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Abstract. Uncertainty-based optimisation techniques provide optimal airfoil de-
signs that are less vulnerable to the presence of uncertainty in the operational
conditions (i.e., Mach number, angle-of-attack, etc.) at which an airfoil is func-
tioning. These uncertainty-based techniques typically require numerous function
evaluations to accurately calculate the statistical measure of the quantity of inter-
est. To render the computational burden down, the design optimisation of the air-
foil is performed by a multi-fidelity surrogate-based technique. The high-fidelity
aerodynamic performance is calculated with a compressible RANS solver using
a fine grid. At the low-fidelity level a coarser grid is used. To obtain accurate drag
predictions despite the lower grid resolution the so-called far-field drag approxi-
mation is employed.
Keywords: robust design optimisation · Gaussian processes · conditional value-
at-risk · far-field drag · multi-fidelity learning

1 Introduction

The aerodynamics performance of real-world applications is inherently uncertain due
to manufacturing errors, uncertain environmental conditions [18,19] and other physical
phenomena like icing [4]. Therefore, uncertainties must be accounted already during the
aerodynamic design of airfoils.

Uncertainty-based optimisation techniques provide optimal airfoil designs that are
less vulnerable to the presence of uncertainty in the operational conditions (i.e., Mach
⋆ This research has been developed with the partial support of the H2020 MCSA ITN UTOPIAE
grant agreement number 722734.
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number, angle-of-attack, etc.) at which the airfoil is functioning. In such optimisation
techniques, the Quantity of Interest (QoI) is a statistical measure instead of a determin-
istic value. The accurate calculation of a statistical measure requires numerous function
evaluations, which increases the computational demand significantly. In particular, the
Computational Fluid Dynamic (CFD) calculations burden the computational budget as
the QoIs (a statistical measure of lift, drag, or moment coefficients) are computed by
solving the Reynolds-averaged Navier-Stokes (RANS) equations numerically.

In order to reduce the computational time, a multi-fidelity surrogate assisted method
is adopted here. Surrogates are data-based mathematical models constructed using only
a few expensive function evaluations. With their help, the aerodynamic performance
of an airfoil can be predicted at a low computational cost. The accuracy of a surrogate
highly depends on the size of its training data. Therefore, when the function evaluations
are truly expensive, for example, a CFD simulation with very fine grid, the training data
can be complemented by function evaluations of lower fidelity. The information coming
from various fidelity levels can be fused together with multi-fidelity Gaussian process
regression (MF-GPR). This technique was introduced by [9].

In this work, the drag coefficient (cd) of the MH 114 [2] propeller airfoil is min-
imised by a multi-fidelity surrogate assisted optimisation technique. The open-source
fluid-dynamic solver SU2 [5] is used for calculating the cd . SU2 solves the compress-
ible RANS equations numerically and calculates cd by integrating the stress over the
body surface with the so-called near-field method.

The drag coefficient cd can have different levels of fidelity by using diverse grid
refinements. A calculation with a fine grid provides a high-fidelity cd prediction. How-
ever, fine meshes are very demanding from a computational point of view. Coarse grids
are computationally cheap, but they introduce a higher proportion of spurious drag. This
numerically introduced drag stems from the truncation error of the used numerical meth-
ods and the artificial dissipation of solving the RANS equations with a coarse grid. The
artificial dissipation is added in the numerical schemes to boost the convergence of the
flow and to stabilise the scheme. Hence, the prediction of the near-field cd deteriorates.

Nevertheless, there are far-field methods for the estimation of the drag force that
allow the cd prediction with a level of accuracy similar to a fine grid by identifying the
spurious drag sources. A review of all these methods is given in [6]. In this work, the
formulation described in [13] has been implemented.

The prediction of the drag coefficient using the far-field method will be used for the
low-fidelity level on a coarse grid. This procedure will allow a better estimation of the
drag coefficient with respect to the near-field value computed on the same grid, thus
resulting in an increased accuracy while preserving the computational cost. In addition,
the near-field cd estimation obtained with a fine grid will be used for the high-fidelity
level.

This paper is organised as follows. Section 2 gives a brief overview of MF-GPR.
The aerodynamic computational chain is detailed in Section 3. The far-field approach
for the drag estimation is explained in Section 4. Section 5 introduces a deterministic
airfoil design problem. The airfoil design problem under uncertainty is given in Sec-
tion 6. Specifically, the drag coefficient of a propeller blade airfoil will be minimised
under geometrical and environmental constraints. The uncertainty will be introduced
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on the angle-of-attack modelled by a four-parameter beta distribution. We propose a
multi-fidelity surrogate assisted optimisation pipeline in Section 7. The results of the
deterministic and probabilistic optimisations are discussed in Section 8. The interpreta-
tion of the results is concluded in Section 9.

2 Multi-fidelity Gaussian Process Regression

The drag coefficients obtained with the far-field approximation and SU2 are fused to-
gether into a single surrogate by multi-fidelity Gaussian process regression (MF-GPR).
The recursive formulation is adapted here as proposed by [11]:

f̃1(x) = hT1 (x)�1 + �̃1(x), (1a)
f̃2(x) = �(x)f̃1(x) + hT2 (x)�2 + �̃2(x), (1b)
�(x) = gT (x)��, (1c)

where indices 1 and 2 denote the low and high-fidelity levels, respectively. The mean
trend of the fidelity level is formulated as a least-squares regression hi(x)�i with the
vector of regression functions hi(x) and the vector of regression coefficients �i. Thelocal variations of the model are modelled as zero-mean Gaussian distributions with
�2i variance and incorporated into �̃i(x) ∼  (0, �2i ). This recursive formulation, first,
trains a standard GPR surrogate using the low-fidelity samples calculated by the far-field
method. Then, the posterior of the low-fidelity GPR is combined together with the high-
fidelity observations of SU2 by training an additional GPR. This recursive formulation
avoids the need to construct a large covariance matrix containing the low- and high-
fidelity designs as in [9]. Even if the training cost of the surrogate is negligible compared
to the aerodynamic design evaluation, the reduced covariance size is advantageous as
the model is frequently re-trained during the optimisation process.

3 Aerodynamic computational chain

When aerodynamic shape design problems are faced, it is crucial to have a self-operating
aerodynamic computational chain. It takes as input the design variables given by the op-
timiser and generates the candidate (in this case a single component airfoil) to be eval-
uated, builds the computational mesh, and runs the computational fluid dynamic flow
solver. Finally, the obtained performance of the candidate is provided to the optimiser.
In the design problem studied here, the performance of the candidate is the airfoil drag
coefficient. Moreover, for the low-fidelity runs, instead of providing directly the cd givenby the CFD solver, the drag coefficient is calculated with a far-field approach and later is
provided to the optimiser. This pipeline is shown in Fig. 1, and explained in the following
sub-sections. Note that the far-field formula is described in depth in Section 4.
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Fig. 1. Aerodynamic computational chain

Airfoil generation

The candidate airfoils are generated using wg2aer1. The input for the program is a set
of values of the design variables, and it modifies a specified starting airfoil (MH 114)
accordingly to some modification functions. To generate the baseline airfoil, the design
variables are set equal to 0. Specifically, the airfoil is parametrized as a linear combina-
tion of the initial geometry (x0(s), y0(s)), and the applied modification functions yi(s).Thus, the airfoil is described as:

y(s) = k

(

y0(s) +
n
∑

i=1
wiyi(s)

)

,

x(s) = x0(s)

(2)

the airfoil shape is controlled by the design parameterswi and k, the scale factor to fulfilthe maximum thickness criterion.

x/c

y
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Fig. 2.Modified airfoils example. Baseline airfoil ( )

Specifically, ten design parameters are considered. This will lead to eight optimisa-
tion design variables. The first and second design parameters describe a thickness mode
1 Program developed at the Italian Aerospace Research Centre (CIRA)
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so that they have the same value but opposite sign (w2 = −w1). In addition, the third
and fourth design parameters represent a camber mode, hence both are equal (w4 = w3).The range for the design parameters are:

w1, w2 ∈ [−2, 2], w3, w4 ∈ [−2, 2],
w5, w6, w7, w8 ∈ [−1, 1], w9, w10 ∈ [−0.2, 0.2]

(3)

Regarding the modification functions, the first four are polynomials affecting the
whole airfoil, while the rest are Hicks-Henne bump functions that have the location
of the bump at different position of the airfoil chord. In Fig. 2, an example of airfoil
modifications is provided.

Grid generation

Construct2D is an open-source grid generator designed to create 2D grids for CFD com-
putations on airfoils [1]. The grids are generated in Plot3D format; however, the source
code has been changed to provide also the grid in SU2 format. Given the coordinates
of the modified airfoil, a C-type grid is generated. The number of cells of the mesh will
depend on the level of fidelity that has to be run. The possible mesh sizes are provided
in Table 1.

Table 1.Mesh size parameters for low- and high-fidelity simulations. (Nb: number of cells on the
body surface, Nw: number of cells in the wake, Nj : number of cells in far-field direction, Ntotal:total number of cells)

Nb Nw Nj Ntotal
Low fidelity (LF) 96 48 48 16384
High fidelity (HF) 512 256 256 262144

The far-field is located at 500 airfoil chords. The possible computational meshes are
depicted in Fig. 3

(a) Low-fidelity grid (b) High-fidelity grid

Fig. 3. Possible grids depending on the fidelity level.
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CFD evaluation

The CFD solver used for the aerodynamic shape design optimisation problem is the
open-source fluid-dynamic solver SU2 [5]. Particularly, the compressible Reynolds-
averaged Navier-Stokes (RANS) equations are solved. The turbulence model used is the
Spalart-Allmaras (SA) [17]. Furthermore, for the spatial integration, JST central scheme
with artificial dissipation coupled with an implicit Euler method for the pseudo-time
stepping is used.

4 Far-field Drag Coefficient Calculation

The far-field method implemented in this work was introduced in [13]. It allows the
decomposition of the drag force in three components: wave, viscous, and spurious drag.
Specifically, the method is based on entropy variations. The entropy drag is expressed as
volume integral, which allows the decomposition of the drag into the above components.
Hence, a proper selection of each region is needed. The entropy drag is defined as:

DΔs = Dw +Dv +Dsp (4)

whereDw,Dv, andDsp are the wave, viscous, and spurious contributions, respectively.
Dsp is the drag source related to the entropy introduced by the truncation error and

the artificial dissipation of the numerical schemes used by the Computational Fluid Dy-
namics flow solver. Hence, by identifying the Dsp contribution and subtracting it from
Equation (4), a prediction of the drag coefficient, with an accuracy close to fine grids,
is obtained on a coarser mesh. This will imply a considerable advantage while facing
aerodynamic optimisation problems since the use of coarser grids allows a significant re-
duction of the required computational time. This advantage for optimisation has already
been shown in [7, 12].

Furthermore, a test to verify this advantage for the design problem of the propeller
blade airfoil, here studied, has been carried out. In particular, a viscous flow with work-
ing conditionsM∞ = 0.2, Re∞ = 4.97 × 106 and cl = 1.0 is performed on the MH 114
airfoil. The compressible RANS equations are solved using the SU2 flow solver with
the SA turbulence model [17]. Five C-type grids of an increasing number of cells are
studied. The grid size is obtained by the square root of the ratio between the number of
cells of the finest grid and the grid under evaluation

(

ℎ =
√

Nℎ=1∕Ni

)

. The number
of cells on the body surface (Nb), on the wake (Nw), in the far-field direction (Nj), andthe total number of cells (Ntotal), as well as, the near-field value of the drag coefficient
(cdnf ), and the far-field value (cdv ) are given in Table 2. Note that in this test case the
only drag contribution is the viscous (Dv), and the drag values are expressed in drag
counts (1dc = 10−4).
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Table 2.Mesh sizes and computed drag coefficients. Viscous test atM∞ = 0.2,Re∞ = 4.97×106and cl = 1.0.
Nb Nw Nj Ntotal cdnf [dc] cdv [dc]

ℎ = 10.7 96 48 48 9216 165.7 115.0
ℎ = 8 128 64 64 16384 137.1 107.8
ℎ = 4 256 128 128 65536 120.7 106.5
ℎ = 2 512 256 256 262144 113.9 104.2
ℎ = 1 1024 512 512 1048576 110.0 102.6

In Fig. 4, the comparison between near-field and far-field drag coefficients versus the
grid size is given. In addition, the pressure coefficient distribution on the body surface
(cp) at the different grid refinements is also plotted.
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(b) Drag Coefficient, cd

Fig. 4. MH 114 test at M∞ = 0.2, Re∞ = 4.97 × 106 and cl = 1.0. Left: Pressure coefficient
distribution on the body surface at ℎ = 1 (◼), ℎ = 2 (⬥), ℎ = 4 (⚫), ℎ = 8 (▸), and ℎ = 10.7 (▴).
Right: Near-field ( ◼ ) and far-field ( ▴ ) drag coefficients versus mesh size.

In Fig. 4 (a) it can be observed that the differences between the cp on the body surfaceare barely visible; hence a good local accuracy of the solution is demonstrated also when
the coarsest grid is used. However, Fig. 4 (b) shows how the near-field value of the drag
coefficient converges as the grid is refined (ℎ⟶ 0). The variation on cd between the
coarsest and finest mesh sizes is given by the spurious drag source introduced by the
numerical method and the artificial dissipation. Contrarily, using the far-field analysis
of the drag force, the spurious drag contribution is removed. Hence, a better estimation
of the cd is found. Thus, the drag coefficient value for the lower fidelity of the surrogate
model is improved in accuracy while keeping the same computational time.
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5 Deterministic Design Optimisation Problem

The shape optimisation design problem studies the minimisation of the drag coefficient
(cd) of a propeller blade airfoil subjected to geometric and aerodynamic constraints.
The baseline design is the Martin Hepperle MH 114 airfoil for a propeller. The flow
conditions areM∞ = 0.2,Re = 4.97×106, and � = 2◦. The lift coefficient of the airfoil
is required to be at least one (cl ≥ 1). Geometrical constraints are imposed for obtaining
realistic shapes. The percentage thickness with respect to the airfoil chord (t%) is fixed tothe value of the baseline. The Leading Edge Radius (LER) and the Trailing Edge Angle
(TEA) are constrained by minimum values not to fall below their baseline values with
more than 10%.

In mathematical terms, the deterministic optimisation example reads:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
w

cd(w)
subject to:

cl(w) ≥ 1.0
t%(w) = 13.05
LER(w) ≥ 0.011377
TEA(w) ≥ 6.0◦

(5)

A penalty approach will be used to handle the constrained problem.
min

w∈W⊆ℝn
cd(w) + pcl max

(

0, 1 − cl(w)
)

+ pLERmax (0, 0.011377 − LER(w)) +

+pTEAmax (0, 6 − TEA(w)) ,
(6)

where the pcl = 1000, pLER = 100000 and pTEA = 100. The equality constraint of the
thickness is imposed by scaling the modified airfoil shape to the given value.

6 Probabilistic Design Optimisation Problem

In order to improve the performance of the airfoil under uncertainty, a robust optimi-
sation must be performed. Here, the angle-of-attack is the only parameter considered
uncertain, thus representing uncertainty in the environmental conditions. Particularly,
the uncertainty has been modelled with a four-parameter beta distribution. The variabil-
ity range is �ref±0.25. The statistical measure chosen to solve the robust design problem
is the Conditional Value-at-Risk (CVaR) measure [3, 16], or super-quantile, at a confi-
dence level  equal to 0.95. This type of risk measures was introduced in the financial
sector, but they have been advantageously applied to aerodynamic design optimisation
problems [14, 15].

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
w
CVaR0.95

(

cd(w,u)
)

subject to:
CVaR0.95loss

(

cl(w,u)
)

≥ 1.0
t%(w) = 13.05
LER(w) ≥ 0.011377
TEA(w) ≥ 6.0◦

(7)
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Therefore, the robust optimisation problem reads:

min
w∈W⊆ℝn

CVaR0.95
(

cd(w,u)
)

+ pcl max
(

0, 1 − CVaR0.95loss
(

cl(w,u)
))

+

+pLERmax (0, 0.011377 − LER(w)) + pTEAmax (0, 6 − TEA(w)) ,
(8)

where CVaR0.95loss
(

cl
)

= −CVaR0.95
(

−cl
) is the loss Conditional Value-at-Risk. The

random perturbations of the angle-of-attack impacts only the aerodynamic force require-
ments (cd and cl). The geometric constraints can be evaluated for each design config-
uration (w) deterministically. The same penalty parameters have been used as in the
deterministic case.

7 Optimisation pipeline

The multi-fidelity surrogate assisted design optimisation strategy of expensive prob-
lems [10] has been tailored to reduce the computational cost of the airfoil optimisation
problem here studied. Computationally more economic far-field drag predictions are
used to populate the training dataset as the computational budget affords only a handful
of high-fidelity RANS simulations. The optimisation pipeline is presented in Fig. 5.
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Fig. 5. Optimisation pipeline with multi-fidelity surrogate
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Our constrained expected improvement formulation is:

cEI = E
[

max
(

0, F ∗obj − Fobj(c̃d , c̃l)
)]

ℙ
[

c̃l ≥ 1
]

,

=

(

(

F ∗obj − Fobj(ĉd , ĉl)
)

Φ

(

F ∗obj − Fobj(ĉd , ĉl)

�̂2cd

)

+

+�̂2cd�

(

F ∗obj − Fobj(ĉd , ĉl)

�̂2cd

))

Φ

(

ĉl − 1
�̂2cl

)

,

(9)

where �̂2cd and �̂2cl are the standard deviations of the drag and lift coefficient, respectively.
Fobj is the penalised objective given by Eq. (6) and Eq. (8) for the deterministic and
robust optimisation studies respectively. The best evaluated objective value is given by
F ∗obj . The Φ and � symbols denote the cumulative distribution function and probability
density function of the standard normal distribution respectively. E is the expected value
and ℙ is the probability operator. Our optimisation method updates the multi-fidelity
surrogate in every iteration with one additional design evaluation. The design of which
predicted performance maximises the constrained expected improvement function given
in Eq. (9) is evaluated.

wnew = max
w∈W⊆ℝn

cEI (10)
After finding the most promising design candidate wnew with Eq. 10, the algorithm

chooses the fidelity level of the aerodynamic solver based on the Scaled Expected Vari-
ance Reduction (SEVR) measure [10]:

l = max
LF ,HF

SEVRl, (11)
where the SEVR is defined as:

SEVRLF =
�(wnew)�̂2cd ,LF(wnew)

cLF
, (12)

SEVRHF =
�(wnew)�̂2cd ,LF(wnew) + �̂

2
cd ,�HF

(wnew)

cHF
, (13)

where cLF = 1 and cHF = 10 are the costs of the low- and high-fidelity simulations
respectively.

To calculate the CVaR statistical measures, the computational chains of low- and
high-fidelity has to be complemented by an additional step for computing the lift and
drag coefficients CVaR risk measures. Due to the heavy computational demand, the
risk measure is calculated with a surrogate-based uncertainty quantification approach.
At the low fidelity level, for each design configuration, five LF samples are used for
constructing a local GPR model, while at the high-fidelity level, five LF samples and
three HF samples are used for constructing a local MF-GPR model. These models can
then be used to draw a statistically significant number of samples to calculate the risk



Multi-fidelity Airfoil Optimisation with Far-Field Drag Approximation & Uncertainty 11

measure. The number of HF samples is set to the minimum required number of samples
necessary for training the local probabilistic model. We arbitrarily decided to increase
the number of LF samples by 20% w.r.t. the HF approximation.

The constructed local probabilistic models of the baseline configuration are pre-
sented in Fig. 6. Furthermore, in Fig. 7, the convergence of the risk measure value of
the aerodynamic force coefficients in relation to the number of virtual samples is de-
picted. Based on the CVaR convergence, in the present work 100000 virtual samples
of the local probabilistic models are generated to calculate the CVaR values for both
aerodynamic coefficients (cl and cd).

(a) Drag coefficient, cd (b) Lift coefficient, cl

Fig. 6. Local probabilistic models of the aerodynamic force coefficients of the baseline configu-
ration.

(a) Lift Coefficient, cl (b) Drag Coefficient, cd

Fig. 7. Convergence of the risk measure value of the aerodynamic force coefficients.
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The computational costs of the fidelity levels are set according to their true computa-
tional time required for the probabilistic optimisation. The cost of running a low-fidelity
CFD evaluation is considered as 1. According to the computational time, the cost for
a high-fidelity is 16 times greater than the low-fidelity runs. Considering that to build
the low-fidelity probabilistic model five LF samples are needed, the total cost of the LF
model is 5. On the other hand, to construct the high-fidelity probabilistic model three
HF and five LF evaluations are required, thus the total cost is 53. Therefore, a 1 to 10
cost-ratio is used in this study. Note that the computational costs of training the surro-
gates and calculating the acquisition function are considered negligible in comparison
to the CFD evaluations.

Finally, the computational chain of the aerodynamic forces with the probabilistic
model is shown in Fig. 8.

8 Results

In this section, the main obtained results are shown. A two-step optimisation was carried
out. Firstly, a deterministic optimisation, which results are explained in Sub-section 8.1,
and, later, a probabilistic one. The results of the latter are given in Sub-section 8.2.

8.1 Deterministic optimisation

The deterministic design optimisation was solved with multi-fidelity and single-fidelity
surrogate-based techniques, and, also, with population-based technique. A resume of all
the optimisation results is presented in Table 3.

Table 3. Comparison of multi-fidelity, single-fidelity surrogate-based and population-based opti-
misation results. (The cost of a single high- and low-fidelity simulations are 10 and 1 respectively.)

cd [dc] cl TEA[◦] LER Samples Cost
[LF,HF]

baseline (MH114) 117.8 1.09 6.60 0.014324 [0, 1] 10
best design MF-GPR 112.0 1.00 6.03 0.013228 [120, 18] 300
best design GPR 117.6 1.08 7.76 0.011973 [0, 30] 300
best design CMA-ES (ℎ = 10.7) 117.1 1.02 6.17 0.018025 [1800, 0] 1800
best design CMA-ES (ℎ = 8) 115.6 1.02 6.34 0.020900 [1800, 0] 2700

Regarding the surrogate approach, the same computational budget was used for com-
paring the single- and multi-fidelity surrogates. In both cases, 10 high-fidelity samples
were used for constructing the initial surrogate. In the case of MF-GPR, the surrogate
was complemented with 100 low-fidelity samples. Therefore, to keep the same com-
putational budget, only 20 additional samples were generated to complement the high-
fidelity surrogate. In Table 3, it can be observed that the optimisation that uses MF-GPR
is able to find a better solution. This is due to the fact that the computational budget was
severely limited, hence this did not allow us to have enough high-fidelity samples. The
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lack of HF samples prohibits the construction of an accurate GPR model. However, by
introducing low-fidelity information obtained from computationally cheaper samples,
the MF-GPR could provide a much better approximation of the performance landscape.
Clearly, this handful of new samples were not enough to find a sufficiently good design.

From an aerodynamic point of view, the optimal airfoil of the MF-GPR approach
has a lower drag coefficient since its camber line is lower than the camber lines of the
other two airfoils, the MH114 and the optimal airfoil obtained at the optimisation using
GPR approach. This can be observed in Fig. 9. Note that, for visualization purposes, the
axes in Fig. 9 and Fig. 10 are not dependent. Specifically, by decreasing the camber and
keeping the free stream angle-of-attack (AoA), the effective AoA of the airfoil actually
perceives decreases. Thus, a lower lift coefficient is obtained. This implies a reduction
of the lift-induced drag coefficient, hence of the total drag.
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Fig. 9. Baseline and deterministic optimal airfoil comparison. MH114 ( ), MF-GPR optimal
airfoil ( ), and GPR optimal airfoil ( ). The dashed lines are the camber of each airfoil. Axes
are not dependent.

In addition, the presented design optimisation approach is compared with a popu-
lar population-based algorithm, namely CMA-ES [8]. The optimisation was performed
using only low-fidelity CFD evaluations. The evolutionary algorithm was not able to
find a similar optimal design to the one given by the MF-GPR approach. Contrarily,
the airfoil was barely optimised. Therefore, it was decided to increase the mesh size to
ℎ = 8 (instead of ℎ = 10.7) and redo the optimisation. In this case, the algorithm found
a similarly best design configuration to the presented method (MF-GPR). The cost of a
CFD evaluation on ℎ = 8 grid size is 1.5 times the cost of a low-fidelity one. In addi-
tion, to perform the population-based optimisation, 1800 evaluations were needed. This
implies that the computational cost is significantly increased with respect to the multi-
fidelity approach presented in this paper. Therefore, the presented optimisation method
presents an advantage with respect to single-fidelity surrogate-based optimisation. By
adding low-fidelity samples, the performance landscape is better approximated. This
results in a better allocation of computational resources. The multi-fidelity surrogate-
based approach can find better airfoil designs compared to classical population-based
optimisation and single-fidelity techniques as the HF evaluations are performed only for
promising design candidates.
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Fig. 10. Baseline and deterministic optimal airfoil comparison. MH114 ( ), MF-GPR optimal
airfoil ( ), and CMAES optimal airfoil using ℎ = 8 grid size ( ). The dashed lines are the
camber of each airfoil. Axes are not dependent.

Furthermore, Fig. 10 shows the comparison of the optimal airfoils obtained with
CMA-ES and with MF-GPR approaches with respect to the baseline. In addition, the
camber line of each airfoil is also plotted. In this case, both optimal airfoils have a similar
camber line. However, the obtained optimal design with CMA-ES has the maximum
airfoil thickness placed at a forward position (x∕c = 0.227) with respect to the MF-GPR
best design (x∕c = 0.297). This implies that the effective angle-of-attack is greater than
the one perceived by the MF-GPR optimal airfoil. Hence, a higher cl and, consequently,
cd are found.

Table 4.Comparison of prediction error ofmulti- and single-fidelity surrogatemodels. (Prediction
error is defined as the arithmetic mean value of the relative error of the high-fidelity predictions
during the course of optimisation.)

ĉd ĉl F̂obj Fobj(ĉd , ĉl,TEA,LER) HF iterations
MF-GPR surrogate 2.04 % 0.71 % 34.51 % 5.43 % 8
GPR surrogate 3.11 % 5.65 % 17.14 % 11.53 % 20

To evaluate the quality of the produced surrogate models, the mean prediction error
is calculated. The results are summarised in Table 4. Particularly, the prediction error
was calculated for each HF iteration by using the prediction and true values calculated
at the new infill design point. It can be seen that MF-GPR predicted the aerodynamic
forces of the new designs significantly better. The poor design configuration found by
the GPR-based optimisation is also due to the penalised approach which was employed
here. The lift coefficient is not well predicted which drives the algorithm to waste com-
putations on designs which are unfeasible and have high objective values. Moreover, in
Table 4, it is also shown that the objective cannot be accurately predicted by a surrogate
directly. However, by independently predicting the aerodynamic forces and calculating
the objective afterwards based on these predictions, it was more accurately predicted.
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8.2 Probabilistic optimisation

For improving the performance of the airfoil under uncertainty, a probabilistic optimi-
sation was carried out. Specifically, only uncertainty on the angle-of-attack was con-
sidered. Considering that the advantages of using MF-GPR were already shown in the
deterministic optimisation, the probabilistic one was only made using the proposed op-
timisation approach.

The predicted lift and drag distributions of the optimal designs and the baseline
airfoil are shown in Fig. 11. By perturbing the angle-of-attack, the obtained optimal
design for the deterministic problem violates the constraint imposed for lift coefficient,
as shown in Fig.11 (a). The MF-GPR algorithm is able to take uncertainty into account
during the optimisation; hence, it can find an optimal design which respects the imposed
lift constraint. Particularly, for the probabilistic design optimisation, it was decided that
CVaRloss(c̃l) must be greater or equal to one. Figure 11 (a) shows how the probabilistic
optimum design fulfils the imposed cl constraint. Consequently, this design has a higherdrag.

(a) Lift coefficient distribution, cl

(b) Drag coefficient distribution, cd

Fig. 11. Prediction of the distributions for the baseline and optimal designs.

In Table 5, a comparison of the baseline airfoil with the optimal designs is given in
terms of lift, drag, and shape characteristics. Besides, in order to calculate the CVaR,
the MF-GPR technique requires the computation of three high-fidelity samples. Hence,
the computational budget is triple. However, this is still limited as the size of the budget
is equal to the cost of only 90 high-fidelity simulations.
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Table 5. Comparison of the requirements considering environmental uncertainty.

Objective CVaR(c̃d) CVaRloss(c̃l) TEA LER Samples Cost
[dc] [LF,HF]

baseline (MH114) 119.07 119.07 1.063 6.60 0.014324 [5, 3] 35
deterministic opt. 136.55 112.87 0.976 6.03 0.013228 [5, 3] 35
probabilistic opt. 114.89 114.89 1.002 6.38 0.016937 [370, 51] 880

The obtained optimal airfoils are compared in Fig. 12. It is appreciated that both
the deterministic and the probabilistic optimisation resulted in a smaller camber line
curvature airfoil than the baseline. The MH114 airfoil generates a significant higher lift
coefficient than the required constraint value, hence the optimisation tends to reduce the
camber curvature, so that the lift reduces and so does the drag. Moreover, by comparing
the deterministic and probabilistic optimal designs, it can be seen that the probabilistic
optimum has a stronger S-shaped lower side. This increases drag and lift coefficient;
hence, resulting in a feasible airfoil design.
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Fig. 12. Baseline, deterministic optimum, and robust optimum airfoil comparison. MH114 ( ),
deterministic optimum ( ), and probabilistic optimum ( ). The dashed lines are the camber of
each airfoil. Axes are not dependent.

Finally, in Fig. 13, a comparison of the pressure coefficient distribution and friction
coefficient on the body surface of the baseline, deterministic and probabilistic optimal
designs is presented. Analysing both optimal designs, it can be observed that the deter-
ministic optimum presents a smoother expansion rate on the upper surface of the airfoil.
Specifically, the maximum is reached at 30% of the chord, whereas the probabilistic
optimum has the peak at 10% of the chord. Comparing the pressure coefficient distri-
bution of the optimal airfoils, the contribution of pressure to drag coefficient is clearly
higher for the probabilistic optimum. Besides, for the contribution of friction on drag
coefficient, a similar conclusion can be applied. The maximum value of skin friction
coefficient is higher for the probabilistic optimum on the suction side of the airfoil and,
also, to a minor extent on the pressure side. Thus, the friction drag is higher for the
probabilistic solution, mainly due to the peak of maximum cf .
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(a) Pressure Coefficient, cp
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(b) Friction Coefficient, cf

Fig. 13. Pressure coefficient (left) and friction coefficient (right) on the body surface comparison.
MH114 ( ), deterministic optimum ( ), and probabilistic optimum ( ).

9 Conclusion

In this present work, a complete optimisation workflow is presented for expensive aero-
space applications under uncertainty. The workflow is employed to find optimal airfoil
designs that produce minimal drag and respect both aerodynamic force and geomet-
rical constraints. The prediction of aerodynamic forces is an expensive process as the
Reynolds Averaged Navier-Stokes partial differential equations have to be solved numer-
ically. To decrease the computational effort, a multi-fidelity surrogate-based technique
was used. The drag and lift predictions obtained with two significantly different size
meshes were fused together with a hierarchical Gaussian process regression technique.
To increase the correlation of the high- and low-fidelity drag predictions, the spurious
drag was compensated by performing the far-field drag prediction at low-fidelity level.
Our approach was compared against a classical single-fidelity surrogate-based and an
evolutionary algorithm. The results showed that classical methods could struggle to find
significantly improved designs due to the limited computational budget. The highest po-
tential of our multi-fidelity surrogate-based approach relies on solving problems under
uncertainty where the required numerous probabilistic samples can be efficiently ob-
tained by introducing a multi-fidelity probabilistic model.
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