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Abstract. This paper presents the multi-objective optimisation of the
MH114 high-lift airfoil. We seek the set of Pareto optimal solutions that
maximise the airfoil lift and minimise the drag. The lift and drag forces
are considered uncertain due to geometrical uncertainties. The uncer-
tainty quantification of the probabilistic aerodynamic force values re-
quires a large number of samples. However, the prediction of the aero-
dynamic forces is expensive due to the numerical solution of the Navier-
Stokes equations. Therefore, a multi-fidelity surrogate assisted approach
is employed to combine expensive RANS simulations with cheap poten-
tial flow calculations. The multi-fidelity surrogate-based approach allows
us to economically optimise the aerodynamic design of the airfoil under
uncertainty.
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sign · surrogate assisted optimisation· Gaussian process regression

1 Introduction

Shape optimisation of an airfoil is one of the most fundamental problems in
aerodynamic design optimisation. The purpose of an airfoil is to generate a
pressure difference in a flow so that a force is generated. The force component
perpendicular to the flow direction is called lift, its magnitude and sense (in
respect of the defined force reference frame) depend on the shape of the airfoil
and on the flow conditions. Together with the lift, the presence of the airfoil in
the flow inevitably generates a force component parallel to the flow direction,
called drag. Most engineering applications exploit the lift, while the drag is

? This work was partially supported by the H2020-MSCA-ITN-2016 UTOPIAE, grant
agreement 722734.



2 P.Z. Korondi et al.

an inevitable loss. Therefore, the shape optimisation of an airfoil aims to find
the optimal lift-to-drag ratio such that some additional application-dependent
requirements are also satisfied.

In reality, solutions that are optimise all objectives simultaneously (as sug-
gested by the reviewer) are typically non-existing. A single-objective problem
might have a single global optimal solution. However, formulating a real prob-
lem as single-objective implies a decision making on the preferences of various
requirements. By formulating our problem as a multi-objective optimisation,
the preferences of various requirements are decided after a set of Pareto optimal
solutions are found [3]. Consequently, in the context of multi-objective airfoil
optimisation, we are searching for a set of airfoil designs which are Pareto opti-
mal to our multi-objective problem formulation. This set is called Pareto front.
When the objectives are conflicting, the Pareto set contains more then one so-
lutions that cannot be improved in any of the objectives without degrading at
least one of the others.

To obtain the Pareto front various algorithms exist. However, they com-
monly require many performance evaluations of the underlying problem. This
is troublesome for the aerodynamic shape optimisation of an airfoil, as accu-
rate computational fluid dynamics (CFD) calculations are typically expensive in
computational time [15].

This issue can be tackled by employing surrogate models [13, 14]. Expen-
sive calculations are performed for only a handful of designs. Then a statistical
model is built to approximate the aerodynamics of airfoil designs which have
not been evaluated by the expensive CFD code. The accuracy of the statisti-
cal model highly depends on the number of available CFD evaluations. Conse-
quently, sparsely sampled design landscapes are hard to approximate accurately
with standard surrogate techniques. In such a case, aerodynamic calculations
of lower fidelity can be used to provide sufficient information for building an
accurate statistical model. The information from lower fidelity calculations can
be fused together with high fidelity data by using the multi-fidelity Gaussian
process regression (MF-GPR) [9, 11].

There is also another issue to take into account. Often the actual design, or
operation point, and its performance are slightly different from the optimisation
solutions because of manufacturing, wear off and other operational deformations,
like icing and surface pollution. In practice, our design problem is affected by
various uncertainty sources which affect the actual performance. This issue can
be addressed with uncertainty quantification (UQ) techniques and optimisation
under uncertainty methods. UQ can be used to estimate statistical measures of
the design performance that can be in turn used as reliable or robust objectives
of the optimisation under uncertainty problem (see e.g. the reviews [2, 19]).

In our recent work, we proposed a multi-fidelity optimisation workflow for
optimising expensive multi-objective problems under uncertainty [10]. In this
work, we investigate the performance and applicability of our proposed workflow
for the aerodynamic shape optimisation of an airfoil.
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The optimisation problem is presented in Section 2. In Section 3 the used
aerodynamic solvers are examined. In Section 4 the MF-GPR method is in-
troduced and Section 5 discusses on the uncertainty treatment. The proposed
optimisation workflow is briefly presented in Section 6. Results are analysed in
Section 7. and our conclusions are expressed in Section 8.

2 Design optimisation problem of airfoil

Conceptually, aerodynamic design optimisation can be approached in two ways:
inverse and direct [20]. In inverse design optimisation a desired pressure distri-
bution is targeted and the optimisation algorithm seeks to find the geometrical
shape which produces the targeted pressure distribution or lift force. Therefore,
inverse methods are commonly applied in later design phases when target values
are known. A direct method, as its name suggests, directly optimises the objec-
tive without any predefined target value. In aerodynamic shape optimisation a
maximal lift-to-drag ratio is typically desired.

The geometrical shape of the airfoil is defined by superposing modal shape
functions on the baseline geometry of MH114. Eight modal shape functions are
considered. They are shown in Figure 1 and Table 1. The first two modes mod-
ify the thickness and the camber line of the airfoil. The remaining six modes
introduce local shape modifications of the upper and lower side of the airfoil
at the leading edge (LE), mid span and trailing edge (TE) respectively. The
design variables to be optimised are the scaling parameters (xi) of the modal
shape functions. Additionally, the shape of the airfoil is considered to have some
uncertainties due to the manufacturing process. Therefore, each shape mode is
superposed on the design shape with an uncertain scaling factor (ui).

Table 1: Design and uncertain variables
Mode Function type Design variable Uncertain variable Physical interpretation

mode 1 Polynomial x1 u1 thickness
mode 2 Polynomial x2 u2 camber
mode 3 Hicks-Henne x3 u3 upper LE
mode 4 Hicks-Henne x4 u4 lower LE
mode 5 Hicks-Henne x5 u5 upper middle
mode 6 Hicks-Henne x6 u6 lower middle
mode 7 Hicks-Henne x7 u7 upper TE
mode 8 Hicks-Henne x8 u8 lower TE

In this work, the MH114 airfoil is optimised for a high-lift propeller. The
set of geometries are sought which are Pareto optimal for maximal lift (L) and
minimal drag (D). As the lift and drag forces are uncertain due the geomet-
rical uncertainties, a reliability based multi-objective optimisation problem is
considered here:
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(a) mode 1 (b) mode 2 (c) mode 3 (d) mode 4

(e) mode 5 (f) mode 6 (g) mode 7 (h) mode 8

Fig. 1: Design modes

min
x

S95 (−Cl(x, ũ)) (1a)

min
x

S95
(
Cd(x, ũ)

Cd0

)
(1b)

where Cd0 = 0.01. The S95 denotes the 95th superpercentile which is a relia-
bility measure defined in Section 5. The lift coefficient (Cl) and drag coefficient
(Cd) are:

Cl =
L(x, ũ)

1/2ρU2
(2a)

Cd =
D(x, ũ)

1/2ρU2
(2b)

ρ is the density and U is the free-stream velocity of the air. Compared to the
traditional Cl and Cd coefficient definitions, the chord length is omitted from
the above definitions as the chord length is considered as unit throughout this
work.

3 Solvers

To calculate the aerodynamic forces of the airfoil two solvers are considered:
XFOIL [5] and SU2 [6].

The former is an airfoil analysis tool based on potential flow equations (panel
methods). For viscous problems, a two-equation integral boundary layer formu-
lation is coupled with the inviscid flow solution [4]. The transition criteria is
calculated by the eN envelope method. XFOIL has a fairly rapid calculation
time and provides sufficient accuracy for most engineering applications.

The SU2 software provides a solver for the compressible Reynolds-averaged
Navier-Stokes equation. The RANS equation is closed by Menter’s Shear Stress
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Transport turbulence model [12] which efficiently blends the k-ω turbulence
model of the near wall region to the k-ε model of the region away from any
wall. Various studies have been carried out to compare the results of these two
solvers, like e.g. [1, 22]. Both solvers are suitable to accurately predict the aero-
dynamic forces of an airfoil. For the sake of this work we will consider SU2 as a
higher fidelity solver as it implements a more general form of the Navier-Stokes
equation.

The aerodynamic evaluations with XFOIL and SU2 are performed with the
framework software described in [16,17]. The modal shape function superposition
is performed with the wg2aer4. The modified airfoil geometry is stored in a Selig
format which can be directly processed by XFOIL. For the CFD evaluation, the
modified airfoil and its surrounding domain are discretised with the open-source
Gmsh software which generates the mesh in .su2 format. Finally, SU2 performs
the aerodynamic analysis of the airfoil and provides the high-fidelity drag and
lift predictions.

The lift and drag coefficients of the MH114 airfoil are plotted in Figures
2a and 2b. The calculations are carried out at Re = 5 · 106 and M = 0.218
with standard sea-level conditions. SU2 considers the domain around the airfoil
fully turbulent. Therefore, XFOIL was also forced to operate in fully turbulent
conditions by setting the transition point location at the beginning of lower and
upper airfoil sides (XTRLO and XTRUP set to 0.01). We can see that the two
solvers produce similar polar trends; however, there are some deviations in the
actual values. This makes the two solvers appropriate candidates for a multi-
fidelity optimisation.

(a) Lift coefficient against angle-of-attack (b) Drag coefficient against angle-of-attack

Fig. 2: Comparison of lift and drag coefficient curves of MH114 calculated with
XFOIL and SU2.

4 Software developed by the Italian Aerospace Research Centre (CIRA)
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4 Multi-fidelity Gaussian Process Regression

The multi-fidelity Gaussian process regression (MF-GPR) is briefly discussed in
this section. This technique tailors the well-known Gaussian process regression
(GPR)5 to fuse information from various fidelity sources into a single surrogate
[8, 9]. We employ the recursive formulation proposed by [11]:

f̃LF(x) = hTLF(x)βLF + δ̃LF(x),

f̃HF(x) = ρ(x)f̃LF(x) + hTHF(x)βHF + δ̃HF(x),
ρ(x) = gT (x)βρ,

(3)

where a least squares regression hTi (x)βi with i = HF,LF formulates the mean
trend of the fidelity level. Correspondingly, hi(x) is the vector of regression
functions and βi is the vector of regression coefficients. The local variations of
the model are incorporated into δ̃i(x) ∼ N (0, σ2

i ) and modelled as zero mean
Gaussian distributions with σ2

i variance.
This MF-GPR formulation is hierarchical. The low-fidelity level is modelled

by a GPR. The high-fidelity model builds an additional GPR using the poste-
rior distribution of the low-fidelity level. A GPR problem is solved at each level
without the need to construct a covariance matrix which contains the observa-
tions of all fidelity levels as in [9]. The surrogate is frequently updated during
the optimisation; hence, the smaller size of the covariance matrix can result in
a significant computational speed-up.

5 Uncertainty treatment

When simulating a flow around an airfoil only a limited number of phenomena
are modelled. Therefore, the aerodynamic performance of a real airfoil might de-
viate from the numerical results. This motivates the construction of probabilistic
models which are appended to the design optimisation workflow to predict the
variations of the aerodynamic performance. Uncertainty modelling techniques
are grouped as: deterministic, probabilistic and possibilistic, according to [2].

In this work, only geometrical uncertainties are considered. It is assumed that
their nature is probabilistic and they can be described by a Gaussian distribution.
The geometrical uncertainties are propagated through the aerodynamic solver
which will result in a probabilistic aerodynamic performance. The comparison
of two probability distributions is not a trivial task. The possible realisations
of a distribution are multiple [21]. Therefore, only certain properties of a distri-
bution are compared. In this work, the 95th superpercentile6 of the Cl and Cd
distributions are used for evaluating the aerodynamic performance of the airfoil.

5 Gaussian process regression is also called Wiener–Kolmogorov prediction and Krig-
ing.

6 The k-th superpercentile of a probabilistic variable is the expected value of all pos-
sible realisations which are not smaller than the k-th percentile value. This measure
is commonly called as superquantile or conditional Value-at-Risk as well.
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This risk measure is employed to ensure reliability. The advantages of the su-
perpercentile measure over other risk measures for engineering applications are
discussed in [18, 21]. The 95th superpercentile is calculated with the following
equation:

S = qζ = E [ỹ|ỹ ≥ qζ(ỹ)] =
1

1− ζ/100

∫ 1

ζ/100

qτ (ỹ)dτ, (4)

where qζ is the ζ-th percentile and ζ = 95.
Analytical propagation of the uncertainty is not possible due the complex

aerodynamics solvers. Therefore, the superpercentile values of the Cl and Cd
distributions are calculated using empirical values obtained by sampling. To ob-
tain a sufficient number of samples, surrogate assisted uncertainty quantification
is performed as in [10]. The probabilistic space is considered to be independent
from the design space and for each design a local GPR is built on 15 probabilistic
samples. The calculation of the superpercentile is then done with 5000 virtual
samples of the local probabilistic space. These values seemed to be adequate
after performing a few trial and error checks.

6 Multi-objective optimisation framework for airfoil
optimisation under uncertainty

This work employs the optimisation workflow proposed in [10]. The workflow
embodies a multi-fidelity Bayesian optimisation for multi-objective problems and
in this work we employed it for aerodynamic design optimisation of airfoils using
XFOIL and SU2.

The workflow can be divided into three major components: design of ex-
periments (DoE), multi-fidelity surrogate construction and acquisition function.
To initialise our optimisation workflow a DoE technique is employed to obtain
a dataset for surrogate construction. At each fidelity level the design space is
sampled by uniform Latin Hypercube Sampling (LHS).

After obtaining the 95th superpercentiles of lift and drag, two independent
multi-fidelity surrogate are trained using the recursive formulation defined by
Eq. (3).

The two MF-GPR models are used by the acquisition function to determine
which design configuration should be evaluated in the next iteration and which
solver should perform the aerodynamic calculation. Since it is a multi-objective
problem, the decision on the next design location is made by maximising the
hypervolume improvement of the lower confidence bound of the drag and lift
coefficients following the suggestion of [7]. For the selected design configuration
the superpercentile values of the drag and lift coefficients are calculated by eval-
uating the corresponding probabilistic sample with XFOIL or SU2. The selection
on the solver is based on Scaled Expected Variance Reduction (SEVR) values of
the fidelity levels [10].

With the new superpercentile values the surrogate model of the lift and
drag can be retrained. The surrogate is updated with new designs until the
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computational budget is exhausted. At the end, the set of Pareto optimal designs
are presented to decision makers. The complete optimisation workflow is depicted
in Figure 3.

Surrogate

training
MF-GPRk

Pareto set

DoE2 SU2
super-

percentile2,k
y2,j,i

(m2)
x2,i

u2,i
(m2) S2,k,i

DoE of SU2

 Optimisation loop

Acquisition

function
Solverl

super-

percentilel,k

xl,nl+1

ul,nl+1
(ml) yl,j,nl+1

(ml) Sl,k,nl+1

DoE1 XFOIL
super-

percentile1,k
y1,j,i

(m1)

i : index of design

j : index of response (lift  or drag)

k : index of superquantile measure 

ml : number of probabilistic samples

        at the given fidelity level

l : fidelity level (XFOIL or SU2)

nl : current number of evaluated designs

       at the given fidelity level 

x1,i

u1,i
(m1) S1,k,i

DoE of XFOIL

Fig. 3: Multi-objective probabilistic optimisation workflow for aerodynamic
shape optimisation of an airfoil with MF-GPR

7 Results

A brief summary of the solved optimisation problem is presented in Table 2.
The problem is bi-objective and has 8 design and 8 uncertain variables. The
computational budget is set to 136500 units.

Table 2: Summary of optimisation problem

Number of objectives 2

Number of constraints 0

Number of design variables 8

Number of uncertain variables 8

Computational budget 136500

The number of evaluated LF and HF samples and their cost are presented
in Table 3. We assigned 300 cost units for running a single evaluation of aero-
dynamics forces with SU2 and 1 unit for evaluating the design with XFOIL.
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Here, we determined the cost of the fidelity levels based on the actual running
times of the simulations on the used machine. The optimisation stopped when
no further high-fidelity samples could be added to the surrogate training set.
After the 435th HF simulation only 4245 units remained in the budget which is
not sufficient for generating the required 15 samples to build the probabilistic
model. Therefore, only the 96.8 % of the budget was used.

Table 3: Number of LF and HF samples and their costs
LF DoE LF total HF DoE HF total

Aerodynamic solver XFOIL XFOIL SU2 SU2
Evaluation cost 1 1 300 300
Total number of samples 450 1755 225 435
Budget spent 450 (0.3 %) 1755 (1.2%) 67500 (51.7 %) 130500 (95.6%)

In Figure 4, we can see that the algorithm alternates the fidelity levels. The
alternation stems from the fact that, in regions where the expected improvement
is high due to large uncertainties, the algorithm will evaluate the new design with
the low-fidelity solver. Following this step, high expected improvement values in
the region are the results of promising performance prediction with low-level
of uncertainty. Therefore, the region can be sampled by high-fidelity simulation
without risking the waste of budget.

Fig. 4: History of fidelity selection

To investigate the advantage of MF-GPR over single-fidelity GPR, the rela-
tive prediction errors of the surrogates are calculated in every iteration when a
HF sample is generated. The classical GPR model is built in every iteration using
only the HF samples of the actual iteration. Overall, the MF-GPR provides a
better prediction; however, in some iterations GPR can temporarily be the best
predictor as shown in Figure 5. At each iteration, the prediction error is calcu-
lated based on a single sample. When the newly evaluated design lies in a region
which can be accurately predicted by a GPR model using only HF samples, it is
possible that the single-fidelity GPR model provides a slightly better prediction.
However, in the majority of the iterations MF-GPR outperforms the GPR model.
In Table 4 we show the mean prediction error of the single- and multi-fidelity
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surrogates. Both surrogate models can provide a relatively accurate prediction
of the objectives in overall. However, the single-fidelity surrogate model shows
significantly bigger prediction errors when the newly evaluated design lies in a
region which was not explored by a sufficient number of observations.

Table 4: Mean prediction error

GPR MF-GPR

Objective 1 (lift) 0.77 % 0.31 %

Objective 2 (drag) 1.51 % 0.99 %

Fig. 5: Comparing relative prediction errors of MF-GPR and GPR (objective 1:
lift, objective 2: drag)

Throughout the iterations, the correlation between the predictions at low
and high-fidelity levels are high and steady as shown in Figure 6. The high
correlation is expected at the beginning of the optimisation as the high number
of LF samples in the training data results in a MF-GPR model which predicts
performances close to the LF observations. This correlation does not deteriorate
by updating the model with high-fidelity samples which suggests that the initial
MF-GPR dominated by the LF samples provides a good approximation.

The obtained Pareto optimal solutions are depicted in Figure 7 (red circles,
Pareto front HF). The initial HF Pareto front obtained after the DoE (dash-
dotted grey line) was significantly improved. The MF-GPR models of the ob-
jectives can provide accurate predictions; hence, most of the design locations
suggested by the acquisition function are Pareto optimal. In the same figure,
the Pareto front of the LF samples is shown. It could seem that the LF Pareto
optimal solutions dominate the HF front. However, as Figures 2a and 2b also
suggest, the drag and lift force are actually under-predicted by using XFOIL.
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y

Fig. 6: Correlation history of objectives

Fig. 7: Comparison of high and low-fidelity Pareto fronts

Indeed, by re-evaluating the Pareto optimal LF optimal designs with the HF
solver, the green circles (HF evaluations of LF Pareto front) are found. Thus, we
can conclude that the gap between the LF and HF front is due to the approxima-
tion error of the LF evaluations. Therefore, the introduction of the HF samples
into the surrogate model constructions is beneficial for obtaining an accurate
Pareto front.

The list of design variables and objectives of the non-dominated designs are
shown in Table 5. We can see that many design variables reach the boundary
of the design variable limits. The design variable of the thickness mode set to
−1 for every non-dominated design. This is expected as thin airfoils produce
significantly less drag.

Depending on some further criteria on the propeller blade, the decision maker
can choose the preferred airfoil (among the HF Pareto optimal solutions) for fur-
ther analysis. For example, Table 6, lists three possible designs corresponding
to the minimum drag, highest efficiency and maximum lift design. To compare
the predicted probability distributions of their aerodynamic forces, the baseline
and the most efficient design are shown in Figure 8b. Violin plots are drawn
based on the 5000 virtual samples mentioned in Section 5. By optimising the
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Table 5: List of design variables and objectives of the non-dominated designs
x1 x2 x3 x4 x5 x6 x7 x8 S95 (−Cl) S95 (Cd/Cd0)

-1.000 1.000 1.000 1.000 1.000 -1.000 0.000 -1.000 -1.637 1.822
-1.000 1.000 -0.084 1.000 -0.119 -1.000 -0.526 -1.000 -1.603 1.715
-1.000 1.000 -1.000 1.000 -1.000 -0.113 -1.000 -1.000 -1.552 1.649
-1.000 0.663 -0.927 0.654 -1.000 -1.000 -0.595 -1.000 -1.536 1.608
-1.000 0.611 -0.458 -1.000 -0.659 -0.608 -0.345 -1.000 -1.501 1.578
-1.000 0.917 0.272 -1.000 -1.000 -1.000 -1.000 -0.199 -1.485 1.569
-1.000 -0.128 -1.000 0.350 -1.000 -1.000 -0.616 -0.921 -1.439 1.505
-1.000 -0.215 1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.388 1.457
-1.000 -0.717 -1.000 -1.000 -1.000 -1.000 0.020 -1.000 -1.363 1.450
-1.000 -1.000 -0.379 1.000 -1.000 -1.000 -1.000 -1.000 -1.346 1.433
-1.000 -1.000 1.000 -1.000 0.000 1.000 -1.000 -1.000 -1.288 1.418

Table 6: Optimal designs of various criteria
S95 (Cl) S95 (Cd) η

Baseline design 1.4222 0.01646 86.4
Minimum drag design 1.2879 0.01418 90.8
Most efficient design 1.5360 0.01608 95.5
Maximum lift design 1.6371 0.01822 89.9

95-th superpercentile of the aerodynamic forces, designs are preferred of which
aerodynamic performance does not deteriorate due to the geometrical uncer-
tainties. To be more specific, the superpercentile optimisation aims at shifting
the probability distribution towards more reliable performance values w.r.t. the
distribution of deterministic designs. However, in the case of maximum lift and
most efficient designs, we also found more robust solutions (narrower spread of
the distribution) with better performance (higher lift and smaller drag distribu-
tions) as side effect.

The optimisation problem defined with Eqs. 1a-1b aims to optimise exclu-
sively the drag and lift forces, other aerodynamic and structural parameters of
the airfoil are neglected. This can result in airfoil designs which are sub-optimal
when structural requirements and other aerodynamic parameters are considered.
For example, the most efficient design in Figures 9c has a very thin trailing edge
which is undesired from a structural point of view. Nevertheless, we can see that
the pressure distribution in Figures 9b, 9d and 9f is well approximated with
XFOIL. This explains the effectiveness of the used multi-fidelity approach.



Multi-objective and multi-fidelity airfoil optimisation under uncertainty 13

(a) Comparison of the baseline and minimum drag design with uncertainty prediction

(b) Comparison of the baseline and most efficient design with uncertainty prediction

(c) Comparison of the baseline and maximum lift design with uncertainty prediction

Fig. 8: Comparison of the baseline and Pareto optimal designs with uncertainty
prediction
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(a) Minimum drag design

(b) Cp distribution of minimum drag design

(c) Most efficient design

(d) Cp distribution of most efficient design

(e) Maximum lift design

(f) Cp distribution of maximum lift design

Fig. 9: Comparison of Pareto optimal airfoil designs
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8 Conclusion

The optimisation of an aerodynamic shape is computationally expensive - the
more so, when uncertainties are taken into account. This problem can be tackled
by employing multi-fidelity surrogate assisted optimisation. On the one hand,
the required number of design evaluations is reduced by using statistical models
which helps us to evaluate only promising design candidates. On the other hand,
the required number of expensive high-fidelity design evaluations is reduced by
employing a MF-GPR which can complement the information obtained from
high-fidelity evaluations with low-fidelity information.

In this study, we performed an aerodynamic shape optimisation under un-
certainty combining information from XFOIL and the RANS solver of SU2. The
multi-fidelity surrogate assisted optimisation provided an accurate Pareto front
approximation with only a limited number of high-fidelity RANS simulations.
The optimal solutions found by our approach display higher reliability than the
baseline solution.
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