 2019; Bulbul et al. 2019; Mantz 2019; Umetsu et al. 2019),
whereas observational studies that compute dynamical masses typ-
ically use � = �200c (see e.g. Biviano et al. 2017; Capasso et al.
2019). Weak-lensing studies on the other hand often utilize radii
whose overdensities are proportional to the mean density of the
Universe. For instance, works such as Mandelbaum, Seljak &
Hirata (2008) and McClintock et al. (2019) measure halo radii

C© 2020 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/4/5056/5979799 by guest on 11 February 2021

http://orcid.org/0000-0002-9288-862X
mailto:antonio.ragagnin@inaf.it


c� (M�, z, cosmology) 5057

as R200m, where the suffix ‘m’ means that the radius is defined
so the mean density of the halo in equation (4) crosses �ρ (in
this case 200ρ), where ρ is the average matter density of the
Universe.

The concentration c� of a halo is defined as c� ≡ R�/rs, where
rs is the scale radius of equation (1) and quantifies how large
the internal region of the cluster is compared to its radius for a
given overdensity (see Okoli 2017, for a review). Both numerical
and observational studies analyse the concentration of haloes in
the context of the so-called mass–concentration (Mc) plane (see
table 4 in Ragagnin et al. 2019, for comprehensive list of recent
studies). Within the context of hydrodynamic simulations, one
can define the DM Mc plane that can be used by observations
that estimate DM profiles (e.g. Merten et al. 2015). On the other
hand, observations that have only information on the total matter
profile must rely on total matter Mc planes (e.g. Raghunathan et al.
2019).

In search of a realistic estimate of halo concentrations, one must
consider the various sources that affect this value. The c parameter
in both observational and numerical studies is found to have a
weak dependence on halo mass and a very large scatter (Bullock
et al. 2001; Martinsson et al. 2013; Ludlow et al. 2014; Shan
et al. 2017; Shirasaki, Lau & Nagai 2018; Ragagnin et al. 2019).
Concentration has been found to depend on a number of factors,
as formation time of haloes (Bullock et al. 2001; Rey, Pontzen &
Saintonge 2018), accretion histories (see e.g. Ludlow et al. 2013;
Fujita et al. 2018a, b), dynamical state (Ludlow et al. 2012), triaxiality
(Giocoli et al. 2012, 2014), and halo environment (Klypin et al.
2016; Corsini et al. 2018). The fractional scatter in the Mc plane is
larger than � 33 per cent (Heitmann et al. 2016), and observations
found outliers both with an extremely high concentration (Buote &
Barth 2019) or very low concentration. When all major physical
phenomena of galaxy formation are taken into account (cooling, star
formation, black hole seeding and their feedback), then concentration
parameters are lower than their DMO counterpart (see e.g. results
from NIHAO simulations as in Wang et al. 2015; Tollet et al.
2016).

Halo concentration parameters are also affected by the under-
lying cosmological model (see e.g. Roos 2003, for a review on
cosmological models). The derived Mc relation is found in fact
different in cold dark matter (CDM), �CDM, wDM, and varying
dark energy equation of state (Kravtsov et al. 1997; Dolag et al.
2004; De Boni 2013; De Boni et al. 2013; Ludlow et al. 2016). In
general, the Mc dependence of DMO simulations on cosmological
parameters has been extensively studied in works such as the Cosmic
Emulator (Macciò, Dutton & van den Bosch 2008; Bhattacharya et al.
2013; Heitmann et al. 2016), Ludlow et al. (2014), and Prada et al.
(2012).

Mc relations allow observational works to convert masses between
overdensities. For this purpose, Balmès et al. (2014) defined the
sparsity parameter s�1, �2 as the ratio between masses at overdensity
�1 and �2. This quantity is a proxy to the total matter profile
(Corasaniti et al. 2018) and enables cosmological parameter infer-
ence (Corasaniti & Rasera 2019) and testing for some dark energy
models without assuming an NFW profile (Balmès et al. 2014).
Observations use the sparsity parameter to infer the halo matter
profile (Bartalucci et al. 2019), as a potential probe to test f(R)
models (Achitouv et al. 2016), a less uncertain measurement of the
Mc relation (Fujita et al. 2019), and to find outliers in scaling relations
involving integrated quantities with different radial dependences (see
conclusions in Andreon et al. 2019).

In this work, we use data from the Magneticum suite of simulations
(presented in works such as Biffi, Dolag & Böhringer 2013; Saro
et al. 2014; Dolag et al. 2015; Steinborn et al. 2015; Teklu et al.
2015; Bocquet et al. 2016; Dolag, Komatsu & Sunyaev 2016;
Steinborn et al. 2016; Remus et al. 2017) to calibrate the cosmology
dependence of the Mc and of the mass–sparsity relation of the
total matter component from hydrodynamic simulations with the
purpose of facilitating cluster–cosmology oriented studies. These
studies typically calibrate the observable–mass relation from stacked
weak-lensing signal under the assumption that mass calibration can
be correctly recovered from DMO Mc relations (e.g. Dietrich et al.
2014; Rozo et al. 2014; Baxter et al. 2016; Geach & Peacock 2017;
Simet et al. 2017; McClintock et al. 2019; Raghunathan et al. 2019
and references therein), an approximation that has to be quantified
by calibrating the total mass Mc relations within hydrodynamic
simulations (see discussion in section 5.4.1 of McClintock et al.
2019).

This work represents a first necessary step in this direction and it
provides Mc and mass–mass relations that depend on cosmology and
that simultaneously account for the presence of baryons. While in
fact previous works in the literature studied either the dependence of
the concentration on cosmological parameters or on baryon physics,
in this analysis we calibrate for the first time the dependence
of concentration on cosmological parameters in the context of
hydrodynamic simulations that include a full description of the main
baryonic physical processes.

In Section 2, we present the numerical set-up of the simulations
used in this work. In Section 3, we fit the concentration of haloes as a
function of mass and scale factor for all our simulations and compare
our results with both observations and other theoretical studies. In
Section 4, we provide a fit of the concentration as a function of mass,
scale factor, and cosmology. As uncertainty propagation is a delicate
and important matter for cluster cosmology experiments, in Section 5
we test sparsity parameter and study the origin of its large uncertainty.
In order to facilitate cluster cosmology studies that include mass–
observable relations that are calibrated at different radii (e.g. Bocquet
et al. 2016, 2019; Costanzi et al. 2019; Mantz 2019), we study how to
convert masses at different overdensities (the sparsity–mass relation).
We summarize our findings, including a careful characterization of
the associated intrinsic scatter in Section 5. We draw our conclusions
in Section 7.

2 NUMERI CAL SI MULATI ONS

Magneticum simulations are performed with an extended version
of the N-body/smoothed particle hydrodynamics (SPH) code P-
GADGET3, which is the successor of the code P-GADGET2 (Springel
2005; Springel et al. 2005b; Boylan-Kolchin et al. 2009), with a
space-filling curve aware neighbour search (Ragagnin et al. 2016),
an improved SPH solver (Beck et al. 2016); treatment of radiative
cooling, heating, ultraviolet (UV) background, star formation, and
stellar feedback processes as in Springel, Di Matteo & Hernquist
(2005a), connected to a detailed chemical evolution and enrichment
model as in Tornatore et al. (2007), which follows 11 chemical
elements (H, He, C, N, O, Ne, Mg, Si, S, Ca, and Fe) with the aid
of CLOUDY photoionization code (Ferland et al. 1998). Fabjan et al.
(2010) and Hirschmann et al. (2014) describe prescriptions for black
hole growth and for feedback from active galactic nuclei (AGNs).

Haloes are identified using the version of SUBFIND (Springel et al.
2001), adapted by Dolag et al. (2009) to take the baryon component
into account.
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Table 1. List of Magneticum simulations as presented in Singh et al. (2019). Columns show,
respectively: simulation name, cosmological parameters �m, �b, σ 8, and h0, the number of haloes
selected from all redshift snapshots (z = 0.00, 0.14, 0.29, 0.47, 0.67, and z = 0.9) of a given
simulation, and the number of haloes of that simulations at redshift z = 0. Two of these simulations
were also run without radiative processes (C1 norad and C1 norad) and C8 uses the reference
cosmology from Komatsu et al. (2011).

Name �m �b σ 8 h0 Nhaloes Nhaloes

(All snapshots) (Snapshot z = 0)

C1 0.153 0.0408 0.614 0.666 29 206 9153
C1 norad 0.153 0.0408 0.614 0.666 27 613 9208
C2 0.189 0.0455 0.697 0.703 54 094 16 236
C3 0.200 0.0415 0.850 0.730 107 423 27 225
C4 0.204 0.0437 0.739 0.689 66 351 19 051
C5 0.222 0.0421 0.793 0.676 84 087 22 037
C6 0.232 0.0413 0.687 0.670 47 045 14 930
C7 0.268 0.0449 0.721 0.699 58 815 17 990
C8 0.272 0.0456 0.809 0.704 79 417 22 353
C9 0.301 0.0460 0.824 0.707 96 151 26 473
C10 0.304 0.0504 0.886 0.740 120 617 32 551
C11 0.342 0.0462 0.834 0.708 97 392 27 100
C12 0.363 0.0490 0.884 0.729 118 342 33 571
C13 0.400 0.0485 0.650 0.675 35 503 14 626
C14 0.406 0.0466 0.867 0.712 104 266 30 918
C15 0.428 0.0492 0.830 0.732 92 352 28 348
C15 norad 0.428 0.0492 0.830 0.732 79 399 25 270

Magneticum subgrid physics does reproduce realistic haloes,1

thus one can assume that its concentration parameter is realistic and
of general applicability for purposes of calibration on observational
studies.

Table 1 gives an overview of the cosmological simulations used
in this work. They have already been presented in Singh et al. (2019,
see table 1 in their paper) and labelled as C1–15 and has a different
configuration of the cosmological parameters �m, �b, h, and σ 8.
Additionally, we use two simulations with the same set-up as C1
and C15, labelled respectively as C1 norad and C15 norad, that
have been run without radiative cooling and star formation. Each
simulation covers a volume of 896 Mpc h−1, has a DM particle mass
mDM=1.3·1010Msun/h, a gas particle mass mgas=2.6·109Msun/h
and a softening ε=10kpc/h.

For each simulation, we study the haloes at a timeslice with
redshifts z = 0.00, 0.14, 0.29, 0.47, 0.67, and z = 0.90. In the
following sections, we repeat the same analyses for overdensities
�vir,�200c, �500c, �2500c,�200m performing a corresponding mass
cut (respectively on M = Mvir, M200c, M500c, M2500c, M200m) that
ensures that all haloes have at least 104 particles. This cut is different
for each of our simulations. This is opposed to what was used in
Singh et al. (2019), where they choose a fixed mass cut for all C1–
C15 simulations. The mass range of these haloes is between 1014

and 4 × 1015 M�, which fits the typical range of GC weak-lensing
masses (see e.g. Applegate et al. 2014).

1In particular, Magneticum simulations match observations of angular mo-
mentum for different morphologies (Teklu et al. 2015; Teklu, Remus & Dolag
2016); the mass–size relation (Remus & Dolag 2016; Remus et al. 2017; van
de Sande et al. 2019); the dark matter fraction (see fig. 3 in Remus et al.
2017); the baryon conversion efficiency (see fig. 10 in Steinborn et al. 2015);
kinematical observations of early-type galaxies (Schulze et al. 2018); the inner
slope of the total matter density profile (see fig. 7 in Bellstedt et al. 2018),
the ellipticity and velocity over velocity dispersion ratio (van de Sande et al.
2019); and reproduce the high concentration of high luminosity gap of fossil
objects (Ragagnin et al. 2019).

In this work, we fit the NFW profile (see equation 1) over the
total matter component (i.e. dark matter and baryons) as opposed to
previous works (see Ragagnin et al. 2019), where the NFW profile fit
was performed over the dark matter component only. We fit the
density profile over 20 logarithmic bins, starting from r = 100
kpc (similar to the cut applied in observational studies as Dietrich
et al. 2019). All fits with a χ2 > 103 have been excluded from our
analyses (which accounts for a few hundred haloes per snapshot)
as they correspond to heavily perturbed objects. Although works
on simulations typically present quantities in comoving units of h,
unless differently specified, all masses and distances presented in
this manuscript are in physical units.

3 H A L O C O N C E N T R AT I O N S

In Appendix A, we study the effect of baryons on Mc planes
and show how an incorrect treatment of baryons can lead to
underestimation of the concentration up to 20 per cent and how the
interplay between dark matter and baryons put the dynamical state
of hydrodynamic simulations in a much more complex picture than
the one of DMO simulations.

This motivates us to study halo masses and concentrations on
hydrodynamic simulations, and in particular we focus on their
dependence on cosmological parameters. We perform a fit of the
concentration as a function of mass and redshift for each simulation
at each overdensity of Magneticum simulations. The functional form
of the concentration is chosen as a power law on mass and scale factor
as done in the observational studies (see e.g. Merten et al. 2015) as

ln c� (M�) = lnA + Bln

(
M�

Mp

)
+ Cln

(
a

ap

)
+ σ. (5)

Here, A and B are fit parameters, σ is the logarithmic scatter, and
ap and Mp are median of mass and scale factor, respectively, and are
used as pivot values.
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We maximized the following likelihood L̂2 with a uniform prior
for all fit parameters:

ln L̂ = −1

2

(
ln(2πσ 2) +

(
ln c� (M�, A, B, C) − ln c�

σ

)2
)

. (6)

Fig. 1 shows the Mc planes for �vir (computed following equa-
tion 2) for all 15 simulations, together with the concentration from
the redshift–mass–concentration (aMc relation) colour coded by
log10χ

2. Haloes with high χ2 tend to have lower concentration which
qualitatively agrees with other theoretical studies that show how
perturbed objects have lower concentrations (see e.g. Balmès et al.
2014; Ludlow et al. 2014; Klypin et al. 2016). For this reason, in
an Mc plane, it is not advisable to weight halo concentrations with
1/χ2, as this would bias the relation towards higher concentrations.
Although the concentration is believed to decrease with increasing
halo mass, extreme cosmologies such as C1 and C2 (with �m <

0.2) have an overall positive dependence between the mass and
concentration. On the other hand, the logarithmic mean slope is
low (between −0.03 and 0.08) and its influence in the Mc plane is
not dominant in our mass regime of interest.

3.1 Comparison with other studies

We then compare Magneticum simulation concentrations of haloes
with the concentration predicted by the Cosmic Emulator (Bhat-
tacharya et al. 2013; Heitmann et al. 2016). The Cosmic Emulator
is a tool to predict the Mc planes for a given wCDM. We were
able to compare only C7, C8, and C9 cosmologies because the other
Magneticum simulations had cosmological parameters that were out
of the range of the Cosmic Emulator. Note that while the Cosmic
Emulator dependence on �b is encoded in the power spectrum
normalization, our Mc relation dependence on �b takes into account
all physical processes of baryon physics, including star formation
and feedback.

The ratio of median concentration cvir parameters of haloes
obtained with our Mc fit and the concentration provided by the
Cosmic Emulator is ≈1.2. We notice how the Cosmic Emulator
concentrations (retrieved by DMO runs) are systematically higher
than Magneticum simulations in this mass regime (by a factor of
≈ 10–20 per cent), in agreement with our comparison in Ragagnin
et al. (2019). The scatter is constant over mass, redshift, and
cosmology, to nearly σ ≈ 0.38, in agreement with the value of ≈1/3
presented in the wCDM DMO model of Kwan et al. (2013).

Fig. 2 shows the Mc plane for the full-physics simulations C1–15
against other DMO simulations and observations. We compare our
mass-concentration planes with results from Omega500 simulations
(Shirasaki et al. 2018); CLASH concentrations from Merten et al.
(2015), numerical predictions from MUSIC of CLASH (Meneghetti
et al. 2014), where a number of simulated haloes have been chosen
to make mock CLASH observations. To highlight the high scatter in
the mass-concentration relation, we show high concentration groups
from Pratt et al. (2016) and an under-luminous and low-concentration
halo presented in Andreon et al. (2019). When analysing this data,
one must be aware of their selection effects: CLASH data set underwent
some filtering difficult to model, while fossil objects presented in
Pratt et al. (2016) by construction lay in the upper part of the
Mc plane. There is a general agreement between concentration of
Magneticum simulations and these observations.

2We used the PYTHON package EMCEE (Foreman-Mackey et al. 2013).

4 C O S M O L O G Y D E P E N D E N C E O F
C O N C E N T R AT I O N PA R A M E T E R

The 15 cosmologies we use in this work have different Mc normal-
ization values and log-slope (see Fig. 1). We perform a fit of the
concentration as a function of mass, scale factor, and cosmological
parameters in order to interpolate an Mc plane at a given, arbitrary,
cosmology, i.e. a concentration c� (M�, 1/ (1 + z) , �m, �b, σ8, h0).
As the intrinsic scatter is constant (within few per cents), we did
not further parametrize it and assumed it to be independent of
mass, redshift, and cosmology. The functional form of the fit
parameters in equation (5), with a dependence on cosmology is as
follows:

A = A0 + αmln

(
�m

�m,p

)
+ αbln

(
�b

�b,p

)
+

+ασ ln

(
σ8

σ8,p

)
+ αhln

(
h0

h0,p

)

B = B0 + βmln

(
�m

�m,p

)
+ βbln

(
�b

�b,p

)
+

+βσ ln

(
σ8

σ8,p

)
+ βhln

(
h0

h0,p

)

C = C0 + γmln

(
�m

�m,p

)
+ γbln

(
�b

�b,p

)
+

+γσ ln

(
σ8

σ8,p

)
+ γhln

(
h0

h0,p

)
. (7)

The fit has been performed for � = �vir, �200c, �500c, �2500c, and
�200m by maximizing the Likelihood as in equation (6). Table 2
shows the results with cosmological parameter pivots at the reference
cosmology C8.

Given the high number of free parameters, in order to not
underestimate possible sources of errors in the fit, we decided to
evaluated uncertainties as follows in Singh et al. (2019): (1) we
first reperformed the fit for each simulation by setting its own
cosmological parameter as pivot values; (2) then for each parameter
except A0, B0, C0, we considered the standard deviation of the
parameter values in the previous fits and set it as uncertainty in
Table 2; (3) parameters A0, B0, C0 are presented without uncertainty
because the error obtained from the Hessian matrix is negligible
compared to the scatter parameter σ . Being this work first necessary
step towards a cosmology-dependent Mc relation, these parame-
ters may be constrained with more precision in future simulation
campaigns.

From the above fit, we find that the normalization (α parameters)
is mainly affected by �m and σ 8. The slope of the Mc plane (β
parameters) has a weak dependence on cosmology. However, the
logarithmic mass slope is pushed towards negative values by an
increase in �m and h0 (i.e. βm and βh < 0), while it is pushed
towards positive values by an increase in �b and σ 8 (since βb and
βσ > 0). This behaviour is also shown in Fig. 2. Note that, C1
and C2 have opposite mass dependence with respect to the other
runs. Although the trend can be positive for some cosmologies (see
Table 2 and Fig. 1), the slope is always close to zero. The redshift
dependence (γ parameters) is driven by both σ 8 and �m, while a high
baryon fraction can lower the dependence (see parameter γ h). The
scatter is nearly constant for all the overdensities with a value close
to 0.38 and even if it is of the same order of the difference between
Mc relations of different cosmologies (see shaded area in Fig. 2),
in the next subsection we will show that statistical studies on large
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Figure 1. Each panel shows the Mc plane one full physics Magneticum simulation presented in Table 1. Concentrations are computed at overdensity �vir. Data
points represent all selected haloes at redshift z = 0, colour coded by their log10χ

2. Concentration values are plotted only in the range cvir = 1 − 10, because
this range contains vast majority of haloes. Black line corresponds to the Mc relation obtained by the fit in equation (5). Grey lines correspond to the Mc relation
obtained for the simulation C8 (which uses the reference cosmology; Komatsu et al. 2009). The different mass cut on each panel is due to our choice of selecting
the smallest mass cut where all haloes have at least 104 particles. As a consequence, our mass cuts depend on cosmological parameters.

samples of GCs are still affected by the cosmological dependence of
Mc relations.

Since the logarithmic slope of the mass has a weak dependence on
cosmology, we provide a similar fit as the one in this section without
B having any cosmological dependences i.e. B = B0 in Appendix B
(see Table B1). In Appendix B (see Table B2), we also provide the
same reduced fit parameters with the scale radius computed on the
dark matter density profile.

4.1 Impact on inferred weak-lensing masses

There are differences between the Mc relation extracted from our
simulations at different cosmologies and the ones from DMO
simulations. When Mc relations are used to provide priors and
interpret the weak-lensing signal of non-ideal NFW cluster samples,
the different Mc relations will ultimately lead to different inferred
masses and therefore different cosmological constraints from cluster
number count experiments. In fact, works such as Henson et al.
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Figure 2. Mc plane of our simulations C1–C15 (black solid lines), haloes from the hydrodynamic cosmological simulation Omega500 (Shirasaki et al. 2018;
dashed orange line), observations of fossil groups from Pratt et al. (2016; orange data points), mock observations from Meneghetti et al. (2014; red data points),
data from CLASH (Meneghetti et al. 2014; magenta data points) and a low-concentration halo from Andreon et al. (2019; blue data point). Shaded area is the
scatter around the C8 relation.

Table 2. Pivots and best-fitting parameters for the cosmology–redshift–mass–concentration plane and its dependence on cosmology
as in equations (5) and (7) for concentration overdensities of � = �vir,�200c, �500c,�2500c , and �200m. The pivots �m,p, �b,p, σ 8,
and h0 in equation (7) are the cosmological parameters of C8 as in Table 1 (�m = 0.272, �b = 0.0456, σ 8 = 0.809, h0 = 0.704).
Pivots ap and Mp are, respectively, median of scale factor and mass of all haloes. Errors on A0, B0, C0, and σ are omitted as they are
all < 0.001 per cent. The package HYDRO MC contains a script that utilizes this relation (#1).

Param. Overdensity
vir 200c 500c 2500c 200m

Mp (M�) 19.9 × 1013 17.4 × 1013 13.7 × 1013 6.9 × 1013 22.4 × 1013

ap 0.877 0.877 0.877 0.877 0.877
A0 1.50 1.24 0.86 0.13 1.69
B0 −0.04 −0.05 −0.05 −0.03 −0.04
C0 0.52 0.20 0.19 0.11 0.91
αm 0.454 ± 0.041 0.632 ± 0.042 0.662 ± 0.042 0.759 ± 0.055 0.227 ± 0.037
αb −0.249 ± 0.040 −0.246 ± 0.038 −0.235 ± 0.049 −0.272 ± 0.134 −0.266 ± 0.035
ασ 0.554 ± 0.030 0.561 ± 0.034 0.519 ± 0.047 0.422 ± 0.050 0.528 ± 0.022
αh −0.005 ± 0.030 −0.026 ± 0.016 −0.031 ± 0.065 −0.021 ± 0.167 0.016 ± 0.028
βm −0.122 ± 0.001 −0.118 ± 0.001 −0.112 ± 0.001 −0.116 ± 0.001 −0.116 ± 0.001
βb 0.117 ± 0.005 0.112 ± 0.004 0.126 ± 0.005 0.289 ± 0.007 0.115 ± 0.008
βσ 0.051 ± 0.003 0.056 ± 0.002 0.088 ± 0.004 0.103 ± 0.005 0.050 ± 0.006
βh −0.079 ± 0.013 −0.044 ± 0.009 −0.156 ± 0.014 −0.342 ± 0.017 −0.094 ± 0.027
γ m 0.240 ± 0.006 0.352 ± 0.007 0.346 ± 0.009 0.384 ± 0.011 −0.043 ± 0.009
γ b −0.126 ± 0.034 −0.039 ± 0.040 −0.045 ± 0.051 −0.133 ± 0.062 −0.063 ± 0.053
γ σ 0.664 ± 0.027 0.767 ± 0.026 0.856 ± 0.032 0.846 ± 0.046 0.635 ± 0.039
γ h −0.030 ± 0.109 −0.276 ± 0.112 −0.347 ± 0.136 0.003 ± 0.171 −0.405 ± 0.135
σ 0.388 ± 0.001 0.384 ± 0.001 0.377 ± 0.001 0.383 ± 0.001 0.388 ± 0.001

(2017) show that it is possible to correctly recover halo masses
from mock observations of both DMO and hydrosimulations by
using their respective Mc relations. On the other hand, in low
signal-to-noise conditions, weak-lensing mass calibration typically

constrains the total observed mass using Mc relations derived
from DMO simulations (see e.g. Melchior et al. 2017). In the
following, we quantify and discuss this effect on a simplified
example.
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To this end, we create a simulated projected surface density profile
of an NFW model of the RXC J2248.7−4431 cluster (Gruen et al.
2013), at z = 0.436 with mass M200c = 1.75 · 1015 M� (Melchior
et al. 2015). The simulated profile is generated using equation (41)
in Łokas & Mamon (2001) with a concentration c200c from our Mc
relation (see Table 2) and with cosmological parameters �m = 0.27,
�b = 0.05, σ 8 = 0.8, h0 = 0.67. We mimic a simplified observed
radial profile sampled with 20 logarithmic equally spaced radial bins
from 3 to 30 arcmin. To each data point, we assigned an associated er-
ror in order to simulate typical weak-lensing observational conditions
(S/N = 5) of a massive clusters in a photometric survey like the Dark
Energy Survey (DES; Melchior et al. 2015). We test a simplified mass
calibration process by fitting the above described density profile with
a Gaussian likelihood for each simulated projected density radial bin
�i:

L =
∏

i

P (�i |M200c, c200c,��,i). (8)

We adopt a flat prior on logM200c and test the impact of adopting the
following different priors for the concentration:

(i) Ragagnin20: The Mc relation with a lognormal scatter σ lnc|M =
0.38 as presented in this work.

(ii) Diemer19: The DMO Mc relation proposed in Diemer & Joyce
(2019)3 with a lognormal scatter σ lnc|M = 0.39.

To show the impact on mass calibration of Ragagnin20 and the
dependence on cosmological parameters, we perform the calibration
both at the correct input cosmology (from here on Cosmo A) and
with cosmological parameters randomly extracted from the posterior
distribution of the cosmological parameters derived by SPT cluster
number counts (Bocquet et al. 2019; �m = 0.26, �b = 0.04, σ 8 =
0.6, h0 = 0.66 from here on Cosmo B).

Fig. 3 (top panel) shows the ideal unperturbed mock profile and
best-fitting realizations of NFW profiles produced using Ragagnin20
(red line) and Diemer19 (blue line). The Mc relation presented in
this work has a lower concentration normalization than Diemer19
(Appendix A), and thus Ragagnin20 produces lower values of surface
densities near the centre and higher values on the outskirts with
respect to DMO Mc relations. Different prior assumptions on the
Mc relation affect the inferred mass, as we see in Fig. 3 (middle
panel).4 While the posterior derived assuming the Mc relations of
Ragagnin20 and of Diemer19 are in good agreement, the best-fitting
mass recovered with Diemer19 is ≈ 10 per cent higher compared
to the one derived with Ragagnin20. This can be better appreciated
in the bottom panel of Fig. 3, where we instead simulate the mass
calibration of a stack of 100 clusters (Melchior et al. 2017). We
therefore mimic an S/N = 50 stacked average profile and decrease
by a factor of

√
100 the intrinsic scatter around the Mc relation

in the prior. Assuming the wrong Cosmo B cosmology, we would
recover biased results using both the Ragagnin20 and the Diemer19
Mc relation, even if the marginalized posterior on the mass would be
almost unbiased for the Ragagnin20 analysis. Furthermore we note
that fixing Cosmo B cosmolgy instead of the correct input Cosmo A
cosmolgy would result in a slightly smaller mass for Ragagnin20 and
in a slightly larger mass for Diemer19. While a more sophisticated
analysis including a treatment of systematic uncertainties and a self-
consistent exploration of the cosmological parameters is beyond the
purpose of this work, this simple exercise highlights the importance

3We used the PYTHON package #1 (see Diemer 2018).
4Parameter space is sampled with EMCEE.

Figure 3. Top panel: Surface density of mock data points (grey line), and
best-fitting realizations with DMO Mc relation priors (red line) and this
work (blue line). Middle and bottom panel: Marginalized posterior parameter
distributions of log10M200c and c200, with DMO Mc relation (red and pink
lines) and this work’s Mc relation (blue and cyan lines) for a simulated
analysis of a single observation (middle panel) and of a stack of 100 GCs
(bottom panel).
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of a correct modelization of the cosmological dependence of the
Mc relation in the the weak-lensing analysis of cluster samples for
cosmological purposes.

We stress that in this experiment, we wanted to mimic the
procedure of most observational works, thus we did not model baryon
component of DMO simulations.

5 H A LO MASSES C ONVERSION

In the following subsections, we present and compare different meth-
ods of converting masses between overdensities. We also provide a
direct fit for converting masses (i.e. SUBFIND masses) from �1 to �2
(thus without using the Mc relation), in order to study the origin of
the scatter coming from the conversions. This kind of conversions
is used in computing the sparsity of haloes (i.e. ratio of masses in
two overdensities), which itself can probe cosmological parameters
(Corasaniti et al. 2018; Corasaniti & Rasera 2019) and dark energy
models (Balmès et al. 2014).

5.1 Mass–mass conversion using Mc relation

In this section, we tackle the problem of converting masses via an Mc
relation. By combining the definition of mass M� (see equation 4)
and the fact that the matter profile only depends on a proportional
parameter ρ0 and a scale radius rs, we get

M� = 4πρ0r
3
s f (c�) = �

4

3
πR3

�ρc. (9)

For an NFW profile as in equation (1),

f (c�) = ln(1 + c�) − c�

1 + c�

. (10)

Combining equations (9) and (10) gives the following mass
conversion formula:⎧⎪⎨
⎪⎩

M�2 = M�1

(
c�2
c�1

)3
�2
�1

c�,2 = c�,1 ·
(

�1
�2

f (c�,2)
f (c�,1)

) 1
3
.

(11)

From the second part of equation (11), it is possible to evaluate
the concentration c�2 as a function of only c�1 (as in appendix C of
Hu & Kravtsov 2003).

Equation (11) can be used to estimate the theoretical scatter σ theo

obtained in the mass conversion by analytically propagating the
uncertainties of the Mc relation, namely:

σtheo = 1

M�2

dM�2

dc�1
σc,�1, (12)

where M�2 is the converted mass, c�1 the concentration in the original
overdensity �1, and σ c,�1 is the uncertainty in the concentration (in
our case it is the scatter in the Mc relation). Appendix C describes how
to obtain the theoretical scatter one would expect given a perfectly
NFW profile.

There are several sources of error in the mass–mass conversion
derived by an Mc relation: (i) the intrinsic scatter of the Mc relation,
(ii) the fact that profiles are not perfectly NFW and thus equation (10)
is not the best choice for this conversion; and (iii) the cosmology–
redshift–mass–concentration fit (as in Table 2) may not be optimal.

To further study the sources of uncertainties in this conversion, we
fit SUBFIND halo masses between two overdensities,5 and compare
the two conversion methods.

5.2 M�1–M�2 (M–M) plane

In this subsection, we perform a direct fit between halo masses
(i.e. SUBFIND masses), as a function of redshift and cosmological
parameter. The reason of this fit is twofold: (1) we want to study the
uncertainty introduced in the conversion of the previous subsection
and (2) we want to provide a way of converting masses without any
assumption on their concentration and NFW density profile.

For each pair of overdensities, we performed a fit of the mass
M�2(M�1, 1/(1 + z), �m, �b, σ 8, h0) with the following functional
form:

ln M�2 (M�1, a) = lnA + Bln

(
M�1

Mp

)
+ Cln

(
a

ap

)
, (13)

where A, B, C parameters are parametrized with cosmology as in
equation (7).

Table 3 shows the results of the mass–mass conversion fit between
critical overdensities, while Table 4 shows the conversion fit param-
eters between �200c and �200m. The conversion relation has a strong
dependence on σ 8 and a weak dependence on h0 (see αm, βm, γ m

parameters).

5.3 Uncertainties in mass conversions

When converting between masses at different overdensities, we are
interested in the following sources of uncertainty:

(i) σ M–M(Mc): the scatter from the mass–mass conversion obtained
with the aid of our Mc relation found in Section 5.1.

(ii) σ M–M(c): the scatter obtained from a conversion between the
true values of M�1 and c�1 of a given halo to M�2 (i.e. using
only equation 11). We use this scatter in order to estimate the error
coming from non-NFWness (i.e. deviation from perfect NFW density
profile).

(iii) σ theo: the scatter obtained by analytically propagating the Mc
log-scatter (≈0.38 as in Table 2) with equation (12). This value
estimates the uncertainty coming from the intrinsic scatter of the Mc
relation alone.

(iv) σ̃Mc : the scatter that is supposed to be introduced by a non-
ideal cosmology–redshift–mass–concentration fitting formula.

(v) σ M–M: the intrinsic scatter of M–M conversion using Table 3
presented in Section 5.2.

In a simplistic approach, the quadrature sum of the scatter coming
from non-NFWness (σ M–M(c)), the theoretical scatter (σtheo) and the
scatter due to a non-ideal Mc fit (σ̃Mc), should all add up to the scatter
in the mass–mass conversion using an Mc relation:

σ 2
M–M(Mc) = σ 2

M–M(c) + σ 2
theo + σ̃ 2

Mc. (14)

5.4 Obtaining M200c from M500c or M2500c

In this subsection, we test mass conversion to M200c given M500c or
M500c. We compare results obtained using the technique described in
Section 5.1 against the mass–mass relation from equation (13).

5The package HYDRO MC contains a sample script to convert masses between
two overdensities by using the Mc relation presented in this paper (#1).
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Table 3. Fit parameters for equations (13) and (7) for overdensities �vir, �200c, �500c, �2500c , and �200m. Pivots are as in Table 2. Errors on A0, B0, C0, and
σ are omitted as they are all < 0.001 per cent. The package HYDRO MC contains a script that utilizes this relation (#1).

Param. From overdensity → to overdensity
vir → 200c vir → 500c vir → 2500c 200c → vir 200c → 500c 200c → 2500c

Mp (M�) 19.9 × 1013 19.9 × 1013 19.9 × 1013 17.4 × 1013 17.4 × 1013 17.4 × 1013

ap 0.877 0.877 0.877 0.877 0.877 0.877
A0 32.72 32.31 31.34 32.99 32.39 31.41
B0 1.00 1.00 0.93 0.99 0.99 0.92
C0 −0.24 −0.24 −0.01 0.23 0.00 0.22
αm 0.165 ± 0.007 0.295 ± 0.015 0.619 ± 0.026 −0.156 ± 0.006 0.125 ± 0.009 0.461 ± 0.021
αb 0.003 ± 0.011 −0.020 ± 0.033 −0.162 ± 0.069 −0.003 ± 0.009 −0.020 ± 0.023 −0.150 ± 0.062
ασ 0.048 ± 0.008 0.177 ± 0.016 0.574 ± 0.016 −0.035 ± 0.006 0.120 ± 0.009 0.539 ± 0.016
αh −0.045 ± 0.004 −0.105 ± 0.013 −0.054 ± 0.068 0.037 ± 0.005 −0.060 ± 0.012 −0.042 ± 0.065
βm −0.016 ± 0.001 −0.043 ± 0.001 −0.076 ± 0.001 0.015 ± 0.001 −0.025 ± 0.001 −0.058 ± 0.001
βb 0.030 ± 0.001 0.096 ± 0.003 0.203 ± 0.004 −0.026 ± 0.001 0.062 ± 0.003 0.171 ± 0.003
βσ −0.024 ± 0.001 −0.043 ± 0.002 −0.010 ± 0.003 0.017 ± 0.001 −0.020 ± 0.002 0.006 ± 0.002
βh −0.007 ± 0.003 −0.038 ± 0.008 −0.203 ± 0.009 0.015 ± 0.003 −0.025 ± 0.009 −0.180 ± 0.009
γ m 0.159 ± 0.001 0.213 ± 0.002 0.379 ± 0.001 −0.153 ± 0.002 0.052 ± 0.003 0.211 ± 0.002
γ b −0.050 ± 0.005 −0.115 ± 0.010 −0.232 ± 0.006 0.057 ± 0.009 −0.052 ± 0.016 −0.080 ± 0.013
γ σ 0.123 ± 0.003 0.354 ± 0.009 0.555 ± 0.009 −0.107 ± 0.005 0.244 ± 0.007 0.486 ± 0.005
γ h 0.036 ± 0.011 0.026 ± 0.034 0.039 ± 0.035 −0.035 ± 0.019 −0.038 ± 0.029 −0.175 ± 0.031
σ 0.065 ± 0.001 0.158 ± 0.001 −0.312 ± 0.001 0.056 ± 0.001 0.113 ± 0.001 −0.296 ± 0.001

Param. From overdensity → to overdensity
500c → vir 500c → 200c 500c → 2500c 2500c → vir 2500c → 200c 200c → 500c
500c − vir 500c − 200c 500c − 2500c 2500c − vir 2500c − 200c 2500c − 500c

Mp (M�) 13.7 × 1013 13.7 × 1013 13.7 × 1013 6.9 × 1013 6.9 × 1013 6.9 × 1013

ap 0.877 0.877 0.877 0.877 0.877 0.877
A0 33.12 32.93 31.58 33.33 33.14 32.77
B0 0.99 1.00 0.93 1.02 1.03 1.03
C0 0.25 0.02 0.22 0.16 −0.08 −0.10
αm −0.264 ± 0.013 −0.114 ± 0.007 0.335 ± 0.012 −0.563 ± 0.030 −0.414 ± 0.023 −0.307 ± 0.014
αb 0.003 ± 0.031 0.006 ± 0.021 −0.125 ± 0.045 0.093 ± 0.142 0.100 ± 0.126 0.090 ± 0.091
ασ −0.111 ± 0.015 −0.088 ± 0.009 0.409 ± 0.016 −0.342 ± 0.009 −0.316 ± 0.017 −0.255 ± 0.022
αh 0.084 ± 0.025 0.058 ± 0.019 0.015 ± 0.080 0.103 ± 0.195 0.066 ± 0.184 0.019 ± 0.155
βm 0.034 ± 0.001 0.019 ± 0.001 −0.033 ± 0.001 0.063 ± 0.001 0.049 ± 0.001 0.029 ± 0.001
βb −0.083 ± 0.005 −0.053 ± 0.002 0.115 ± 0.002 −0.300 ± 0.001 −0.264 ± 0.003 −0.189 ± 0.003
βσ 0.033 ± 0.003 0.019 ± 0.001 0.031 ± 0.001 −0.019 ± 0.001 −0.035 ± 0.002 −0.045 ± 0.001
βh 0.064 ± 0.012 0.036 ± 0.005 −0.197 ± 0.005 0.412 ± 0.003 0.382 ± 0.007 0.320 ± 0.006
γ m −0.190 ± 0.002 −0.033 ± 0.002 0.162 ± 0.001 −0.306 ± 0.001 −0.159 ± 0.001 −0.134 ± 0.003
γ b 0.101 ± 0.009 0.005 ± 0.012 −0.081 ± 0.005 0.152 ± 0.005 0.075 ± 0.010 0.047 ± 0.018
γ σ −0.373 ± 0.006 −0.281 ± 0.008 0.223 ± 0.003 −0.638 ± 0.008 −0.532 ± 0.014 −0.268 ± 0.010
γ h −0.017 ± 0.023 0.130 ± 0.033 −0.083 ± 0.012 0.037 ± 0.024 0.147 ± 0.038 0.043 ± 0.042
σ 0.129 ± 0.001 0.096 ± 0.001 −0.235 ± 0.001 0.242 ± 0.001 0.228 ± 0.001 0.182 ± 0.001

We tested the conversion M500c → M200c in the mass regime of
M200c ≈ 1014 − 1015 M� and found the following scatter values:
σ M–M(Mc) = 0.09,σ M–M(c) = 0.04, and σtheo = 0.07 by converting
masses using Section 5.1 and σ M–M = 0.07 by using conversion
table in Section 5.2. We are confident to have all uncertainty sources
under control because the quadrature sum of all scatters from

conversion described in Section 5.2 (i.e.
√

σ 2
M–M(c) + σ 2

theo = 0.09)

equals σ M–M(Mc) from Section 5.1 as in equation (14).
We repeat the same conversion for M2500c → M200c and find the

following scatter values: σ M–M(Mc) = 0.29, σ M–M(c) = 0.07, σtheo =
0.24 by converting masses using Section 5.1 and σ M–M = 0.22,
by using conversion table in Section 5.2. In this conversion, the
quadrature sum of the theoretical scatters in equation (14) holds only
if we attribute an additional source of the uncertainty to a non-ideal
M2500c–c2500c relation fit σ̃Mc = 0.14.

This means that a direct mass–mass fit is more precise than a
conversion that passes through an Mc relation when converting
M2500c → M200c.

It is interesting to see that in both scenarios the conversion with
the lowest scatter is the one performed with the exact knowledge
of both mass and concentration (i.e. σ M–M(c) is the lowest). On the
other hand, in the scenario where one only knows the mass of a halo,
then the conversion with the lowest uncertainty is the one that uses
relation in Section 5.2 (i.e. with a scatter σ M–M).

6 D I S C U S S I O N O N C O S M O L O G Y
DEPENDENCE OF MASSES A ND
C O N C E N T R AT I O N S

The concentration of haloes at fixed mass is a non-trivial function of
cosmological parameters. We summarize in Fig. 4 (upper panel),
the variation of c500c as a function of cosmological parameters
for a halo of mass M� = 1014 M� to provide a more intuitive
representation. In general, concentration normalization decreases
with baryon fraction �b. While a small (≈ 2 per cent) decrease is
expected also on DMO models as Diemer & Joyce (2019), our
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Table 4. Fit parameters for equations (13) and (7) between overdensities
of �200c to �200m. Errors on A0, B0, C0, and σ are omitted as they are all
< 0.001 per cent. Pivots are as in Table 2. The package HYDRO MC contains
a script that utilizes this relation (#1).

Param From overdensity → to overdensity
200c → 200m 200m → 200c

Mp (M�) 17.4 × 1013 22.4 × 1013

ap 0.877 0.877
A0 33.11 32.71
B0 0.99 1.01
C0 0.46 −0.49
αm −0.288 ± 0.013 0.318 ± 0.016
αb −0.017 ± 0.015 0.014 ± 0.019
ασ −0.053 ± 0.011 0.088 ± 0.019
αh 0.078 ± 0.009 −0.103 ± 0.003
βm 0.031 ± 0.001 −0.035 ± 0.001
βb −0.040 ± 0.003 0.063 ± 0.003
βσ 0.029 ± 0.002 −0.050 ± 0.002
βh 0.017 ± 0.006 −0.011 ± 0.007
γ m −0.313 ± 0.002 0.358 ± 0.002
γ b 0.062 ± 0.008 −0.102 ± 0.010
γ σ −0.201 ± 0.007 0.246 ± 0.010
γ h 0.026 ± 0.022 0.033 ± 0.036
σ 0.084 ± 0.001 −0.102 ± 0.001

change in this mass range is likely associated with feedback from
AGNs, as an increase of gas fraction implies more energy released
by feedback processes, which is known to lower concentration. The
logarithmic mass slope of the Mc (see Table 2) increases with �b, in
agreement with SNe feedback being less relevant in massive haloes.
For concentration at � = 2500c, the situation is less clear. � =
2500c is closer to the centre of the halo and depends more strongly
on physical processes which are not solely regulated by gravity. The
qualitative behaviour is nevertheless consistent with � = 500c, with
the strongest (positive) cosmological dependence on σ 8 and �m, a
weak (negative) dependence on �b, and a weaker one on h0. It is not
possible to infer the effect of �b on the redshift log-slope as its value
is mainly driven by σ 8.

C1 and C2 simulations show a positive correlation between mass
and concentration. This is in agreement with Prada et al. (2012),
where they found that haloes with low rms fluctuation amplitude σ

have a concentration that increases with mass. In fact, C1 and C2
have extremely low values of σ 8 (i.e. σ 8 < 0.7) which leads to low
rms fluctuation amplitudes.

When converting masses from higher overdensities to lower over-
densities, the scatter increases as the difference between overdensities
increases (see Table 3). Fig. 4 (lower panel) shows the variation of
sparsity normalization as a function of cosmological parameters.
The log-slope of the mass dependence (β parameters) has almost
no dependence on cosmology. One exception is made by s200c, 2500c,
where normalization does depend on �b. Note that this relation does
not assume any density profile, thus this dependence cannot be caused
by a bad NFW fit. This effect is probably due to baryon feedback that
at this scale is capable of influencing the total matter density profile.

The redshift dependence (γ parameters) is mostly influenced by
�m and σ 8, with a contribution that increases with separation between
overdensities, which may indicate a different growth of the internal
and external regions of the halo.

Figure 4. Change in concentration parameter (top panel) and sparsity
(bottom panel) by fractional changes of cosmological parameters with respect
to reference cosmology C8. Masses and sparsities are computing using our
fit in Tables 2 and 3 for a halo of M� = 1014 M�.

7 C O N C L U S I O N S

We provided Mc relations and mass conversion relations between
overdensities that include dependences on the cosmological param-
eters without modelling dynamical state of the simulated haloes.
We showed that mass calibrated with DMO Mc relation can be
≈ 10 per cent higher compared with masses calibrated with our
Mc relation. Additionally, cluster–cosmology oriented studies will
benefit from this work since this relation averages over all different
dynamical states and includes the average effect of baryon physics.

For these reasons, we performed the following studies:

(i) We provided the fitting functions for the cosmology–redshift–
mass–concentration relation in the context of Magneticum
hydrodynamic simulations for the critical overdensities
�vir, �200c, �500c,�2500c and mean overdensity �200m (see
Section 4 and Table 2).

(ii) We explored the possibility of converting masses between
overdensities with and without the aid of our Mc relation and, for
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the latter, we studied the origin of its uncertainty as being caused by
(i) non-NFWness of profiles and (ii) a non-ideal Mc fit. In particular,
when converting masses via an Mc relation, non-NFWness of density
profiles accounts for approx. 6 per cent of the scatter. Additionally
the conversion between M2500 to M200 has an additional fractional
scatter of ≈0.15 caused by the non-ideal Mc relation fit.

(iii) In Section 6, we discuss the dependence of halo masses and
concentration as a function of cosmological parameters. Although
concentration is mainly driven by �m and σ 8, we found that �b does
decrease concentration and a higher h0 lowers the concentration of
the internal part of the halo, probably because of the related scale-
dependent baryon feedback. We also found that the positive Mc trend
in C1 and C2 is due to their low σ 8.

We released the PYTHON package HYDRO MC

(github.com/aragagnin/hydro mc). This tool is able to perform all
kinds of conversions presented in this paper and we provided a
number of ready-to-use examples: Mc relation presented in Table 2
(#1), mass–mass conversion with fit parameters in Table 3 (#1), and
mass–mass conversion through the Mc relation in Table 2 (#1).
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APPENDI X A : EFFECTS O F BARYO NS

In this appendix section, we show the importance of correctly
describing baryon physics on the estimation of halo concentration.
Since all simulations (C1–C15) share the same initial conditions,
it is possible to study the evolution of the same halo that evolved
differently in different cosmologies.

Fig. A1 shows the evolution of both the virial radii and scale
radii of haloes in C1 and C1 norad. Fig. A1 (upper panel) shows the
stacked ratio of concentration, virial radius, and the scale radius.
On an average, C1 haloes have higher concentration parameters
(≈ 10–15 per cent higher, up to ≈ 20 per cent) and this difference
grows with time. Intuitively one may think that the difference in
concentration between C1 and C1 norad would be due to a difference
in the virial radius. However, the figure shows that it is the scale radius
that produce the difference in concentration between the full physics
run and the non-radiative one.

Fig. A1 (bottom panel) focuses on the evolution of a single
halo (bottom left panel shows the evolution of the halo in C1,
whereas the bottom right panel shows the same halo in C1 norad).
Simulations without radiative cooling produce haloes with lower
concentration with respect to their full physics counterpart (i.e.
cvir ≈ 6 lowers down to cvir ≈ 5). This example shows that in
non-radiative simulations, concentration decreases even if the full
physics counterpart is characterized by the same accretion history
(‘jumps’ in concentration and rs values happen at the same scale
factor).

Dynamical state is known to be related to halo concentra-
tions (Ludlow et al. 2012) and can be quantified using the virial ratio
(Cui et al. 2017), (2T − Es)/W, where W is the total potential energy,
T is the total kinetic energy (including gas thermal pressure), and
Es is the energy from surface pressure P (from kinetic and thermal
energy) at the halo boundary. As described in Chandrasekhar (1961),
Es is given by

Es =
∮

P (r)r · dS. (A1)

Cui et al. (2017) showed that baryonic physics can lower the virial
ratio up to 10 per cent w.r.t. DMO runs and Zhang, Yu & Lu (2016)
showed that merger time-scale is shortened by a factor of up to 3 for
merging clusters with gas fractions 0.15, compared to the time-scale
obtained with no gas.

Fig. A2 shows Es/W versus K/W for a DMO run (left-hand panel)
and a hydrodynamic run (right-hand panel) that shares the same
initial conditions.6 The two runs display a different behaviour for

6We use Magneticum/Box0 mr simulation, with 2.7 Gpc h−1 size and
gravitational softening down to 2.6 × 109 kpc h−1, gas and DM mass particles
of 2.6109 and 2.61010 M� h−1, respectively, as presented in Bocquet et al.
(2016).
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Figure A1. Evolution of virial and scale radii and concentration of haloes in simulations C1 and C1 norad. Upper panel shows the stacked average over 50
haloes of ratios of cvir (magenta top line), 1/rs (cyan middle line), and Rvir (bottom green line) between C1 and C1 norad. Lower panel shows the evolution Rvir

(blue top line) and rs (orange bottom line) and cvir in blue, of the same halo in the simulation C1 (bottom left panels) and C1 norad (bottom right panels).

highly concentrated objects (c > 4): DMO ones have low surface
pressure and low total kinetic energy, while hydrodynamic ones
show a much more complex and noisy relation between Es, W, and
c200c.

It is well known that concentration does depend on dynamical state.
Here, we also noted how hydrodynamic simulations compared to
DMO runs do show even a more noisy and complex relation between
concentration and the virial ratio. However, given that the majority
of observational studies that investigate large cluster samples lack
data to accurately determine their dynamical state (see e.g. studies
presented in Hoekstra et al. 2015; Okabe & Smith 2016; Melchior
et al. 2018; Bocquet et al. 2019; Dietrich et al. 2019; Mantz 2019, and
references therein), they will benefit from an Mc relation built from
hydrodynamic simulations that already averages over all possible
dynamical states of a halo, as in this work.

The average concentration of haloes shown in Fig. 2 are lower
than the concentration computed using the dark matter density profile
presented in a previous work on Magneticum simulations (Ragagnin
et al. 2019, which uses the same cosmology as C8). The median
concentration for cosmology C8 is c200c ≈ 3.5 for the total matter
profile, while the dark matter concentration presented in Ragagnin
et al. (2019) has c200c ≈ 4.3.

Such discrepancy is due to the fact that dark matter component
is more peaked in the central region with respect to the total matter
density. Fig. A3 shows an example of the matter density profiles
of a Magneticum halo. Here, the DM halo has a scale radius of
139 kpc h−1 while the total matter scale radius is 154 kpc h−1:
collisional particles and stars formed from them (and their associated
heating processes as SN and AGN feedback) are capable of lowering
a concentration parameter of ≈ 20 per cent.
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Figure A2. Kinetic term K versus energy from the surface pressure Es scaled by total potential energy W for the same initial condition evolved with baryon
physics (left-hand panel) and a DMO run (right-hand panel). Black solid lines show the median Es/W.

Figure A3. Density profile of both dark matter (dashed black) and total
matter (dashed pink) up to the virial radius Rvir = 930 kpc h−1 and the
corresponding NFW profile (solid lines) for a halo of C1 simulation at z = 0.
Vertical lines correspond, respectively, to the dark matter profile scale radius
(139 kpc h−1) and the total matter profile has a scale radius rs = 154 kpc h−1.

APPENDI X B: C OSMOLOGY– MASS–
R E D S H I F T – C O N C E N T R AT I O N R E L AT I O N
LITE

Given the weak dependence of mass from the concentration (at least
in the mass range of interests of cluster of galaxies), we provide a
cosmology–redshift–mass–concentration fit, where in equation (5)
we parametrize the dependence of the cosmology only in the
normalization and in the redshift dependence as the following:

A = A0 + αmln

(
�m

�m,p

)
+ αbln

(
�b

�b,p

)
+

+ασ ln

(
σ8

σ8,p

)
+ αhln

(
h0

h0,p

)
B = B0

C = C0 + γmln

(
�m

�m,p

)
+ γbln

(
�b

�b,p

)
+

+γσ ln

(
σ8

σ8,p

)
+ γhln

(
h0

h0,p

)
. (B1)

Table B1 shows the results of this fit, with the same procedure
as in Section 4, where pivot values are the ones for the reference
cosmology C8 and errors are assigned by performing the same fit as
in Singh et al. (2019).

Table B2 shows the results of the Mc plane where we fit the NFW
profile of the dark matter density profile only. The functional form
is as in equation (B1), with the same procedure as the previous one
(thus, as in Section 4).
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Table B1. Pivots and fit parameters for the cosmology dependent aMc plane as Table 2, here the logarithmic slope of mass is not
dependent on cosmology, thus we fit equations (5) and (B1), for concentration overdensities of � = �vir, �200c,�500c, �2500c , and
�200m. The pivots �m,p, �b,p, σ 8, and h0 in equation (7) are the cosmological parameters of C8 as in Table 1 (�m = 0.272, �b =
0.0456, σ 8 = 0.809, h0 = 0.704). Errors on A0, B0, C0, and σ are omitted as they are all < 0.001 per cent. The package HYDRO MC

contains a script that utilizes this relation (#1).

Parameter Overdensity
vir 200c 500c 2500c 200m

Mp (M�) 1.99e + 14 1.74e + 14 1.37e + 14 6.87e + 13 2.24e + 14
ap 0.877 0.877 0.877 0.877 0.877
A0 1.499 1.238 0.859 0.122 1.688
B0 −0.048 −0.053 −0.060 −0.037 −0.044
C0 0.520 0.201 0.187 0.110 0.910
αm 0.423 ± 0.006 0.60 ± 0.01 0.63 ± 0.01 0.7273 ± 0.0006 0.201 ± 0.003
αb −0.141 ± 0.006 −0.152 ± 0.006 −0.131 ± 0.005 −0.179 ± 0.004 −0.186 ± 0.006
ασ 0.65 ± 0.02 0.65 ± 0.02 0.61 ± 0.03 0.516 ± 0.003 0.60 ± 0.02
αh −0.28 ± 0.01 −0.25 ± 0.02 −0.27 ± 0.02 −0.23 ± 0.01 −0.17 ± 0.02
γ m 0.19 ± 0.01 0.360 ± 0.010 0.336 ± 0.009 0.36 ± 0.01 −0.10 ± 0.01
γ b 0.02 ± 0.06 −0.15 ± 0.06 −0.04 ± 0.05 0.00 ± 0.07 0.00 ± 0.06
γ σ 0.76 ± 0.05 0.72 ± 0.04 0.89 ± 0.04 0.94 ± 0.06 0.61 ± 0.05
γ h −0.4 ± 0.2 −0.1 ± 0.2 −0.4 ± 0.2 −0.5 ± 0.2 −0.4 ± 0.2
σ 0.388031 0.384516 0.376690 0.382868 0.388477

Table B2. Fit parameters for the cosmology-dependent aMc plane as Table 2, here we computed the concentration using the scale
radius of the dark matter density profile, plus the logarithmic slope of mass is not dependent on cosmology. We fit equations (5) and
(B1), for concentration overdensities of � = �vir,�200c, �500c,�2500c , and �200m. The pivots �m,p, �b,p, σ 8, and h0 in equation (7)
are the cosmological parameters of C8 as in Table 1 (�m = 0.272, �b = 0.0456, σ 8 = 0.809, h0 = 0.704). Errors on A0, B0, C0, and
σ are omitted as they are all < 0.001 per cent. The package HYDRO MC contains a script that utilizes this relation (#1).

Parameter Overdensity
vir 200c 500c 2500c 200m

A0 1.499 1.238 0.979 0.213 1.798
B0 −0.048 −0.053 −0.039 −0.015 −0.034
C0 0.520 0.201 0.178 0.055 0.918
αm 0.42 ± 0.05 0.60 ± 0.01 0.46 ± 0.07 0.588 ± 0.001 0.008 ± 0.007
αb −0.14 ± 0.03 −0.152 ± 0.006 −0.08 ± 0.03 −0.204 ± 0.010 −0.072 ± 0.006
ασ 0.65 ± 0.03 0.65 ± 0.02 0.47 ± 0.05 0.363 ± 0.006 0.53 ± 0.01
αh −0.28 ± 0.05 −0.25 ± 0.02 −0.33 ± 0.05 −0.47 ± 0.03 0.03 ± 0.01
γ m 0.19 ± 0.04 0.360 ± 0.010 0.34 ± 0.01 0.51 ± 0.03 −0.23 ± 0.01
γ b 0.02 ± 0.06 −0.15 ± 0.06 −0.4 ± 0.1 −0.7 ± 0.1 −0.09 ± 0.06
γ σ 0.76 ± 0.06 0.72 ± 0.04 0.5 ± 0.1 0.3 ± 0.1 0.45 ± 0.02
γ h −0.4 ± 0.2 −0.1 ± 0.2 −1.1 ± 0.4 −1.9 ± 0.5 0.02 ± 0.06
σ 0.39 0.384516 0.51 0.484290 0.498887

APPENDIX C : THEORETICAL SCATTER OF
MASS C ONVER SION U SING AN MC RELATI ON

Equation system (11) shows how the concentration in an overdensity
�2 is uniquely identified by the concentration in �1 by solving
bottom equation in equation (11). Although there are four variables
in equation (11) (namely M�1, M�2, c�1, and c�2), since there are
two equations the system depends on two of them.

Hu & Kravtsov (2003) provide a fitting formula for c�2 as a
function of c�1. On the other hand, since c�2 depends monotonically
from right-hand side of equation (11), in this work we convert
the values from c�1 to c�2 using the fixed-point technique derived
by solving equation (11) the Banach–Cacioppoli theorem (see e.g.
Ciesielski 2007, for a review).

To evaluate c�2, we start with a guess value of c�1 and iteratively
apply it to equation (11) in order to get the new value of value of c�2,
until it converges, practically we fix �1

�2
and c�, 1 rewrite equation (11)

as

c̃ (x) ≡ c�1 ·
(

�1

�2

f (x)

f (c�1)

) 1
3

c�2 = c̃ (c�2) . (C1)

Figure C1. Relative error when converting the concentration using equa-
tion (C1; i.e. Banach–Cacioppoli theorem) or using the method proposed in
Hu & Kravtsov (2003).
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Figure C2. Analytical uncertainty on the concentration obtained by the
theoretical propagation of error.

Figure C3. Analytical value of c200c for a given concentration c�1. We used
�1 = 500c and �1 = 2500c.

Figure C4. Analytical value of M200c with respect to M�1 for a given
concentration c�1. We used �1 = 500c and �1 = 2500c.

We found that the relative error after nine iterations is, at the worst,
comparable with Hu & Kravtsov (2003) and can go down to 10−9

for concentration values higher than 20. As a first value, we choose
c�1, so

c�2 ≈ c̃ (c̃ (c̃ (c̃ (c̃ (c̃ (c̃ (c̃ (c̃ (c�1))))))))) . (C2)

Fig. C1 shows the relative error when converting M500c and M2500c

to M200c. Both approach have an error smaller than ≈ 0.1 per cent,
while the iteration proposed here can reach much more precise value
and it is easier to implement. Only nine iterations produce a relative
error that in the worst case is comparable with technique in Hu &
Kravtsov (2003) and it is capable of going down to 10−8.

Fig. C2 shows the conversion from overdensities �2 = 2500 and
�2 = 500 to �1 = 200. These relations are nearly linear with a
deviation for lower concentrations.

Another interesting property of equation (11) is the possibility of
knowing M�2/M�1 only by knowing c�1.

Fig. C3 shows such conversions for overdensities �2500c and �500c

to �200c1. This conversion gets flatter and flatter as the concentration
increases, implying that the higher the concentration the lower the
error one makes in this conversion.

It is possible to estimate this uncertainty analytically. Given the
fact that Mc relations are known with uncertainties, it is interesting
to see how to propagate the error analytically when converting from
c�1 to c�2, which is proportional to the derivative coming from
equation (9):

dc�2

dc�1
= c�2

c�1
+ 1

3

c�2

f (c�1)

df (c)

dc

∣∣∣∣
c=c�1

dc�2

dc�1
−

−1

3

c�2

f (c�1)

df (c)

dc

∣∣∣∣
c=c�2

,

(C3)

where f(c) is, in case of imposing an NFW profile, given in equa-
tion (10). One can rearrange equation (C3) to isolate the derivative:

dc�2

dc�1
=

c�2

c�1
− 1

3

c�2

f (c�1)

df (c)

dc

∣∣∣∣
c=c�2

1 − 1

3

c�2

f (c�1)

df (c)

dc

∣∣∣∣
c=c�1

. (C4)

One can understand how a uncertainty propagates analytically
from M�2(M�1, c�1) in equation (11), by computing the derivative

dM�2

dc�1
= ∂M�2

∂c�1
+ ∂M�2

∂M�1

dM�1

dc�1
,

given the very weak dependence of mass from concentration, we can
approximate

dM�1

dc�1
≈ 0,

one gets

dM�2

dc�1
= 3M�2

(
1

c�2

dc�2

dc�1
− 1

c�1

)
,

where dc�2/dc�1 is evaluated as in equation (C4).
Fig. C4 shows the uncertainty variation when converting to M200

for a scatter in the concentration compatible with the scatter we found
in our Mc relation (see Table 2). This is helpful in understanding the
actual scatter one finds in real case scenarios as in Sections 5.1 and
5.2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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