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+`−, with ` = e, µ, τ ,
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1 Introduction

The semi-leptonic flavor-changing neutral currents (FCNC) B meson decays

B → (Xs, Xd)`
+`− with ` = e, µ, τ , with Xs representing any hadron with overall

strangeness S = ±1, are very powerful tools to test the Standard Model (SM) predic-

tions [1–10] and also sensitive probes to any New Physics (NP) beyond it [11, 12]. Indeed,

due to the fact that the FCNC processes are forbidden at the tree-level, the sensitivity to

any potential NP contribution turns out to be strongly enhanced in the b→ s`+`− decays.

Concerning the exclusive decays B → (K,K∗)`+`−, great efforts have been devoted

to achieve accurate SM predictions for the corresponding branching ratios and their distri-

butions [13–24]. However, these observables are affected by large theoretical uncertainties,

mainly due to the evaluation of the form factors and estimate of the non-factorizable

hadronic corrections.

Recently, the exclusive B meson decays B → K`+`− and B → K∗`+`− with ` = e, µ

have been measured and in particular, the Lepton Flavor Universality (LFU) ratios

RK [25, 26] and RK∗ [27–29] defined as

RK,K∗ =

∫ q2
max

q2
min

dΓ(B → (K,K∗)µ+µ−)

dq2 dq2

∫ q2
max

q2
min

dΓ(B → (K,K∗)e+e−)

dq2 dq2

, (1.1)
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where q2 represents the invariant mass of the dilepton `+`− system. As suggested in [30],

the RK,K∗ ratios can provide a clean test of the LFU of weak interactions predicted by

the SM and are also sensitive probes of any new interactions that could potentially couple

to electron and muons in a non-universal way [31]. Indeed, due to the LFU of gauge

interactions, the SM prediction for these ratios is almost 1, for q2 � (4mµ)2 [32, 33].

Moreover, the hadronic matrix elements mainly factorize in RK,K∗ , thus reducing the main

theoretical uncertainties and enhancing the sensitivity to any potential NP that might

induce LFU violations.

The LHCb experimental result [27] reported for the following two q2 bins is

RK∗ =

{
0.660+0.110

−0.070 ± 0.024 0.045 GeV2 < q2 < 1.1 GeV2

0.685+0.113
−0.069 ± 0.047 1.1 GeV2 < q2 < 6 GeV2 .

(1.2)

This should be compared with a recent SM prediction [33]

RSMK∗ =

{
0.906± 0.028 0.045 GeV2 < q2 < 1.1 GeV2

1.00± 0.01 1.1 GeV2 < q2 < 6 GeV2 ,
(1.3)

where the effect of soft and collinear LFU-violating radiative QED corrections, has been

taken into account. As we can see, the experimental measurements in the above q2 bins

show a substantial deviation from the SM expectations, although it is still within 2.6σ

significance level.

Recently, new measurements of RK∗ come also from the Belle Collaboration [28, 29].

Combining charged and neutral channels, the corresponding values in the q2 < 6 GeV2

region are [28, 29]

RK∗ =

{
0.52+0.36

−0.26 ± 0.05 0.045 GeV2 < q2 < 1.1 GeV2

0.96+0.45
−0.29 ± 0.11 1.1 GeV2 < q2 < 6 GeV2 .

(1.4)

These results also show some substantial deviation from the SM central value, especially at

low bins close to the dimuon mass threshold, although the combined error is large enough

to leave the deviation on the statistical significance within ∼ 1σ.

Concerning the RK , the most recent measurement by LHCb in the low q2 region

recently appeared [25, 26]

RK = 0.846+0.060+0.016
−0.054−0.014 1.1 GeV2 < q2 < 6 GeV2 , (1.5)

where the first and second uncertainties correspond to the systematic and statistic errors

respectively. There, the full 5 fb−1 of data have been analyzed, including only the charged

channel B+ → K+µ+µ−. Compared to the previous LHCb measurements, we can see that

the new experimental central value is more close to the SM one, although the significance

tension is slightly reduced from previous 2.6σ (at 3 fb−1 of data) to 2.5σ.

In recent years, a large number of papers have suggested the possibility that all these

deviations could be interpreted as signal of NP interactions, that potentially couple in

non-universal way to muon and electrons [34–58]. However, in order to quantify if the
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observed SM deviations in RK,K∗ could be addressed to a genuine NP contributions, a

precise estimation of the SM uncertainties is required. In this respect, in [33] the LFU-

violating contributions in the SM coming from the real photon emissions and its virtual

effects, have been analyzed and the results are summarized in eq. (1.4). This task consists

in the computation and re-summation of the large (α/π) log2 (mB/m`) terms originating

from the one-loop QED radiative contributions. These corrections depend by the choice of

the mrec
B mass for the reconstructed K∗`+`− system, and are safe from infrared and collinear

divergencies. Using the same mrec
B in the range adopted for instance at the LHCb [27], it

has been shown that the largest QED effect does not exceed a few percent in RK,K∗ [33].

Larger SM uncertainties in RK∗ are expected in the q2 region closer to the mass

threshold q2 ∼ 4m2
` of the final lepton states. As shown in [33], contributions coming from

the direct photon emission amplitudes induced by the light-hadron mediated amplitudes

should be also taken into account. These are of the type B → K∗P 0 → K∗`+`−γ, where

P 0 stands for an on-shell η or π0 meson state. In [33] it has been estimated that these

contributions give an effect on RK∗ of the order of ∆RK∗ ∼ −0.017 for 0.045 GeV2 <

q2 < 1.1 GeV2, while they become negligible for q2 > 0.1 GeV2, where the meson-mediated

amplitudes becomes lepton universal.

In this paper we focus on a new class of QED radiative corrections that have not

been considered so far in the literature and that can add a new source of LFU-violating

contributions to RK,K∗ in the low q2 region. In particular, we consider the effect induced

by the QED magnetic-dipole corrections to the final lepton pair, on the B → K`+`−

and B → K∗`+`− decay rates and in the ratios RK,K∗ . These corrections represent an

independent set of standalone QED radiative corrections, being gauge invariant and free

from any infrared and collinear divergencies. Indeed, due to the intrinsic long-distance

nature of magnetic-dipole interactions, mediated by the one-photon exchange amplitude,

their contribution is particularly enhanced at low q2.

We can see that, by means of chirality arguments, the interference between the ampli-

tude containing the magnetic-dipole correction and the leading order SM amplitude turns

out to be chiral suppressed, naturally providing a LFU-violating corrections to RK,K∗ .

This automatically guarantees that the magnetic-dipole contribution to the width in the

electron channel turns out to be much smaller than the corresponding muon one. On the

other hand, the magnetic form factor F2(q2) can partially compensate for this chiral sup-

pression in the dimuon final state, since Re[F2(q2)]→ 1/mµ in the region close to the mass

threshold q2 → 4m2
µ.

Due to the presence of infrared double poles m2
`/(q

2)2 proportional to the magnetic-

form factor F2 in the width distribution dΓ
dq2 , sizeable LFU-violating contributions to RK,K∗

are possible, if the dilepton mass threshold is included in the q2 integration region. Indeed,

for the muon channel, by integrating the double poles from q2 > 4m2
µ the chiral suppression

is removed, while the contributions to the e+e− channel results suppressed by terms of

order m2
e/m

2
µ. Moreover, larger corrections in RK∗ , with respect to RK , are also expected,

since the magnetic-dipole contributions are more enhanced in the B → K∗ transitions

than in B → K, due to the effects of the longitudinal polarization of K∗. By a näive

estimation these effects could be of the order of a few percent on RK∗ , if no cancellation

– 3 –



J
H
E
P
1
0
(
2
0
2
0
)
1
4
5

among the leading contributions of the double-poles terms, that is the ones proportional

to (mB/mK∗)
2 ' 35 enhancement factor, takes place. More details about this issue are

reported in section 3.1. Therefore, it would be mandatory to provide an exact evaluation of

the magnetic-dipole contributions in order to establish the hierarchy of the QED corrections

in this context.

We will provide analytical results for the QED vertex corrections to the correspond-

ing differential B decay widths, induced by the magnetic-dipole corrections to the final

lepton pair. Then, we evaluate the impact of these corrections on the RK,K∗ observables

and compare these predictions with the corresponding LFU-violating results induced by

collinear and infrared QED corrections [33]. To complete our study, we will include another

set of corrections induced by the long-distance contributions to RK,K∗ . In particular, the

ones related to the Coulomb potential corrections, that can be eventually absorbed in the

so-called Sommerfeld-Fermi factor [59–61].

Finally, concerning the LFU-violating soft-photon emissions by the magnetic-dipole

interactions in the final-state leptons, we estimate these radiative corrections to be very

small and negligible in both the rates and the RK,K∗ observables, being of order O(α2) and

also chiral suppressed. Indeed, these contributions arise from the interference between the

amplitude with soft-photon emissions by the magnetic-dipole interactions and the corre-

sponding leading-order amplitude with tree-level soft-photon emission to final-state leptons.

Due to the gauge-invariant structure of the magnetic-dipole operators, these results

could be easily generalized to include potential contributions from NP scenarios that are

mediated by long-distance interactions. So far, the majority of the beyond SM interpre-

tations of the B-anomalies rely on NP contributions affecting the Wilson coefficients of

the short-distance 4-fermion operators OL and O9 [34–51]. In this respect, we explore

the possibility to explain the RK,K∗ anomalies by means of a new physics mediating long-

distance interactions. In particular, we analyze the contribution of a massless dark-photon

exchange in the b→ s`+`− transitions, which has the feature to couple to both quarks and

leptons via the leading magnetic-dipole interactions [62, 63], and estimate its impact on

the RK,K∗ ratios.

The paper is organized as follows: in sections 2 and 3 we provide the analytical results

for the magnetic-dipole corrections to the widths of b → s `+`− and B → (K,K∗∗)`+`−

respectively. Section 4 is devoted to the implementation of the Fermi-Sommerfeld correc-

tions to the widths. Numerical predictions for the corresponding branching ratios of these

processes and for the ratios RK,K∗ are provided in section 5. In section 6 we analyze the

impact of a NP scenario on the RK,K∗ observables, given by the exchange of a massless

dark-photon via magnetic-dipole interactions. Our conclusions are provided in section 7.

2 Magnetic-dipole corrections to b→ s`+`−

We start this section by providing the notation used in the Effective Hamiltonian relevant

for the semileptonic quark decay

b(pb)→ s(ps) `
+(p+) `−(p−) (2.1)

– 4 –
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where corresponding momenta are associated in parenthesis. After integrating out the W±

and top-quark, the effective Hamiltonian relevant for the ∆B = 1 transitions in eq. (2.1),

is given by

Heff = −4
GF√

2
V ∗tsVtb

10∑
i=1

Ci(µ)Qi(µ) . (2.2)

Here we adopt the definitions of operators Qi(µ) as provided in [1–4] and the results for

the corresponding Wilson coefficients Ci(µ) evaluated at the next-to-next-to-leading order

(NNLO) [5–10], with the renormalization scale µ chosen at the b-quark pole mass µ = mb.

Starting from the effective Hamiltonian in eq. (2.2), the SM Feynman diagrams con-

tributions to the b → s`+`− amplitude are given in figure 1(a)–(c). The diagrams (c)

represents the contribution of the QED radiative corrections to the final lepton states, pro-

portional to the magnetic-dipole form factor, that will be discussed in the following. The

gray square vertex stands for the insertion of the local 4-fermion operators Q9,10, while

the gray circular vertex corresponds to the contribution of the magnetic-dipole operator

Q7. The diagrams (b) and (c) describe the long-distance contributions to the amplitude

mediated by the virtual photon. The NP contribution, characterized by the diagram (d),

will be discussed in section 6.

The amplitude for b→ s`+`− decay can be simply described by introducing the effec-

tive Wilson coefficients Ceff
9 (ŝ), Ceff

7 , Ceff
10 (for their definition in terms of Ci in eq. (2.2)

see [10]), in particular we have

M(b→ s`+`−) =
GFα√

2π
V ∗tsVtb

{
Ceff

9 (ŝ) [s̄LγµbL]
[
¯̀γµ`

]
+ Ceff

10 [s̄LγµbL]
[
¯̀γµγ5`

]
− 2i

Ceff
7

s
{mb [s̄Lσµνq

νbR] +ms [s̄Rσµνq
νbL]}

[
¯̀γµ`

]}
(2.3)

where s = q2, q = p+ + p−, σµν = i/2 [γµ, γν ], and ψL/R ≡ (1 ∓ γ5)/2ψ, with ψ the

corresponding Dirac spinor in momentum space. Terms in parenthesis [· · · ] in eq. (2.3)

stand for the usual bi-spinorial matrix elements in momentum space, where sum over spin

and color indices (for the quark spinors) is understood. The last term in the amplitude in

eq. (2.3) comes from the photon exchange between the contribution of the ∆B = 1 matrix

element of magnetic-dipole operator Q7 and the tree-level EM current ¯̀γµ`. There, we

have also retained the contribution of the Flavor Changing (FC) magnetic-dipole operator

proportional to the strange-quark mass ms. All along the paper we will use the results

for the effective Wilson coefficients Ceff
7,9,10(µ) computed at the NNLO as provided in [10],

and evaluated at the renormalization µ = mb scale, with mb corresponding to the b-quark

pole mass. For their numerical values see table 1. Notice that only the Ceff
9 (ŝ) has a q2

dependence (or analogously ŝ), due to the inclusion of the matrix elements of operators

in its definition [10]. We removed the µ dependence from all Ceff
i , while retained the ŝ

dependence only in Ceff
9 .

Now, we analyze the QED radiative corrections. Since we are mainly interested in

analyzing the effect of a specific class of virtual corrections which are manifestly gauge-

invariant as well as LF non-universal, we restrict our choice to the selected contribution of

– 5 –
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b

s

ℓ−
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γ γ
γ
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s ℓ+

b

s

ℓ−

ℓ+

(a) (b) (c)

Q9,10 Q7 Q7

γ̄

b

s

ℓ−

ℓ+(d)

QDP

7 QDP

ℓ

Figure 1. Feynman diagrams for the b quark decay b → s`+`−: (a)–(c) represent the SM contri-

bution including vertex radiative corrections in the final leptons (c), while diagram (d) corresponds

to the exchange of a massless dark-photon, mediated by magnetic-dipole interactions. The gray

square and circular vertices represent the insertion of the 4-fermions Q9,10 and magnetic-dipole Q7

operators respectively, while the red circular vertex represent the insertion of the magnetic-dipole

operators with a dark photon, namely QDP
7 = [s̄σµνb]FDµν and QDP

` = [¯̀σµν`]FDµν with FDµν the

dark-photon field strength.

the magnetic-dipole corrections into the final lepton pair `+`−. A complete treatment of

the full EM radiative corrections on the decay widths of b → se+e−, that would require

the computation of all virtual corrections and real photon emissions at 1-loop, goes beyond

the purpose of the present paper.

We start by substituting the tree-level vertex γµ appearing in the matrix element of

the leptonic current [l̄γµl], with the full vertex Γµ(q2) as follows

Γµ(q2) = γµF1(q2) + iF2(q2)σµν q̂ν , (2.4)

where q̂ = q/mb and so F2(q2) turns out to be a dimensionless form factor. In order

to isolate the magnetic-dipole contribution, we retain only the F2 term in eq. (2.4) and

set F1 → 1. The form factor F1(q2) is almost LF universal. Its main LFU-violating

contributions are contained in the terms proportional to α log (mB/ml). The contribution

of these large log terms, from virtual corrections and real emission have been consistently

included and resummed in the analysis of [33].

The contribution from the magnetic-dipole form factor F2(q2) is a gauge invariant

and IR-safe observable, and it is manifestly flavor non-universal being proportional to the

lepton mass. Moreover, it does not vanish in the q2 → 0. Indeed, the q2 → 0 limit

of F2(q2) is related to the well-known contribution to the anomalous magnetic moment

(g− 2)l. Moreover, as we will show in section 3, the F2 correction does not factorize in the

RK and RK∗ observables and it is dominant in the q2 regions close to the dilepton mass

thresholds. More details about this issue can be found in section 3.

In the following, we will change the argument dependence F2(q2) → F2(ŝ) where we

have defined the symbol ŝ ≡ q2/m2
b . In QED, at one-loop the F2(ŝ) expression, for positive

q2 > 0 is given by

F2(ŝ) =
α

2π

√
r`√

ŝ (ŝ− 4r`)
log

(
2r` − ŝ+

√
ŝ (ŝ− 4r`)

2r`

)
(2.5)

where r` ≡ m2
`/m

2
b . In the limit q2 → 0, or analogously ŝ → 0, the F2(ŝ) reproduces the

well-known result for the anomalous-magnetic moment correction to g− 2, in particular at

– 6 –
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one-loop we have

1

mb
lim
ŝ→0

F2(ŝ) =
α

4πm`
. (2.6)

The Feynman diagrams for the SM amplitude of b → s`+`−, including the magnetic-

dipole contributions, are shown in figure 1. The corresponding total decay width can be

decomposed as

Γ(b→ s`+`−) = Γb0 + ΓbM , (2.7)

where û = u/m2
b , with u = 2((pb ·p+)−(pb ·p−)), and Γb0 include the differential contribution

to the width of the square amplitude of the SM without the O(α) magnetic-dipole correc-

tions. The ΓbM absorbs the contributions of both the interference of the O(α) magnetic-

dipole amplitude with the zero order in the SM and its square term. Although the latter

is of order O(α2), for completeness we included it in our analysis. The reason is because

this contribution has a higher infrared singularity at small q2 and it could in principle give

a potential m2
B/m

2
` enhancement in the rate, although suppressed by a higher power of α.

Eventually, we will see that its effect is tiny and can be fully neglected in the analysis.

After computing the square amplitude and summing over polarizations, the corre-

sponding expressions for the differential width are given by

d2Γb0
dŝ dû

= Γ̂
[ ∣∣∣Ceff

9 (ŝ)
∣∣∣2K9,9 +

(
Ceff

10

)2
K10,10 +

(
Ceff

7

)2
K7,7

+ Ceff
7 Re

[
Ceff

9 (ŝ)
]
K7,9 + Ceff

10

(
Ceff

7 K7,10 + Re
[
Ceff

9 (ŝ)
]
K9,10

)]
, (2.8)

d2ΓbM
dŝ dû

= Γ̂
[
Ceff

7

(
Re
[
Ceff

9 (ŝ)F ∗2 (ŝ)
]
M7,9 + Ceff

10 Re [F2(ŝ)]M7,10
)

+
(
Ceff

7

)2 (
Re [F2(ŝ)]M7,7

1 + |F2(ŝ)|2M7,7
2

) ]
(2.9)

where Γ̂ =
G2
F

512π5m
5
b |V ∗tsVtb|2α2. Above, we used the property that only Ceff

9 (ŝ) is complex.

Then, by retaining all mass corrections, the coefficients Ki,j are given by

K7,7 =
2

ŝ2

(
4r`
(
1− ŝ− rs(1 + rs − r2

s + (6 + rs)ŝ)
)

+ ŝ
(
1− rs − r2

s + r3
s − 8rsŝ− ŝ2 − rsŝ2 + (1 + rs)û

2
) )

K9,9 =
1

2

(
4r`(rs − ŝ+ 1) + r2

s − 2rs − ŝ2 − û2 + 1
)

K10,10 =
1

2

(
−4r`(rs − ŝ+ 1) + r2

s − 2rs − ŝ2 − û2 + 1
)

K7,9 =
4

ŝ
(2r` + ŝ)(1− ŝ− rs(2 + ŝ) + r2

s)

K7,10 = 4û(1 + rs)

K9,10 = 2ŝû (2.10)

– 7 –
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and for the M ij coefficients we have

M7,7
1 =

8
√
r`
ŝ

(
2 + 2r3

s − ŝ− ŝ2 − r2
s(2 + ŝ)− rs(2 + 14ŝ+ ŝ2)

)
M7,7

2 =
8r`
ŝ

(
1− r2

s + r3
s − ŝ2 − rs(1 + 8ŝ+ ŝ2)

)
+ 2
(

1 + r3
s − ŝ− r2

s(1 + ŝ)− û2 − rs(1 + 6ŝ+ û2)
)

M7,9 = 12
√
r` (1 + r2

s − ŝ− rs(2 + ŝ))

M7,10 = 8
√
r` û(1 + rs) , (2.11)

where rs = m2
s/m

2
b .

The kinematic region for the variables û and ŝ is [12]

4r` ≤ ŝ ≤ (1−
√
rs)

2 (2.12)

−ū(ŝ) ≤ û ≤ ū(ŝ) , (2.13)

with ū(ŝ) =
√
λ
(
1− 4r`

ŝ

)
and λ ≡ 1+r2

s + ŝ2−2ŝ−2rs (1 + ŝ). The variable û corresponds

to the θ angle between the momentum of the b quark and the antilepton `+ in the dilepton

center of mass system frame, expressed in this frame by the relation û = −ū(ŝ) cos θ.

After integrating in û on its whole kinematic region, the corresponding distributions

dΓb/dŝ can be obtained from eq. (2.9) by replacing the Ki,j → K̂i,j and M i,j → M̂ i,j ,

where K̂i,j , M̂ i,j are

K̂7,7 =
8ū(ŝ)

3ŝ2
(ŝ+ 2r`)

(
2(1− rs)2(1 + rs)− ŝ− rs(14 + rs)ŝ− (1 + rs)ŝ

2
)
,

K̂9,9 =
2ū(ŝ)

3ŝ
(ŝ+ 2r`)

(
r2
s + rs(ŝ− 2)− 2ŝ2 + ŝ+ 1

)
,

K̂10,10 =
2ū(ŝ)

3ŝ

(
2r`
(
4ŝ2 − 5(rs + 1)ŝ+ (rs − 1)2

)
+ ŝ

(
r2
s + rs(ŝ− 2)− 2ŝ2 + ŝ+ 1

) )
,

K̂7,9 =
8ū(ŝ)

ŝ
(ŝ+ 2r`)(1 + r2

s − ŝ− rs(2 + ŝ)) , (2.14)

M̂7,7
1 =

16
√
r` ū(ŝ)

ŝ

(
2(1− rs)2(1 + rs)− ŝ− rs(14 + rs)ŝ− (1 + rs)ŝ

2
)

M̂7,7
2 =

4ū(ŝ)

3ŝ
(8r` + ŝ)

(
2(1− rs)2(1 + rs)− ŝ− rs(14 + rs)ŝ− (1 + rs)ŝ

2
)

M̂7,9 = 24
√
r` ū(ŝ)

(
(1− rs)2 − (1 + rs)ŝ

)
(2.15)

while K̂7,10 = K̂9,10 = M̂7,10 = 0. The results in eqs. (2.10), (2.14) for the SM contribu-

tion without magnetic-dipole corrections, agree with the corresponding ones in [65] in the

rs → 0 limit.

Now we compute the effect induced by this correction on the total integrated branching

ratios. Results will be obtained by using the values of masses and other SM inputs reported

in table 1. The total branching ratio for a particular lepton state ` is obtained by integrating
d2Γb

dŝ dû over the entire kinematically-allowed range for that `. In particular, neglecting the

strange quark mass, the ŝ range of integration is 4r` < ŝ < 1.
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mB0 5.279 64 τB0 1.519 ×10−12

mB+ 5.279 33 τB+ 1.638 ×10−12

mK∗ 0.891 76 C7(MW ) 0.139

mK0 0.497 611 Ceff
7 (µ) −0.304

mK+ 0.493 677 Ceff
9 (µ) 2.211

mb 4.8 Ceff
10 (µ) −4.103

mc 1.7 α(µ) 1/129

ms 0.095 |V ∗tsVtb| 0.0401

Table 1. Numerical inputs for the relevant parameters used in the analysis. Central values of

meson and quark masses mi and mean lifetimes τi are expressed in GeV and seconds units respec-

tively [64]. The quark masses mb and mc correspond to the pole masses of bottom and charm quarks

respectively. Effective Wilson coefficients at the NNLO Ceff
7,9,10(µ) (from [10]) and EM fine structure

constant α(µ) are intended to be evaluated at the scale µ = mb. The SM C7(MW ) corresponds to

mt = 170 GeV [3].

To avoid intermediate charmonium resonances and non-perturbative phenomena near

the end point, we integrate over a particular range of ŝ. Following for instance the pre-

scription in [11], for ` = e, µ case we have(
m2
b ŝ
)
∈
{

4m2
` ,(2.9GeV)2

}
∪
{

(3.3GeV)2,(3.6GeV)2
}
∪
{

(3.8GeV)2,(4.6GeV)2
}

(2.16)

while for ` = τ we get(
m2
b ŝ
)
∈
{

4m2
τ , (3.6 GeV)2

}
∪
{

(3.8 GeV)2, (4.6 GeV)2
}
. (2.17)

In order to reduce the uncertainties in the b → s`+`− partial width it is customary to

normalizing the width to the inclusive semileptonic B decay B → Xce
+ν, that is given by

Γ(b→ ce+ν) =
G2
Fm

2
b |Vcb|2

192π3
g

(
mc

mb

){
1− 2αs(mb)

3π

[(
π2− 31

4

)(
1−mc

mb

)2

+
3

2

]}
(2.18)

where g(z) = 1−8z2 +8z6−z8−24z4 log z, αS(mb) is the strong coupling evaluated at the

mb mass. The bottom and charm masses entering above are understood as pole masses.

Then the branching ratio is obtained as

BR(b→ s`+`−) = BRexp(B → Xce
+ν)

Γ(b→ s`+`−)

Γ(b→ ce+ν)
, (2.19)

with the measured BRexp(B → Xce
+ν) = (10.64± 0.17± 0.06)% [66].

Now, it is useful to decompose the total BR as follows

BR` = BR`
0

(
1 + ∆`

)
, (2.20)

where ∆` absorbs the O(α) effect of the magnetic-dipole corrections, while BR`
0 is the

leading contribution, without these corrections. In table 2 we report the corresponding
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ŝ bins 107 · BRe
0 ∆e 107 · BRµ

0 ∆µ 107 · BRτ
0 ∆τ

R1 60.0 −1.4× 10−4 35.8 −1.8× 10−4 0.071 2.8× 10−4

R2 4.10 3.5× 10−10 4.09 5.1× 10−6 2.03 2.5× 10−4

R3 4.12 2.2× 10−10 4.12 3.3× 10−6 – –∑
i Ri 68.2 −1.2× 10−4 44.0 −1.5× 10−4 2.10 2.6× 10−4

Table 2. Results for the total branching ratio BR` of B → Xs`
+`−, integrated on the various Ri

bins of ŝ as defined in the text, where BR` = BR`
0(1 + ∆`) for ` = e, µ, τ , and ∆` includes the

magnetic-dipole corrections.

results for the total BR integrated over the various bin regions of m2
b ŝ, and on the total

range as provided in eq. (2.16), (2.17), where regions Ri stand for R1 ∪R2 ∪R3 in the case

of ` = e, µ and R1 ∪ R2 for ` = τ . The BRl
0 values correspond to the central values of

BRexp(B → Xce
+ν) [66] and |Vcb| = 4.22× 10−2 [64].

In analogy with the strategy adopted in the B → (K,K∗)`+`− decays (see next section)

for analyzing the LFU, we consider the ratios Rµ,τb for the b→ s`+`− decays defined as

R`b =

∫ ŝmax

ŝmin

dΓ(b→ s`+`−)

dŝ
dŝ∫ ŝmax

ŝmin

dΓ(b→ se+e−)

dŝ
dŝ

, (2.21)

where ` = µ, τ . At this purpose is convenient to define the deviation ∆`
R as

R`b = R̄`b

(
1 + ∆`

R

)
(2.22)

where ∆`
R absorbs here the contribution of the magnetic-dipole correction. The results are

reported below for two representative integrated bin regions of ŝ close to the lepton mass

thresholds, in particular for the muon case

R̄µb = 0.849 , ∆µ
R = −1.1× 10−3 , (m2

b ŝ) ∈
{

4m2
µ, (0.5 GeV)2

}
R̄µb = 0.928 , ∆µ

R = −6.5× 10−4 , (m2
b ŝ) ∈

{
4m2

µ, (1 GeV)2
}

R̄µb = 0.979 , ∆µ
R = −1.7× 10−4 , (m2

b ŝ) ∈
{

4m2
µ, (2.9 GeV)2

}
, (2.23)

while for the τ lepton we get

R̄τb = 0.117 , ∆τ
R = 3.3× 10−5 , (m2

b ŝ) ∈
{

4m2
τ , (3.6 GeV)2

}
. (2.24)

As we can see from these results, the corrections induced by the magnetic-dipole contribu-

tions to the Rµ,eb ratios, do not exceed the 1 per mille effect in the first bin, while it is two

order of magnitude in the tau lepton case. The smallness of the contribution is somehow

expected, since the contribution of the flavor-changing magnetic dipole operator Q7 to the

amplitude is not dominant in the b → s`+`− process. Moreover, the interference between

the magnetic-dipole correction term and the rest of the amplitude is chiral suppressed.
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In conclusion, these results show that the expected chiral enhancement induced by the

magnetic form factor F2 in eq. (2.5) near the mass threshold (ŝ→ 4r`), can only partially

compensate the chiral suppression induced by the interference, when integrated over all

the kinematic region in eqs. (2.16), (2.17).

From these results, we can see that UV new physics contributions to the R`b ratios,

providing new short-distance corrections to the magnetic-dipole form factor F2, like for

instance the large effects expected in technicolor models [67, 68], turn out to be chiral

suppressed in all range of q2, and also negligible with respect to the leading QED corrections

to F2. The reason is because the short-distance contributions to F2 are independent of q2

and so they do not provide any infrared enhancement at low q2 to compensate for the

associated chiral suppression of the magnetic-dipole corrections to the b → s`+`− rates.

The same conclusions hold for the analogous contributions to the RK,K∗ observables.

3 Magnetic-dipole corrections to B → (K∗,K)`+`−

Here, we analyze the contributions induced by the magnetic-dipole corrections to the final

lepton pair, in the exclusive B meson decays B → (K∗,K)`+`−. We parametrize the

momenta of the generic decay as

B(pB)→M(pK) `+(p+) `−(p−) (3.1)

where M stands for K or K∗ and in parenthesis are reported the corresponding momenta.

As mentioned in the introduction, the B → K∗`+`− decay is characterized by an enhance-

ment of the long-distance contributions induced by the photon-pole 1/s coming from the

b → sγ∗ transitions (with γ∗ standing for a virtual photon), proportional to the effective

Wilson coefficient Ceff
7 . This enhancement is absent in the b-quark decay b → s`+`− as

well as in the exclusive B → K`+`− decay. In particular, for s < 1 GeV, the photon-

pole gives the dominant contribution to the rate and it still contributes about 30% around

s ≈ 3 GeV2. This is mainly due to the longitudinal polarizations of the vector meson K∗,

which can contribute to the rate with enhancement factors proportional to m2
B/m

2
K∗ ∼ 25.

For this reason, we expect the magnetic-dipole corrections to B → K∗`+`− to be larger

than in the B → K`+`− channel. Here we will evaluate the impact of these corrections in

the corresponding decay widths and on the RK∗,K ratios.

3.1 Decay width for B → K∗`+`−

We start by fixing the notation for the following two kinematic variables

s = q2 = (p+ + p−)2

u = (pB − p−)2 − (pB − p+)2 , (3.2)

together with the corresponding dimensionless ones ŝ = s/m2
B and û = u/m2

B. Following

the notations of ref. [12], the corresponding amplitude can be simply obtained from the

one in eq. (2.3), by replacing the bi-spinorial quark products appearing in eq. (2.3) with
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the corresponding B meson matrix elements [12]

2〈K∗(pK)| [s̄LγµbR] |B(pB)〉 = −iε†µ (mB +mK∗)A1(s) + i (pB + pK)µ

(
ε† · pB

) A2(s)

mB +m∗K

+ iqµ

(
ε† · pB

) 2m∗K
s

(A3(s)−A0(s))

+ εµναβ ε
†νpαBp

β
K

2V (s)

mB +mK∗
, (3.3)

and

2〈K∗(pK)| [s̄LσµνqνbL] |B(pB)〉 = i2εµναβ ε
†νpαBp

β
KT1(s)

+ T2(s)
[
ε†µ
(
m2
B −m2

K∗
)
−
(
ε† · pB

)
(pB + pK)µ

]
+ T3(s)

(
ε† · pB

)[
qµ −

s

m2
B −m2

K∗
(pB + pK)µ

]
, (3.4)

where A0,1,23(s), V (s) and T1,2,3(s) are form factors which depend on s, with the convention

ε0123 = +1 for the Levi-Civita tensor. The following exact relations hold for the form factors

A3(s) =
mB +mK∗

2mK∗
A1(s)− mB −mK∗

2mK∗
A2(s) (3.5)

A0(0) = A3(0) , T1(0) = T2(0) .

We have used the updated light-cone sum rules (LCSR) approach of ref. [21] to evaluate

the form factors. In particular, for a generic transition B → V ff̄ , with V a vector meson,

the generic hadronic form factor Fi can be decomposed as [21]

Fi(s) = Pi(s)
∑
k

αik [z(s)− z(0)]k (3.6)

where the variable z(t) is defined as

z(t) =

√
t+ − t− −

√
t+ − t0√

t+ − t− +
√
t+ − t0

(3.7)

where t± = (mB±mV , and t0 ≡ t+(1−
√

1− t−/t+), and Pi(s) = 1/(1−s/mi
R) is a simple

pole corresponding to the first resonance in the spectrum. Corresponding values for the

parameters αik for the present process can be found in [21] and in table 3.

Following the notation of ref. [12], we rewrite the amplitude for the process B→K∗`+`−

in a compact way as

M =
GFα

2
√

2π

{
M1
µ

[
¯̀γµ`

]
+M2

µ

[
¯̀γµγ5`

]
+M3

µ

[
¯̀σµν q̂ν`

] }
(3.8)

where the last term includes the magnetic-dipole corrections. The terms M i
µ are given by

M1
µ = A(ŝ)εµραβ ε

†ρp̂αB p̂
β
K − iB(ŝ)ε†µ + iC(ŝ)

(
ε† · p̂B

)
(p̂B + p̂K) + iD(ŝ)

(
ε† · p̂B

)
q̂µ

M2
µ = E(ŝ)εµραβ ε

†ρp̂αB p̂
β
K − iF (ŝ)ε†µ + iG(ŝ)

(
ε† · p̂B

)
(p̂B + p̂K) + iH(ŝ)

(
ε† · p̂B

)
q̂µ

M3
µ = Ā(ŝ)εµραβ ε

†ρp̂αB p̂
β
K − iB̄(ŝ)ε†µ + iC̄(ŝ)

(
ε† · p̂B

)
(p̂B + p̂K) + iD̄(ŝ)

(
ε† · p̂B

)
q̂µ

(3.9)
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where ŝ = s/m2
B, p̂K,B = pK,B/mB, q̂ = q/mB, m̂b = mb/mB and

A(ŝ) =
2

1 + m̂K∗
Ceff

9 (ŝ)V (s) +
4m̂b

ŝ
Ceff

7 T1(s)

B(ŝ) = (1 + m̂K∗)

[
Ceff

9 (ŝ)A1(s) +
2m̂b

ŝ
(1− m̂K∗)C

eff
7 T2(s)

]
C(ŝ) =

1

1− m̂2
K∗

[
(1− m̂K∗)C

eff
9 (ŝ)A2(s) + 2m̂bC

eff
7

(
T3(s) +

1− m̂2
K∗

ŝ
T2(s)

)]
D(ŝ) =

1

ŝ

[
Ceff

9 (ŝ)
(

(1 + m̂K∗)A1(s)− (1− m̂K∗)A2(s)− 2m̂K∗A0(s)
)

− 2m̂bC
eff
7 T3(s)

]
E(ŝ) =

2

1 + m̂K∗
Ceff

10 V (s)

F (ŝ) = (1 + m̂K∗)C
eff
10A1(s)

G(ŝ) =
1

1 + m̂K∗
Ceff

10A2(s)

H(ŝ) =
1

ŝ
Ceff

10 [(1 +mK∗)A1(s)− (1− m̂K∗)A2(s)− 2m̂K∗A0(s)] , (3.10)

where m̂K∗≡mK∗/mB. The quantities with bar Ī(ŝ)≡ limCeff
9 →0 {I(ŝ)}, with I=A,B,C,D.

In analogy with the notation adopted in eq. (2.7), we decompose the expression for

the corresponding decay width ΓK
∗

as

ΓK
∗

= ΓK
∗

0 + ΓK
∗

M (3.11)

where as usual ΓK
∗

0 includes the SM results at the zero order in the magnetic-dipole correc-

tions, while ΓK
∗

M absorbs the terms containing the interference and square of the amplitude

containing the magnetic-dipole corrections with the rest of the zero order amplitude.

The analytical expressions for the differential distributions
d2ΓK

∗
0

dŝ dû and
dΓK

∗
0
dŝ can be

found in [12], where we agree with the corresponding results. Below we provide the

new expressions for the new contributions induced by the magnetic dipole corrections,

in particular

d2ΓK
∗

M

dŝdû
=

Γ̂B
rK∗

{
√
r`

[
Re
[
F2ĀA

∗]2rK∗λŝ+Re
[
F2B̄B

∗](λ+12rK∗ ŝ)+Re
[
F2C̄C

∗]λ2

−Re
[
F2

(
ĀF ∗+B̄E∗

)]
4rK∗ ŝû+Re

[
F2

(
B̄C∗+C̄B∗

)]
(rK∗+ŝ−1)λ

]
+
|F2|2

4

[
|Ā|2rK∗ ŝ

(
λ(4r`+s)−ŝû2

)
+|C̄|2λ

(
4λr`+ŝû

2
)

+|B̄|2
(
4r`(r

2
K∗+(ŝ−1)2+rK∗(6ŝ−2))+ŝ(4rK∗ ŝ+û2)

)
+2Re

[
B̄C̄∗

]((
ŝ−1−r2

K∗+rK∗(2+3ŝ)
)
û2+λ(4r`(ŝ−1+rK∗)+û2

)]}
(3.12)

where Γ̂B = G2
Fα

2m5
B|V ∗tbVts|2/(211π5), with α evaluated at the B meson scale, and

λ ≡ 1 + r2
K∗ + ŝ2 − 2ŝ− 2rK∗(1 + ŝ) , (3.13)
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with rK∗ ≡ m2
K∗/m

2
B. For practical purposes, we omitted the ŝ dependence inside the form

factors of eq. (3.10). As expected by chirality arguments, the interference terms (propor-

tional to the F2 form factor) in eq. (3.12), are all chiral suppressed, being proportional to
√
r` = m`/mB.

The integration regions of the kinematic variables û and ŝ are given by [12]

4r` ≤ ŝ ≤ (1−
√
rK∗)

2 (3.14)

−ū(ŝ) ≤ û ≤ ū(ŝ) (3.15)

ū(ŝ) ≡
√
λ
(

1− 4
r`
ŝ

)
.

To avoid confusion, we have used the same symbol for ū(ŝ) as in b→ s`+`− decay, although

the definition is different due to the hadronic mass of B and K∗ involved. As above, the

variable û corresponds to the θ angle between the momentum of the B meson and the

antilepton `+ in the dilepton center of mass system frame, expressed in this frame by the

relation û = −ū(ŝ) cos θ. After integrating over the û variable, we get

dΓK
∗

M

dŝ
= Γ̂B

ū(ŝ)

rK∗

{
2
√
r`

[
Re
[
F2ĀA

∗] 2λrK∗ ŝ+ Re
[
F2B̄B

∗] (λ+ 12rK∗ ŝ)

+ Re
[
F2C̄C

∗]λ2 + Re
[
F2

(
C̄B∗ + B̄C∗

)]
λ(rK∗ + ŝ− 1)

]
+
|F2|2

6

[ (
|C̄|2λ+ 2

(
|Ā|2rK∗ ŝ+ Re

[
C̄B̄∗

]
(rK∗ + ŝ− 1)

))
(8r` + ŝ)λ

+ |B̄|2(8r` + ŝ)(λ+ 12rK∗ ŝ)
]}

(3.16)

As we can see from these results, the magnetic-dipole correction to the above distri-

bution turns out to be chiral suppressed as expected, and proportional to r`. The origin

of the overall r` factor in the terms of order O(α) comes from the
√
r` in the interference

of SM amplitude with magnetic dipole-operator, times the
√
r` factor which is contained

in the F2 form factor. On the other hand, in the O(α2) terms the r` suppression factor

directly arise from F 2
2 . However, by a more careful inspection of the infrared behaviour

of the above expression for ŝ → 0, one can see that potential contributions of order r`/ŝ
2

and even r`/ŝ
3 could appear in some of the terms in eq. (3.16). While the triple-poles

r`/ŝ
3 terms have to vanish due to the absence of infrared power singularity (for ml → 0) in

the total width, for the former terms r`/ŝ
2 there is no guarantee a priori that they would

cancel out at any order in the rK∗ expansion.

When integrated in dŝ, in the region including the dilepton mass threshold ŝ > 4r`,

the double-pole terms r`/ŝ
2 generate finite contributions of order α to the total width

that are not chiral suppressed. In contrast, these corrections to B → K∗e+e− turns out

to be chiral suppressed by terms of order m2
e/m

2
µ if the integration region starts from

s > 4m2
µ. Therefore, non-universal and potentially large O(α) corrections to RK∗ are

expected, especially if these are enhanced by the 1/rK∗ contribution, induced by the K∗

longitudinal polarizations.
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However, if we expand the differential width in powers of ŝ we can see that all the

triple poles r`/ŝ
3 terms cancel out. On the other hand, non vanishing contributions from

the double-pole terms survive, leaving to potentially large contributions to the RK∗ as

explained above. In particular, by using the definition of ū(ŝ) and F2, and the results in

eq. (3.10), we get

1

Γ̂B

dΓK
∗

M

dŝ
∼
(α
π

)
32m̂2

b(C
eff
7 )2(T 2

2 (s) + T 2
1 (s))

(
r`Re[L(ŝ)]

ŝ2

)
, (3.17)

where Re[L(ŝ)] = log

(
ŝ−2r`−

√
ŝ(ŝ−4r`)

2r`

)
for ŝ > 4r` and T1 and T2 are the form factors

defined before. Remarkably, the 1/ŝ2 power singularity removes the chiral suppression r`
in the numerator, when the differential width is integrated from ŝ > 4r`, namely∫ ŝmax

4r`

(
r`Re[L(ŝ)]

ŝ2

)
dŝ = −1

2
+O(r`) , (3.18)

provided ŝmax � 4r`. This is a genuine lepton-mass discontinuity, already present in

the leading-order contribution to the decay rate dΓ/dŝ in the quark decay b → s`+`−, as

pointed out in [11] (see double-pole terms in K̂77 expression of eq. (2.14)), that is associated

to the photon emissions in chirality-flip transitions.

Finally, assuming the values of the form factors T1,2(s) almost constant in the integra-

tion region, in particular setting them at s ∼ 0 (which is a good approximation, since the

integral gets its largest value at the threshold), we get

1

Γ̂B

∫ ŝmax

4r`

∣∣∣∣dΓK
∗

M

dŝ

∣∣∣∣ dŝ ∼ (απ) m̂2
b16(Ceff

7 )2
(
T 2

2 (0) + T 2
1 (0)

)
' 0.05% . (3.19)

corresponding to the input values Ceff
7 '−0.3, Re[Ceff

9 ]' 4.8, T2(ŝ∼ 0)' 0.28 A1(ŝ∼ 0)'
0.27. This is a contribution of order O(α) which is not chiral suppressed, but it is quite

small being not enhanced by 1/rK∗ . When integrated in the range 4m2
µ<s< 1.1GeV2,

the corresponding correction to RK∗ would give a contribution of order 0.1%, in agreement

(within the order of magnitude) with what will be found by the exact computation in

section 5.

As we can see from these results, the leading contributions of the double poles enhanced

by 1/rK∗ exactly cancel out. This is a very crucial result, since if this cancellation would not

have occurred, the effect would have been approximately one order of magnitude larger.

In order to show how the impact of these potential correction would have affected the

RK∗ we report as an example, the results corresponding to the integrated contribution of

double-pole enhanced by 1/rK∗ proportional to the B̄BF2 term. By using the analogue

ansatz as in eq. (3.19) we get for this term

1

Γ̂B

∫ ŝmax

4r`

∣∣∣∣dΓK
∗

M

dŝ

∣∣∣∣ dŝ ∼ ( α

πrK∗

)
m̂bC

eff
7 Re[Ceff

9 ]T2(0)A1(0) ' 0.9% , (3.20)

where we retained only the contribution proportional to Re[Ceff
9 ] since Re[Ceff

9 ]� Im[Ceff
9 ].

Then, if there would not been any cancellation among the leading double-pole terms
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r`/(rK∗ ŝ
2), a coherent effect of all of them would have pushed up to an estimated 6%

correction to RK∗ , in the above integrated range. This would have been a non-negligible

contribution, comparable and even larger than the leading log-enhanced QED contributions

of collinear photon emissions.

3.2 Decay width for B → K`+`−

We write the amplitude of the process B → K`+`− using the same notation as in [12].

Concerning the B → K form factors f+,0,T , these are usually defined as

〈K(pK)| [s̄γµb] |B(pB)〉 = f+(s)

(
(pB + pK)µ −

m2
B −m2

K

s
qµ

)
+
m2
B −m2

K

s
f0(s)qµ (3.21)

〈K(pK)| [s̄σµνqνb] |B(pB)〉 = i
(

(pB + pK)µs− qµ(m2
B −m2

K)
) fT (s)

mB +mK
, (3.22)

while the other matrix elements involving a γ5 inside the operator are vanishing by parity.

Regarding the form factors fi = {f+(s), f0(s), fT (s)}, we will use the parametrization

adopted in [15], where they have been computed in the framework of LCSR

fi(s) =
fi(0)

1− cis/m2
res,i

{
1 + bi1

(
z(s)− z(0) +

1

2

(
z(s)2 − z(0)2

))}
, (3.23)

with s = q2 and

z(s) =

√
τ+−s−

√
τ+−τ0√

τ+−s+
√
τ+−τ0

, τ0 =
√
τ+

(√
τ+−
√
τ+−τ−

)
, τ±= (mB±mK)2 . (3.24)

The numerical values for the bi1 and fi(0) coefficients and resonance masses mres,+,T can

be found in [15], with ci = 1 for i = +, T , and c0 = 0 due to the absence of a pole for f0(s).

Then, the total amplitude, including the magnetic-dipole corrections, can be formally

expressed as in eq. (3.8) with M1,2,3
µ given by

M1
µ = A′(ŝ)(p̂B + p̂K) +B′(ŝ)q′µ

M2
µ = C ′(ŝ)(p̂B + p̂K) +D′(ŝ)q′µ

M3
µ = Ā′(ŝ)(p̂B + p̂K) + B̄′(ŝ)q′µ , (3.25)

where

A′(ŝ) = Ceff
9 (ŝ)f+(ŝ) +

2m̂b

1 + m̂K
Ceff

7 fT (ŝ)

B′(ŝ) = Ceff
9 (ŝ)f−(ŝ)− 2m̂b

ŝ
Ceff

7 fT (ŝ) ,

C ′(ŝ) = Ceff
10 f+(ŝ) ,

D′(ŝ) = Ceff
10 f−(ŝ) ,

Ā′(ŝ) =
2m̂b

1 + m̂K
Ceff

7 fT (ŝ) ,

B̄′(ŝ) = −2m̂b

ŝ
Ceff

7 fT (ŝ) , (3.26)

where f−(ŝ) = (1− m̂2
K)(f0(ŝ)− f+(ŝ))/ŝ.
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As in the B → K∗ transition above, we decompose the differential decay width as

follows

ΓK = ΓK0 + ΓKM (3.27)

with the term ΓKM containing the magnetic-dipole corrections. We report below only the

results for the differential decay width ΓKM , which is given by

d2ΓKM
dŝ dû

= Γ̂B

{
4
√
r` Re

[
F2Ā

′A′ ∗
]
λ+ |F2|2|Ā′|2

(
ŝû2 + 4λr`

)}
. (3.28)

After integrating over û the results is

dΓKM
dŝ

=
2

3
Γ̂Bū(ŝ)λ

{
12
√
r` Re

[
F2Ā

′A′ ∗
]

+ |F2|2|Ā′|2 (8r` + ŝ)
}
. (3.29)

The kinematic variables used above are the same as in the K∗ case in eq. (3.2), but with

the replacement of mK∗ → mK . Regarding the corresponding expressions for the dΓK0
differential distributions as a function of the parametrization in eq. (3.22), these can be

found in [12] and we fully agree on their results.

As we can see from a simple inspection of the above results, there are not any triple

(r`/ŝ
3) or double-poles (r`/ŝ

2) contributions to the distribution
dΓKM
dŝ , due to the fact that

it is proportional to the A′ and Ā′ functions.

4 The Sommerfeld-Fermi factor

We consider here the QED long-distance contributions induced by the soft photon ex-

change [59, 60]. In particular, the re-summation of the leading log terms induced by the

soft photon corrections is equivalent to the inclusion of the Coulomb interaction in the wave

functions of initial and final charged states. These contributions could become relevant in

the kinematic regime where the final charged particles are non-relativistic (in the rest frame

of the decaying particle). In our case, this would correspond to the q2 bin regions close to

the dilepton mass threshold. Therefore, it is expected to contribute to the RK∗,K mainly

in the q2 bin region close to the dimuon threshold q2 ∼ 4m2
µ. Since the magnetic-dipole

corrections are also expected to mainly contribute to the same q2 regions, by completeness

we will include these corrections in our analysis.

In general, the decay width dΓ0(sij) for a generic N -body decay is modified by a uni-

versal factor [69] that takes into account these soft-photon emission corrections. Following

the notation of [61]), we have

dΓ(sij , E) = Ω(sij , E) dΓ0(sij) , (4.1)

where the kinematic variables sij are defined as

sij =

{
(pi + pj)

2 i 6= 0, j 6= 0

(p0 − pj)2 i = 0, j 6= 0
(4.2)
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with pi the momenta of the final states and p0 that of the decaying particle. The corre-

sponding variables

βij =

√
1−

4m2
im

2
j

(sij −m2
i −m2

j )
2

(4.3)

can also be defined. The energy E is the maximum energy that goes undetected in the

process because of the physical limitations of the detector.

Here we retain only the soft-photon corrections that become important when the final

states are produced near threshold (in the regime where βij → 0) and so eq. (4.1) becomes

Ω(sij , E) = ΩC(βij) (4.4)

where

ΩC(βij) =
∏

0<i<j

2παqiqj
βij

1

exp
[

2παqiqj
βij

]
− 1

(4.5)

is the (re-summed) correction due to the Coulomb interaction [59, 60] between pairs of

fermions with charges qi and qj . We neglect all other (E and non E-depending) soft-

photon corrections that could become important only in the limit βij → 1.

Since in our numerical analysis we do not include the O(α2) corrections, by consistency

we retain in the corresponding widths only the interference terms of magnetic-dipole correc-

tions with the leading order amplitude, and switch off the contribution of the Sommerfeld

factor (Ω(ŝ)→ 1), in the ΓM contributions.

5 Numerical results for RK∗ and RK ratios

We provide here the numerical results for the magnetic dipole corrections on the branching

ratios of B → (K,K∗) and the RK∗,K . The values for relevant masses and other SM inputs

used to evaluate the BR can be found in table 1.

Concerning the evaluation of the form factors, provided by the LCSR method, this is

one of the main sources of theoretical uncertainties in the predictions of the BRs. However,

since the perturbative and non-perturbative QCD contributions mainly cancel out in the

RK∗,K , these hadronic uncertainties are expected to be strongly reduced on these observ-

ables. This is not the case of the QED corrections, where the QED collinear singularities,

inducing corrections of the order (α/π) log2(mB/m`), could largely affect the RK∗,K [33].

The same is expected for the QED magnetic dipole corrections, which are manifestly non-

universal. For this reason, we present here our numerical results only for a specific values

of the form factors, corresponding to the central values of the free parameters entering in

the LCSR parametrization. By consistency, in our analysis we retain only the interference

terms proportional to F2 and set to zero the contributions induced by the |F2|2 terms,

since the latter are of order O(α2). A consistent embedding of these contributions should

require a full NNLO order analysis in α, that goes beyond the aims of the present work.
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B → K∗ form factors α0 α1 α2 mpole[ GeV]

A0 0.355 851 −1.043 63 1.124 03 5.366

A1 0.269 264 0.304 578 −0.106 62 5.829

A12 0.255 783 0.601 902 0.117 626 5.829

V 0.341 428 −1.048 34 2.371 43 5.415

T1 0.282 35 −0.888 396 1.948 23 5.415

T2 0.282 35 0.398 974 0.361 37 5.829

T23 0.667 768 1.476 76 1.923 52 5.829

Table 3. Central values of the α0,1,2 parameters and resonance masses mpole, entering in the

evaluation of the B → K∗ form factors A0,1,12, V , and T1,2,23, as provided in [21].
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Figure 2. Distributions for the differential branching ratio dBR
dŝ in the SM at the leading order, as

a function of q2 (the invariant mass square of the dilepton final state), for the l = µ (black) and

l = e (red) cases. Left and right plots correspond to the B → K∗`+`− and B → K`+`− decays

respectively. These results correspond to the parametrization of form factors and input values as

reported in the text.

5.1 The B → K∗ transition

We start by analyzing the B → K∗`+`− decay width. The numerical results corresponds to

the central values of the αil parameters and resonance masses entering in the Pi(s) terms,

as provided in [21]. The corresponding numerical values are reported in table 3.

In the left plot of figure 2 we show the curves for the LO corresponding BR distributions

dBR/dŝ for both final muon and electron pairs, in the relevant q2 range 4m2
µ < q2 < 6 GeV2.

In the left plot of figure 3, we plot the absolute value of the differential BR for the pure

magnetic-dipole corrections. This correction is defined as

dBR

dŝ
=
dBRLO

dŝ
+
dBRM

dŝ
, (5.1)
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ŝ
×

10
1
0

B+ → K+`+`−

` = µ
` = e

Figure 3. Differential distributions of branching ratios as in figure 2 for the pure magnetic-

dipole corrections, as a function of q2. Left and right plots correspond to the B → K∗`+`− and

B → K`+`− decays respectively. In the left plot, where the absolute value of the distribution is

plotted, values of the curves for q2 less (greater) than the dip point (at q2 ∼ 2 GeV2) are negative

(positive) respectively. Distributions at the dip point are understood to vanish.

where dBR
dŝ represents the total contribution and BRLO the leading SM one, without

magnetic-dipole corrections. The curves for q2 smaller (larger) than the dip point (at

q2 ≈ 2 GeV) are negative (positive) respectively. The dip point in this plot, where curves

are understood to vanish, is due to a change of sign of the correction.

As expected by chirality arguments, the magnetic-dipole correction to the final electron

channel is very suppressed in the relevant q2 region of q2 > 4m2
µ, due to the corresponding

chiral suppression in the magnetic form factor F2. As we can see from these results the

most relevant effect of these corrections for the muon case is achieved in regions of q2 close

to the its threshold. Then, due to the manifest lepton non-universality of these corrections,

an impact on the RK∗ observable is expected at low q2.

Finally we stress that the O(α) distribution for the magnetic-dipole contribution does

not vanish at the threshold. This is due to the interference between the LO SM am-

plitude with the magnetic-dipole one proportional to Im[F2]. Indeed Im[F2] scales as

Im[F2] ∼ 1/
√
q2 − 4m2

` for q2 → 4m2
` , that can compensate the usual phase space suppres-

sion term ū ∼
√
q2 − 4m2

` . Then, the value at the threshold for the interference term is

limq2→4m2
µ

dBRM

dŝ (B → Kµ+µ−) = −2.2× 10−11 . Notice that, at the order O(α2), once the

contributions of the |F2|2 term are added, the distribution has a singularity and scales as

1/
√
q2 − 4m2

` at the threshold. However, this singularity is integrable and does not require

any regularization. The narrow region, where the corrections proportional to |F2|2 start to

be relevant, is comprised between 4m2
µ < q2 < 4mµ(1 + δ), with 0 < δ < 10−4. This gives

a tiny but finite contribution to the total BR, which is of the order of 10−15.
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Figure 4. Differential distributions of the branching ratio for the pure Sommerfeld correction, as

a function of q2 for the B → K∗`+`− decay.

In figure 4 we show the contributions of the pure Sommerfeld corrections to dBRS

dŝ .

Since the Sommerfeld corrections are not additive, accordingly to eq. (4.1) we define the

corresponding Sommerfeld correction on the differential width distribution as

dΓS = (Ω− 1)dΓLO (5.2)

and analogously for the dBRS.

Now, we analyze the impact of the magnetic-dipole and Sommerfeld corrections to the

ratio RK∗ as defined in eq. (1.1). We parametrize these corrections ∆RM,S
K∗ as

RK∗ = RLO
K∗ (1 + ∆RM

K∗ + ∆RS
K∗) , (5.3)

where, as before, the suffix LO stands for the SM contribution without magnetic-dipole

corrections, while M and S stand for the corrections induced by the magnetic-dipole and

Sommerfeld factor contributions respectively.

We also consider the ratios of distributions ρK∗(ŝ) defined as

ρK∗(ŝ) =
dΓ(B→K∗µ+µ−)

dŝ
dΓ(B→K∗e+e−)

dŝ

, (5.4)

as well as the relative deviation δρM,S

K∗ (ŝ) defined as

ρK∗ = ρLO
K∗ (1 + δρM

K∗ + δρS
K∗) , (5.5)

with same notation as above for the quantities with symbols LO,M,S at the top.

In the left plot of figure 5, we show the results for the ρLO
K∗(ŝ) as a function of q2,

for 4m2
µ < q2 < 6 GeV2, while the magnetic-dipole corrections parametrized by δρM

K∗ ,
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Figure 5. The ρK,K∗ functions at the LO in the SM as defined in the text, as a function of q2, for

the B → K∗`+`− (left plot) and B → K`+`− (right plot) decays.

are reported in the left plot of figure 6. The LO SM contribution to the ρ is almost the

same for the B → K∗ and B → K transitions, the largest difference is of the order of

1–2% for q2 < 0.5 GeV2. Concerning the magnetic-dipole corrections, as we can see from

these results, the δρM
K∗ reaches a maximum of the order of 2 × 10−3 for q2 regions very

close to the dimuon mass threshold, and drops below 10−4 for q2 > 1 GeV. The fact that

the distribution does not vanish at the threshold is due to the interference term of SM

amplitude at the zero order proportional to the Im[F2] term, which removes the phase

space suppression factor.

Concerning the Sommerfeld corrections δρS
K∗ as a function of q2, these are reported

in the right plot of figure 6. As we can see from these results, the δρS
K∗ function is very

peaked in the region close to the threshold, and become smaller than 10−5 for q2 > 1 GeV.

We stress that, while the magnetic dipole corrections are manifestly LF non-universal, due

to the chiral suppression term in the magnetic form factor F2, the Sommerfeld corrections

are non-universal only in very narrow regions close to the dimuon threshold q2 ' 4m2
µ.

In table 4, we report the values for the magnetic-dipole corrections ∆RM
K∗ integrated

in some representative set of bins. These results have a statistical error of a few percent

due to the Montecarlo integration. As we can see from these results, the largest impact of

these corrections affect the regions close to the threshold, in particular on the integrated

bins [0.0447, 0.3] and [0.0447, 0.5]GeV2, we get ∆RM
K∗ negative and approx of order of

∆RM
K∗ ∼ O(0.1%). Moreover, in the integrated bin region used in the experimental setup,

corresponding to [0.0447, 1.1]GeV2, we get ∆RM
K∗ ∼ 0.6×10−3. The impact of the magnetic

dipole corrections on RK∗ becomes totally negligible above the bin regions larger than

1 GeV2, being smaller than 10−5 effect.

Concerning the Sommerfeld contribution ∆RS
K∗ , this is positive and relevant only in

the narrow region close to the threshold, in particular we get

∆RS
K∗ [4m

2
µ, 0.3 GeV2] ∼ 2× 10−3 , ∆RS

K∗ [4m
2
µ, 0.5 GeV2] ∼ 1× 10−3 . (5.6)
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Figure 6. The δρM
K∗ (magnetic-dipole) and δρS

K∗ (Sommerfeld) corrections, as defined in the text,

as a function of q2, in the left and right plots respectively.

Smaller values below 10−4 are expected for ∆RS
K∗ when integrated on q2

max bin regions

above 1 GeV2. Contrary to the behavior of the magnetic-dipole corrections, the Sommer-

feld contributions for q2 � 4m2
µ are almost LF universal, and cancel out in the ratios RK∗ .

Due to a strong fine-tuning cancellations among the Sommerfeld contributions to the cor-

responding widths of muon and electron channels, we do not report the results for ∆RS
K∗

for larger q2 bins, since each integration is affected by a large statistical error, larger than

the required precision for the fine-tuning cancellation.

In conclusion, we found that the largest contribution to the RK∗ induced by the

magnetic-dipole corrections arises in the regions close to the threshold and it is maximum

relative effect is of order of a few per mille. This is well below the present level of exper-

imental precision on RK∗ (at least in the q2 bin ranges explored by present experiments)

and it is one order of magnitude smaller that the expected leading QED contributions from

the soft photon emissions. Same conclusions for the long-distance contributions induced

by the Sommerfeld corrections, which is of the same order as the magnetic-dipole ones in

regions very close to the threshold, and completely negligible for q2
max > 1GeV2.

Finally, we report below for completeness the corresponding results for the ratio RM
K∗

and its corresponding deviation ∆RM
K∗ induced by magnetic-dipole corrections, in the case

of dilepton τ+τ− final states, normalized with respect to the dimuon and electron final

states. In particular, we define

RτK∗(`) =

∫ q2
max

q2
min

dΓ(B → K∗τ+τ−)

dq2 dq2

∫ q2
max

q2
min

dΓ(B → K∗`+`−)

dq2 dq2

, (5.7)

where ` = µ, e. For the B → K∗τ+τ− decay, the allowed range of q2 is pretty narrow,

where q2
min = 4m2

τ and q2
max = 12.6 GeV2. Integrating the RτK∗(`) on this range of q2 we get

RτK∗(µ) ' RτK∗(e) = 0.39 , ∆RτK∗(µ) = 7.5× 10−5 , ∆RτK∗(µ) = 7.9× 10−5 , (5.8)
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[
q2

min, q
2
max

]
(GeV2) ∆RM

K∗

[0.0447, 0.3] −1.3× 10−3

[0.0447, 0.5] −1.0× 10−3

[0.0447, 1.1] −7.4× 10−4

[1.1, 6] 2.5× 10−6

[0.5, 0.8] −2.2× 10−4

[0.8, 1] −1.2× 10−4

[1, 3] −1.8× 10−5

[3, 6] 1.2× 10−5

Table 4. Results for ∆RM

K∗ , the relative QED radiative correction of RK∗ for B → K∗`+`− induced

by the magnetic-dipole corrections as defined in the text, for a representative set of integrated q2

bins in the range q2
min < q2 < q2

max.

B → K form factors F b1 mpole[GeV]

f+ 0.34 −2.1 5.412

f0 0.34 −4.3

fT 0.39 −2.2 5.412

Table 5. Central values of the F and b1 parameters and resonance masses mpole, entering in the

evaluation of the B → K form factors f+,0,T for the B → K transitions, as provided in [15]. For

the f0 form factor no resonance mass is associated.

where ∆RτK∗(`) is defined as in eq. (5.3). As we can see from this results, despite the fact

that the magnetic dipole contribution is chirally enhanced by the tau mass, the magnetic-

dipole correction ∆RτK∗(`) is quite small and of the order of 10−5. The reason is that in the

τ case, the further suppression comes from kinematic due to the reduced allowed range of q2.

5.2 The B → K transition

We extend here the same analysis presented above, concerning the magnetic-dipole and

Sommerfeld corrections, to the B → K`+`− decays. Concerning our numerical results,

these are obtained by using the central values for the bi1 and fi(0) parameters entering in

the parametrization of the form factors in eq. (3.23), as provided in [15]. The corresponding

input values are reported in table 5. In the right plot of figure 2 we present the results for

LO SM contribution to the dBR/dŝ distribution versus q2, while the corresponding results

for magnetic-dipole corrections dBRM/dŝ are shown in the right-plot of figure 3. As for the

B → K∗ transitions, the magnetic-dipole corrections contain only the contribution of the

interference between magnetic-dipole amplitude with the corresponding LO SM one. As we

can see from these results, the dBRM/dŝ contribution is always positive for q2 > 4m2
µ. The

LF non-universality of the contribution is manifest. Its relative effect, with respect to the

LO SM contribution, is more suppressed than in the B → K∗ transitions and it is roughly

one order of magnitude smaller than in B → K∗. This behavior is well in agreement with
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Figure 7. Differential distributions of branching ratios for the pure Sommerfeld correction, as a

function of q2. Left and right plots correspond to the neutral B0 → K0 and charged B+ → K+

transitions respectively.

the naive expectations based on the enhancement of the magnetic-dipole contributions in

the B → K∗`+`− decays. Indeed, as mentioned in the introduction, this enhancement

is mainly due to the fact that the FC magnetic-dipole contribution, proportional to Ceff
7 ,

receives an enhancement factor in the B → K∗ transitions proportional to the m2
B/m

2
K∗

factor. This factor arises due to the contributions of the longitudinal polarizations of K∗,

while it is absent in the B → K transitions. Since the QED magnetic-dipole corrections are

proportional to the Ceff
7 coefficient, a corresponding enhancement in the BR(B → K∗`+`−)

decays is therefore expected, with respect to BR(B → K`+`−).

The Sommerfeld corrections to the BR distribution dBR/dŝ are presented in figure 7,

for the neutral (left plots) and charged (right plots) B → K transitions respectively. For

the B+ → K+ channel we have retained all the Coulomb potential corrections according to

the formula in eq. (4.5). In computing these long-distance contributions to the B+ → K+

channel, we had to numerically integrate over dû the convolution of d2BR/(dŝdû) distri-

bution with the corresponding Ω(ŝ, û) Sommerfeld function. As we can see from these

results, the effect of the Sommerfeld enhancement becomes quite large and non-universal

in regions of q2 quite close to the dimuon threshold. No substantial numerical difference

appears between the Sommerfeld corrections to the neutral and charged channels. Indeed,

the extra Coulomb corrections in K+`+ and K+`−, which are absent in K0`+`− mode,

exactly canceled out in eq. (4.5) at O(α) because of the sign difference of qiqj products of

charges and symmetric behavior in the momentum exchange of final-state leptons p+ ↔ p−.

In the right plot of figure 5 we report the results for ρK(ŝ) for the B → K`+`−

decays, as a function of q2 in the range 4m2
µ < q2 < 6 GeV2, while in figure 8 we show the

corresponding magnetic-dipole and Sommerfeld corrections, respectively δρM
K(ŝ) (left plot)

and δρS
K(ŝ) (right plot), as defined in eq. (5.5) for the B → K∗ transitions and generalized

here for the B → K ones, for both charged and neutral B mesons.
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Figure 8. The δρM
K(ŝ) (magnetic-dipole) and δρS

K(ŝ) (Sommerfeld) deviations as defined in the

text, as a function of q2, in the left and right plots respectively. The red and black curves in the

right plot stand for the Sommerfeld corrections to the neutral and charged B → K transitions

respectively.

[
q2

min, q
2
max

]
(GeV2) ∆RM

K

[0.0447, 0.3] 9.4× 10−5

[0.0447, 0.5] 7.4× 10−5

[0.0447, 1.1] 5.0× 10−5

[1.1, 6] 1.1× 10−5

[0.5, 0.8] 3.6× 10−5

[0.8, 1] 2.8× 10−5

[1, 3] 1.6× 10−5

[3, 6] 8.0× 10−6

Table 6. Results for ∆RM

K , the relative QED radiative correction in RK for B → K`+`− induced

by the magnetic-dipole corrections as defined in the text, for a representative set of integrated q2

bins in the range q2
min < q2 < q2

max.

Results for ∆RM
K , the relative QED radiative correction in RK , induced by the

magnetic-dipole corrections are reported in table 6 for a representative set of integrated q2

bins in the range q2
min < q2 < q2

max. Also these results, as in the ∆RM
K∗ case, are affected by

a few percent error due to numerical integration. As we can see from the values in table 6,

the impact of these corrections is approximately one order of magnitude smaller than in

the RK∗ case (cfr. table 4), whose larger effect is of order O(10−4) for q2 bins close to the

dimuon mass threshold.

Finally, concerning the effect induced by the Sommerfeld corrections on the ratios RK
for the neutral B → K transition, this is positive and relevant only in the narrow region

close to the threshold. In particular, by integrating on the q2 bin regions close to the
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dimuon threshold, we get for the neutral channel

∆RS

K0 [4m2
µ, 0.3 GeV2] ∼ 2× 10−3 , ∆RS

K0 [4m2
µ, 0.5 GeV2] ∼ 1× 10−3 , (5.9)

and same order results for the Sommerfeld contributions to the charged B+ → K+ channel.

As discussed above for the B → K∗ transitions, these results have a large statistical

error (approx 30%), due to the lack of precision in the numerical integration. Smaller

values below 10−4 are expected in both charged and neutral B → K transitions for larger

q2 bin regions. Although, it is quite difficult to experimentally probe q2 regions too close

to the dimuon threshold, larger ∆RS corrections of the order of percent could be obtained

for both charged and neutral channel, namely ∆RS

K0,K+ [4m2
µ, 0.08 GeV2] ∼ 1× 10−2.

6 The dark photon contribution

Many NP scenarios have been proposed so far to explain the observed discrepancy in

RK,K∗ with respect the SM predictions, that, if confirmed, should signal the breaking of

LFU in weak interactions [34–58]. However, in the majority of these proposals the NP

contribution is affecting only the Wilson coefficients of four-fermions contact operators

that manifestly break the LFU. Here we consider a NP scenario that can provide a LF

non-universal contribution to the b → s`+`− transitions via long-distance interactions,

mediated by magnetic-dipole operators. In particular, we explore the possibility of a new

s-channel contribution to the b→ s`+`− amplitude, mediated by the virtual exchange of a

spin-1 field, namely the dark photon.

We restrict our choice to the case of a massless dark photon (γ̄), associated to an

unbroken U(1)D gauge interaction in the dark sector [62]. Indeed, in contrast to the massive

case, the massless dark photon does not have tree-level interactions with ordinary SM

fields, even in the presence of a kinetic mixing with ordinary photons [63]. However, in

this case the dark photon could have interactions with observable SM sector mediated

by high-dimensional operators. This can be understood by noticing that, unlike for the

massive case, for a massless dark photon the tree-level couplings to ordinary matter can

always be rotated away by matter field re-definitions [63]. On the other hand, ordinary SM

photon couples to both the SM and the dark sector, the latter having milli-charged photon

couplings strength to prevent macroscopic effects.

However, dark photons can acquire effective SM couplings at one-loop, with heavy

scalar messenger fields and/or other particles in the dark sector running in the loops.

In this respect, the lowest dimensional operators for couplings to quarks and leptons are

provided by the (dimension 5) dark magnetic-dipole operators. Therefore, unlike the case

of the massive dark photon, potentially large U(1)D couplings in the dark sector would be

allowed thanks to the built-in suppression associated to the higher dimensional operators.

We recall here that the dark photon tree-level couplings to SM fields, for light scenarios with

masses below the MeV scale, is severely constrained by astrophysics on its milli-charged

coupling with ordinary matters [70–72]. Therefore, the only viable way to explain the

RK,K∗ anomalies by dark photons is to assume a massless dark photon scenario, thanks

also to its possible un-suppressed U(1)D couplings.
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The dark photons scenario (mainly the massive ones) has been extensively considered

in the literature, in both theoretical and phenomenological aspects, and it is also the

subject of many experimental searches (see [73, 74] for recent reviews). Massless dark

photon scenarios received particular attentions in the framework of dark sector origin of

Dark Matter and also in Cosmology. The role of a massless dark photon scenario in galaxy

formation and dynamics has been explored in [75–79], while it could also help to generate

the required long-range forces among dark matter constituents that could predict dark

discs of galaxies [76, 77].

Recently, in this framework, a new paradigm has been proposed that could support

the existence of a massless dark photon interacting with a U(1)D charged dark sector. This

scenario predicts exponential spread SM Yukawa couplings from an unbroken U(1)D in the

dark sector [80, 81], thus providing a natural explanation for the SM flavor hierarchy,

as well as a solution for the missing dark matter constituents. Interesting phenomeno-

logical implications of this scenario are predicted [82–90]. In particular, at the LHC a

real massless dark-photon production in the Higgs boson decay H → γγ̄ has been ana-

lyzed [83, 87], including its corresponding signature at the future e+e− colliders [88, 89].

Since the dark-photon behaves as missing energy in the detector, a resonant monocromatic

photon emission at high transverse momentum, plus missing energy is predicted. Recent

measurements of this signal have been carried out for the first time by the CMS collab-

oration at the LHC [91], providing a an upper bound on the observed branching ratio of

the Higgs boson BR(H → γγ̄) < 4.6% at the 95% confidence level. Finally, we would like

to stress that this scenario can also forecast viable large rates for the decays KL → π0QQ̄

and K+ → π+QQ̄ [90], where Q is a light dark fermion of the dark sector, that are in

the sensitivity range of the KOTO experiment [92], as well as the intriguing possibility of

invisible neutral hadrons decays in the dark sector that could either explain the present

neutron lifetime puzzle [86].

In this framework, the magnetic-dipole interactions of SM fermions with dark photons,

included the flavor-changing neutral current transitions, have been analyzed in [83]. This

scenario can provide a well defined theoretical framework where to address the origin of

such effective couplings.

Inspired by this scenario, we will adopt here a more model independent approach

to analyze the impact of such FC neutral current (FCNC) couplings on the b → s`+`−

transitions and RK,K∗ anomalies. In particular, we will assume the existence of effective

magnetic-dipole interactions of SM fermions with dark photons, that can affect the b→ sγ̄

interactions and anomalous magnetic moments g − 2 of leptons. At this purpose, we

introduce the following effective Lagrangian

Leff =
∑
q,q′

1

2ΛLqq′
[q̄Rσµνq

′
L]FµνD +

1

2ΛRqq′
[q̄Lσµνq

′
R]FµνD +

∑
``′

1

2Λ``′
[¯̀σµν`]F

µν
D , (6.1)

where the indices (q, q′) and (`, `′) run over all the quarks and leptons species respectively,

Λqq′ and Λ``′ the associated effective scales, and FµνD = ∂µAνD−∂νA
µ
D is the corresponding

U(1)D field strength associated to the dark photon field AµD.
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Then, due to the contribution of the Lagrangian in eq. (6.1), the dark-photon mediated

amplitude for the b→ s`+`− is given by

MDP = − ηR

ΛRbsΛ``
[s̄Lσµαq̂

αbR]
[
¯̀σµβ q̂β`

] i
ŝ
− ηL

ΛLbsΛ``
[s̄Rσµαq̂

αbL]
[
¯̀σµβ q̂β`

] i
ŝ
, (6.2)

where ηL,R = ±1 absorbs the overall sign, and we assume the effective scales ΛL,R
bs and Λ``

to be positive. In order to simplify the analysis, we will also assume a universal scale Λ``

in the dark magnetic-dipole contribution to leptons. For notation of momenta and other

symbols we refer to the previous sections. In the following we will neglect the contribution

of the ΛLbs since in the interference term with SM amplitude it vanishes in the strange mass

ms → 0 limit.

Now we can use the results in the previous sections to compute the dark-photon me-

diated contributions to the BR of b → s`+`− and on the B → (K,K∗)`+`−. This can be

simply obtained by performing a global replacement of Ceff
7 F2 terms in all previous formu-

las of BRs. By retaining only the interference terms in the magnetic-dipole corrections,

this consists in the following substitution

Ceff
7 F2 →

πη

GF
√

2αV ∗tsVtbΛ
2
effm̂b

, (6.3)

where Λeff ≡
√

ΛRbsΛ``. In the following, we will adopt a minimal approach in our analysis

by assuming a universal Λ`` scale for both ` = e, µ in the lepton sector.1

In figure 9 we present the results for the differential dBRDP/dŝ versus q2 induced by the

dark-photon corrections for B → K∗ (left plot) and B → K (right plot) transitions, for a

representative scale of Λeff = 70TeV. These plots should be compared with the correspond-

ing ones of QED magnetic-dipole corrections in figure 3. Corresponding results for different

values of Λeff can be simply rescaled from figure 3, by using the relation BRDP ∼ 1/Λ2
eff .

As we can see from these results, the dark-photon induced corrections to the BRs are

manifestly LFU-violating. These are of the order of O(10%) for the B → K∗µ+µ− chan-

nel and roughly two order of magnitude smaller in the B → Kµ+µ− case. As for the

analogous QED corrections discussed in the previous sections, this is due to the fact that

the contribution mediated by the magnetic-dipole interactions is enhanced in the B → K∗

transitions with respect to the B → K ones. Much smaller effects are obtained for the

electron-positron final state, due to the chiral suppression proportional to the lepton mass,

induced by the interference term with SM amplitude.

Finally, we report below the predictions for the ∆RDP
K∗ and ∆RDP

K corrections induced

by the dark-photon exchange, for a particular set of q2 bins (in GeV2), corresponding to

η = 1 and Λeff = 70TeV

∆RDP
K∗ [0.045, 0.5] = 0.13 , ∆RDP

K∗ [0.045, 1.1] = 0.12 , ∆RDP
K∗ [1.1, 6] = 0.046 , (6.4)

∆RDP
K [0.045, 0.5] = 0.0054 , ∆RDP

K [0.045, 1.1] = 0.0058 , ∆RDP
K [1.1, 6] = 0.0060 . (6.5)

1We will see that conclusions will not change in the case of Λee � Λµµ, while the opposite case Λee � Λµµ
would be unable to explain the RK∗ anomalies, due to the constraints on the g − 2 of the electron.
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Figure 9. The contribution of the magnetic-dipole interaction to the dBRDP/dŝ as a function of

q2 for a representative value of Λeff = 70TeV.

As we can see from the above results, an effective scale around 70TeV can easily generate

corrections of order of 10% on RK∗ in the bin [0.045,1.1], while these become of order

of 5% in the larger bin [1.1,6]. Clearly, by an appropriate choice of Λeff in the range

Λeff ∼ 50−70TeV and η = −1, the dark-photon correction could easily match the required

gap to explain the present SM anomalies on RK∗ . However, this NP cannot simultaneously

account for an analogous explanation of the anomaly in RK (which would also require a

contribution of order of 10%), since its effect is of the order of 0.5%. To generate a 10%

effect, a smaller scale of the order of Λ ∼ 15TeV would be required, but this would give a

too large contribution to RK∗ .

In order to see the phenomenological viability of such scenario, we analyze the exper-

imental constraints on the Λeff . For this purpose, we consider two different approaches:

i) model independent: we do not make any assumption on the specific dynamics of

NP which generates the effective scales Λbs and Λll appearing in eq. (6.1). In this

case, these scales should be considered independent from the corresponding NP con-

tribution to the corresponding effective scales associated to the SM magnetic-dipole

operators as in eq. (6.1) (with dark photon replaced by the ordinary photon).

ii) model dependent: we assume the effective scales in eq. (6.1) to be generated by

radiative corrections in specific renormalizable models for the dark sector. As an

example, we take first as benchmark model the one in [80, 81], that predicts these

effective scales at 1-loop [83]. In this case, the NP provides correlated contributions

to both scales associated to the magnetic-dipole operators with ordinary photon

and dark photon [83]. Then, experimental constraints from the b → sγ decay and

anomalous magnetic moment of the muon (g − 2)µ can be used to directly constrain

the ΛRbs and Λ`` scales. We consider then a generalized extension of this model that

allows to generate independent NP contributions to these two effective scales, by

a suitable choice of the free parameters, that would theoretically support the main

assumption of the model independent analysis.
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6.1 Model independent analysis

We start by analyzing the first hypothesis i). Since dark-photons behave as missing energy

at colliders, a direct bound on the scales ΛL,R
bs can arise from the upper bounds on the BRs

of the decay b→ sXinv (where Xinv stands for the inclusive invisible channel) or from the

B → K∗νν̄ decay, where the invisible system νν̄ is replaced by a massless dark-photon.2

Indirect bounds could come instead from the BsB̄s mixing.

We first consider the constraints from the inclusive decay b → sXinv since these do

not depend on the model predictions for the hadronic-form factors. In this case, the

BR(b→ sγ̄) can be conventionally expressed through the experimental BR of semileptonic

B decay B → Xcν̄e [83]

BR(b→ sγ̄) =
12BRexp(B → Xcν̄e)

G2
F |Vcb|2m2

bf1(zcb)

(
1

(ΛLbs)
2

+
1

(ΛRbs)
2

)
, (6.6)

where the function f1(x) = 1− 8x+ 8x3 − x4 − 12x2 log x. An experimental bound on the

BR(b → sXinv) < O(10%) [93] might set some constraints on the scale ΛR
bs, in particular

we get

Λbs & 3× 103TeV (6.7)

where we assumed for simplicity Λbs ≡ ΛLbs = ΛRbs.

Recently, the Belle collaboration has measured the decay processes B → hνν̄ with

h corresponding to various mesons, including h as kaons K and K∗, pions- and rho-

mesons [94]. Negative searches for these signals, have set upper bounds on the cor-

responding BRs, all compatible with SM expectations. In the particular case of the

B → K∗νν̄ decay, the following upper bound on the corresponding BR has been reported

BR(B → K∗νν̄) < 2.7 × 10−5 at 90% C.L. [94]. The invisible νν̄ system can be detected

as missing energy Emiss, with a continuous invariant mass. A kinematic cut on the missing

energy in the center of mass of B meson decay, corresponding to Emiss > 2.5 GeV has been

implemented in the analysis. In principle, one can think that these upper bound could also

be valid for the B → K∗γ̄ decay, with γ̄ a massless on-shell dark photon, since the latter

behaves as missing energy in the detector, with a massless invariant mass. Indeed, the

dark-photon energy in the same frame is fixed and corresponds to Eγ̄ = Emiss = 2.56 GeV.

However, it is not actually correct to apply these limits to the B → K∗γ̄ decay, since a

dedicated analysis for this case is missing [95]. Nevertheless, in the following we will assume

the Belle upper bound on the BR(B → K∗νν̄) to be valid also for the B → K∗γ̄ decay

process and analyze its phenomenological implications for the dark-photon scenario.

Concerning the analogous upper bound on the B → Kνν̄ process [94], notice that this

cannot be applied to the B → Kγ̄ decay process, since the BR for this process exactly

vanishes in the massless dark-photon case, due to angular momentum conservation [84].

2The decay process B → K∗νν̄ could also set constraints on the effective scale associated to the dark

magnetic-dipole interactions for the b → sγ̄∗ transitions, with γ̄ an off-shell dark-photon. However, the

bounds in this case would not enter here directly since they would depend also by the choice of the effective

scale of dark-magnetic dipole operator associated to neutrinos.
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Finally, using the effective Lagrangian in eq. (6.1), and the hadronic matrix elements

in eq. (3.4), we obtain for the corresponding decay width

Γ(B → K∗γ̄) =
m3
B

[
|T1(0)|2 + |T2(0)|2

]
(1− rK∗)3

Λ2
bs32π

, (6.8)

where the T1(0) = T2(0) ' 0.28 are the hadronic form factors evaluated at ŝ = 0 and

defined in eq. (3.4). For the BR we get

BR(B → K∗γ̄) = 4.94× 105

(
TeV

Λbs

)2

. (6.9)

Then, by using the upper limits of BR(B → K∗νν̄) < 2.7× 10−5, we get

Λbs > 1.35× 105TeV . (6.10)

As we can see, the above upper bound on Λbs is about 45 times stronger than the corre-

sponding one from the inclusive decay b→ sXinv.

Concerning the limits on the effective scale Λµµ, the corresponding magnetic-dipole

vertex with dark photon could give a contribution to the anomalous magnetic moment of

the muon aDP
µ ≡ (g − 2)DP

µ at 1-loop, with a virtual muon and dark-photon fields running

inside. The result is divergent in the effective theory (due to the double insertion of the

magnetic-dipole operator in the 1-loop contribution) and so the magnetic-dipole operator

needs to be renormalized. Notice that, in the full UV completion of the theory, responsible

to generate the low-energy effective magnetic-dipole interaction of dark-photon with SM

fermions [83], this contribution corresponds to a 3-loop effect and it turns out to be finite,

although it will be dependent from the model structure of the UV theory. However, one can

estimate this contribution at low energy by subtracting the divergence thus renormalizing

the operator (we used the DR scheme). In particular, we have computed it in dimensional

reduction (DRED) scheme, and, after subtracting the 1/ε̄ = 1/ε−γE +log (4π) divergence,

coming from the momentum-loop integration in D = 4− ε dimensions, we get

aDP
µ = −

3m2
µ

32π2Λ2
µµ

(
5 + 4 log

(
µ2

m2
µ

))
. (6.11)

Then, by evaluating the above contribution at the muon-mass renormalization scale µ = mµ

scale, we obtain [62]

aDP
µ = −

15m2
µ

32π2Λ2
µµ

, (6.12)

that is in agreement (by order of magnitudes) with the näive estimation based on dimen-

sional analysis and chiral structures of the operators involved. The result in eq. (6.12)

should be understood as a rough estimation of the exact (finite) result that can be ob-

tained in a whole UV completion of the theory. Notice that, also the minus sign in front

of eq. (6.12) should not be taken as granted, since the correct sign prediction can only be

obtained in the UV completion of the theory and it will be then model dependent.
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At the moment there is a 3.7σ deviation from the experimental measurement and SM

prediction, in particular the discrepancy ∆aµ is at the level [96, 97]

∆aµ = aexp
µ − aSM

µ = (2.74± 0.73)× 10−9 , (6.13)

where the term in parenthesis summarizes the 1σ error. If we impose that the above NP

contribution to aµ lies within the 2σ error band of δaµ, taking (conservatively) the largest

effect, we get

|aDP
µ | < 4.2× 10−9 (6.14)

that from eq. (6.12) implies Λµµ > 355 GeV. If instead of the 4.2 × 10−9 upper limit we

would require the less conservative and more stringent constraint |aDP
µ | < 2σ ∼ 1.5× 10−9,

that would also make sense in the case of a negative contribution to aµ, we get

Λµµ > 594 GeV.

Now, by combining the above bounds on Λµµ from eq. (6.14) with the bounds on the

Λbs scale derived from the b→ sXinv in eq. (6.7), we get

Λeff & 34TeV , (6.15)

that would be pushed up to Λeff & 42TeV if |aDP
µ | < 2σ, where the effective Λeff appearing

above is defined as Λeff =
√

ΛµµΛbs. From these results we conclude that, the scale required

to explain the RK∗ anomalies (which is of the order of 70 TeV) is well allowed by both the

(g − 2)µ and b→ sXinv constraints.

Now, assuming the Belle bounds on B → K∗νν̄ could be applied to B → K∗γ̄, from

eq. (6.10) we get

Λeff & 220TeV . (6.16)

Then, by rescaling the results in eq. (6.4) by a factor (70/220)2 ∼ 0.1, we can see that

these constraints would reduce the allowed dark-photon contribution to R∗K to a maximum

1–2% effect, ruling out the possibility to fully explain the R∗K anomaly in terms of a NP

dark-photon contribution.

Regarding the other potential constraint from the BsB̄s mixing, induced by the

magnetic-dipole interactions in eq. (6.1), this computation requires in principle the evalua-

tion of a non-perturbative long-distance effect. However, we can make use of perturbation

theory for the magnetic-dipole operator. In this case the tree-level contribution induced

by exchange of the virtual dark-photon between B and B̄0 is zero

∆MBs ∼ 〈B0
s (q)|[s̄σµνqνb]|0〉〈0|[s̄σµνqνb]|B̄0

s (q)〉 1

m2
B

= 0 , (6.17)

since the corresponding B matrix elements vanish due to the energy and angular momentum

conservation. Then, the next (non-vanishing) contribution is expected to appear at higher

loops, and therefore to be suppressed.3

3However, considering the non-perturbative aspect of such computation, that involves the evaluation of

non-perturbative long-distance contributions induced by the magnetic-dipole interactions among external

hadron states, it is difficult to correctly estimate the magnitude of this effect. A more careful analysis would

be required in this case, that goes beyond the purposes of the present paper.

– 33 –



J
H
E
P
1
0
(
2
0
2
0
)
1
4
5

6.2 Model dependent analysis

Here we consider the model dependent analysis for the predictions of the effective scales

in eq. (6.1) in the massless dark photon scenario. This is based on a benchmark model

for the dark sector, inspired by [80, 81]. This scenario was proposed as a solution of the

Flavor hierarchy problem in the SM, where the SM Yukawa couplings are predicted to arise

radiatively from a dark sector and exponentially spread. This model contains dark fermions

of up- (QUi) and down-type (QDi , which are singlet under the full SM gauge interactions,

and a set of heavy (above TeV scale) scalar messenger fields SUi,DiL,R , the latter carrying the

same SM internal quantum numbers of quarks and leptons. Below we restrict our discussion

to the quark sector, but it can be straightforwardly generalized to the lepton sector.

The dark fermions QU,D couple to the SM fermions by means of Yukawa-like interac-

tions given by

L ⊃ gR
{
S
Ui†
R

[
Q̄
Ui
L (ρUR)ijq

j
R

]
+ S

Di†
R

[
Q̄
Di
L (ρDR)ijq

j
R

]}
+ gL

{
S
Ui†
L

[
Q̄
Ui
R (ρUL)ijq

j
L

]
+ S

Di†
L

[
Q̄
Di
R (ρDL)ijq

j
L

]}
+ H.c. , (6.18)

where the index i run over the family generations, and qiL,R are the usual SM SU(2)L
doublet and singlet quark fields respectively. In eq. (6.18), the fields S

Ui,Di
L and S

Ui,Di
R are

the messenger scalar particles, respectively doublets and singlets of the SM SU(2)L gauge

group as well as SU(3) color triplets (color indices are implicit in eq. (6.18). The various

symmetric matrices (ρ)ij = (ρ)ji are the result of the diagonalization of the mass matrices in

the mass eigenstates of both the SM and dark fermions, and provide the required generation

mixing to contribute to the flavor physics. The messenger fields are also charged under the

U(1)D gauge interaction, and carry the same quantum U(1)D charges as the dark fermions

they are coupled to. For more details of the model we refer to [80, 81].

The Lagrangian in eq. (6.18) can induce at 1-loop contributions to both the usual

magnetic-dipole interactions with ordinary photon and the effective interactions in

eq. (6.1) [83]

Leff ⊃
∑
q,q′

1

2Λ̄Lqq′
[q̄Rσµνq

′
L]Fµν +

1

2Λ̄Rqq′
[q̄Lσµνq

′
R]Fµν +

∑
``′

1

2Λ̄``′
[¯̀σµν`]F

µν , (6.19)

that add to the corresponding SM contributions. For more details, see [83]. The corre-

sponding Feynman diagrams are given in figure 10.

The predictions for the above scales in the b→ sγ (γ̄) transitions are

1

Λbs
∼
eDgLgRρRρLξmQ

16π2m2
S

f2(x, ξ) ,
1

Λ̄bs
∼
egLgRρRρLξmQ

16π2m2
S

f̄2(x, ξ) , (6.20)

where eD and e are the unity of U(1)D and EM charges respectively, and 0 < ξ < 1

parametrizes the mixing in the left-right sector of the messenger mass matrix. For the

definitions of the dark-fermion-messenger-quark couplings gL,R and ρL,R see ref. [83] for

more details. Here f2 and f̄2 are the corresponding loop functions, with x = m2
Q/m̄

2
S , where

mQ and m̄S are the mass of the heaviest dark fermion and the average mass of messenger
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γ̄

f

QUi

f ′

Qi

γ̄

Qi

Si

f f ′

Qi

SiSi

(a)
(b)

f f ′

Qi

SiSi

(c)

γ

f f ′

Qi

Si

(e)

γ

f f ′

Qi

Si

(d)

γ

Figure 10. Feynman diagrams for the contributions to the dark-photon γ̄ (a-b) and photon γ

(c-e) magnetic-dipole interactions [83]. Dark continuous lines correspond to external SM fermions

f, f ′, (red continuous lines) and (blue dashed lines) refer to generic dark-fermion (Qi) and scalar

messenger (Si) propagators respectively.

fields running in the loop respectively. The analytical expressions for the functions f2(x, y)

and f̄2(x, y) are [83]4

f2(x, y) =

1− x+ y + (1 + y) log
(

x
1+y

)
2 (1− x+ y)2

 − {y → −y}
f̄2(x, y) =

(1 + y)2 − x2 + 2x (1 + y) log
(

x
1+y

)
4 (x− 1− y)3

 − {y → −y} .
Formally we have the same expressions as in eq. (6.20) for the effective scales Λ`` and Λ̄``,

with the same loop functions f2 and f̄2, where one should replace the couplings, correspond-

ing messenger mass, dark-fermion mass with the ones entering in the loop contribution.

The only difference, is that in the flavor-diagonal transitions the ρL,R parameters should

be set to 1.

A more predictive result of this model is the ratio of the two scales, that depends only

by the U(1)D strength in the dark sector αD, and the ratio of the heaviest dark-fermion mass

running in the loop over the average messenger mass, namely

Λ̄L,Rqq′ ' ΛL,Rqq′

√
αD
α
R(x, ξ) , (6.21)

where R(x, ξ) = f2(x, ξ)/f̄2(x, ξ). In figure 11 we plot the ratio R(x, ξ) and the functions

f2(x, ξ),f̄2(x, ξ) versus x for the representative value of ξ = 0.5. Other values of 0 < ξ < 1

4Notice that the functions f2(x, y) and f̄2(x, y) appearing here correspond to the ξf2(x, y) and ξf̄2(x, y)

ones respectively in the notations of [83].
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Figure 11. Plots of the function F corresponding to the ratio R(x, ξ) = f2(x,ξ)

f̄2(x ξ)
, and the loop

functions f2 and f̄2 associated to the magnetic-dipole scales for dark-photon (γ̄) and photon (γ)

respectively, versus x = m2
Q/m

2
S , with mQ and mS the dark fermion and average messenger mass

respectively. Plots correspond to the representative value of the mixing parameter (in the messenger

mass sector) ξ = 1
2 .

does not change the whole picture. As we can see a small ratio is reached for x� 1. This

is due to a log(x) enhancement in the limit x� 1, corresponding to a small dark-fermion

mass. This originates from the diagram in figure 10(a) where the dark-photon is coupled to

internal dark-fermion lines, which gives rise to the pure log x term. The latter is absent in

the photon contribution in figure 10[(c)–(e)], being the dark-fermions electrically neutral.

Therefore, potential large enhancement can be achieved, up to 2 order of magnitude, in

the ratio
ΛL,R
qq′

Λ̄L,R
qq′

for large values of αD couplings, i.e. αD ∼ 0.1 and small x. In particular,

for a realistic benchmark point of mQ = 1 GeV, mS = 5 TeV, and αD = 0.1 we get the

following relation between the two scales

Λ̄L,Rqq′ ∼ 110 ΛL,Rqq′ , (6.22)

that shows a large enhancement.

Now, we provide the lower bound on the effective scale Λeff coming from the constraints

on the B → Xsγ and g − 2 of the muon. By using the B → Xsγ constraints at 95 C.L.,

with the corresponding BR(B → Xsγ) evaluated at the next-to-leading (NLO) in QCD,

we can derive a (conservative) lower bound on the effective scale Λ̄R
bs, which is given by [83]

Λ̄R
bs > π

(√
2GFmb|V ∗tsVtb|C7(MW )Rmin

7

)−1
' 3.8× 104TeV , (6.23)

where Rmin
7 = 0.139 at 2σ (see [83] for derivation), and other SM inputs can be found in

table 1.

By taking into account the Lagrangian in eq. (6.19), we have for its contribution to

(g − 2)µ

∆aµ =
2mµ

eΛ̄``
.

Then, by applying the constraint in eq. (6.14) to ∆aµ above we get

Λ̄`` > 1.8× 105TeV . (6.24)

– 36 –



J
H
E
P
1
0
(
2
0
2
0
)
1
4
5

Using the predicted values of the effective scales for the photon couplings Λ̄bs in eq. (6.20),

we find for the colored messengers mass

mS >

√
eΛboundmQξf̄2(x, ξ)

16π2
, (6.25)

where Λbound = 3.8×104TeV, with x = m2
Q/m

2
S , where mQ and mS stand for the associated

dark-fermion and messenger mass respectively entering in the effective scale, and e is units

of electric charge. Above, in order to maximize the effect, we assumed the other parameters

to be of order one, namely the couplings gL,R, ρL,R = 1. As we can see for the plot in

figure 11 the loop function f̄2 for small x � 1 tends to a constant value of the order

f̄2 ∼ 0.33 for ξ = 1/2. By replacing f̄2 → 0.33 and ξ = 1/2 inside eq. (6.25), we get for the

lower bound on the colored messenger mass

mS & 156 GeV

√
mQ

GeV
. (6.26)

The result in eq. (6.26) provides the minimum value of the dark fermion mass mQ, as a

function of mS , that is sitting on the lower bound scale Λbound required by b→ sγ namely

Λ̄bs ≥ Λbound. Analogously, for the lower bound on electroweak messengers mass from

(g − 2)µ constraint we find

mS & 337 GeV

√
mQ

GeV
. (6.27)

For instance, by imposing the (conservative) experimental lower bounds on colored and elec-

troweak messenger masses sectors from direct searches at colliders, respectively mS > 1 TeV

and mS > 300 GeV, we get from eq. (6.26) and eq. (6.27) mQ & 40 GeV and mQ & 1 GeV

respectively.

Then, by replacing x → mmin
Q /mmin

S inside the R(x, ξ) function, with the minimum

values mmin
S and mmin

Q given above for colored and EW sectors, we get from eq. (6.21)

the lower bounds Λbs > 1200TeV and Λµµ > 2500TeV respectively for αD = 0.1, that

corresponds to

Λeff & 1700 TeV

√
0.1

αD
. (6.28)

This is the minimum allowed value of the effective scale Λeff entering in the dark magnetic-

dipole corrections to RK,K∗ required to satisfy the bounds from b → sγ and (g − 2)µ
constraints.

As we can see from eq. (6.28), for αD = 0.1 this scale is approximately 20 times

larger than the required one (70 TeV) to generate large deviation of order 10% on the RK∗

via massless dark-photon exchanges. Even taking a large U(1)D coupling in the dark sector,

bordeline with perturbation theory (αD ∼ 1), the lower bound on Λeff would be still 6 times

larger than the required one. These conclusions will not be affected by a different choice

for gL,R, ρL,R and ξ in the perturbative regime, since different values of these couplings

could be reabsorbed in a rescaling of the mS and mQ masses. Therefore, we conclude that

in the framework of the particular dark sector scenario [80, 81], aimed to solve the flavor

hierarchy problem, the b→ sγ and (g− 2)µ constraints can fully rule out the possibility to

explain the present RK∗ anomaly.
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6.3 A viable dark sector model

Here we will show the existence of a dark-sector model that would allow to circumvent the

b → sγ and (g − 2)µ constraints, while providing potential sizeable contributions to the

dark magnetic-dipole operators. This will require a straightforward extension of the dark-

sector model analyzed in the previous section. Then, the phenomenological implication of

this scenario for the RK∗ anomaly will just fit into the model-independent analysis already

discussed in section 6.1, and we will not be repeated here.

The main idea consists in adding new contributions to the diagrams (c),(d),(e) in

figure 10, that exactly cancel out or strongly suppress the contributions to the magnetic-

dipole operators, while providing a non-vanishing contribution to the dark magnetic-dipole

operators induced by the diagrams (a),(b) in figure 10. The minimal model can be realized

by requiring a degenerate SU(2) mass replica of dark-fermions and messenger fields and

suitable U(1)D charges and couplings of the portal sector.

In order to simplify both the discussion and notations, let us restrict the analysis to one

flavor of dark-fermion Q and corresponding messenger fields SL, SR, that as usual stands

for SM SU(2)L gauge doublets and singlets respectively. Then, only diagonal transitions

in the portal sector of eq. (6.18) are involved. The generalization of this mechanism to the

full Lagrangian involving all flavors, including the off-diagonal flavor portal interactions in

eq. (6.18), will be straightforward. The same conclusions derived for the one flavor analysis

will hold in the general case too.

This extension consists in replacing the dark fermion and messenger fields of a specific

flavor, with a degenerate replica of an internal global SU(2), that in vectorial notation reads

Q→ Q̂ =

(
Q1

Q2

)
, ŜL,R →

(
S1
L,R

S2
L,R

)
, (6.29)

where Q̂ and ŜL,R can be interpreted as SU(2) doublets. Each SαL and SαR fields, with

α = 1, 2, are also understood to SU(2)L doublets and singlets of the SM gauge group

respectively. In the following we will omit the SM gauge indices for simplicity.

We assume the non-interacting free Lagrangian of this model to possess an exact global

SU(2) symmetry. However, this symmetry will be broken by the interactions, in particular

the dark U(1)D gauge interaction and the portal interaction. The U(1)D gauge invariance

requires the U(1)D charges q of each species α to be equal, namely

q(Qα) = q(ŜαL,R) . (6.30)

Now we choose different U(1)D charges within the same SU2) multiplet, namely

q1 ≡ q(Q1) = q(Ŝ1
L,R) and q2 ≡ (Q2) = q(Ŝ2

L,R), with the additional requirement q1 6= q2.

This last condition explicitly breaks SU(2) and it is crucial for the realization of the mech-

anism that we will explain below.

Concerning the portal interaction, this is a simple generalization of the one in eq. (6.18).

In particular, if we restrict the discussion to one flavor, the corresponding Lagrangian is

Lportal = gRS
†
R

[
¯̂
QαLqR

]
+ ḡLŜ

†
LT3

[
¯̂
QRqL

]
+ H.c. , (6.31)
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where qL and qR indicate a generic SM fermions SU(2)L doublet and singlet respectively,

and the sum over the spin, SU(2), colors and SU(2)L gauge indices is understood. As in

section 6.2, the terms in parenthesis [· · · ] indicate the bi-spinorial products. Here T3 in

the second term proportional to gL stands for the third (diagonal) generator of the SU(2)

group, and its role will be understood in the following. The symmetries of the theory do

not forbid the existence of the interaction term gLŜ
†
L

[
¯̂
QRqL

]
in the portal Lagrangian. Let

us assume for the moment vanishing the contribution of this interaction term, by setting

its overall constant gL → 0 or choosing it much smaller than all other constants gR and g′L.

Now we go to the computation of the magnetic-dipole transitions. Assuming for the

moment the contribution to a diagonal flavor transition of a SM fermion of charge e, the

conclusions will be valid also for the general off-diagonal flavor case. The mass term of the

dark fermion sector is SU(2) degenerate as well as the masses of the ŜL and ŜR, including

the off-diagonal mixing mass term m2
LR. By requiring a left-right symmetry we can impose

the masses of the ŜL and ŜR to be identical, and set them equal to mS .

Consider first the contribution to the SM magnetic-dipole transitions. In this case,

from the analogous diagrams (c),(d),(e) in figure 10, we get for the following result for the

effective coupling Λ̄ associated to the magnetic-dipole operator [q̄σµνq]F
µν

1

Λ̄
∼ eTr[T3]

ḡLgRξmQ

m2
S16π2

f2(x, ξ) = 0 , (6.32)

where the symbols x and the mixing parameter ξ are defined in the same way as in

section 6.2. This contribution exactly vanishes due to the Tr[T3] = 0 condition. No-

tice that the EM charge, factorizes since by gauge invariance inside the loop must circulate

the same charge of the external SM fermion.

If we go now to compute the contribution to the dark-magnetic dipole operator

[q̄σµνq]F̄
µν , and defining Λ the corresponding associated effective scale, we obtain by means

of analogous diagrams (a) and (b) of figure 10

1

Λ
∼ eDTr[T3q̂D]

ḡLgRξmQ

m2
S16π2

f2(x, ξ) = eD(q1 − q2)
ḡLgRξmQ

m2
S16π2

f2(x, ξ) 6= 0 , (6.33)

provided q1 6= q2, where eD is the unit charge of U(1)D and q̂ =

(
q1 0

0 q2

)
the corresponding

charge eigenvalues matrix. Notice, this non-vanishing contribution is proportional to the

SU(2) breaking term connected to the U(1)D charge operator q̂. The same argument can be

easily generalized to include the other flavors and off-diagonal terms. Same results would be

obtained if the T3 matrix would have been inserted in the first term of the right-hand-side

of eq. (6.31) of the portal interaction.

A last comment regarding the stability of these results under radiative corrections.

First, notice that the cancellation among the diagrams is realized by assuming the exact

degeneracy among the masses of dark fermions and messenger fields (as well as the mixing

term) belonging to the SU(2) multiplet. Now, this is a tree-level condition and radiative

U(1)D corrections for instance are expected to break this degeneracy since q1 6= q2. However

this splitting should be finite and small effect, being proportional to radiative O(αD/4π)
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correction. Then, we expect that the residual effect of this partial cancellation among

diagrams, due to radiative corrections, is small being loop suppressed, as long as we keep

the theory in the perturbative regime. Second, we have choose the coupling gL to be

vanishing, or much smaller than the other couplings in the portal interaction, namely

gL � (gR, ḡL). This condition is understood to be valid at some energy scale. However,

we expect radiative corrections to regenerate the gL coupling at a different scales. Since

the running of the couplings is governed by a perturbative renormalization group flow,

we do not expect the hierarchy among the gL coupling and the other couplings, to be

dramatically changed by (perturbative) radiative corrections. In other words, being an

independent parameter, one can always choose the gL value in such a way to arbitrarily

suppress the new physics contribution to the SM magnetic-dipole operators discussed above,

leaving basically unchanged the conclusions of this analysis under the effect of radiative

corrections.

In conclusion, we proved the existence of at least one viable model of the dark sector

that allows to circumvent the (g − 2)µ and b → sγ constraints, while providing large

contributions to the dark magnetic dipole operator. This can be realized by a suitable

of choice of the free parameters of the theory. Then this model could provide a well

motivated theoretical support for the main conclusions of the model independent analysis

exposed above.

It is worth mentioning here that the massless dark-photon exchange does not affect the

other RD (RD∗) observables, the ratio of the branching fraction of B̄ → Dτν̄τ (B̄ → D∗τ ν̄τ )

to that of B̄ → D`ν̄` (B̄ → D∗`ν̄`), where significant discrepancies have been also observed

with respect to the SM predictions. Indeed, these observables are connected to the tree-level

charge currents, while the massless dark-photon can mediate only neutral magnetic-dipole

currents.

7 Conclusions

We evaluated the impact of the QED magnetic-dipole corrections to the final lepton states,

for the widths and branching ratios of the B → (K,K∗)`+`− decays. We also included

the Sommerfeld correction factor in the corresponding widths, which reabsorbs the re-

summation of the leading logs terms induced by the long-distance contributions in the

virtual Coulomb corrections.

Using the current cuts on q2 adopted by the LHCb collaborations, we found that these

corrections do not exceed a few per mille effect on RK∗ , depending on the integrated q2

bin regions, while these are one order of magnitude smaller in RK . The largest contri-

bution is achieved in q2 regions close to the dimuon mass threshold and it is one order

of magnitude smaller than the typical corrections induced by the QED soft and collinear

photon emissions. In particular, corrections on RK∗ are of the order of 0.1% and 0.07% for

4m2
µ < q2 < 0.5 GeV2 and 4m2

µ < q2 < 1.1 GeV2 ranges respectively, while they drop down

to less than 10−4 for q2 > 1 GeV. Concerning the RK , we found that the corresponding

deviations are approximately one order of magnitude smaller than in the RK∗ case, in

almost all integrated regions of q2. The enhanced effect of magnetic-dipole corrections in
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the B → K∗ transitions, against the B → K ones, is due to the contribution of the spin-1

longitudinal polarization of K∗.

Regarding the Sommerfeld corrections to RK,K∗ , these dominate only in the q2 region

close to the dilepton mass threshold. In particular, we found them to be of the order of

0.1% for both the B → K∗, B0 → K0 and B+ → K+ transitions, in the integrated range

of 4m2
µ < q2 < 0.5 GeV2. However, unlike the magnetic-dipole correction, the Sommerfeld

correction almost entirely satisfies LFU for q2 > 0.5 GeV2, and its impact on RK,K∗ falls

rapidly to zero above this q2 threshold. Moreover, we found that, the contributions of both

Sommerfeld and magnetic-dipole corrections are opposite in sign and tend to cancel in the

B → K∗`+`− decays, while they add coherently with same sign in the B(0,+) → K(0,+)`+`−

decays. In conclusion, a high experimental precision on the RK,K∗ measurements of the

order of per mille would be required in order to explore the sensitivity of the RK,K∗ to

magnetic-dipole corrections.

Finally, we analyzed the role of a potential NP, mediated by magnetic-dipole inter-

actions, in explaining or softening the discrepancies in the present measurements of the

RK,K∗ observables. In particular, we considered the role a massless dark-photon scenario.

The massless dark photon, unlike the massive one, has not any tree-level milli-charged

interactions with SM matter fields, and mainly couple via magnetic-dipole interactions

with SM fermions. In this respect, we considered two possible approaches. The first one,

in which we assume the NP to contribute mainly to the effective magnetic-dipoles of SM

fermions with dark-photon. The second one, based on a renormalizable models for the

dark sector, in which the NP predicts correlated contributions to both the usual magnetic-

dipole interactions of SM fermions with ordinary photons and the corresponding ones with

a dark-photon.

By using a model independent approach, we found that a massless dark-photon ex-

change could give a O(10%) deviation on RK∗ compatible with all present constraints from

dark sector searches, flavor physics and (g − 2)µ, providing a viable interpretation of the

present discrepancies on the RK∗ anomaly. On the other hand, a modest effect on RK is

found which could be at the best of a few percent effect, and cannot account for the ob-

served RK anomalies. The dark-photon contributions to RK∗ could be further constrained

if we assume that the recent B → K∗νν̄ constraints could be applied to the massless dark-

photon production via B → K∗γ̄ decay, with γ̄ detected as missing energy. In particular,

these constraints would reduce the maximum available contribution to RK∗ within a 1–2%

effect, ruling out the possibility to fully explain the RK∗ anomaly in terms of a massless

dark-photon contribution. However, at present no dedicated analysis for the search of

B → K∗γ̄ decay process is available that could support the validity of this assumption.

We found that the results of the model independent analysis could be well motivated

and supported by a renormalizable dark sector scenario that is a suitable extension of

the one proposed in [80, 81] and predicts the existence of a massless dark photon. This

model allows to bypass the b→ sγ constraints at the NLO and (g − 2)µ constraints, while

providing large contributions to the relevant dark magnetic-dipole operators involved in the

b→ s`+`− transitions. This required to double the dark-fermions and messengers fields of

the model in [80, 81] by promoting them to degenerate SU(2) doublets.
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In conclusion, if future measurements should reduce the gap with SM predictions in

RK , while increasing the discrepancy in RK∗ , this might be interpreted as a smoking gun

signature of a LFU-violating long-distance interactions mediated by a massless dark photon

exchange. However, new analyses would be required in this case to disentangle the effect

of a massless dark photon exchange from other potential new physics sources, including a

dedicated experimental search for the B → K∗γ̄ decay process.
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