




     "Is this real? Or has this been happening 
      inside my head?” 

     "Of course it is happening inside your head, but 
     why on earth should that mean that   
     it is not real?” 





Abstract

Galaxy clusters are the most massive objects in the universe; they are located

at the nodes of the cosmic web from which they continuously accrete matter.

In the recent years, observations at different wavelengths from ground-based

and space-borne telescopes have provided a wealth of information on the

cluster bright components: the cluster galaxies which are visible in the optical

bands, and the intra-cluster medium, which is observable through its X-ray

emission and in the microwave wavelengths through the Sunyaev–Zeldovich

effect. All these observations have contributed to enlarge the sample of

known clusters (at low and high redshifts), increasing at the same time our

knowledge on the astrophysical processes that take place within these mas-

sive objects. Today, galaxy clusters represent an important tool from both a

cosmological point of view (through their number counts) and galaxy forma-

tion models. Indeed, given their particular location at the nodes of the cosmic

web, galaxy clusters coincide with the densest regions of the universe, where

the evolution of galaxies experience the impact of an extreme environment.

The galaxies within clusters are mainly red massive ellipticals or bulge

dominated, with little ongoing star formation, especially close to the cluster

core. Among them, a relevant role is occupied by the brightest cluster galaxy

(BCG), the most luminous and massive cluster galaxy typically located at the

cluster center. In the BCGs, the low values of star formation rates are related

to a hampering of the cooling rate by the feedback from the active galactic nu-

clei (AGN), as highlighted by the frequent presence of radio-loud AGNs. This

feedback is generated by the gas accretion around the central supermassive

black hole (SMBH), whose mass is known to strongly correlate with a num-

ber of BCG properties, like its stellar mass and its stellar velocity dispersion.

Very recently, other correlations involving SMBHs masses and global clus-

ter properties (like cluster mass and temperature) were found. Interestingly,
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these correlations showed a lower scatter with respect to the correlations

involving BCGs properties, suggesting that the physical processes that drive

SMBH mass growth might be closely related to the large scale properties of

the hosting galaxy cluster.

Motivated by these observational works, in the first part of my thesis I

used the Dianoga simulations, a set of 29 zoom-in cosmological hydrodynam-

ical simulations centred on massive galaxy clusters, to study the symbiotic

growth of galaxy clusters and the SMBHs at their center. In particular, in

Bassini et al. (2019) we investigated the correlations between SMBH mass

and cluster mass and temperature, their establishment and evolution. More-

over, we studied how gas accretion and BH-BH mergers contribute to SMBH

growth across cosmic time. The results show that the observed correlations

derive from two processes that take place at different times. In particular, at

z & 2, SMBHs grow rapidly by gas accretion, until they are massive enough

to regulate gas cooling in the inner part of the galaxy (proto)cluster. At this

stage, a correlation between SMBH masses and cluster mass is already in

place. At later times (z . 1), SMBHs increase their mass through BH-BH

mergers, which at z = 0 become the largest contributor to the total SMBH

mass (∼ 60%). During this last process, substructures hosting the merging

SMBHs are disrupted and the unbound stars enrich the diffuse stellar com-

ponent rather than increase the BCG mass. However, even though mergers

play an important role for the growth of these central massive SMBHs, the

same is not true when considering the whole population of SMBHs within

our simulations. Indeed, in the analysis published in Gaspari et al. (2019),

I showed that for SMBHs with MBH < 109 M�, BH-BH mergers represent

a sub-dominant process with respect to gas accretion. Given this last result,

we conclude that simulations suggest a SMBH-galaxy co-evolution mediated

by AGN feedback.

Even though AGN feedback is fundamental in regulating the star forma-

tion in low-redshift galaxy clusters, by the time it starts to be effective galaxy

clusters are already populated by the most massive galaxies in the universe.

Given their large mass and their low star formation rates, it is thought that

most of the stars are produced at high redshift during brief and intense burst

of star formation. This view has numerous indirect evidences, both obser-

vational and theoretical. For example, astroarchaeology analysis of massive

ellipticals shows a direct proportionality between the mass of a galaxy and



vii

its age. Moreover, numerical simulations and semi-analytical models predict

that most of the stars within the BCGs (> 50%) are already formed by z ∼ 3

during the proto-cluster stage, i.e. the infancy stage of clusters of galaxies,

and are later assembled through galaxy mergers. This is also confirmed by

observations, which find that the most massive BCGs show multiple nuclei

indicative of recent mergers. However, it is still difficult to draw a complete

picture of galaxy cluster evolution using available data. Indeed, even though

the number of detected protoclusters is rapidly increasing, the resulting sam-

ple is still fairly heterogenous being based on different detection methods,

each having its own limitations and bias.

In this context, cosmological hydrodynamical simulations represent the

most advanced theoretical tool to provide a coherent interpretative frame-

work of all such observations on proto-clusters. However, before obtaining

a meaningful interpretation of observational data on cluster evolution, it

is important to study whether theoretical models match the available high

redshift observational constraints. Therefore, in the second part of my thesis

I studied the star formation rate (SFR) within galaxy clusters and proto-

clusters over the redshift range 0 < z < 4. This analysis, published in Bassini

et al. (2020), finds that state-of-the-art cosmological simulations have dif-

ficulties in reproducing the very high star formation rates measured from

recent observations. To better understand the physical reasons for the dif-

ference between theory and observations, I also studied galaxy properties

in protocluster environment in a more statistical approach. In particular, I

compared the main sequence of star forming galaxies as predicted by cosmo-

logical simulations and semi-analytical models to the observed one at z ∼ 2.

This analysis highlighted that theoretical models do not reproduce both the

normalization of such correlation and its distribution at fixed stellar mass,

meaning that the highest values of SFRs are missed. Interestingly, these re-

sults are consistent within a wide range of values for the parameters of the

subgrid star formation model, including the elimination of any feedback due

to AGNs.

This analysis hints that the sub-grid models included in simulations are

reductive and do not correctly reproduce the star formation history of galaxy

(proto)clusters. Therefore, an effort to extend the modelization of the astro-

physical processes relevant for star formation is needed. Indeed, given the

results obtained in this thesis, it seems unfeasible to reach an agreement with
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observations without a modification of the models currently implemented.

This task, which need to be addressed in future works, will benefit from the

increasing number of multi-wavelength observations of highly star forming

galaxies, whose properties can be used to put constraints on the subgrid

models implemented in modern cosmological simulations.
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Chapter 1

What is a Galaxy Cluster?

The history of galaxy clusters goes back to the XVIII century, when Charles

Messier and F. Wilhelm Herschel independently produced the first catalogs

of astronomical objects, generically referred to as nebulæ. These are the

first catalogs of objects different from stars and were fairly heterogeneous,

with only two common characteristics: their diffuse aspect and their high

brightness. Even though their origin (galactic or extragalctic) was not known

yet, it was already noted that some of them were clustered on the sky. It

was not until 1923, when Edwin P. Hubble observations of Cepheids in

one of Messeier’s nebulæ, that the extragalactic nature of some of those

objects was proved. Between these, there were two galaxy overdensities

near the Virgo and Coma Berenices constellations, that given their enormous

distance have been identified as physically related clumps of galaxies, which

are now known as Virgo and Coma clusters. Interestingly, only few years

later Zwicky, studying the rotational velocity of galaxies within the Coma

cluster, concluded that there must be a ‘Dunkle Materi′, now known as dark

matter, dominating the gravitational potential within the cluster (Zwicky,

1933). Indeed, he estimated a total mass of the cluster through the virial

theorem at least 400 times the mass estimated through galaxies luminosity.

Around 20 years later the presence of a diffuse gas within clusters of

galaxies was theoretically expected, for two main reasons: (i) galaxies and

stars within clusters were expected to form out of gas condensation, a pro-

cess that likely is not 100% efficient; (ii) collisions between galaxies were

supposed to be relatively common in such environment, with interstellar
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matter swept out as a result of such encounters (Limber, 1959). However,

the properties of the intracluster gas (e.g., if it was hot or cold) were still

unclear. Moreover, even though Zwicky (1933) deduced a large amount of

dark matter from his computation, this view was still largely refused and the

presence of diffuse gas was thought to play an important role to solve the

missing mass problem. Boldt et al. (1966) was the first to claim a detection

of extended X-ray emission from cluster of galaxies at 25 keV. Even though

this measurement turned out to be a spurious detection, it influenced both

theoretical and observational works. Felten et al. (1966), in addition to show

that it was unlikely that the detected flux was coming from the galaxies

within the cluster, computed a temperature for the diffuse gas component of

7×107 K assuming the gas is thermalized, a value very near to what is found

in recent observations (7-9 keV, e.g. Sato et al. 2011). Finally, Meekins et al.

(1971) and Gursky et al. (1971) independently detected X-ray emission from

the Coma cluster. This measurement not only confirmed the presence of a hot

diffuse gas component, but also constrained the total gas mass to be 1− 2%1

the mass required for gravitational binding. Around ten years later, the pres-

ence of a diffuse plasma has been corroborated by the detection of the Sun-

yaev–Zeldovich effect (SZ, Sunyaev & Zeldovich 1972) from three galaxy

clusters (Birkinshaw et al. 1984), which proved in a complementary fashion

the conclusions reached with X-ray observations. Therefore, the emerging

picture confirmed in the following years, was of galaxy clusters defined as

overdensity of galaxies surrounded by a diffuse plasma not associated with

individual galaxies both in equilibrium within a common gravitational poten-

tial well dominated by dark matter. These three components are shown in

Fig. 1.1 and Fig. 1.2. Fig 1.1 is a composite image from Hubble2, Chandra3,

and Spitzer4 of the massive galaxy cluster J1426.5+3508. In the image are

clearly visible both the galaxies (red) and the ICM (blue). Even though the

DM component can not be directly observed, its effects are visible through

the distortions of galaxy shapes in the neighbourhood of the cluster center

due to gravitational lensing. An example of this effect is shown in Fig. 1.2.

In the more recent years, the introduction of ground and space based tele-

scopes working at different wavelengths has enabled to expand the sample

1This fraction is now fixed to ∼ 15% from more recent measurements.
2https://hubblesite.org/
3https://chandra.si.edu/
4https://www.nasa.gov/mission pages/spitzer/main/index.html
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Fig. 1.1: Hubble, Chandra, and Spitzer composite image of the massive galaxy clus-
ter J1426.5+3508. Credits: https://hubblesite.org/image/3690/news/15-
galaxy-clusters.

of known galaxy clusters and a deeper understanding of their astrophysical

properties. Therefore, today galaxy clusters represent an important tool from

both a cosmological point of view (through their number counts, e.g. Allen

et al. 2011, Kravtsov & Borgani 2012) and galaxy formation models. Indeed,

given that they are located at the nodes of the cosmic web (see Fig. 1.3),

galaxy clusters coincide with the most dense regions of the universe, where

the evolution of galaxies and thus their resulting properties depend on a

range of environmental effects.

In the following sections of this chapter I will review the main astrophys-

ical properties of galaxy clusters on which the main results of my work are
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Fig. 1.2: Hubble image of the galaxy cluster Abell S1063. In the image are clearly
visible the distortion on galaxy shapes due to gravitational lensing. Credits:
https://hubblesite.org/image/4293/news/15-galaxy-clusters.

based (Chapters 3 and 4).
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Fig. 1.3: Projected density field for a 15 Mpc/h thick slice at redshift
z = 0 for the dark matter only Millenium simulation. The dens-
est regions are showed in yellow and orange and corresponds
to clusters and groups of galaxies. Credits: https://wwwmpa.mpa-
garching.mpg.de/galform/virgo/millennium/

1.1 Galaxy clusters in the local universe

I start the description of galaxy clusters by their properties at z = 0 in the

optical bands, which map their stellar content. Even though stars are the

only component which is visible at optical wavelengths, they comprise only

few percent of the total mass of galaxy clusters. In Fig. 1.4 I show the ratio

between the total stellar mass within R500
5 and the total cluster mass within

the same aperture, derived both from simulations and observations. The

results show that stars within massive clusters (M500 ≈ 1015 M�) account for

only ∼ 1% of the total mass, while the percentage increases to few percent at

decreasing cluster mass. Most of the stars within galaxy clusters are locked in

galaxies, with a non-negligible fraction composed by unbound stars which is

commonly referred as intra-cluster light (ICL) and can account up to 20%−
5I define R∆ as the radius of the sphere encompassing an average density ∆ times the

critical density of the universe at that redshift, ρcr = 3H2(z)/8πG. M∆ will be the mass
within R∆. See also Sect. A.3 of the Appendix.
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Fig. 1.4: Ratio between stellar and total mass in clusters within R500. Both obser-
vational results and results from few numerical simulations are shown.
Credits: Henden et al. (2019).

40% of the total stellar mass within the virial radius (e.g., Gonzalez et al.

2013, Kravtsov et al. 2018).

Galaxies within clusters are typically massive ellipticals or bulge dom-

inated, with little ongoing star formation, especially near the cluster core.

This is a manifestation of the well known morphology-density relation: early

type galaxies (ETGs) are preferentially located in dense environments, while

star forming galaxies (SFGs) are more common in the field. An example of

this environmental effect is shown in Fig. 1.5, where the rest frame color dis-

tribution is plotted against galaxy number density6 and absolute magnitude.

From the figure it is clear that more luminous (and more massive) galaxies

are mainly red galaxies. The peak of the distribution at 2 < (u − r) < 3

identify the so called ‘red sequence′ (e.g., Bell et al. 2004) and is clearly

more prominent at the higher densities. For this reason, as I will show later

in this Chapter, the red-sequence galaxies are a very important tool to iden-

6ΣN , used in Fig. 1.5, is a frequently used sky surface density estimator, defined as the
inverse of the volume centred on a galaxy and encompassing theN nearest neighbours within
a given redshift interval.
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Fig. 1.5: Rest frame colour distribution as a function of galaxy number density (top
x-axis) and absolute magnitude (Mr, right y-axis). Solid lines represent
double Gaussians fit to the data. Credits: Balogh et al. (2004).

tify clusters. On the contrary, at lower galaxy number densities and absolute

magnitudes, a second peak becomes clearly visible at 1 < (u− r) < 2. This,

usually referred as blue sequence, is associated to the SFGs commonly found

in the field. The morphology-density relation hints that the environment

plays a key role in the evolution of galaxies, with the dense environments of

galaxy clusters representing one extreme of this process.

Important clues on the origin of the massive galaxies which are found

within galaxy clusters, and thus on the formation of galaxy cluster itself,

come from astroarchaeology. Using the luminosity weighted age of the stars

within the galaxy and the ratio between α-elements (O, Ne, Mg, Si, Ca, Ti)

and iron (α/Fe) it is possible to derive the star formation history (SFH) of
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Fig. 1.6: Specific star formation rate as function of look-back time for early-type
galaxies of various masses as indicated by the labels. The grey hatched
curves indicate the range of possible variation in the formation time-scales
that are allowed within the intrinsic scatter of the α/Fe ratios derived.
Intermediate- and low-mass galaxies in low-density environments get re-
juvenated via minor star formation events below redshift z ∼ 0.2. This
suggests a phase transition from a self-regulated formation phase without
environmental dependence to a rejuvenation phase, in which the environ-
ment plays a decisive role possibly through galaxy mergers and interac-
tions. Credits to Thomas et al. (2010).

elliptical galaxies. The results obtained from this analysis suggest that more

massive ellipticals (independently of their environment) formed at earlier

times, a feature that is known as downsizing. At the same time, the values

of α/Fe show that the higher the mass, the shorter the time scale of star

formation (e.g., Thomas et al. 2010, Conroy et al. 2014). These well studied

phenomena are shown in Fig. 1.6. In particular, the figure shows the SFH

of elliptical galaxies in different mass bins, with the grey hatched curves

indicating the possible variations due to the scatter in the derived values

of α/Fe. From the figure it is clear how more massive galaxies form earlier,

reaching higher values of SFR. Therefore, since galaxy clusters are formed

by the most massive ellipticals in the universe, it is expected that they form

most of their stellar mass during a brief and intense burst of star formation
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Fig. 1.7: BCG mass evolution in cosmological simulations of galaxy clusters. The
mass of the BCG is defined as the total stellar mass within 0.1×R500. The
red line shows the stellar mass, which at z = 0 is within the BCG, already
formed at a given lookback time. The blue line shows the stellar mass
that is already assembled within the main progenitor of the BCG at a given
lookback time. Shaded regions encompass the 16% and 84% percentiles for
the sample of simulated clusters. Credits: Ragone-Figueroa et al. (2018).

at redshifts z & 2.

Among all the galaxies within the cluster, a relevant role is covered by

the brightest cluster galaxy (BCG). This is the brightest, most massive galaxy

and is usually located at the center of the cluster7 (e.g., Lin & Mohr 2004).

From a morphological point of view, BCGs are massive red ellipticals, with

7During the thesis, we are going to identify the brightest cluster galaxy as the central one.
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very little ongoing star formation. In the local universe, observations find

residual SFR of the order of ∼ 0.1 M�yr−1 (e.g., Fraser-McKelvie et al. 2014,

McDonald et al. 2018). As discussed in Sect. 1.2.3, these low values of SFR

are the result of the balance between radiative cooling and AGN heating, as

highlighted by the frequent presence of radio-loud AGNs within BCGs (e.g.,

Von Der Linden et al. 2007, Best et al. 2007). The stellar mass of the BCG

is found to correlate with the total mass of the cluster (e.g., DeMaio et al.

2018, Kravtsov et al. 2018), and given its particular location resemble the

formation history of the cluster itself. It is generally accepted that BCGs are

primarily assembled through mergers rather than from in situ star formation.

Indeed, observations find that the most massive BCGs (often called ’cD’ in

literature) show multiple nuclei indicative of recent mergers (e.g., Tonry

1987). These merger events are also thought to be at the origin of the ICL

(e.g., Lin & Mohr 2004, Murante et al. 2007). A similar evolutionary pattern

is also suggested by both semi-analytical models (e.g., De Lucia & Blaizot

2007) and cosmological simulations (e.g., Ragone-Figueroa et al. 2018),

which predict that most of the stars (& 50%) are formed by z ∼ 3, and are

later assembled through galaxy mergers. This is shown in Fig. 1.7, where

the BCG mass already formed at a given lookback time (dashed red line)

is compared to the BCG mass that is already assembled within the main

BCG progenitor (solid blue line). From the figure it is clear how the mass is

formed much earlier then it is assembled within the BCG. Therefore, also the

formation history of the BCG, much like the other massive ellipticals within

clusters, suggests that most of the stars within galaxy clusters are formed at

high redshift within a short period of time.

1.2 Intra-cluster medium

The other luminous component of galaxy clusters is the diffuse hot gas within

the potential well of the cluster, the ICM. This component accounts for∼ 15%

of the total cluster mass (see Fig. 1.8), and it is accreted during the process

of structure formation, as the diffuse gas (consisting mostly of hydrogen

and helium) follows the collapse of the dynamically dominant dark matter.

During this process the kinetic energy of the gas is transformed into thermal

energy through adiabatic compression and shocks, reaching temperatures

of T ∼ 107 − 108 K. At this high temperatures the gas is in the form of a
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Fig. 1.8: Gas fraction within galaxy clusters both in simulations (FABLE and C-
EAGLE) and observations (grey points). Horizontal dashed line represents
the cosmic baryon fraction in the used cosmology. Credits: Henden et al.
(2019).

fully ionized plasma, emitting in the X-ray band via two physical processes:

Bremsstrahlung and emission lines of heavy elements (e.g., Sarazin 1988).

The former entails the scattering of electrons to ionized atoms. The radiative

power due to this process depends both on temperature (∝ T 1/2) and ions

and electron densities (∝ nine) and enables to recover important pieces of

information on the thermodynamic properties of the ICM. The emission lines

of heavy elements encodes information on the metallicity content of the ICM,

and becomes progressively more relevant at temperatures . 1− 2 keV. We

will not study in detail the metals in galaxy clusters in this thesis, even though

chemical evolution studies are very important in order to obtain informa-

tion about clusters evolution. For example, theoretical studies demonstrated
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that most of the gas within the ICM is not stripped or expelled by galaxies

within the cluster, but must have a cosmological origin (Matteucci & Vet-

tolani 1988). Moreover, numerical simulations studying metallicity profiles

of clusters showed the need of a strong feedback mechanism, now adopted

as active galactic nuclei (AGN) feedback, to match the observed metallicity

profiles (e.g., Tornatore et al. 2004, Biffi et al. 2018). Apart from the X-ray

emission, the ICM can also be detected and studied through the SZ effect. At

first order, this effect is due to the CMB photons which are scattered upwards

in energy by the encounters with the high energy electrons within the ICM

through inverse Compton scattering. The amplitude of the intensity change

in the CMB is proportional to the integral of the electron pressure along

the line of sight and does not depend on redshift (e.g., Birkinshaw 1999).

Therefore, the SZ effect can be used to identify distant clusters in maps of

the CMB (e.g., Carlstrom et al. 2002), and with high enough angular resolu-

tion the pressure profile of nearby clusters can be reconstructed (e.g., Planck

Collaboration et al. 2013).

In the following I review some key information that can be obtained

through the study of the ICM.

1.2.1 Hydrostatic masses

As most of the mass within galaxy clusters is in the form of dark matter, it is

not possible to directly measure its total mass. The most direct way is to use

gravitational lensing, which is only sensitive to the gravity independently of

the nature of the dark matter or the dynamical state of the system of interest

(see, e.g., Hoekstra et al. 2013 for a review). However, the two gravitational

lensing regimes have both some drawbacks. The strong gravitational lensing

gives information about the total mass only within the inner part of the

cluster, where the gravitational potential is stronger, while the weak lensing

mass derivation can be affected by large errors unless the galaxy shapes and

source redshifts are accurately known. Without the possibility of directly

measuring the total mass, different observable probes indirectly related to

the total mass are used.

One possibility is to use the profiles of thermodynamic properties (tem-

perature and density) under the assumption of hydrostatic equilibrium. This

is a strong hypothesis, even though observations show that galaxy clusters
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Fig. 1.9: Correlation between temperature and galaxy velocity dispersion within
galaxy groups and clusters. The best fit relation is σ ∝ T 0.65±0.03 for
clusters and σ ∝ T 0.64±0.038 and groups. The relation is very near to the
theoretical expectation (σ ∝ T 0.5) derived assuming that both the ICM
and galaxies are in equilibrium within the common gravitational well of
the cluster. Credits: Xue & Wu (2000).

are nearly relaxed in the local universe (see Fig. 1.9). Under the hydrostatic

equilibrium assumption, the repulsive force due to the pressure gradient is

balanced by the gravitational potential force, i.e. ∇φ(x) = −∇p(x)/ρg(x),

where φ(x), p(x), and ρg(x) are the gravitational potential, the pressure, and

the gas density respectively. Assuming the equation of state for an ideal gas

and spherical simmetry the previous equation can be written as

MHE(< r) = −rkBT (r)

Gµmp

[
d ln ρg(r)

d ln r
+
d ln T (r)

d ln r

]
, (1.1)

where MHE(< r) is the total mass within the radius r, kB is the Boltzmann

constant, mp is the proton mass, µ the mean molecular weight, and T (r) is

the temperature profile. The gas density can be directly extracted from the X-
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ray surface brightness profiles due to the dependence of the Bremsstrahlung

to the density square. The temperature instead is recovered through a spec-

tral analysis.

Of course, deviations from hydrostatic equilibrium can be expected. In-

deed, astrophysical processes within the cluster can lead to non-thermal

pressure support in form of turbulence, bulk motion, cosmic rays or other

phenomena. Moreover, the time-scale for relaxation is of the order of the Gyr,

and, since clusters are located at the nodes of the cosmic web, merger events

are not rare and a cluster may still not have had enough time to completely

relax after its last major merger or series of minor mergers. In these cases,

the mass measured through the hydrostatic equilibrium hypothesis will be

under-estimated. The bias introduced by assuming hydrostatic equilibrium

can be accounted for by using a control sample and comparing the estimated

mass with the mass obtained through gravitational lensing, or using numeri-

cal simulations. The former analysis shows that the hydrostatic mass is, on

average, biased low by ∼ 30% (e.g., Eckert et al. 2016). A similar result is

also found using numerical simulations, which show that the mass estimated

from X-ray analysis is sistematically lower that the true mass (e.g., Rasia et al.

2006, Nagai et al. 2007, Rasia et al. 2012, Ansarifard et al. 2020, and Pratt

et al. 2019 for a review).

1.2.2 Self similarity

Another widely used method to derive the cluster mass is by resorting to

scaling relations with other observables, such as its temperature, X-ray bolo-

metric luminosity, or gas mass. These relations are usually defined as power

laws, and can be predicted from simplified models like the self-similar model

of Kaiser (1986). This model is based on three assumptions: (i) the under-

lying model is an Einstein-de Sitter universe with Ωm = 1; (ii) the initial

density fluctuations are scale free; (iii) the processes that shape cluster prop-

erties do not introduce characteristic scales in the problem. Under these

assumptions, and considering the hydrostatic equilibrium approximation,

from Eq. 1.1 it follows:

T ∝ M

R
∝ (∆ρcr)

1/3M2/3, (1.2)
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where T is computed at the virial radius R, and ρcr is the critical density

of the universe at a given redshift, ρcr = 3H(z)2/8πG. The virial radius is

defined assuming the definition of cluster mass derived from the spherical

collapse model, i.e. a spherical region of space encompassing an average

density ∆ times the critical density of the universe, where ∆ depends on the

assumed cosmological model. Using the expression for the critical density

and for the Hubble parameter,H(z) = H0×E(z) (Eq. A.7), it is also possible

to enlighten the redshift dependence of the scaling relation:

T ∝ M

R
∝ E(z)2/3M2/3. (1.3)

Under the same assumptions a relation between the gas and the total mass

can be obtained (e.g., Kravtsov & Borgani 2012):

M(< R) ∝Mg(< R). (1.4)

The combination of the previous two expressions leads to the relations with

other properties, like the bolometric X-ray luminosity. Assuming that the

emission is dominated by Bremsstrahlung radiation:

Lbol ∝ ρ2
g

√
TR3 ∝M2

g

√
T

R3
∝M4/3E(z)7/3, (1.5)

where in the last passage Eq. 1.3 and Eq. 1.4 have been used.

However, while it is remarkable how this model based on simplistic as-

sumptions works in predicting some scaling relations, it was also realized

that real clusters follow slightly different scaling relations when quantities

linked to the gas density are involved, e.g. the luminosity. For example, using

Eq. 1.3 and Eq. 1.5 it is possible to derive the relation between X-ray bolo-

metric luminosity and temperature, Lbol ∝ T 2. Observationally, this relation

is steeper with an exponent typically > 2.5 (e.g., Markevitch 1998). The de-

parture of scaling relations from the theoretical prediction of self-similarity

is justified by the fact that scale-dependent astrophysical processes are in

place. I briefly review these processes in the next section.
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1.2.3 AGN feedback

The first scale-dependent process is radiative cooling, which is especially

relevant in the core region of galaxy clusters given the dependence of the

radiative power on ∝ ρ2 (assuming that radiative cooling is dominated by

Bremsstrahlung radiation). However, if radiative cooling would be the only

process active within cluster cores it would cause a rapid condensation of

cold gas with predicted cooling rate within the inner part of the cluster of

100−1000M� yr−1 (e.g, White et al. 1997, Peres et al. 1998, Allen et al. 2001,

Hudson et al. 2010). Such high cooling rates would imply blue and highly

star forming BCGs, while current observations suggest star formation rates

of ∼ 0.1 M� yr−1 for massive clusters (e.g., Fraser-McKelvie et al. 2014).

The absence of such high SFR is explained invoking a heating feedback

mechanism, now identified as the feedback by the super massive black holes

(SMBHs) at the center of galaxy groups and clusters. This feedback prevents

catastrophic cooling, injecting energy in the ICM in a self-regulated fashion,

such that cooling and heating energies balance each other within 10% (see

Fabian 2012 for a review). Observationally, the presence of an AGN at the

center of clusters can be inferred from the detection of X-ray cavities around

the cluster core, which are commonly interpreted as the effect of energetic

outflows of radio plasma from the central AGN that displaces the hot X-ray

emitting gas (e.g, Best et al. 2007, Mittal et al. 2009, B̂ırzan et al. 2012).

One exceptional example is shown in Fig. 1.10, which shows the inner 700

kpc region of the MS0735.6+7421 cluster, superimposing the X-ray (blue),

I-band (white), and radio (red) wavelengths. In the figure two radio jets

emerging from the nucleus are clearly visible, extending for tens of kpc.

The jets extend then in radio lobes, corresponding to the presence of X-ray

cavities, with diameter size of ∼ 200 kpc.

The estimated mechanical energy exchange between the bubbles and the

ambient gas is linearly correlated to the X-ray luminosity (which corresponds

to the energy loss) inside the cooling region (e.g., Fabian 2012, B̂ırzan et al.

2012). An example of this correlation by Hlavacek-Larrondo et al. (2015) is

shown in Fig. 1.11. Here the cavity power (Pcav) is computed considering the

work done by a relativistic fluid to inflate the radio bubbles, while the cooling

luminosities correspond to the bolometric X-ray luminosity (0.01− 100 keV)

within the radius at which the cooling time is 7.7 Gyrs. This strong correlation
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Fig. 1.10: Image of the inner ∼ 700 kpc of the MS0735.6+7421 cluster combining
the X-ray (blue), I-band (white), and radio wavelengths (red). Credits:
McNamara et al. 2009.

between the bubble power and cooling rate supports the theoretical view of

self regulation between heating and cooling in the central regions of galaxy

clusters and is one of the few direct evidences of AGN feedback. Besides

the X-ray cavity, AGN activity is also manifest through radio emission from

the central source. However, the radio power weakly correlates with the

energy deposited in the ICM by the radio cavities and is up to a factor of

few thousand smaller, suggesting that most of the feedback is mechanical

and is characterized by high efficiencies (e.g., McNamara & Nulsen 2007).

Since the presence and the role of AGN feedback in the cluster environment

is well established, it is not surprising that the mass of the SMBHs at the
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Fig. 1.11: Comparison between the mechanical power being injected by the AGN
in the BCG (Pcav) and the cooling luminosity (Lcool) of the cluster at
7.7 Gyrs. Different symbols are from different samples and redshift (see
legend and Hlavacek-Larrondo et al. 2015 for further details). The diag-
onal lines indicate Pcav = LX assuming pV , 4pV or 16pV as the energy
deposited, where p is the thermal pressure of the ICM at the radius of
the bubble and V is the volume of the cavity. Credits: Hlavacek-Larrondo
et al. (2015).

clusters center also correlate with BCGs and galaxy clusters properties. These

correlations are reviewed in Sect. 1.4.

From a theoretical point of view, the inclusion of AGN feedback in numer-

ical simulations of galaxy clusters enabled to reach a better agreement with a

number of observations such as the correlation between cluster temperature
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and bolometric X-ray luminosity (e.g., Puchwein et al. 2008, Truong et al.

2018) and radial metallicity profiles (e.g., Biffi et al. 2017). The inclusion

of AGN feedback also successfully offset cooling at low redshift, producing

BCG masses that are roughly in agreement with recent observations (e.g.,

Martizzi et al. 2012). However, I will show in Chapter 4 that it is still challeng-

ing for numerical simulations (e.g., Ragone-Figueroa et al. 2018, Henden

et al. 2019) and semi-analityical models (e.g., Hirschmann et al. 2016) to

reproduce the low specific star formation rates observed in massive galaxies

(M? > 1011 M�), which are typically overestimated by an order of magni-

tude.

1.3 Protoclusters in the distant Universe

In Sect. 1.1 we discussed how the astro-archeology studies of massive ellip-

tical galaxies and the formation history of BCGs suggest that most of the

stars which end up in massive clusters by z = 0 are formed at high redshifts,

z & 3, and are assembled within the main halo only at later times. There-

fore, studying the protocluster stage of cluster evolution is of fundamental

importance since the properties of z = 0 galaxy clusters strongly depend on

the physical processes operating at 2 . z . 4, epoch at which the SFR, the

SMBH accretion rate, and ensuing feedback processes peak. In this section

I will briefly review the available observational constraints and techniques

used to identify galaxy clusters, together with the theoretical expectations

about the evolution of (proto)cluster regions. This section is mainly based on

the theoretical works by Chiang et al. (2013), Muldrew et al. (2015), Contini

et al. (2016), Muldrew et al. (2018), and the review by Overzier (2016).

First of all, it is important to define a protocluster: a structure that at some

point of its evolution will collapse into a galaxy cluster, i.e. a virialized halo

with M > 1014 M�. Even though this is straightforward theoretically and

readily usable in numerical simulations, it can not be adopted in observations,

as it requires to know a priori the evolution of the system. Therefore, it is

useful to resort to simulations to link the putative protoclusters that are

observed at high redshift with their local descendants.

Numerical simulations show that the volume occupied by a protoclus-

ter is fairly large, covering up to 45 h−1 comoving Mpc (cMpc) in size at

z = 2 for a z = 0 Coma-like cluster (see Fig. 1.12). Given their large spa-
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Fig. 1.12: Spatial extent of protoclusters at z = 2 (left panel), z = 1 (centre panel),
and z = 0 (right panel), with different final masses as indicated in the
Figure. All distances are comoving. Black points represent a galaxy of
stellar mass greater than 108 h−1 M� that will end up in the cluster while
grey points represent those that will not. The red circle corresponds to the
z = 0 centre and comoving viral radius of the cluster. Credits: Muldrew
et al. (2015).

tial extent, protoclusters at high redshift are expected to be characterized

by a large number of relatively small halos, which given their still reduced

gravitational potential wells usually lack the presence of a virialized gas com-

ponent and are not detectable through techniques based on ICM properties.

Indeed, Contini et al. (2016) showed that at z & 2 around 70% of protoclus-

ters galaxies are centrals. However, numerical simulations also show that

the mass of the main progenitor of Coma-like structures can reach masses of

∼ 1014 M� at z ∼ 2 (see Fig. 1.13). These rare objects can be observationally

detected as high redshift clusters. Since the main progenitor of a galaxy clus-
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Fig. 1.13: Evolution of the mass of the main progenitor for clusters of different final
masses in numerical simulations. The lines and errorbars show median
values with 1− σ scatter. Credits: Chiang et al. (2013).

ter is generally easier to be observed and studied, it is useful to investigate

through numerical simulations to which extent its mass is a good proxy of

the cluster mass at z = 0. The results of this analysis, carried out by Muldrew

et al. (2015), are shown in Fig. 1.14. As it can be seen from the figure, the

scatter on the Mz=2 −Mz=0 plane is large (0.54 dex RMS deviation from

the true mass). This is also in line with the results of Chiang et al. (2013)

shown in Fig. 1.13, where it can be seen that main progenitors with similar

masses at z & 2 can have descendants (clusters at z = 0) with quite different

masses. As it is clear from Fig. 1.14, a better estimate of the final mass can

be obtained considering the ratio between the most massive and the second

most massive halos within the protocluster. Of course, this procedure can be

difficult to be applied in observations for the challenges of identifying the

second most massive halo and estimate its mass.

Since the protocluster regions are spread over such large distances, and

most of the mass is not within a single halo, the most accurate estimate of

the final mass of the cluster might be obtained by the exploitation of the



22 What is a Galaxy Cluster?

Fig. 1.14: Correlation between the mass of the most massive progenitor of a galaxy
cluster at z = 2 and the z = 0 cluster mass. Points are color-coded accord-
ing to the ratio between the most massive and the second most massive
progenitors of the cluster at z = 2. Credits: Muldrew et al. (2015).

large scale information of the protocluster region. In particular, Chiang et al.

(2013) showed that there is a clear correlation between the final cluster mass

and the galaxy overdensity computed over a large enough region (& 15 cMpc,

see Fig. 1.15). The drawback of this analysis is that it requires spectroscopic

identification of galaxies spread over a relatively large volume.

1.3.1 Observations of protoclusters

Observationally, different techniques can be used to search for clusters and

protoclusters. At z . 1.4 the same properties of galaxy clusters used to

identify objects in the local universe can be exploited. In particular, since
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Fig. 1.15: Correlation between galaxy overdensity δgal at z = 2, 3, 4, 5 and final
cluster mass in numerical simulations. δgal is computed considering two
windows of 15 cMpc (left panel) and 25 cMpc (right panel). In both cases
only galaxies with SFR > 1 M� yr−1 have been considered. Credits:
Chiang et al. (2013).

the galaxy population is dominated by quiescent ellipticals, it is reasonable

to look for concentrations of red sequence and other massive galaxies (e.g.,

Gladders & Yee 2000, Gladders & Yee 2005, Gilbank et al. 2011). Another

possibility relies on the properties of the ICM, which can be detected through

X-ray emission (Rosati et al. 2002, Mullis et al. 2005, Stanford et al. 2006)

and especially through the SZ signal which does not decrease with the cluster
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redshift (e.g., Bleem et al. 2015). The redshift limit z ∼ 1.4 is indicative;

indeed, these techniques have been able to identify few clusters up to z = 2

(see Overzier 2016 for a review).

While clusters at z . 1.4 show characteristics very similar to local sys-

tems, at higher redshift they could be very different among them. Some ob-

servations report the discovery of already mature clusters, with an enhanced

fraction of red and quenched galaxies with respect to the field, at least in

the core (Papovich et al. 2010, Strazzullo et al. 2010, Gobat et al. 2011,

Strazzullo et al. 2013, Strazzullo et al. 2013, Tanaka et al. 2013b, Newman

et al. 2014, Andreon et al. 2014, Cooke et al. 2016), while other observa-

tions clearly show a mixed population of quenched and star forming galaxies

(Tanaka et al. 2013a, Brodwin et al. 2013, Gobat et al. 2013, Strazzullo et al.

2016, Hatch et al. 2017). Interestingly, few observations also suggest a rever-

sal in the SFR-density relation with an increasing sSFR toward the core of the

cluster (Tran et al. 2010, Santos et al. 2014, Santos et al. 2015, Smith et al.

2019). This view is also supported by different observations. For example,

the SFR density computed within clusters and protoclusters increases with

redshift, reaching values 103−104 times higher that what is found in the field

around z ∼ 2 (e.g., Clements et al. 2014, Kato et al. 2016). A similar conclu-

sion is found considering the SFR within a (proto)cluster normalized by its

total mass. This quantity is shown in Fig. 1.16, where data of known clusters

and protoclusters are plotted. Much like the SFR density, Also this quan-

tity is an increasing function of redshift, with an empirical parametrization

∝ (1+z)7 (Cowie et al. 2004, Geach et al. 2006), suggesting an enhancement

of the SFR within (proto)clusters at high redshift (e.g., Popesso et al. 2012,

Smail et al. 2014, Ma et al. 2015, Santos et al. 2015, Smith et al. 2019, Cooke

et al. 2019). In fig. 1.16 is also shown as a black dashed line the equivalent

quantity as computed for the field. Following Popesso et al. (2012), this is

computed dividing the cosmic SFR density by Madau & Dickinson (2014) by

the mean comoving matter density (ΩM × ρc, being ρc the critical density).

The comparison between field and protoclusters highlights the presence of a

reversal in the SF-density relation at z & 1.

At z & 2, as the search for specific morphological galaxy types or ICM

related properties became unfeasible, the search for protoclusters rely on the

detection of galaxy overdensities in projection and redshift space. The clear

limitation of this technique is that it relies on large survey of galaxies where
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Fig. 1.16: SFR normalised by cluster mass as a function of redshift. Coloured points
are observational data from Popesso et al. (2012), Ma et al. (2015), Smail
et al. (2014), Santos et al. (2015), Wang et al. (2016), and Smith et al.
(2019). The solid black line ∼ (1 + z)7 shows an empirical fit to data
suggested by Cowie et al. (2004) and Geach et al. (2006). The dashed
black line is the evolution of the same quantity computed for the field
from Madau & Dickinson (2014) data (see main text for further details).

spectroscopic redshift estimates are needed. There are mainly two ways to

overcome these limitations. First, it is possible to first identify galaxy over-

densities on the sky, and then followup the densest regions by computing

the spectroscopic redshift for the galaxies of interest. The second method

consists to look for a particular class of galaxies that are believed to be good

tracers of dense environments. Few examples are high redshift radio galaxies

that have many characteristic that make them potential progenitors of local
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Fig. 1.17: VLT Lyα contours (blue) delineating the gaseous nebula and the VLA
8 GHz contours (red) delineating the non-thermal radio emission are
superimposed on the composite (g475 + I814) ACS image. The size of the
region showed is 33”× 23” (25” ∼ 200 kpc). Credits: Miley et al. (2006).

BCGs (e.g., Best et al. 1998, Miley & De Breuck 2008, Collet et al. 2015).

A well known example of a protocluster detected through this method is

the structure surrounding the so-called Spiderweb Galaxy at z = 2.16 (e.g.,

Pentericci et al. 2000, Miley et al. 2006, Dannerbauer et al. 2014), which is

shown in Fig. 1.17. In the figure are clearly visible multiple clumps which

are presumably satellite galaxies that are still merging with the central ra-

dio galaxy. These galaxies are surrounded by a giant gaseous halo which

extends by at least ∼ 200 kpc. This structure has also been extensively stud-

ied through numerical simulations, concluding that this object is likely the

progenitor of a massive galaxy cluster (Mz=0 ∼ 1015 M�, Saro et al. 2009).

Other tracers are QSO, and Lyα blobs which trace large reservoirs of

cool intergalactic gas associated with dense locations in the cosmic web,

where the gas is ionized and illuminated by a powerful AGN or starbursts.

In this context, an important population of galaxies are dusty star forming

galaxies (DSFGs, see Casey et al. 2014), highly star forming and heavily

obscured by dust, emitting in the far infrared (FIR) and sub-millimetric bands.



1.3 Protoclusters in the distant Universe 27

These galaxies represent the strongest starbursts and are expected to be the

progenitors of local massive ellipticals (Cimatti et al. 2008, Ricciardelli et al.

2010, Fu et al. 2013, Ivison et al. 2013, Toft et al. 2014, Gómez-Guijarro et al.

2018). They trace the dusty star-forming phase of protoclusters, and their

expected short star-burst phase of few hundreds of Myrs (e.g., Granato et al.

2004, Thomas et al. 2010) makes them relatively rare objects. Albeit their

rareness they have been successfully used to identify dense and highly star

forming enviroments up to redshift z ∼ 4 (Clements et al. 2014, Oteo et al.

2018, Miller et al. 2018) and have been observed in a number of already

known high reshift protoclusters (Chapman & Casey 2009, Dannerbauer et al.

2014, Umehata et al. 2015, Coogan et al. 2018, Lacaille et al. 2019, Smith

et al. 2019).

Even if all the aforementioned techniques have enabled to detect a num-

ber of protoclusters at different evolutionary stages, the resulting sample is

still fairly heterogeneous being based on different methods, each having its

own limitation and bias. Therefore, it is still currently difficult to draw a com-

plete picture of galaxy cluster evolution using the available data set. A useful

tool to interpret all the observations are cosmological simulations. However,

before obtaining a meaningful interpretation of observational data on clus-

ter evolution, it is important to study whether theoretical models match the

already available high redshift observational constraints.

This will be the aim of the second part of this Thesis. In particular, in

Chapter 4 I make use of 12 simulations out of the set of 29 hydrodynamical

zoom-in simulations of galaxy clusters named Dianoga, presented in Chap-

ter 2, to investigate the predictive power of state of the art cosmological

simulations around the peak of the SFR in the protocluster stage of structure

formation. The aim of this Chapter is:

• to test if cosmological simulations can reproduce the integrated values

of SFRs which are observed within protocluster regions;

• to study if cosmological simulations reproduce protocluster galaxies

properties, like their SFRs, gas fractions, and star formation efficiencies.

1.3.2 Theoretical models of protoclusters evolution

The study of galaxy evolution within protoclusters with semi-analytical mod-

els and numerical simulations is relatively recent. Both semi-analytical mod-
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Fig. 1.18: Left panel: total SFR as contributed by all galaxies within the simulation
(black line), the galaxies within protocluster regions (red dashed line),
and galaxies within the main halo of each protocluster (blue dashed
line). Colored points are observational data (see Muldrew et al. 2018
for further details). Right panel: specific SFR (i.e., SFR per unit of stellar
mass) color-coded as in the left panel. Credits: Muldrew et al. (2018).

els and numerical simulations are based on models for baryonic physics that

depend on a range of parameters (see Chapter 2). These are typically tuned

in order to reproduce a few observational constraints in the local universe,

such as the galaxy stellar mass function, but they are not typically constrained

against measurements at higher redshift. Therefore, even though galaxy and

galaxy cluster properties are well reproduced at z = 0, there is no guarantee

that their formation history ought to be correct. Only recently, also due to

the availability of observational data, constraints for theoretical models at

z > 0 have started to be used.

One of these models, the semi-analytical model developed by Henriques

et al. (2015), was used by Chiang et al. (2017) and Muldrew et al. (2018)

to study the evolution of the SFR within protocluster regions, comparing it

with the one derived for the field. The results by Muldrew et al. (2018) are

shown in Fig. 1.18. The authors show that at z > 4 the gradients of the

SFHs in all the environments are similar, meaning that the rate at which the
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SFR changes does not depend on the density. This is also confirmed by the

fact that the specific SFR (sSFR) as computed in protocluster regions and

the field does not show relevant differences at z > 4. These results suggest

that there is no reversal in the morphology-density relation at high redshift,

even though few observational evidences suggest otherwise (see previous

section). However, we note that a complete agreement about this result is

not reached between different theoretical works, as the results obtained by

Hwang et al. (2019) using the IllustrisTNG simulation (Pillepich et al. 2018)

show that the SFR is an increasing function of the local density at z > 1,

with this dependence becoming stronger at higher redshift.

The second feature that can be noted from Fig. 1.18 is that at z < 4 the

SFR decreases more rapidly within protocluster regions, such that the SFH

peaks earlier (z ∼ 2.64) compared to the field (z ∼ 2.07). After that, the

SFR continues to decrease more rapidly in the higher density regions. The

net effect is that the SFR of the field is broader than in protoclusters, with

this difference not driven by an enhancement of the star formation in dense

environment at high redshift, but by the suppression of the star formation in

protocluster regions at z . 3. Contini et al. (2016) used the semi-analytical

model presented in Contini et al. (2014) applied to 27 N-body simulations

of galaxy clusters and studied how the passive-galaxy sequence forms. In

particular, the authors showed that most of passive galaxies are quenched in

the process of becoming satellites. During the accretion, the hot halo gas is

stripped from the galaxy so that new material for star formation will not be

available through gas cooling.

While the properties of galaxies at relatively low redshift and the pro-

cesses that drive their quenching within galaxy clusters are roughly under-

stood, the discrepancies shown by theoretical models for the inversion of the

star formation rate-density relation at high redshift hint that something is

missing in our understanding of galaxy evolution. In this respect Granato

et al. (2015) used a set of zoom-in cosmological simulations to compare

the predicted FIR fluxes to the observations of the few putative protoclus-

ter regions observed by Clements et al. (2014). The results showed that

numerical simulations do not to reproduce the high SFRs observed in pro-

toclusters characterised by overdensities of DSFGs, as simulations miss to

predict sufficiently high peaks of star formation activity at early epochs.

More recently, Hayward et al. (2020) compared the submillimetre galax-
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ies (SMG) number counts as predicted by the Illustris and IllustrisTNG cos-

mological simulations with observations. In accordance with the results by

Granato et al. (2015), they found that numerical simulations underpredict

the number of SMGs by ∼ 1 dex at S850 & 4 mJy. A similar analysis has been

carried out by Lovell et al. (2020), using the SIMBA cosmological simula-

tions (Davé et al. 2019). Differently from Hayward et al. (2020), Lovell et al.

(2020) find a good agreement between the predicted and observed SMG

number counts at S850 & 1 mJy, suggesting that the agreement between nu-

merical simulations and observations can be achieved without resorting to

exotic solutions, like a top-heavy initial mass function (IMF). However, the

authors also find that the galaxy SFR function is underpredicted by 0.7 dex

at SFR < 10 M� yr−1. This adds to known problems for both semi-analytical

models and numerical simulations, which struggle to reproduce the right

normalization of the main sequence of star forming galaxies, i.e. the corre-

lation between galaxy stellar mass and SFR, around the peak of the cosmic

star formation rate density. Indeed, all semi-analytical models and numerical

simulations underpredict the normalization of the main sequence by a factor

of ∼ 2− 3 (Hirschmann et al. 2016, Davé et al. 2016, McCarthy et al. 2017,

Donnari et al. 2019, Davé et al. 2019). This feature will be discussed in

Chapter 4.

1.4 SMBH in galaxy clusters

The feedback processes related to the SMBHs hosted in the BCGs at the center

of galaxy clusters represent the most clear evidence of the role of AGN feed-

back in regulating the cooling flow and the closely related star formation.The

idea of co-evolution between SMBHs and galaxies is widely accepted also in

galaxy evolution regardless of the environment. One of the main indirect ob-

servational evidences are the correlations between SMBH mass (MBH) and

the properties of the hosting galaxy, which have been known, and studied,

since the first measurements of MBH.

The first analysis presenting a large sample of galaxies (32) was pub-

lished more than 20 years ago by Magorrian et al. (1998), and showed

a clear correlation between MBH and the bulge luminosity of the hosting

galaxy, which is directly related to the bulge stellar mass assuming a mass

to light ratio. This first discovery led to a large number of works, that con-



1.4 SMBH in galaxy clusters 31

Fig. 1.19: Correlation between SMBHs masses and 1D stellar velocity
dispersion of galaxies. The inset shows the mean and errors
of all the posteriors from the Bayesian linear fitting linmix
(https://github.com/jmeyers314/linmix), including the intercept,
slope, intrinsic scatter (1 − σ interval plotted as a light red band,
3 − σ as dotted lines). Red line and dark band are the mean fit and
related 15.87 − 84.13 percentile interval. Galaxies are plotted with
different colors given their morphology: blue are ellipticals, green are
intermediate lenticulars, and cyan are non-barred/barred spiral LTGs.
From our work published in Gaspari et al. (2019).

firmed the observed correlation (e. g., Ho 1999, Merritt & Ferrarese 2001,

Laor 2001, Kormendy & Gebhardt 2001, McLure & Dunlop 2002, Marconi

& Hunt 2003, Ferrarese & Ford 2005, Graham 2007, Gültekin et al. 2009,

Sani et al. 2011,Graham & Scott 2013, McConnell & Ma 2013), and also

proposed other correlations with different quantities. Indeed, in the same

year Gebhardt et al. (2000) and Ferrarese & Merritt (2000) reported the
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discovery of a very tight correlation between MBH and the 1D stellar velocity

dispersion, σe. In these works the authors claimed that this relation is in

fact the fundamental one, as the associated scatter is only 0.30 dex, mostly

ascribed to observational errors rather than to an intrinsic diversity between

velocity dispersion and MBH. An updated version of the MBH−σ correlation

is shown in Fig. 1.19. After the first papers of 20 years ago the two relations

(MBH −M? and M − σe) have been diffusely studied and even if at times

arguments in favor of one relation or the other (e.g., Kormendy & Ho 2013,

McConnell & Ma 2013) were advanced more recent analyses still suggest

that the stellar velocity dispersion is more fundamental than the stellar mass

(e.g., Shankar et al. 2016).

Ferrarese (2002) also suggested that the total gravitational mass, traced

by the circular velocity, is the real driver of the observed correlations. How-

ever, this seems not to be the case as it is known that MBH do not correlate

with galaxy disks, while galaxy disks show a close correlation with DM (e.g.,

Kormendy & Bender 2011, Sabra et al. 2015).

1.4.1 Causal or non-causal origin

The study of the correlations involving MBH is important, as the dependence

on different galaxy components provides useful insights on the growth of the

SMBH at the galaxy center and consequently on putting constrains on galaxy

evolution models. At first order the theoretical models explaining such cor-

relations can be divided into two categories. The first do not assume any

causal connection between the growth of the SMBH and the galaxy stellar

component, with the correlation formed as a consequence of a large enough

number of merger events. These models, to which I will refer as non-causal,
forecast a strong and linear MBH −M? correlation with a decreasing scatter

at increasing galaxy stellar mass. The second category of models has its foun-

dation on the idea of co-evolution between SMBH and hosting galaxy, which

usually resort to AGN feedback as the process mediating both gas accretion

into the central SMBH and star formation. These models, to which I will

refer as causal, foresee a strong correlation with thermodynamic quantities

like the stellar velocity dispersion or the X-ray temperature of the halo. In

the following I will describe few examples from both the aformentioned

categories.
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The first experiment toward a non-causal origin of the observed correla-

tions has been proposed by Peng (2007). In a statistical experiment the au-

thors started from a distribution of galaxies with stellar masses drew from a

Schechter mass function (Schechter 1976), to which a SMBH was associated

with masses drew from a random distribution. From these initial conditions,

they showed that after a sufficiently high number of mergers, the systems

will eventually end up to a linear relation with a scatter that is inversely pro-

portional to the number of mergers. Jahnke & Macciò (2011) used a semi-

analytical model and showed that the number of mergers that a typical halo

undergoes in a cosmological environment is enough to completely ascribe

the observed correlation to galaxy mergers. The results by Jahnke & Macciò

(2011) are shown in Fig. 1.20. In particular, they considered a merger tree

constructed from the Lagrangian code PINOCCHIO (Monaco et al. 2002).

To each DM halo with Mhalo > 108 M� they assigned a stellar mass and

a BH mass drew from two distributions centered at M?/MDM = 10−3 and

MBH/MDM = 10−7 respectively with a scatter taken from a log-uniform dis-

tribution of 3 dex. Following the merger tree, whenever two DM halos merge

their stellar and BH masses are summed. From Fig. 1.20 it is clear that even

starting from an uncorrelated distribution (blue points), at the end of the

simulation the system lie on a linear correlation (red points).

However, even if mergers can theoretically explain the observed corre-

lations with the galaxy stellar mass, it is not obvious what would happen

to other quantities like the stellar velocity dispersion. Moreover, the other

important consequences of mergers besides the linear correlation between

MBH and M? is that the scatter scales as ∼ 1/
√
N , N being the number of

mergers the systems undergo. Thus, it is expected the scatter on the rela-

tion to be a decreasing function of the mass, as more massive systems are

expected to undergo more mergers. However, from an observational point of

view this evidence is still lacking (e.g., McConnell & Ma 2013, Gaspari et al.

2019).

Besides the models by Peng (2007) and Jahnke & Macciò (2011), there

is a variety of models based on AGN feedback that might explain the ob-

served correlations. Among them, in the following I will describe the models

by Churazov et al. (2005) and Gaspari & Sadowski (2017). The first is a

simple toy model, which however is based on the same assumptions as the

AGN feedback mechanism that is implemented in our cosmological simula-
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Fig. 1.20: Changes in the correlation between MBH and M? from an initially uncor-
related (within 4 dex in each parameter, blue points) distribution at high
z to z = 0 purely by mass assembly along the merger trees, i.e., without
the inclusion of star formation and SMBH gas accretion. The final dis-
tribution is characterized by near unity slope, with a decreasing scatter
at higher masses. The solid black line shows the observational results by
Häring & Rix (2004). Credits: Jahnke & Macciò (2011).

tions (see Chapter 2). In this model two modes for the AGN feedback are

assumed. At low accretion rates, it is assumed that ∼ 10% of the accreted

mass is transformed into energy. As we have seen in Sect. 1.2.3, there are ob-

servational evidences that at low accretion rates the AGN feedback is mainly

kinetic. The energy carried by these outflows is efficiently transferred to the

surrounding cold gas, resulting in a high gas heating efficiency. For this rea-

son in the model it is assumed that all the energy released at low accretion

rates is used to heat the surrounding gas. On the contrary, at high accretion
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rates the heating efficiency decreases. Therefore, in the model the heating

energy reaches a maximum value at Ṁ ∼ 0.01 × ṀEdd, where MEdd is the

Eddington accretion rate, i.e., the value of accretion rate at which radiation

pressure overcome the gravitational pull. A sketch of the heating power as

Fig. 1.21: Illustration of gas heating and cooling in elliptical galaxies. The thick
solid line shows, as a function of the SMBH accretion rate, the heat-
ing rate due to outflow, which is complemented/dominated by radiative
heating near the Eddington limit. Horizontal dashed lines show the gas
cooling rate. Credits: Churazov et al. (2005)

a function of the accretion rate (in units of the Eddington accretion rate)

is shown in Fig. 1.21 as a solid line. In the same plot, horizontal dashed

lines represent possible values for the cooling rate. The higher dashed line

represent the case of a young galaxy, with lot of gas and a relatively low mass

central SMBH. In this situation the BH will grow by gas accretion near the

Eddington limit, until it is massive enough to balance the cooling rate. The
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system will then be in the position pointed as B in the figure. In this state, if

the heating power slightly overcomes the cooling rate, the amount of cold

gas will decrease, implying both lower cooling and accretion rates. However,

at lower accretion rates the heating power is higher, causing a runaway pro-

cess that will find a stable solution in the points at which the heating power

(solid line) intercepts the value of the cooling rate (dashed line) on the left

of the peak of the heating power. In Fig. 1.21 this happens either at the point

labelled as A or as stable. This points represent, for example, today galaxy

clusters where intermittent radio lobes maintains a self-regulated cycle of

cooling and heating. In this framework and under the assumption of Bondi

accretion (Bondi 1952), Churazov showed that the observed correlation be-

tween MBH and σe naturally arises in massive ellipticals8 (σe > 200 km/s)

from the balance between cooling rate and gas heating by AGN feedback.

The second model has been developed by Gaspari & Sadowski (2017), by

relaxing the hypothesis of an accretion rate described by the Bondi formula.

This model is based on numerical simulations focused on different scales,

together with the observational evidence of the balance between heating

and cooling within the core of galaxy clusters. The key process for the con-

densation of the cold gas that will eventually feed the central BH is described

in Gaspari et al. (2013). In this work the authors used numerical simulations

on the galactic scale to probe the physical process that eventually fuel the

central BH. In particular, they showed that non-linear evolution of thermal

instabilities in the hot halo form when tcool/tff . 10, leading to the forma-

tion of cold clouds and filaments. This result is also in agreement with other

idealized theoretical experiments (e.g., Meece et al. 2015). The cold struc-

tures inelastically collide, loosing angular momentum and moving toward

the center of the galaxy. This model takes the name of chaotic cold accretion

(CCA). Given the feeding process, Sadowski & Gaspari (2017) used magneto-

hydrodynamical simulations down to the Schwarzschild radius (rS) to study

the details of the feedback concluding that at accretion rates ranging in the

interval 10−6 − 10−2 ṀEdd the relevant process is the mechanical feedback,

with an efficiency that accounts to≈ 3% of the accreted rest mass energy flux.

The resulting self-regulated cycle is described in Fig. 1.22. In the core region

(r . 0.1 rvir) thermal instabilities lead to the formation of warm and cold

clouds, which inelastically collide loosing angular momentum and moving

8The model is limited to massive ellipticals as stellar feedback is not considered.
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Fig. 1.22: Diagram of the multiphase accretion inflow and outflow. The self-
regulated AGN feedback loop works as follows. The turbulent gaseous
halo condenses in localized, large-scale, high-density peaks (cyan), lead-
ing to the drop out of cold clouds and warm filaments (blue). The clouds
rain down and recurrently collide in a chaotic and inelastic way (CCA),
canceling angular momentum and flowing toward the SMBH. Within
∼ 100 rS , the gravitational accretion process releases ultrafast outflows
(UFOs), while only a small gas fraction is sinked through the horizon.
The outflows slow down at larger radii, entraining the gas of the back-
ground profile. The energy is thermalized in the core, balancing the X-ray
luminosity. Credits: Gaspari & Sadowski (2017).

toward the inner regions. Within the inner region (r < 100 rS) the gravita-

tional accretion process releases ultrafast outflows (UFOs), that move in the

outer regions entraining more gas. Therefore, the feedback is the result of

the thermalization of the UFOs, that balance the radiative lost energy.

Within this framework, Gaspari & Sadowski (2017) related the gas ac-

cretion onto the central BH to the thermodynamical properties of the halo

within the core region (r . 0.1rvir), under the observationally suggested as-

sumption that AGN feedback exactly balance radiative cooling. They found

that the fundamental quantity is the X-ray temperature measured within the

core region, with a scaling MBH ∝ T 2
X , which therefore is expected to be the

correlation with the lower scatter. The secondary correlation with the stellar

velocity dispersion arises since, assuming virialization, it is possible to relate

TX to σe, obtaining a scaling MBH ∝ σ4
e , very similar to the values found in
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literature (e.g., Kormendy & Ho 2013, McConnell & Ma 2013, Gaspari et al.

2019).

1.4.2 Correlation between MBH and galaxy cluster properties

Among all the SMBHs, the ones residing at the center of galaxy groups and

clusters occupy a special place in the correlations reviewed in the previous

section. Indeed, some observations suggest that these BHs are over-massive

with respect to the MBH −M? or MBH − σe relations (e.g., Gebhardt et al.

2011, Hlavacek-Larrondo et al. 2012, Thomas et al. 2016). This feature is

present also in Fig. 1.19, where the high mass end of the MBH − σe is a

significant source of scatter with increasingly over-massive BHs (five objects

are approaching the top 3 − σ channel), in conjunction with the increased

presence of BCGs. A similar conclusion has been pointed out by other authors,

which found that the MBH − σe correlation saturates at high stellar velocity

dispersion (e.g., Sect. 6.7.2 of Kormendy & Ho 2013 and references there

in).

Since their hosting galaxies are the BCG and not ordinary galaxies, Bogdán

et al. (2018) suggested that they may undergo a different evolutionary path

with respect to BHs at the center of satellite galaxies, and that their growth

might be indirectly driven by the large scale properties of the entire cluster.

To test this hypothesis they studied all the BHs within BGGs and BCGs whose

mass was known by dynamical measurements. For the final sample of 17 ob-

jects they computed the ICM temperature for the groups and clusters within

an aperture . R500, without any core exclusion. In their analysis, the cluster

temperature is used as a proxy for the cluster mass through the scaling rela-

tions defined in Sect. 1.2.2. Since the luminosity or mass of the BCGs have

been found to correlate well with the hosting halo both in observational (e.g,

Lin & Mohr 2004; Brough et al. 2008) and numerical (e.g., Ragone-Figueroa

et al. 2018) studies, a correlation between MBH and cluster mass (tempera-

ture) is expected (e.g., Mittal et al. 2009), although MBH and cluster global

properties ought not be necessarily connected. Interestingly, Bogdán et al.

(2018) found a tight correlation between MBH and TX (see Fig. 1.23) with

a scatter in the MBH − TX relation that is lower than that of the MBH −M?

relation (σ = 0.38 and σ = 0.61 respectively).

Other observational works followed, which expanded the sample of clus-
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Fig. 1.23: Correlation between the BH mass and the best-fit gas temperature of the
group/clusters. The red crosses are observational data, while the solid
black line shows the best-fit power-law relation. The Pearson and Spear-
man correlation coefficients of the relation are 0.97 and 0.83, respectively,
showing a strong correlation. Credit Bogdán et al. (2018).

ters studied (Phipps et al. 2019) and tried to constrain the physical processes

that drive the correlation (Lakhchaura et al. 2019, Gaspari et al. 2019).

Lakhchaura et al. (2019) analyzed a sample of 47 galaxies, including 18

BGGs/BCGs, 16 non-BCG elliptical galaxies, and 13 lenticular galaxies, and

studied the correlations between the central BH and galaxy properties (tem-

perature, σe, bulge luminosity, and total gravitational mass) using different

apertures. The largest aperture used is 5× re ≈ 0.1×R500. Therefore, all the

quantities refer to the core of the cluster. In this respect we also note that

Bogdán et al. (2018) used a median aperture of 0.3×R500 and with a sam-

ple of 6 galaxy clusters they showed that the temperature does not change

more than 10% using apertures within the range [0.1−0.4]×R500. Therefore,

the values of temperature computed by Lakhchaura et al. (2019) can also

be regarded as a good proxy of the clusters virial temperature. The results

by Lakhchaura et al. (2019) are shown in Fig. 1.24, where the correlations

between MBH and temperature (left panel), X-ray luminosity (central panel),
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Fig. 1.24: Correlation between SMBH mass and hot atmosphere temperature (left
panel), X-ray luminosity (central panel), and stellar velocity dispersion
(right panel). Both temperature and luminosity are computed within an
aperture of 5 effective radii. The intercept α, slope β, correlation coeffi-
cient ρ, and intrinsic scatter (σY ; in dex units), obtained from the log-log
correlation analyses (Y = αXβ), and their 68 per cent uncertainties are
given in the insets. The shaded areas show the 68 per cent confidence
regions for the correlations. Credits: Lakhchaura et al. (2019)

and stellar velocity dispersion are studied for different galaxy morphologies

and environments. Lakhchaura et al. (2019) found that the BH mass strongly

correlate with the temperature only for BHs within central galaxies (left pan-

els of Fig. 1.24), while for non-central galaxies the correlation is essentially

null (correlation coefficient equal to −0.05 ± 0.33). Since BCGs undergo a

large number of mergers (see also the discussion in Sect. 1.1), this result

has been interpreted as an evidence of a non-causal origin for the observed
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correlations. This conclusion is strengthen by the fact that the correlation

between BH mass and the total gravitational mass within 5re (estimated

assuming hydrostatic equilibrium) is consistent with a linear relation, which

is the key consequence of a large number of merger events.

In Gaspari et al. (2019) we made a similar analysis, using 85 supermas-

sive BHs with mass obtained by means of dynamical methods and derived a

large number of correlations with thermodynamic properties in addition to

the X-ray luminosity and temperature over different extraction radii (galac-

tic, core, R500). Our results confirmed a tight correlation between BH mass

at the center of BGGs/BCGs, much tighter than the one with M? or σe, con-

firming the results of Bogdán et al. (2018). Moreover, we found that also

non-central galaxies lie on the same relation, a result in contrast with the

findings of Lakhchaura et al. (2019). We interpreted the observed low scat-

ter on the MBH − TX relation as a proof in favor of the CCA model, which

foresee a direct correlation between BHs and the hot halo temperature, in-

dependently of the galaxy environmental position.

To summarize, by one side all these recent works suggest that the growth

of BHs in BGGs/BCGs is regulated by physical processes that also influence

the thermodynamical properties of the ICM. At the same time, the physical

processes that lead to the observed correlations are still debated. Therefore,

in the work presented in Chapter 3 I investigate the correlation between

the mass of BHs in BCGs and the global properties of the hosting cluster,

such as temperature and mass measured within R500 by employing the set

of cosmological hydrodynamical simulations to be described in Chapter 2,

with the aim of answering the following questions:

• Do numerical simulations reproduce the observed T500 − MBH and

M500 −MBH relations?

• Which are the processes that lead to the observed relations and through

which channels (e.g., gas accretion or BH-BH mergers) do SMBHs grow

in time?

• Is M500 as appropriate as MBCG to probe MBH?

Moreover, Besides the study of SMBHs at the center of galaxy clusters,

I will also show the typical number of merger events that BHs undergo in

our numerical simulations, as this result can be used to put constraints to
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the possibility of completely explain the observed correlations by means of

BH-BH mergers.



Chapter 2

Numerical Simulations

In this Chapter I introduce the general properties of the cosmological codes

used in theoretical cosmology and astrophysics (see Vogelsberger et al. 2020

for a recent review). After a first introduction on the aims of cosmological

codes in Sect. 2.1, in Sect. 2.2 and Sect. 2.3 I briefly present the most used

gravity and hydro solvers. In Sect. 2.4 I introduce GADGET-3, the code used

to run our simulations, on which Chapter 3 and Chapter 4 are based. In

Sect. 2.5 I describe how the initial conditions (ICs) for our zoom in simula-

tions are generated, and I list the main properties of the simulated clusters.

Finally, in Sect. 2.6 I describe the software used for the post-processing of

the simulations.

2.1 Cosmological simulations

In order to fully describe the evolution of structures in a cosmological envi-

ronment it is necessary to simulate both the collisionless components, like

DM and stars within galaxies, and the collisional baryonic component. The

former can be statistically described by a distribution function f(x,v, t) in

the phase space, i.e. the number of particles within the position interval

[x,x + dx] and velocity interval [v,v + dv] at fixed time t. The function f

satisfies the collisionless Boltzmann equation (also called Vlasov equation)

df
dt

=
∂f

∂t
+ v · ∂f

∂x
−∇Φ

∂f

∂v
= 0, (2.1)
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where Φ is related to the distribution function via the Poisson equation

∇2Φ(x, t) = 4πG

∫
f(x,v, t)dv. (2.2)

Solving this equation requires to solve a partial differential equation on a

six dimensional domain, which is computational prohibitive at a reasonable

resolution. Therefore, Eq. 2.1 is usually solved by sampling the initial distri-

bution with particles, and evolving the resulting N-body system computing

gravitational forces between particles and weakening 2-body interactions

at small scales. The codes used for this computation are usually referred

as N-body codes and have nowadays reached full maturity (e.g., Springel

2016).

The collisonal baryonic component, i.e. the gas, is more complex to simu-

late. In the most simple scenario, the gas can be considered as non-radiative

and can be described by the Euler equations for an ideal fluid, which repre-

sent conservation of mass, momentum and energy:

∂ρ

∂t
+∇(ρv) = 0 (2.3)

∂

∂t
(ρv) +∇ · (ρv ⊗ v + IP ) = 0 (2.4)

∂(ρe)

∂t
+∇(ρev + Pv) = 0, (2.5)

where ρ, P , v, and e are the density, pressure, velocity, and total specific en-

ergy, and ⊗ and I are the outer product and the identity matrix. Even in this

simple case, however, results can differ depending on the particular method

employed to discretize and integrate the fluid equations (e.g., Sembolini et al.

2016). On top of fluid dynamics, for a realistic description of the evolution

of astrophysical objects other physical processes are needed. These include

radiative cooling, star formation, chemical evolution, stellar feedback, SMBH

growth, and AGN feedback. All these processes take place on small scales

compared to the numerical resolution that modern cosmological simulations

can achieve. For example, star formation takes place within molecular clouds

which have diameter sizes of∼ 20−200 pc, while the sphere of influence of a

SMBH of mass 108 M� is around 10 pc. On the contrary, modern cosmologi-

cal simulations achieve resolutions that range from few hundreds of pc to few

kpc. To encompass this issue, effective subgrid models are used to describe



2.2 N-body simulation 45

the effects that unresolved astrophysical processes have on scales resolved

by the simulations. Since these processes are not described starting from first

principles, results can strongly depend on their particular implementation.

I introduce the subgrid models implemented in our code in Sect. 2.4, after

reviewing the main schemes used to integrate the equations of motion for a

collisionless N-body system and the fluid equations used for the description

of the gas component in Sect. 2.2 and Sect. 2.3.

2.2 N-body simulation

Once the initial distribution function (see Eq. 2.1) has been discretized by

means of particles, the evolution of the system is determined by gravitational

interaction. As already said, in a cosmological context N-body codes have

reached full maturity, meaning that different schemes differ mainly in terms

of computational costs rather than the goodness of the solution. A particu-

larly recent example of this is the comparison carried out by Sembolini et al.

(2016), in which the authors compared the results of a cosmological simula-

tion of a galaxy cluster using 12 different state-of-the-art codes. In the DM

only run, Sembolini et al. (2016) showed that all the investigated quantities

were in agreement well within 10 per cent of each other.

In the following I briefly review the main schemes used to solve a N-body

problem.

2.2.1 Particle-Particle, PP

The most obvious way to evolve a N-body system is to directly compute the

the force acting on each particle as:

~Fi = −
∑

j

Gmimj(~ri − ~rj)
|~ri − ~rj |3

. (2.6)

This scheme has the evident advantage of integrating the exact equation

of motion. However, the divergence that arises in Eq. 2.6 whenever two

particles come close enough can greatly slows down the computation, since

to correctly integrate particles orbits the distance travelled during a time-

step must be smaller than inter-particle distance. For this reason, Eq. 2.6 is



46 Numerical Simulations

usually modified introducing a parameter ε > 0:

~Fi = −
∑

j

Gmimj(~ri − ~rj)
(|~ri − ~rj |2 + ε2)3/2

, (2.7)

which is commonly referred as gravitational softening. The introduction of

the gravitational softening solves the problems related to the singularity at 0,

at the price of deviating from Newtonian forces at scales ∼ ε. Therefore, the

amplitude of the gravitational softening is a scale under which simulations

results are not reliable. Moreover, the introduction of the gravitational soften-

ing also reduces two-body interactions, preserving the collisionless property

of the system. Indeed, as the resolution of the simulations is relatively coarse,

the particles used to sample the density field have to be considered as a pop-

ulation rather then a single object. Therefore, two-body interactions may not

be physical. Finally, the drawback of this scheme is that it scales with the

square of the number of particles and it is, thus, computationally expensive.

2.2.2 Particle-Mesh, PM

The particle-mesh (PM) scheme is based on the decomposition of the compu-

tational domain into a grid. Starting from the position of the particles within

the simulation, it is then possible to associate to each cell a density

ρm =
1

l3

∑

i

miW (xi − xcm), (2.8)

being l and xcm the size and center coordinates of a cell, and xi and mi the

position and mass of each particle. W determines the weight of each particle

and its choice differentiate different PM flavors. Given the discrete form of

the density field, it is possible to compute its Fourier transform ρ̃k and the

gravitational potential through the Poisson equation

φ̃(~k) = −4πG
ρ̃k

|~k|2
, (2.9)

which is subsequently transformed back in real space. The force Fm acting

at the position of the center of the cell is then obtained as the gradient of

the gravitational potential through a finite-difference method. Finally, the

force is interpolated at the position of each particle using the same kernel
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W employed in Eq. 2.9:

F(xi) =
∑

m

W (xi − xcm)Fm. (2.10)

The advantage of this scheme over the PP is that it is computationally

cheaper as it scales as ∝ NclogNc, being Nc the number of cells in which the

computational domain is subdivided. Moreover, as two body interactions are

suppressed, this scheme naturally preserve the collisionless property of the

system. However, the PM is not precise at small scales as the force deviates

from Newtonian interactions at scales comparable to l. A possible solution

is to use adaptive cells, where the initial cell is subdivided in smaller units

(for example dividing each side by two) until some condition is reached

(e.g., by imposing the mass within each sub-cell to remain roughly constant).

These schemes take the name of adaptive mesh refinement (AMR) schemes

(Couchman 1991).

2.2.3 Treecode

The Treecode (Barnes & Hut 1986) is constructed in order to maintain a

coarse-grained representation of the system at large scales, while reaching

higher resolution on small scales with respect to the PM scheme. In particular,

the initial domain (also called root node) is iteratively subdivided in smaller

cells (defined as nodes of the tree) until each single cell contains no more

than a particle (an example of this process is illustrated in Fig. 2.1). To

compute the force acting on a particle, the tree is walked starting from the

root node. If a node is viewed under an angle smaller than a given parameter

θc (usually referred as critical opening angle), i.e. the condition

θ =
l

r
≤ θc (2.11)

is satisfied, then the node is treated as a single particle, with total mass given

by the sum of the mass of all the particles within the node and position given

by their center of mass. Otherwise, the tree is walked through until Eq. 2.11

is satisfied. The accuracy of this scheme relies on the choice of θc: large val-

ues mean a very coarse-grained representation of the system, while smaller

and smaller values effectively converge to a PP scheme. Typical values for

this parameter are around ∼ 0.5. In this formulation, a better resolution is
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Fig. 2.1: Illustration of the construction of a tree. The initial domain is iteratively
subdivided in smaller cells, until only one particle per cell is left. Each
intermediate cell is defined as a node of the tree. Credits: Springel et al.
(2001b).

achieved on small scales while maintaining the same computational scaling

(∝ N logN) of the PM scheme. The drawback of this scheme is that a large

amount of memory is needed to store the tree.

2.2.4 TreePM

The TreePM scheme is a combination of the PM and the Treecode. The basic

idea is to split the Fourier transform of the gravitational potential into two

components corresponding to long (φl) and short (φs) range forces:

φ̃k = −4πGρ̃k
k2

= −4πGρ̃k
k2

exp
(
−k2r2

s

)
− 4πGρ̃k

k2

(
1− exp

(
−k2r2

s

))

= φ̃lk + φ̃sk

φ̃lk = −4πGρ̃k
k2

exp
(
−k2r2

s

)

φ̃sk = −4πGρ̃k
k2

(
1− exp

(
−k2r2

s

))
,

(2.12)

where rs is the parameter that defines long and short range. For the long

range, the forces are computed using a PM scheme and φ̃lk is used in Eq. 2.9.

For the short range, the forces can be analytically transformed in real space

f s(r) = −Gmr

r3

(
erfc

(
r

2rs

)
+

r

rs
√
π

exp
(
− r2

4r2
s

))
, (2.13)
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where erfc is the complementary error function. Given Eq. 2.13, the force

acting on each particle is then computed using a Treecode scheme.

The resulting TreePM scheme is significantly more efficient in terms of

computational cost with respect to a pure treecode, even though it is even

more memory consuming.

2.2.5 P3M

This scheme is very similar to the TreePM, with the difference that short range

forces are not computed with a Treecode, but via a PP scheme. The advantage

over the TreePM is that there is no need to store the Tree. However, the PP

part can be computationally very expensive in cosmological simulations as

the matter is highly clustered.

2.3 Hydrodynamic schemes

As already mentioned, modeling gravitational interaction can describe the

evolution of cosmological structures only at a first approximation. Indeed,

about 15 percent of the universe matter is collisional and the evolution of

the gas needs to be accounted. The first step to simulate the evolution of

the gas in a cosmological context is to solve the Euler equations for an ideal

fluid (Eqs. 2.3, 2.4, 2.5). The codes used to solve these equations can be in

first approximation divided in two families: Eulerian and Lagrangian. In the

following I briefly review the main idea behind both approaches.

2.3.1 Eulerian schemes

In this approach the computational domain is divided on a fixed grid with

thermodynamic properties associated to each cell. The evolution of the sys-

tem is then given by the computation of the fluxes between neighbouring

cells.

As an example, consider a 1 dimensional problem. In 1D the equations

2.3, 2.4, and 2.5 can be written as

∂U

∂t
+
∂F(U)

∂x
= 0, (2.14)

where U = (ρ, ρv, ρe) is the vector of the conserved quantities and F =
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(ρv, ρv2 + p, v(ρe+ p)) is the relative flux vector. After discretizing the initial

domain in intervals Ii = [xi−1/2, xi+1/2], integrating Eq. 2.14 over Ii results

in:

d

dt

∫ xi+1/2

xi−1/2

U(x, t)dx = F(U(xi−1/2, t))− F(U(xi+1/2, t)). (2.15)

Integrating over the time interval [tn+1, tn] gives:

∫ xi+1/2

xi−1/2

U(x, tn+1)dx =

∫ xi+1/2

xi−1/2

U(x, tn)dx+

∫ tn+1

tn
F(U(xi−1/2, t))−

∫ tn+1

tn
F(U(xi+1/2, t)).

(2.16)

At first order all the conserved quantities can be considered as constant

within each cell. Under this assumption, the fluxes at the interfaces between

neighbouring cells are computed solving a Riemann problem (e.g., Toro

2009), that is two constant states divided by a discontinuity. Since the solu-

tion to this problem is self-similar, i.e. it depends only on the ratio x/t, the

fluxes computed at cells interfaces are constant over a time interval ∆t, and

Eq. 2.16 can be rewritten as

Un+1
i = Uni +

∆t

∆x

(
F̃i−1/2 − F̃i+1/2

)
, (2.17)

where F̃i±1/2 are the fluxes computed at the interfaces using an exact or

approximate Riemann solver.

The first and more important implication of using a Riemann solver is

that these schemes automatically include the dissipative terms necessary to

describe discontinuities, across which the entropy is not conserved. However,

since the domain is discretized in cells, discontinuites are also introduced

where the exact flux is continuous, resulting in spurious dissipation. This

spurious effect can be reduced using different reconstruction methods for

the states at the interfaces, instead of a constant approximation. Examples

of zero (piecewise constant), first (piecewise linear), and second (piecewise

parabolic) order approximations are shown in Fig. 2.2 respectively with red,

blue, and green dashed lines. Note, however, that using higher than zero or-

der approximations can lead to oscillations in the numerical solution. Indeed,
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Fig. 2.2: Reconstruction of the variable u on a grid using different methods: piece-
wise constant (PCM), piecewise linear (PLM) or piecewise parabolic (PPM).
The reconstruction allows both to estimate di average value (ūn) and the
values at the cells interfaces (ūrn−0.5, ūln+0.5) which are used as initial
conditions for the Riemann problem. Credits: Dolag et al. (2008).

when a reconstruction is applied in the presence of a discontinuity, the spatial

derivative of the reconstructed variable within a cell can be unrealistically

high. To prevent such oscillations, slope limiters (which limit the derivative

of the reconstructed variable to realistic values) have to be employed (see,

e.g., Springel 2010b). The second implication arising from Eq. 2.17 is that

since the fluxes F̃i±1/2 at contiguous cells are the same but with opposite

signs, mass, momentum, and energy are exactly conserved. However, angular

momentum is not conserved and even the energy is not conserved anymore

once gravity is taken into account. Since the internal energy in this approach

is computed as the difference between the total and kinetic energy, this can

impact also thermodynamic properties (e.g., Springel 2010b).

In this formulation Eulerian codes are not highly performing in cosmo-

logical simulations, as they lack natural adaptivity, i.e. the capability of in-

creasing the resolution in high density environment. A possible solution is to

adopt an AMR scheme, similarly to what is done in a PM scheme. The down-

size of this approach is that errors can be generated at the interfaces within
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cells with different sizes, which can suppress the formation of gravitational

instabilities (e.g., O’Shea et al. 2005, Heitmann et al. 2008).

These schemes have been implemented in astrophysical codes like ENZO

(Bryan et al. 2014) and RAMSES (Teyssier 2002), used to perform cosmolog-

ical simulations like the Horizon-AGN1.

2.3.2 Lagrangian schemes

The basic idea behind the Lagrangian approach is to follow the trajectories of

single fluid elements, instead of evolving thermodynamic quantities within

a fixed grid. The most famous and used scheme is the smoothed particle

hydrodynamics (SPH; for recent reviews see Price 2008, Springel 2010a,

Price 2012), which I describe in this section. However, other Lagrangian

schemes exist. I will briefly describe them in the next section.

The basic idea behind the SPH schemes is the definition of a smoothed

version of a generic field F through the convolution with a Kernel W :

Fs(r) =

∫
F(r′)W (r− r′, h)dr′, (2.18)

where h is the characteristic length of the kernel. W is normalized to 1 and

converges to the Dirac δ function for h → 0. The kernel is also symmetric,

twice differentiable, non-negative, and monotonically decreasing. These con-

ditions ensure that the error relative to the smoothed field are of the order

of ∼ h2 (e.g., Price 2012). The most obvious kernel to be used is a Gaussian.

However, a Gaussian does not have a compact support and is therefore not

computationally efficient. For this reason in practice a Gaussian-like kernel

with compact support (which goes to 0 after few smoothing lengths) is used.

Knowing the value of the field F on a set of discretized points with

positions rj , to which a constant mass mj is associated, it is then possible to

write Eq. 2.18 in the discretized form:

Fs '
∑

j

mj

ρj
FjW (r− rj , h), (2.19)

where ρj is the density computed at rj and Fj = F(rj). The goodness of

the approximation in Eq. 2.19 depends on the number of points within the

1https://www.horizon-simulation.org
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Fig. 2.3: Illustration of density reconstruction from Eq. 2.20. The value of h is not
constant at each point and changes in order to take into consideration the
same number of particles. The estimate of the density can be interpreted
as the sum of the mass of the particles within the compact support of the
kernel divided by the volume, with the difference that the masses of the
particles are weighted via the Kernel, which has decreasing values at larger
distances. This limits numerical noise due to particles at the boundary of
the compact support of the Kernel. Credits: Price (2012)

compact support of the kernel. For this reason, a constant value of h perform

poorly in cosmological simulations, where the density span various orders

of magnitude. Therefore, h is usually taken to be adaptive, by forcing the

number of particles within the compact support to be roughly constant. A

particular case of Eq. 2.19 is obtained considering the density field

ρs(ri) =
∑

j

mjW (ri − rj , hi), (2.20)

where this time the value of the field is computed at the position of the i− th
particle. Note that since h is adapative, it will be different for each particle

(see Fig. 2.3). Eq. 2.20 is one of the fundamental equations at the base of

the SPH scheme.

In the modern derivation, the SPH equations of motion are obtained from

Eq. 2.20 and by applying the Euler-Lagrange equations to the discretized

Lagrangian of an inviscid fluid:

L =
∑

b

mb

[
1

2
v2
b − ub(ρb, sb)

]
, (2.21)
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where vb, ub and sb are respectively the velocity, internal energy, and the

entropy associated to each particle. The resulting equation of motion can be

written as

mi
dvi
dt

= −mi

∑

j

mj

[
Pi

Ωiρ2
i

∇iWij(hi) +
Pj

Ωjρ2
j

∇iWij(hj)

]
,

Ωj ≡
[

1− hj
3ρj

∑

k

mk
∂Wjk(hj)

∂hj

]
,

Wjk(hj) ≡W (rj − rk, hj),

(2.22)

where Pi is the pressure associated to each particle, and Ωj are correction

terms arising from the fact that the smoothing length is adaptive. Using the

equation of state for a perfect gas

P = A(s)ργ = (γ − 1)ρu, (2.23)

where γ is the polytropic index and A(s) the entropic function, together with

the first principle of thermodynamics it is possible to compute the evolution

of the thermodynamic quantities as

dui
dt

=
ρi

Ωiρ2
i

∑

j

mj(vi − vj) · ∇iWij(hi). (2.24)

Of course, this is not the only possible choice. Alternatively, the entropy can

be evolved through the equation

dA

dt
=
γ − 1

ργ−1

(
du

dt
− P

ρ2

dρ

dt

)
=
γ − 1

ργ−1

(
du

dt

)

diss

, (2.25)

where the subscript diss stands for any dissipative term. This choice has the

practical advantage of avoiding errors due to the numerical integration, as

for an adiabatic flow the entropy is conserved.

The SPH scheme is naturally adaptive, as higher density regions are sam-

pled by a higher number of particles. As already highlighted in the previous

section, this feature is extremely important when dealing with cosmological

simulations. Moreover, given the expression of the Lagrangian (Eq. 2.21), it

is possible to understand all the pros and cons of this scheme. First of all,

the starting Lagrangian is invariant under translations, rotations, and does
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not explicitly depend on time. Therefore, the SPH scheme naturally con-

serve momentum, angular momentum, and energy. On the other side, the

Euler-Lagrange equations imply the continuity of all thermodynamical quan-

tities. For this reason SPH schemes do not correctly describe discontinuities

(such as shocks and gas mixing) without the inclusion of ad hoc dissipative

terms. These terms are introduced as an artificial viscosity, to describe shocks,

and an artificial thermal conduction, to enable mixing between different gas

phases which will be otherwise prevented by the SPH solutions to the fluid

equations (see, e.g., Price 2008). The effect of the artificial conduction is

shown in Fig. 2.4, which display the solution to a Riemann problem. The

zoom on the contact discontinuity, i.e. a discontinuity in the density field but

not in the pressure, clearly shows that without any artificial conduction term

a ’blip’ in the pressure is present (blue points). This gradient in the pressure,

which is eliminated by the introduction of the artificial conduction term (red

points), prevent gas mixing and has profound implications also in more com-

plex cosmological simulations (see, e.g., Frenk et al. 1999, Sembolini et al.

2016). Finally, being the fields discretized using particles, the coupling with

gravity is straightforward.

SPH schemes have been successfully implemented and used in cosmo-

logical simulations. A few examples are the EAGLE simulations (Schaye

et al. 2015), BAHAMAS (McCarthy et al. 2017), Magneticum (Hirschmann

et al. 2014), Romulus (Tremmel et al. 2017), and also our simulations, the

DIANOGA set.

2.3.3 Meshless and moving mesh schemes

A third group of schemes has also been introduced in the recent years. These

schemes are constructed with the aim of achieving the natural adaptivity of

an SPH scheme, while avoiding the introduction of artificial dissipative terms

by using a Riemann solver to integrate the Euler equations. This result has

been obtained in two different ways, and the resulting schemes have been

implemented in the codes AREPO (Springel 2010b) and GIZMO (Hopkins

2015). In the following I will provide only the basic ideas and I refer to the

aforementioned papers for more details.

AREPO is based on a moving mesh scheme. In particular, a set of points is

used to define a mesh through a Voronoi tessellation. The natural adaptivity
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Fig. 2.4: Numerical solution to a Riemann problem with different hydro-dynamical
schemes. Blue points (standard) refers to a SPH scheme without an artifi-
cial conduction term. Red points (new scheme) refers to the SPH scheme
implemented in GADGET-3, while the green line refer to the grid-based
code Athena (Stone et al. 2008). Without the introduction of an artificial
conduction term a spurious discontinuity in the pressure at the contact
discontinuity is clearly visible. Credits: Beck et al. (2016).

of this scheme arises as at each time step the points used to construct the

mesh move with same velocity of the local flow. Once the mesh is constructed

the evolution of thermodynamic quantities is computed evaluating the fluxes

between neighouring cells as in an Eulerian scheme. This scheme has been

used for a few state-of-the-art cosmological simulations, like Illustris (Genel

et al. 2014), IllustrisTNG (Pillepich et al. 2018), and FABLE (Henden et al.

2018).

GIZMO works with a similar strategy with respect to AREPO, with the

difference that there is not an actual mesh and the volume is discretized

between particles using the same family of kernels that is used for the SPH

density estimation. In this way each particle, which also in this case follows

the local flow of the fluid, interacts not only with adjacent cells, but also with

all the particles within the compact support of the kernel (usually between 32
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and 64 particles). The other important difference with respect to AREPO is

that in the meshless finite mass implementation of this scheme, the position

and velocity of the interfaces where the fluxes are computed are chosen in

order to have a zero net mass flux, such that each particle mass is effectively

conserved. This also enable to achieve better energy conservation properties

with respect to a pure Eulerian scheme. This scheme has been used in recent

cosmological simulations, such as MUFASA (Davé et al. 2016), SIMBA (Davé

et al. 2019), and also for zoom-in simulations focused on galaxy evolution

such as the FIRE-2 project (Hopkins et al. 2018).

2.4 GADGET-3

The simulations used for our works are performed with the developer ver-

sion of GADGET-3, which is based on the public code GADGET-2 (Springel

et al. 2001a, Springel 2005). This code implements a TreePM scheme for

gravity, where the PM part is adaptive (i.e., an AMR scheme). The scheme

used to integrate fluid equations is a density-entropy SPH (i.e., Eq. 2.25 is

used to evolve thermodynamic properties), with a number of improvement

with respect to the standard scheme (see Beck et al. 2016). The modifica-

tions include: (i) a higher order interpolation kernel (Wendland C4 kernel

with 200 neighbours); (ii) a time dependent artificial viscosity to correctly

describe shock waves and a time dependent artificial conduction to correctly

describe gas mixing that will be otherwise suppressed by the SPH solution

to fluid equations; (iii) gravity corrections to the artificial conduction term

which are needed since this term is proportional to pressure and internal

energy gradients, which naturally arise in the presence of gravity and would

in this case lead to unwanted conduction.

As already mentioned, besides hydrodynamics other physical processes

are needed to fully describe the evolution of cosmic structures. Since a broad

overview of these subgrid models will require a dedicated work, in the fol-

lowing sections I only focus on the models implemented in GADGET-3 that

will be extensively discussed in Chapter 3 and Chapter 4, with particular

attention on the model for star formation and AGN feedback.
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2.4.1 Star formation model

The model for star formation strictly follows the model by Springel & Hern-

quist (2003), to which I refer for a more exhaustive description. In the fol-

lowing I only review the main aspects, which will be discussed more in depth

in Chapter 4.

In this prescription each SPH particle samples a region of the interstellar

medium (ISM), and is subdivided in a cold phase and a hot phase character-

ized by densities ρc and ρh, in pressure equilibrium one with each other. The

total density associated to a particle will be the sum of the two: ρ = ρc + ρh.

A SPH particle has a non null fraction of cold gas (i.e., ρc > 0), and thus

becames multiphase, whenever some conditions on its thermodynamical

properties are fulfilled. The condition is typically imposed on the density,

which has to be higher than a given threshold ρthr. However, a further con-

dition on the temperature can be used. We will define the particular model

employed when describing the set of simulations used in Chapter 3 and

Chapter 4.

Given the cold fraction, a numerical instantaneous SFR is associated to

each multiphase particle2:

dρ?
dt

= ρ̇? = (1− β)
ρc
t?
, (2.26)

where t? is the characteristic timescale for star formation, while β is the

fraction of massive stars (i.e., M > 8 M�) that are expected to instantly

explode as type-II supernovae (SNII) and depends on the chosen IMF, which

in our simulations is always a Chabrier IMF (Chabrier 2003). The parameter

t? follows the expression:

t?(ρ) = t?0

(
ρ

ρthr

)−1/2

. (2.27)

t?0 is set to 1.5 Gyr in order to match the observed Kennicutt relation (Kenni-

cutt 1998). In practice, varying this parameter directly reflects into a varia-

tion of the numerical star formation efficiency (SFE). Indeed, using eq. 2.26

and eq. 2.27:

2By numerical SFR has to be intended the rate at which the mass in SPH gas particles
should be transformed into stellar particles. The actual physical SFR of the model is ρc/t?
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SFE =
ρ̇?
ρc

=
1− β
t?0

(
ρ

ρthr

)1/2

. (2.28)

Given the SFR, part of the cold clouds is evaporated by means of supernovae

feedback:
dρc
dt

= −Aβρc
t?
, (2.29)

where A is the efficiency of evaporation that determines the efficiency of

thermal supernovae feedback and is taken to be a function of the local gas

density, A ∝ ρ−4/5. These equations give rise to the self-regulated cycle of

star formation: high cold cloud density leads to a high SFR, that in turn

means more feedback and cloud evaporation. When cloud evaporates, the

SFR decreases and material is returned to the hot phase, increasing ρh. Fi-

nally, a higher density means a higher cooling rate (see next section), which

causes more gas to condense in cold clouds, so that the cycle restarts.

Besides the thermal feedback, simulations also implement galactic winds

associated to star formation. The total mass entrained in the winds is taken

to be proportional to the star formation rate

Ṁwind = ηṀ?, (2.30)

where η is usually referred as mass loading factor and is fixed equal to 2 in all

of our simulations. Note, however, that recent theoretical works suggest that

the mass loading factor is not constant and depends on the mass of the galaxy,

as well as on redshift (e.g., Muratov et al. 2015). The effect of a variable mass

loading factor on our simulations will be tested in future works. Together

with the total mass in galactic wind, the other parameter to be specified is its

velocity, which we assume to be 350 km s−1. This wind velocity is equivalent

to assuming that the wind carries around 50% of supernova energy.

2.4.2 Radiative cooling and chemical enrichment

The physical process that enables the gas to cool down and form stars is

radiative cooling, which in turn is related to the chemical enrichment of

the gas particles. The production of metals in the simulations is computed

following the formulation presented in Tornatore et al. (2007). Briefly, each

stellar particle produces chemical elements (we specifically follow He, C, Ca,
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O, N, Ne, Mg, S, Si, Fe, Na, Al, and Ar in addition to keep track of H) through

three different channels: type-Ia supernovae (SNIa), SNII and asymptotic

giant branch (AGB) stars. The amount of metals produced is computed con-

sidering a Chabrier IMF, the mass-dependent life times by Padovani & Mat-

teucci (1993), and the stellar yields from SNIa (Thielemann et al. 2003),

SNII (Woosley & Weaver 1995 and Romano et al. 2010), and AGB (Karakas

2010). Once the amount of metals produced by a stellar particle is computed,

these are spread between neighbouring gas particles using the same kernel

function used for the SPH computations (Eq. 2.20).

The amount of metals for each gas particle is then used to compute the

energy loss by radiative cooling, through a metal dependent cooling function.

As it will be important for the discussion of Chapter 4, we note that this is

the step in which the choice of the IMF may affects the SFR in numerical

simulations. Indeed, the IMF determines the fraction of massive stars and

the subsequent chemical pollution and cooling of the gas particles.

2.4.3 AGN feedback

The AGN feedback model is inspired to the original model developed by

Springel et al. (2005). Briefly, during run time we identify groups of parti-

cles using the Friends of Friends (FoF) algorithm (Huchra & Geller 1982,

see Sect. 2.6). BHs in our simulations are spawned at the center of each FoF

group (defined as the position of the most bound particle), whenever condi-

tions on total group stellar mass, stellar to DM mass ratio, and gas fraction

are simultaneously fulfilled. The exact values, together with the BH seed

mass, depend on the numerical resolution, and will therefore be specified

when describing each simulations set in Chapters 3 and 4.

Once BHs are seeded, they are allowed to grow by two different channels:

accretion of the surrounding gas and BH-BH mergers. The former follows

the Eddington-limited alpha-enhanced Bondi accretion rate (Bondi 1952)

formula:

ṀBondi,α = α
4πG2M2

BHρ

(c2
s + v2

BH)3/2
, (2.31)

with α equal to 10 and 100 for hot (T > 5 × 105 K) and cold (T < 5 ×
105 K) gas respectively (Steinborn et al. 2015). In eq. 2.31 all gas-related

quantities (sound speed, cs, bulk gas velocity relative to BH velocity, vBH,

and gas density, ρ) are smoothed over 200 gas particles with the kernel
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function centered at the position of the BH. The boosting factor α is needed

as the Bondi formula has been derived under quite simplistic assumptions

like spherical symmetry, and unperturbed and steady initial conditions. In

a more realistic scenario, the accretion proceed in a chaotic way, with the

overall effect of boosting the accretion by up a factor of 100 (e.g., Gaspari

et al. 2013).

Given the gas accretion onto the BH particle, AGN energy feedback is

given by

Ė = εrεfṀc2 (2.32)

where Ṁ is the minimum between the Bondi (Eq. 2.31) and the Eddington

accretion rate, Ṁ = min(ṀBondi,α, ṀEddington), and the energy is distributed

and thermally coupled to the nearest 200 gas particles. In eq. 2.32, εr is the

fraction of mass transformed in radiation energy and εf is the fraction of

radiated energy thermally coupled to the gas particles. As it is done for the

star formation subgrid model, also in this case the model parameters εr and

εf are tuned so as to reproduce specifics observational constraints. In partic-

ular, we set the parameters in order to match the observed normalization of

the MBH −M? correlation.

Besides gas accretion, BH particles can also grow by BH-BH mergers. In

our implementation of the subgrid model two BHs are allowed to merge

whenever they are near enough in the phase space. The particular values

of the relative distance and velocity depend on the resolution and will be

specified in Chapters 3 and 4.

2.5 Initial conditions

So far I have described the main ingredients used by cosmological codes to

describe the growth of structures in the universe. However, the other impor-

tant piece of information is the generation of the initial conditions (ICs) to

be used together with a cosmological code. The ICs define the initial density

and velocity fields which represent a realization of a random field with a

given power spectrum and multi-variate distribution (which is assumed to

be Gaussian). In this section I briefly describe how the ICs for cosmological

simulations are produced, and I focus then to the particular case of the ICs
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used for our simulations.

The ICs for N-body numerical simulations are generated following the

Lagrangian perturbation theory (e.g., Bouchet et al. 1995, Bernardeau et al.

2002). As has been already said in Sect. 2.3, differently from the Eulerian ap-

proach, where the evolution of the system is described by the fluxes between

neighbouring cells defined on a fixed grid, in the Lagrangian framework the

trajectories and velocities of single fluid elements (or particles) are followed.

In particular, the position of a particle at each conformal time τ (dτ = dt/a)

can be expressed as

x(q, τ) = q + Ψ(q, τ), (2.33)

where q is the Lagrangian coordinate of the particle, i.e. its initial position,

and Ψ(q, τ) is the Lagrangian displacement field. Therefore, to generate the

initial conditions starting from a lattice where the particles of the N-body

simulation are placed3, it is necessary to estimate Ψ(q, τ) for each initial

position q. In linear theory, the displacement field can be written as (e.g.,

Bernardeau et al. 2002)

∇qΨ = −DL(τ)δ(q), (2.34)

where DL(τ) is the linear growth factor (see Eq. A.12) and δ(q) is the density

contrast. The latter is considered to be a Gaussian random field and therefore

in the momentum space its statistic is completely defined by its second mo-

ment P (k) (i.e., the power spectrum). Given P (k), it is possible to define the

density field at a scale k with its real and imaginary part (δ(k) = δr + iδi) de-

fined by a Gaussian distribution with mean value at 0 and variance∝
√
P (k).

In practice, δ(k) is written in its exponential form δ(k) = |δ(k)|eiθ with |δ(k)|
drawn from the Rayleigh distribution

P(|δ(k)|) =
|δ(k)|
P (k)

exp
[
−|δ(k)|2

2P (k)

]
, (2.35)

and θ drawn from a uniform distribution in the range [0, 2π). The random

modulus and phases for each δ(k) define the particular realization of the

density field given its statistic.

3The grid method is one of the most popular choice to generate pre-initial conditions. How-
ever there exist also more sophisticated schemes. For the generation of our initial conditions
a glass-like particle distribution has been used.
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With δ(k) at hand, it is then possible to compute the displacement field

through Eq. 2.34 and Eq. 2.33. Following a similar procedure, it is also

possible to compute the initial particles velocity. Since the displacement field

is computed in linear theory, the starting redshift has to be high enough, such

that the resolved scales are still in the linear regime. Therefore, the initial

conditions are often generated in the redshift range 100 . z . 50. In our

simulations, the initial conditions are generated at z = 70.

2.5.1 DIANOGA zoom-in simulations

The procedure described in the previous section refers to the production of

the ICs for a cosmological box, while our simulations are zoom-in simulation.

Indeed, the dimension of a box is limited by the computational capabilities

and the chosen numerical resolution. For example, to be able to resolve

galaxies down to M? ∼ 109 M�, the needed computational resources limit

the dimension of the box to∼ 100 Mpc. A cosmological box of this size will be

useful to study galaxy evolution but not the evolution of rare objects such as

the most massive clusters with Mvir ∼ 1015 M�. Since our primary interest

is in these extreme objects, we rely on the zoom-in technique. As I will

describe in the following paragraph, this technique enables to reach higher

resolutions while keeping information on the cosmological environment. The

complete procedure is described in Bonafede et al. (2011), and is based on

the Zoomed Initial Conditions (ZIC) technique described in Tormen et al.

(1997). I remand to these two works for a full explanation of the zoom-in

ICs generation.

In order to generate the ICs for zoom-in simulations extra steps are

needed, as the resolution is not constant over the whole box. The first step

consists in the generation of a DM only cosmological box at a relatively low

mass resolution. In particular in our case it was a box of 1 h−1 Gpc side

produced with the public code GADGET-2 (Springel 2005), in a ΛCDM cos-

mology with parameters ΩΛ = 0.76, ΩM = 0.24, h = 0.72, and σ8 = 0.8

(consistent with WMAP-7 constraints; Komatsu et al. 2011). From this box,

the standard FoF algorithm was used to select at z = 0 the 24 most mas-

sive clusters (M200 > 8× 1014h−1 M�) together with 5 less massive objects

(M200 ∈ [1 − 4] × 1014 h−1 M�) randomly chosen. The density projection

of the parent box from which the clusters have been selected is shown in
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Fig. 2.5: Density projection over the 1 h−1 Gpc side DM only simulations from
which our clusters are extracted. Green diamonds represent the 24 most
massive clusters. Credits: Bonafede et al. (2011).

Fig. 2.5, with the 24 most massive clusters shown as green diamonds.

To create the ICs for each zoom-in simulation, all the particles within

5 − 7 × Rvir
4 at z = 0 were traced back to their position at the beginning

of the simulation. The size of the region was chosen to guarantee a HR

spherical volume around each cluster with a radius of ∼ 5 − 6 virial radii.

Since this region is quite large, the HR regions also contain secondary ob-

jects (groups and clusters). Indeed, in the 29 HR regions we find a total of

135 groups and clusters with M500 > 3× 1013 M�. Then, the box (with side

LHR) containing all the particles that will end up in the selected region at

4In the used Cosmology, Rvir = R95
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z = 0 was subdivided in 643 cells. All the cells containing at least one of the

selected particles were then re-sampled with higher resolution DM particles.

To displace the particles within the HR region, the same power spectrum of

the parent simulation has been used, with the same amplitudes and phases.

Shorter wavelengths were also added, to account for the smaller scales now

resolved by the high resolution particles. Note that this step does not strictly

rely on the initial resolution of the parent DM simulation; therefore, the reso-

lution can be varied continuously without the need of re-simulate the parent

simulation. To minimize the discontinuities between the low resolution and

the HR zones, a third region has been added around the HR zone, with the

same mass resolution of the parent simulation. Outside the high and medium

resolution regions, the parent simulation was re-sampled at lower resolution

using a spherical grid centered on the cluster with constant angular resolu-

tion dθ. The height of each cell was then chosen in order to obtain an almost

cubic cell, i.e. imposing dr ∼ rdθ, obtaining a decreasing resolution with in-

creasing distance from the cluster. This LR regions is needed in order to keep

track of the cosmological environment. A representation of the final grid

with the HR region (blue and red zone), medium resolution region (green

zone, with the same resolution of the parent simulation), and low resolution

region (black grid) on which the initial conditions are created is shown in

Fig. 2.6.

Once the ICs for the DM simulations were ready, baryons were added.

To add baryons, the DM particles within the HR region were splitted with

the mass ratio given by the cosmic baryon fraction. Gas particles were then

displaced from DM by half the mean intra-particle distance, imposing con-

servation of mass and momentum.

The radius, mass, and temperature of the final sample of our simulated

cluster are listed in Table 2.1, while I show a visual representation of the 24

most massive clusters in Fig. 2.7.
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Fig. 2.6: Representation of the ICs for one zoom-in simulation. Right: HR region.
Blue squares represent all the cells containing at least one DM particle
which end up in the 5− 7×Rvir region around the cluster. Green squares
are added to the blue ones to avoid holes in the HR region, while red boxes
are included to obtain a concave region. Left: The black cells represent
the lowest resolution region, with decreasing mass resolution toward the
outer region of the box. Green region is the one at intermediate resolution,
with a mass resolution equal to the one of the parent simulation. Credits:
Bonafede et al. (2011).
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Fig. 2.7: Ray-tracing images of 15 Mpc h−1 regions around the centre of the indi-
vidual 24 most massive clusters. Colour coded is the temperature of the
gas. Credits: Bonafede et al. (2011).
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R200 M200 Tsp

[Mpc h−1] [1015 h−1 M�] keV
D1 1.764 1.27 7.88
D2 1.188 0.39 3.30
D3 1.284 0.49 4.45
D4 1.175 0.38 3.28
D5 0.839 0.14 1.82
D6 1.693 1.12 6.23
D7 1.686 1.11 7.14
D8 1.752 1.24 4.64
D9 0.756 0.10 1.67

D10 1.653 1.04 6.78
D11 1.552 0.86 5.44
D12 1.889 1.58 7.39
D13 1.664 1.06 8.52
D14 1.832 1.43 7.97
D15 1.804 1.36 7.43
D16 2.241 2.72 7.95
D17 1.835 1.43 5.28
D18 1.547 0.85 6.12
D19 1.709 1.15 6.25
D20 1.832 1.43 7.62
D21 1.727 1.19 8.62
D22 1.882 1.56 10.58
D23 1.663 1.06 7.98
D24 1.680 1.09 7.92
D25 1.513 0.80 3.94
D26 1.763 1.26 7.34
D27 1.793 1.33 5.89
D28 1.877 1.55 8.76
D29 1.755 1.25 5.71

Table 2.1: Col. 1: cluster name. Col. 2: R200. Col. 3: total mass within R200. Col. 4:
spectroscopic like temperature within R200.
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2.6 Halo finders

To analyze the output of the simulations it is necessary to use a halo (and

sub-halo) finder, which is essential to define halos and subhalos. In our simu-

lations, we use the FoF algorithm and Subfind (i.e., subhalo finder, Springel

et al. 2001b, Dolag et al. 2009). The former is used at run-time only on DM

particles. In practice, two DM particles are considered to be part of the same

group if their distance is less than a fixed value, referred as linking length,

which is commonly defined as a fraction of the mean inter-particle distance.

We fix this parameter to 0.16. The information on the FoF groups is used, for

example, for the subgrid model of AGN feedback at the seeding step.

Subfind is more sophisticated and time-consuming, and is run in post-

processing. In particular, Subfind enables to define gravitationally bound

structures. For a detailed description of this algorithm I refer to the original

paper by Springel et al. (2001b). Briefly, the scheme identify local maximum

in the density field, which is estimated at the position of each particle follow-

ing the SPH density interpolation (i.e., Eq. 2.20). The position corresponding

to the particle with the highest density is used as center of the putative sub-

structure, and the neighbouring particles with decreasing density are added

to the structure. The boundary of the structure correspond to the position

where a saddle point in the density field is found. After this first selection,

only gravitationally bound particles (i.e., with negative energy) are assigned

to the final structure. The position of all halos and subhalos from Subfind

will then be given by the position of the most bound particle within the

structure.

Regarding our cluster simulations, it is important to note that Subfind is

able to assign particles (DM, BHs, gas, and stars) to a cluster, and to find the

substructures within it. However, in the version of Subfind implemented in

GADGET-3 (Dolag et al. 2009), the BCG, ICL and ICM will all be assigned

to the same structure: the main halo. Therefore, a definition of the BCG in

our simulations will be only possible through a cut in the radial distance

from the center of the cluster. A different version of Subfind exists, which

employ the velocity distribution of the stellar particles in order to disentangle

BCG and ICL (Dolag et al. 2010). However, this last version is not currently

implemented in our code.
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Chapter 3

Super massive BHs - galaxy
clusters correlations

In this Chapter I investigate the correlations of central SMBH mass with

cluster mass and temperature by employing the set of cosmological hydro-

dynamical simulations centered on massive clusters described in Chapter 2. I

compare their scatter to that of the classicalMBH−MBCG relation. Moreover,

I study how gas accretion and BH-BH mergers contribute to SMBH growth

across cosmic time.

The specific aim is to answer the following questions: 1) Do numerical

simulations reproduce the observed T500 −MBH and M500-MBH relations?

2) Which are the processes that lead to the observed relations? 3) Do the re-

lations evolve with redshift? 4) Through which channels (e.g., gas accretion

or BH-BH mergers) do SMBHs grow in time? 5) Is M500 as good as MBCG as

a proxy for MBH?

The chapter is structured as follows: after a brief introduction in Sect. 3.1,

in Sect. 3.2 I add specific details of the numerical simulations used in this

work that were not described in Sect. 2.4. In Sect. 3.3 I detail how the quan-

tities of interest are computed from simulations and the method employed

for linear fitting. In Sect. 3.4 I present the results, that I discuss in Sect. 3.5.

Finally, in Sect. 3.6 I sum up the main conclusions.

The work presented in this Chapter is based on two papers that we pub-

lished on Astronomy & Astrophysics (Bassini et al. 2019) and on the Astro-

physical Journal (Gaspari et al. 2019):
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• Bassini, L.; Rasia, E.; Borgani, S.; Ragone-Figueroa, C.; Biffi, V.; Dolag,

K.; Gaspari, M.; Granato, G. L.; Murante, G.; Taffoni, G.; Tornatore, L.:

Black hole mass of central galaxies and cluster mass correlation in cosmo-
logical hydro-dynamical simulations,
Astronomy & Astrophysics, Volume 630, October 2019, id.A144, 16 pp.

• Gaspari, M.; Eckert, D.; Ettori, S.; Tozzi, P.; Bassini, L.; Rasia, E.;

Brighenti, F.; Sun, M.; Borgani, S.; Johnson, S. D.; Tremblay, G. R.;

Stone, J. M.; Temi, P.; Yang, H. -Y. K.; Tombesi, F.; Cappi, M.:

The X-Ray Halo Scaling Relations of Supermassive Black Holes,
The Astrophysical Journal, Volume 884, October 2019, Issue 2, article

id. 169, 41 pp.

3.1 Scientific context

In Chapter 1 we have seen that galaxies of every morphology host at their

center a SMBH, whose mass correlates well with the bulge properties of the

hosting galaxy and that the properties of the observed correlations might

help to discern the physical processes that drive them (see Sect. 1.4.1). In

particular, we discussed two possible explanations for the origin of such

relations: the first is based on the fact that the mass of both galaxies and

their SMBHs is regulated by AGN feedback and the second is a non-causal

connection driven by mergers.

For what concerns the former category, in Sect. 1.4.1 I described two theo-

retical models (Churazov et al. 2005, Gaspari & Sadowski 2017), which show

how a self-regulated feedback loop naturally leads to a tight correlation be-

tween SMBHs masses and hot atmospheric temperatures (or stellar velocity

dispersion). These theoretical expectations have been later observationally

probed by Bogdán et al. (2018) on cluster scales (see Fig. 1.23) and in Gas-

pari et al. (2019), where we showed that these correlations (particularly

the one regarding the X-ray temperature) hold also for non-central galaxies.

The model by Churazov et al. (2005) and the observations by Bogdán et al.

(2018) and Gaspari et al. (2019) will be used in this Chapter as a reference

to which compare our numerical results at z = 0.
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I recall that the argument on the origin of the correlations is not settled

yet (see Sect. 1.4.1). Indeed, Lakhchaura et al. (2019) confirmed the tight

correlation between the SMBH mass and the X-ray temperature measured

within few effective radii, but only when BCGs are considered (see Fig. 1.24).

This result has been interpreted by the authors as a signature of a non-

causal origin to the observed correlations. We will look at this argument in

Sect. 3.4.4, where I also study correlations involving non-central galaxies,

and in Sect. 3.4.7, where I study the typical number of mergers that SMBHs

undergo to put constraints on the origin of the observed correlations.

3.2 Simulations

The analysis presented in this Chapter is based on the simulations presented

in Sect. 2.5.1, the Dianoga set. In this section I will provide information

on the numerical resolution of this particular run, and the choice of the

parameters of the subgrid model for AGN feedback presented in Sect. 2.4.3.

In particular, these simulations are run at a mass resolution of mDM = 8.47×
108 h−1 and mgas = 1.53 × 108 h−1 for DM and initial gas particles. The

Plummer equivalent gravitational softening for DM particles is set to ε =

5.6 h−1kpc in comoving units at redshift higher than z = 2 and in physical

units afterward. The gravitational softening lengths of gas, stars, and black

hole particles are fixed in comoving coordinates to 5.6 h−1 kpc, 3 h−1 kpc,

and 3 h−1 kpc, respectively. In the next two sections I describe the particular

model used for the AGN feedback, while in Sect. 3.2.3 I show the results

regarding the BCG masses and the galaxy stellar mass function (GSMF) at

z = 0.

3.2.1 SMBHs positioning and feeding

SMBHs of mass 3.2×105 h−1 M� are seeded at the position of the most bound

particle of the structures identified by the FoF algorithm (see Sect. 2.6) that

simultaneously satisfy all the following conditions: (i) the mass of the FoF

group is higher than 8× 1011 h−1 M�; (ii) the stellar mass of the structure

is greater than 1.5× 1010 h−1 M�; (iii) the ratio between the gas mass and

the stellar mass is higher than 0.1; (iv) no other central SMBH is already

present. The mass of the seeding is consistent with the expectation of the
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direct collapse. Under these conditions, the seeding of the SMBH happens in

galaxies that have enough gas to promptly feed it.

A particularly tricky task is to ensure that SMBHs remain at the centre

of their structure once they are seeded, as most of the time their mass at

the current resolution is lower than the mass of DM particles. In order to

avoid wandering black holes, they are re-positioned at each time step on

the position of the most bound particle within the SMBH softening length.

This calculation is restricted to particles with relative velocity with respect to

the SMBH below 300 km s−1. This condition avoids that the SMBH particle

”jumps” into a close flyby structure that would displace it from the cluster

center.

Once the SMBHs are seeded, they can grow by accretion of the surround-

ing gas or by BH-BH mergers. The former is determined by the alpha en-

hanced Bondi accretion rate (Eq. 2.31), while two SMBH particles merge

whenever their relative velocity vrev is smaller than 0.5 × cs and their dis-

tance r is less than twice the SMBH softening length. When a BH-BH merger

happens, the SMBH particle of the most massive SMBH gains the mass of

the merged one.

3.2.2 AGN feedback and model calibration

From the gas accretion into the SMBHs particles given by the Bondi accre-

tion rate, it is then possible to derive the energy released by AGN feedback

through Eq. 2.32. This energy is then distributed and thermally coupled to

the nearest 200 gas particles. At this point, it is important to note that the

effect of AGN feedback is strongly related to the particular implementation

of the effective model for star formation presented in Sect. 2.4.1. Indeed,

when a particle is multi-phase, its temperature evolves to an equilibrium

temperature of ∼ 106 K (see Springel & Hernquist 2003, Sect. 2). Once an

external energy input is given to the particle, as it is the case for AGN feed-

back, deviations from the equilibrium temperature decay on time-scales that

are smaller then a typical time-step. As a result, the energy released by AGN

feedback is promptly lost if the effective model of star formation is active

(see the discussion in Appendix A4 by Ragone-Figueroa et al. 2013). In order

to avoid it, when AGN feedback deposits thermal energy to a particle, we

compute the temperature that the cold phase would have if all this energy
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was deposited to the cold phase of the particle. If this temperature is higher

than the average temperature of the particle before receiving energy from

AGN feedback, then the particle exits its multiphase state. Moreover, in order

to avoid that the particles that just received the energy re-enter the multi-

phase structure a few time-steps after, we also set a temperature threshold

(Tthre = 2.5 × 105 K) above which a particle can not become multiphase.

Note, however, that the temperature threshold only applies when we need to

decide if a particle becomes multiphase. If the particle is already multiphase,

the temperature threshold is not applied. Finally, in this model the energy

released by the feedback is coupled with both the hot and cold phases of gas

particles, with a proportion given by the masses in the two phases.

In Fig. 3.1 I show the calibration of the AGN feedback model used in

the simulations, which involve to find the best values of the parameters εr
and εf of Eq. 2.32. The calibration is based on the correlation between the

stellar mass of galaxies, M?, and the mass of their central SMBHs, MBH.

In the figure the small light-blue points represent non-central simulated

galaxies identified by Subfind (see Sect. 2.6), while dark-blue dots represent

simulated BCGs. The stellar masses of the BCGs are defined as the mass

enclosed in a sphere of radius 0.1×R500 around the position of the central

SMBH, while total stellar masses of non-BCGs are given as an output by

Subfind.

To calibrate the parameters for the AGN-feedback model we aimed at

reproducing the entire MBH −M? relation thus including the overall dis-

tribution of galaxies and not only BCG. These are, in particular, compared

with the observational data from McConnell & Ma (2013) represented in

the figure by the dashed line. The value of εr is fixed to 0.07 independently

of ṀBondi,α, while εf depends on the mode of the AGN: during the quasar

mode, meaning for ṀBondi,α/ṀEddington > 0.01, εf = 0.1, while during the

radio mode εf is increased to 0.7.

In the plot I also include other observational data, namely the BCGs from

McConnell & Ma (2013) and the samples from Savorgnan et al. (2016), Main

et al. (2017), Bogdán et al. (2018), and Gaspari et al. (2019). In Main et al.

(2017) SMBH masses are computed from K-band luminosities using the

relation log(MBH/M�) = −0.38(±0.06)(MK + 24) + 8.26(±0.11) suggested

by Graham (2007) and extracted from a sample of elliptical but not BCGs.

In all the other works the mass of the SMBHs are derived from dynamical
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Fig. 3.1: Correlation between stellar mass and SMBH mass in observations and
simulations. Small light-blue points represent non-BCG simulated galaxies,
large black dots represent simulated BCGs. Yellow, green, red, brown, and
orange crosses represent the observational data with their error bars taken
from McConnell & Ma (2013), Main et al. (2017), Savorgnan et al. (2016),
Bogdán et al. (2018), and Gaspari et al. (2019) respectively. The dashed
black line is a linear best-fit of the sample of different type of galaxies by
McConnell & Ma (2013). See text for details about MBH and M? definition
and measurement.

measurements. The BCG masses in McConnell & Ma (2013) and Bogdán

et al. (2018) are part of a compilation from previous literature and we refer

to the original papers and references therein for further information on the

methods employed to infer the stellar masses. In Savorgnan et al. (2016) the

stellar masses are computed from bulge luminosities assuming a constant

mass-to-light ratio, while in Gaspari et al. (2019) it is assumed a variable

M?/LK scaling as a function of the stellar velocity dispersion (see Gaspari

et al. 2019 for details). It should be noted that from Savorgnan et al. (2016)

only ellipticals are used, that are not necessarily BCGs. In Main et al. (2017)

the stellar masses are computed from K-band luminosity using the relation

log(M/LK) = −0.206 + 0.135(B − V ) given by Bell et al. (2003).
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Our main constraint during the calibration is that the observed correla-

tion between SMBHs mass and non-BCG galaxies (McConnell & Ma 2013,

dashed line) passes through the bulk of the simulated galaxies (small blue

points). We also care for an overall agreement at the BCG scales but with

less emphasis because of the scatter of the observed sample (McConnell &

Ma 2013) is high at the high mass end. Regarding the BCGs, we find that

the simulated BCGs are in a good agreement with observational data at both

ends of the mass range, but that the simulated points tend to stay above

observational data at M? > 1012 M�, although still inside their error bars.

This discrepancy does not necessarily highlight a poor description of the sim-

ulations since several factors need to be considered for a proper comparison.

First, the SMBH masses are computed by adopting different methods. For

example, those extracted by Main et al. (2017) are calibrated using a rela-

tion that does not include BCGs and, indeed, they are more aligned with the

non-BCG sample. Second, BCG stellar masses are computed using different

apertures in simulations and in the various observational samples. Further-

more, measurements of stellar mass from different works can disagree due

to the different assumptions made during the data analysis, such as the as-

sumed initial mass function, the adopted stellar mass-to-light ratio, distances,

and beam aperture. Dynamical measurements can significantly disagree in

particular when considering different tracers, such as stars versus circumnu-

clear gas, including different gas phases as warm and ionized versus cold and

molecular gas. The resulting differences among catalogs can be comparable

to the separation between simulated and observed data points. An example

is clearly represented in the figure by NGC 4889, the galaxy with the most

massive SMBH. This object is present in the Savorgnan et al. (2016), Mc-

Connell & Ma (2013), and Bogdán et al. (2018) samples and, while MBH is

identical because taken from the same source in the literature, the estimated

BCG mass can be different even by a factor of ∼ 2. This emphasizes the

intrinsic difficulty in defining the BCG stellar masses and, at the same time,

it quantifies a possible level of stellar mass difference among different works.

3.2.3 Galaxy mass properties

In our simulations the only tuning on the parameters of the subgrid models

concerning baryonic physics is done in order to reproduce two constraints:
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the Kennicutt-Schmidt relation for the star formation model and the Magor-

rian correlation for the AGN feedback model. It is then useful to see how the

predictions from the simulations compare to other observational constraints,

and in particular with the GSMF and the mass of the BCGs.

Since the stellar mass of the BCG will be extensively used in this Chapter,

we start from the correlation between the BCG stellar mass and the total mass

of the group/cluster. The results of the comparison are shown in Fig. 3.2. In

numerical simulations, the BCG stellar mass is computed considering all the

particles bounded to the main halo by Subfind and considering a 2D aperture

of 50 physical kpc (pkpc). Therefore, the mass comprises the BCG mass plus

the ICL along the line of sight. Simulations are in very good agreement with

the observations by Kravtsov et al. (2018) and DeMaio et al. (2018). This is

an important result, as in general simulations overshoot the stellar mass of

the BCGs (e.g., Bahé et al. 2017, Henden et al. 2019).

In addition to BCGs stellar mass, we compare with the observed galaxy

stellar mass function. For this comparison we first need to take into account

the fact that our simulations are centered on galaxy clusters, while the data

refers to the field1. Hence we expect to have in simulations a significant

higher normalization of the GSMF. Operatively, we define galaxy clusters

as spherical regions enclosing a mean matter density ∆ times the critical

density, ρcrit. Using the relation between ρcrit and the mean cosmic matter

density ρ̄:

ρcrit(z) = ρ̄(z)× [ΩM(1 + z)3 + ΩΛ]/ΩM(1 + z)3, (3.1)

and assuming that galaxies follow the DM distribution, it is necessary to

normalize our GSMF by

Nnorm = ∆× [ΩM (1 + z)3 + ΩΛ]/ΩM (1 + z)3, (3.2)

(see Vulcani et al. 2014, appendix B). In practice, I consider the most massive

cluster in each of our simulated regions and all its galaxies within R100 (i.e.,

∆ = 100) with the exclusion of the BCG, and then I normalize each mass bin

by Nnorm.

The stellar mass of each galaxy is computed using three different defini-

1The same conclusions are reached also when comparing to a GSMF measured in galaxy
clusters.



3.2 Simulations 79

13.5 14.0 14.5 15.0 15.5

Log10 M500 [M�]

11.2

11.4

11.6

11.8

12.0

12.2

12.4

12.6

L
og

10
M
?,

B
C

G
(<

50
kp

c)
[M
�

] DeMaio+18

Kravtsov+14

Dianoga

Fig. 3.2: Correlation between BCGs stellar mass and M500 at z = 0. Observations
are taken from DeMaio et al. (2018) (blacks quares) and Kravtsov et al.
(2018) (black triangles). The simulated values are shown as orange points.
BCGs masses are obtained summing over all stellar particles bound to the
main sub-halo of a group/cluster by Subfind (BCG+ICL) and within a 2D
aperture of 50 pkpc.

tions: the sum of all stellar particles that Subfind associates to a substructure

and the same sum limited to stellar particles within 30 pkpc and 50 pkpc

from the center. The different definitions are used since it is not feasible to

replicate the procedure used in observations. Indeed, in the observations

used for this comparison, the stellar mass is derived by fitting the surface

brightness profile which is then integrated to infinity and translated to a

stellar mass through a mass-to-light ratio. The results are shown in Fig. 3.3,

where I plot the GSMF obtained with the three definitions of stellar mass.

First of all, we can see that the GSMF obtained considering all the stellar

particles associated by Subfind to the substructures is larger than the one

obtained via the other definitions, as Subfind likely associate to massive

galaxies also a fraction of the intra-cluster light (ICL). Secondly, once a fixed

aperture is used, the simulated GSMF is below observations by a factor of
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Fig. 3.3: GSMF at z = 0. Observational data are taken from Bernardi et al. (2013)
(black solid line). Simulations data are derived considering as stellar mass
the sum of all stellar particles bound to the galaxy by Subfind (red tri-
angles), and the same sum restricted to particles within 50 pkpc (green
hexagon) and 30 pkpc (blue squares). Error bars are computed assum-
ing Poissonian errors. The simulated GSMF is normalized following Eq. 8.
Filled and empty marks represent the mass bins with respectively more
than and less than 10 galaxies.

two. As I will better show and discuss in the next Chapter, this is due to the

implementation of the AGN feedback. I anticipate, however, that even though

a better agreement in the GSMF normalization can be achieved through a

different AGN feedback implementation, this comes at the cost of increasing

the normalization of the M?,BCG −M500 correlation.

3.3 Method and samples

To investigate possible correlations between the central SMBHs and the

global cluster properties it is necessary to extract the cluster masses and

temperatures from the simulated regions. In addition, we need to calculate

the SMBH mass and the two contributions to its growth: the accretion of
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the surrounding gas and the merger with other SMBHs. In the following,

after specifying the definition of the cluster center, I describe how all these

quantities are computed.

Cluster center. As mentioned in the previous section, the SMBHs are always

positioned at the location of the most bound particle that should identify

the center of the host halo. Therefore, the SMBHs are followed back in time

to identify the position of the hosting halo center. For this goal, I saved at

z=0 the unique identification number of the most massive SMBH particle

which is within 10 kpc from the cluster minimum of the potential well, as

identified by Subfind. Subsequently, I tracked it back in time to the epoch of

its seeding. At each time, I checked that the SMBH is, as expected, at the min-

imum of the potential well of the hosting halo and not in a local minimum

generated by merging substructures. With this approach, a merger tree of

the central SMBHs is built rather than a merger tree of the clusters. It might

be expected that the two trees differ especially at early epochs (similarly to

the small differences between the BCG and the cluster merger trees pointed

out in Ragone-Figueroa et al. 2018, which used the same set of simulations

presented in this Chapter). However, I verified that for 80% of our systems

the main progenitor of the SMBH is at the center of the main progenitor of

the cluster up to z = 2 and for half of these the two trees coincide till the

time when the SMBH is seeded.

Cluster masses. Once the center is defined as above, I considered the total

gravitational mass of the cluster within an aperture radius R ≤ R500 com-

puted by summing over all the species of particles: dark matter, cold and hot

gas, stars, and black holes. At any redshift I considered only clusters with

Mcluster = M500 ≥ 1.4× 1013 M� or, equivalently, with at least 20 thousands

particles within R500. The properties of the mass-selected sample are sum-

marized in the top part of Table 3.1.

BCG stellar mass. The mass of the BCG, MBCG, is defined as the stellar mass

enclosed in a sphere of radius 0.1×R500 around the cluster center.

SMBH mass. Given the identification number of a SMBH particle, the mass

of the SMBH, MBH, at every redshift is quite easily retrieved from the simu-
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lation as it is the mass associated to that particle. The total mass of SMBH

particles grows in time because of two separate phenomena: through the ac-

cretion of the diffuse gas or via BH-BH mergers. In our simulations, these are

the only possible channels for the SMBH to increase its mass. The accretion

mass (Macc
BH) is obtained by integrating the accretion rate, information that

is saved at each time step. The merged mass (Mmer
BH ) is simply calculated as a

difference between the total mass and the accretion mass. As discussed later

in the chapter, the contribution to the SMBH mass by mergers is negligible

at z ≥ 1.5. Therefore the analysis of this component is restricted to lower

redshifts.

Temperature. In order to compare the results obtained in this chapter to

those from XMM-Newton observations I considered the spectroscopic-like

temperature (Mazzotta et al. 2004):

T500 =
∑

i

(
ρimiT

0.25
i

)/∑

i

(
ρimiT

−0.75
i

)
, (3.3)

where ρi, mi, and Ti are the density, mass, and temperature of the ith gas

particle within R500 emitting in the X-ray band, that is with Ti > 0.3 keV and

a cold fraction lower than 10 per cent. In order to have a reliable estimation

of the temperature inside R500 I imposed two conditions: a minimum of

104 hot gas particles and a maximum fraction of 5 per cent of gas particles

discarded because too cold. All clusters satisfying these requirements have

also M500 > 1.4× 1013 M�, thus whenever I consider measurements of tem-

perature I refer to a subsample of the mass selected-sample. The properties

of the temperature-selected subsample are summarized in the bottom part of

Table 3.1 and the analysis of this subsample is restricted to z ≤ 1 because at

the highest redshift bins, z = 1.5 and z = 2, we do not have enough statistics

to apply a meaningful analysis.

Best-fitting procedure. For all the considered relations, I search for the best-fit

power law in the form:

log(Y/Y0) = a+ b× log(X/X0), (3.4)

where log always indicates the decimal logarithm. Temperature, cluster mass,
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Table 3.1: Number of clusters, range of mass or temperature covered and their
mean values for the mass samples (in the first half) and temperature
subsamples (in the second half).

M samples
z N M500 [1014M�] < M > [1014M�]

0.0 135 0.14-25.83 2.94
0.5 114 0.14-14.11 1.65
1.0 85 0.14-5.15 0.99
1.5 59 0.14-2.48 0.69
2.0 37 0.15-1.59 0.52

T subsamples
z N T500 [keV] < T > [keV]

0.0 93 0.80-10.81 3.27
0.5 62 0.80-8.89 2.97
1.0 35 0.95-5.84 3.01

BCG stellar mass, and SMBH mass are always normalized by the same fac-

tors, expressed above as X0 or Y0 and respectively equal to 2 keV, 1014 M�,

1011 M�, and 109 M�.

To find the best-fit curve, I employed an IDL routine that is resistant

with respect to outliers: ROBUST LINEFIT2. For the simulated data, I always

considered the BISECT option, recommended when the errors on X and Y are

comparable so that there is no true independent variable. This is particularly

appropriate in the case of numerical simulations where no errors are linked

to measurements. To estimate the error associated with the parameters of

the best-fitting relation, ten thousand bootstrap samples has been generated

by randomly replacing the data. From the resulting distributions I derived

the mean values and the standard deviations to be associated, respectively,

with the parameters and their errors. All relevant best-fitting coefficients of

the linear regressions are reported in Table 3.2 and will be discussed in the

next two sections.

3.4 Results

2https://idlastro.gsfc.nasa.gov/ftp/pro/robust/robust linefit.pro
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Fig. 3.4: Correlation between SMBH mass,MBH, and the clusters temperature, T500.
Red and orange crosses refer to observational data from Bogdán et al.
(2018) and Gaspari et al. (2019) respectively. Dark-blue dots represent
simulated clusters in the temperature subsample while cyan stars show
the remaining objects of the mass sample. Dashed red line is the prediction
of the toy model by Churazov et al. (2005).

3.4.1 Comparison with observational data

In this section I compare the numerical results to the observations presented

in Bogdán et al. (2018), where the correlation between the mass of the

SMBHs in BCG and the global temperature of clusters and groups of galaxies

is presented. I also complement this analysis with the more recent data

of Gaspari et al. (2019)3. Bogdán et al. (2018) derived the temperature

from XMM-Newton observations of the hot gas; In Gaspari et al. (2019) we

used published data of Chandra and wide-field ROSAT/XMM Newton. The

extraction region for both is on average ∼ 0.2R500 (core included; As shown

by Bogdán et al. (2018), such temperature is a good proxy for T500) .

In Fig. 3.4 I show the correlation between MBH and T500 for both sim-

3This sample includes not only massive galaxies in groups and clusters, but also isolated
and spiral galaxies.



3.4 Results 85

ulations and observations. In the figure I also show as a dashed red line

the results of the simple toy model by Churazov et al. (2005) 4, which even

under simplified assumptions reproduces the observed correlation. Results

from simulations agree overall well with observations. Nevertheless, a more

quantitative comparison between the two samples is difficult for an under-

representation of clusters with T500 > 2 keV in the observational sample that,

however, has a good number of systems below 1 keV.

In order to better populate the colder and less massive tail of the simu-

lated cluster distribution I compare the correlation between MBH and M500

by using the mass sample rather than the less-numerous temperature sub-

sample (Table 1). In Bogdán et al. (2018) the total mass was not measured

directly from their data but was derived from the temperature via the scaling

relation by Lovisari et al. (2015):

M500 = 1.11× 1014(kT/2 keV)1.65M�. (3.5)

For this reason, before analyzing the MBH-M500 relation, it is helpful to

compare the observed and simulated T500-M500 relations. The observed and

simulated data sets are shown in Fig. 3.5 together with the best-fitting linear

relations. In case of the observed sample it has been verified that our fitting

procedure, without the BISECT option, returned the same parameters of

Eq. 3.5. In particular the value of the slope reported in Lovisari et al. (2015)

(b = 1.65± 0.07), is confirmed.

By looking at Fig. 3.5, a good agreement between simulated and observed

clusters is found in the temperature range covered by Lovisari et al. (2015).

However, the extrapolation of their best-fit line suggests a possible difference

in the hottest-clusters regime. The two slopes agree within 1σ, but the ob-

served clusters have on average slightly higher temperature with respect to

simulated clusters at fixed mass. For example, the temperature of observed

clusters is 9 per cent higher at M500 = 1014 M�. This feature is not new and

has been already noted in Truong et al. (2018), where a similar set of nu-

merical simulations is employed, and, more interestingly, in other numerical

analysis, such as Henden et al. (2018). In particular, in their work the au-

thors show that numerical results are in agreement with observations if are

considered only cluster masses derived via weak lensing. This suggests that
4Equation 7 of Churazov et al. (2005) with δE = 10−4, t9 = 1, Λ(T ) as defined in Tozzi

& Norman (2001) with Z = 0.3 Z�, and T = 3 × 106 σ200 K
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Table 3.2: Parameters of all best-fitting lines derived with the procedure described
at the end of Sect. 3.3. For each (X,Y) pair of data, I fit the formula:
log(Y/Y0) = a + b × log(X/X0) where the normalizations, X0 or
Y0, are equal to 2 keV, 1014M�,1011M� and 109M�, respectively, for
T,M500,MBCG, and all SMBH masses: MBH,M

mer
BH , and Macc

BH . The pa-
rameters a, b, and σ and their errors are the mean and standard deviation
values of the distributions obtained by applying the procedure to ten
thousand bootstrapping samples. The asterisks indicate that the analysis
is performed to the temperature subsample.

(X,Y ) a b σY |X
z = 0
M500, T

∗ 0.10± 0.01 1.71± 0.03 0.07± 0.01
T,M∗BH 0.52± 0.02 1.28± 0.06 0.16± 0.02
M500,MBCG 0.75± 0.01 0.66± 0.01 0.10± 0.01
MBCG,MBH −0.42± 0.03 1.16± 0.04 0.14± 0.01
M500,MBH 0.45± 0.02 0.76± 0.03 0.18± 0.02
M500,M

mer
BH 0.20± 0.02 0.73± 0.04 0.23± 0.02

M500,M
acc
BH 0.03± 0.02 0.83± 0.04 0.25± 0.02

z = 0.5
M500, T

∗ 0.05± 0.01 1.73± 0.04 0.08± 0.01
T,M∗BH 0.48± 0.03 1.49± 0.11 0.24± 0.03
M500,MBCG 0.68± 0.01 0.69± 0.02 0.13± 0.01
MBCG,MBH −0.42± 0.03 1.25± 0.05 0.16± 0.02
M500,MBH 0.43± 0.02 0.86± 0.04 0.23± 0.02
M500,M

mer
BH 0.06± 0.03 0.92± 0.06 0.34± 0.04

M500,M
acc
BH 0.15± 0.03 0.90± 0.06 0.27± 0.03

z = 1
M500, T

∗ −0.07± 0.01 1.72± 0.05 0.06± 0.01
T,M∗BH 0.46± 0.04 1.70± 0.22 0.22± 0.03
M500,MBCG 0.67± 0.01 0.73± 0.03 0.11± 0.01
MBCG,MBH −0.42± 0.04 1.45± 0.07 0.19± 0.02
M500,MBH 0.56± 0.04 1.06± 0.08 0.27± 0.03
M500,M

mer
BH 0.12± 0.04 1.21± 0.17 0.40± 0.09

M500,M
acc
BH 0.35± 0.05 1.07± 0.09 0.30± 0.03

z = 1.5
M500,MBCG 0.69± 0.02 0.77± 0.05 0.12± 0.02
MBCG,MBH −0.38± 0.05 1.58± 0.10 0.22± 0.02
M500,MBH 0.71± 0.05 1.25± 0.11 0.30± 0.04
M500,M

acc
BH 0.55± 0.06 1.27± 0.11 0.33± 0.05

z = 2
M500,MBCG 0.67± 0.02 0.75± 0.06 0.11± 0.03
MBCG,MBH −0.33± 0.08 1.76± 0.20 0.26± 0.05
M500,MBH 0.85± 0.08 1.35± 0.15 0.34± 0.04
M500,M

acc
BH 0.72± 0.10 1.37± 0.16 0.36± 0.04
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Fig. 3.5: Correlation between cluster mass, M500, and cluster temperature, T500.
Symbols as in Fig.3.4, where the observational data are taken from Lovis-
ari et al. (2015). Dashed lines are the best-fitting lines for both simulated
and observed data.

the observed X-ray hydrostatic masses are biased low, as already described

in Chapter 1 (see Sect. 1.2.1).

Finally, in Fig. 3.6 I compare the correlation between MBH and the M500

as measured in simulations and as derived by Bogdán et al. (2018) and

Gaspari et al. (2019). The results of the comparison are expected from the

previous two figures: the simulated data points are in line with observations,

especially at high (M500 > 3 × 1014 M�) and low masses (M500 < 3 ×
1013 M�). In the intermediate mass range, the few observed data points

tend to have slightly higher SMBH masses than the simulated objects. This

apparent mis-match is presumably a consequence of the poor statistics of

1014 M� objects in the observational sample. More unlikely, this feature

could suggest a broken power law to describe the MBH −M500 relation, but

such a drastic change in the slopes is difficult to justify.
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Fig. 3.6: Correlation between SMBH mass, MBH, and cluster mass, M500. Symbols
as in Fig.3.4.

3.4.2 The theoretical MBH-M500 relation

Since the simulated sample is in overall good agreement with the observed

correlation between the mass of the central SMBHs and the mass of the

clusters, I investigate here how single simulated systems evolve throughout

time to form, by z = 0, the MBH −M500 relation shown in Fig. 3.7. For this

goal, three evolutionary tracks of representative SMBHs are over-plotted.

These objects are chosen accordingly to their mass at z = 0; specifically,

they refer to a small, a medium-mass, and a massive SMBH. To have some

temporal reference I also indicated four specific times along each line: z = 3,

z = 2, z = 1, and z = 0.

Despite the different final masses, the evolutionary tracks of the three sys-

tems have strong similarities which are common also in all the other objects

analyzed (not shown for sake of clarity). Three phases are clearly distinguish-

able. At the highest redshifts, the mass of the SMBHs grows rapidly at almost

constant M500. This track begins instantaneously as the SMBHs are seeded
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Fig. 3.7: Evolutionary tracks of three different systems on the MBH-M500 plane.
Triangles over each line indicate the position of the systems on the plane
at z = 3, z = 2, z = 1 and z = 0. Black circles represent our numerical
sample at z = 0; the filled ones are systems for which M500 is increased by
more than 40 percent in the last Gyr.

in a gas rich region. The SMBHs immediately gain mass at the Eddington

limit by the accretion from the abundant surrounding gas, which is mostly

cold and thus efficient at increasing the SMBH mass. This phase typically

lasts half Gyr and can lead to the formation of SMBHs with a mass already of

the order of MBH ≈ 108 − 109M�, in line with other hydrodynamical cosmo-

logical simulations (e.g., McAlpine et al. 2018). The fast SMBH growth ends

when the MBH is high enough to cause an intense feedback that leads to the

ejection of part of the gas outside the shallow potential wells of the hosting

galaxies. By then, all SMBHs in our sample are close to the MBH −M500

relation. This happens before z = 2 and in some cases even at z > 4.

After this initial phase, the cluster and its central SMBH co-evolve, but not

with a linear evolutionary track: the increase of the SMBH and cluster masses

is not simultaneous. The shape of the tracks, instead, can be described as a

stairway: the systems evolve in this plane either at almost constant MBH or
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at almost constant M500. The former situation occurs during cluster mergers.

It starts when merging structures reach and cross R500 leading to a quick

increment of the total cluster mass and finishes when the secondary objects

are fully incorporated. These horizontal shifts in the MBH-M500 plane typi-

cally last 1 Gyr or less and only in the rare cases when multiple mergers are

subsequently taking place they can last up to 2 Gyr. In the following period,

spanning from 1 to 3 Gyr, the substructures move towards the center of the

cluster and neither the SMBH mass nor the cluster mass change. Eventually,

the merging objects reach the core and either feed the central SMBH with

gas or induce a BH-BH merger or both. The event is captured by the vertical

movement in the plot.

All these time-frames are clearly indicative as they depend on several

parameters that characterize the merger events such as the mass ratio and

the impact parameter. Nonetheless, it is always the case that the mass of the

SMBH and of the cluster are for the largest majority of time at the connection

between the horizontal and vertical steps rather than along their tracks. This

behavior indicates that the scatter of the relation might differ when the

sample is selected according to the dynamical status of the SMBH hosts. We

expect that the points related to relaxed BCG in relaxed clusters will always

be above the points linked to systems where either the BCG or the cluster

are experiencing, or just experienced, a merger event. Indeed, we can expect

that relaxed and perturbed systems are respectively located in the plot on

the top and the bottom of the vertical segments. In favor of this picture, it

is noticeable that the 20 clusters whose M500 grows by more than 40 per

cent in the last Gyr (shown as black points in Fig. 3.7) have SMBHs that on

median are 50 per cent smaller than those expected to follow the M500-MBH

relation.

3.4.3 Evolution of the MBH-M500 relation

After the inspection on the trajectory of individual objects I study here the

evolution of the entire M500-MBH relation. I start with the evaluation of the

ratio between the mass gained by clusters and by central SMBHs between

z = 2 and z = 0: ∆M = Mz=2/Mz=0, where M refers to either the total

mass, M500, or the SMBH mass, MBH. If these two ratios are constant, the

slope of the relation will not change. The resulting ratios are shown in
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Fig. 3.8: Ratios between cluster (SMBH) masses at z = 2 and cluster (SMBH)
masses at z = 0 as a function of the cluster masses at z = 0. Clusters
are shown as green squares and SMBHs as yellow triangles. The sample
used is the mass-selected sample identified at z = 2.

Fig. 3.8 as a function of the cluster total mass reached at z = 0 for the mass

sample identified at z = 2. From the plot, it can be clearly inferred that the

variation in total mass between the two epochs is strongly mass dependent.

The absolute value of the slope of the best-fitting ∆M500 −M500 relation is,

indeed, greater than 0.75. Clusters with a final mass lower than 1014 M�

increase their total masses by a factor between 3 and 6. Instead, massive

clusters with final M500 > 1015 M� increase their mass on average by a

factor of about 30 with individual objects that can grow by more than two

orders of magnitude. This feature is completely in line with the expectations

of hierarchical clustering.

The high mass regime is particularly characterized by a large spread that

is representative of what we might expect from a volume-limited sample be-

cause the most massive objects,M500 > 1015 M� correspond to the most mas-

sive systems of the parent volume-limited cosmological box (see Sect 2.5.1).

Vice versa, the scatter for the smallest systems is likely under-estimated.
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Fig. 3.9: Correlation between MBH and M500 at different redshifts. At every redshift
I show the best-fitting relation in the mass range of the respective samples.
Namely, I show in green, orange, red, magenta, and blue the mass sample
related to z = 2, 1.5, 1, 0.5 and z = 0, respectively.

Indeed, the linear trend is expected to flatten for the lowest masses to a

constant growth rate value. On the other side, Fig. 3.8 also shows that the

variation on the SMBHs mass is independent of the cluster mass and that

SMBHs grow on average by a factor of about 5-6. As a consequence we

expect a marked evolution of the slope of the MBH-M500 relation between

z = 2 and z = 0.

This is confirmed in Fig. 3.9 where the best-fitting lines for our mass

samples at all redshifts considered are plotted. The relations are steeper at

higher redshifts: the value at z = 2, b = 1.348, is almost twice the value

found at z = 0, b = 0.753. From Fig. 3.8 and Fig. 3.9 follows that the change

in the slope is mainly driven by the different evolution rate of the most

massive clusters with respect to the smallest objects, trend that is in line with

the expectations from ΛCDM cosmology.
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Fig. 3.10: Correlation between SMBH mass and atmospheric temperature in simu-
lations and observations. Red points represent observations by Gaspari
et al. (2019). Dark-blue points represent the 135 groups and clusters ana-
lyzed in our simulations, where TX is computed within R500. Cyan points
are satellite galaxies in our simulations with at least 100 gas particles as
associated by Subfind. For these galaxies TX is computed from the gas
particles associated by Subfind to the structure and with TX > 0.1 keV.

3.4.4 MBH − TX correlation in non-central galaxies

In Fig. 3.4 I showed the correlation between central SMBH and cluster tem-

perature. In this section I extend the analysis to SMBHs within satellite

galaxies. The results are presented In Fig. 3.10, where I show the correlation

between the X-ray temperature of galaxies and their central SMBH mass at

z = 0. Red points refer to the observational sample of Gaspari et al. (2019),

while the dark-blue points refer to the 135 groups and clusters already ana-

lyzed in the previous sections with the temperature computed as explained

in Sect. 3.3 (i.e., considering X-ray emitting gas particles within R500). Cyan

points show satellite galaxies within our simulations. Since the gas tempera-

ture is involved, only galaxies with at least 100 gas particles (as associated

to the galaxy by Subfind) are represented, in order to have a reliable value
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for TX . The latter is computed considering only particles with TX > 0.1 keV

through Eq. 3.3. From the plot it is clear that SMBH mass exhibits a good

correlation with X-ray temperature, also in numerical simulations. It is im-

portant to note that this result is not a genuine prediction, as AGN feedback

is calibrated to reproduce the Magorrian relation (see Sect. 3.2). Since it can

be expected that more massive systems are also characterized by a higher

hot halo temperature, the results shown in Fig. 3.10 may be a result of the

subgrid model calibration. Moreover, even though the scatter around this

correlation is very similar between simulations and observations (0.23 and

0.25 respectively), the slope in simulations is shallower than in observations

(1.34± 0.03 and 2.14± 0.13 respectively). This last feature, together with the

smaller scatter around the Magorrian relation with respect to observations

highlighted in Sect. 3.2.2, hint that there is space for improvement in the

current implementation of the subgrid model for AGN feedback. Nonetheless,

it is still interesting to see that simulations predict a correlation also for non-

central and less massive systems. Clearly, this result comes in contrast with

the observations by Lakhchaura et al. (2019) which show a much weaker

correlation for non-central elliptical galaxies and lenticulars.

Even though the results shown in Fig. 3.10 suggest that the correlations

are not a consequence of mergers, since they hold at both mass ends for both

central and satellite galaxies, the dependence of the results on the employed

subgrid model prevent us from drawing general conclusions. Therefore, to

constrain the origin of the observed correlation it is useful to study the two

channels responsible for the SMBH mass growth. As before, first I focus

on the SMBH at the center of BCG (next section), while I will explore the

number of mergers for SMBHs within all simulated galaxies in Sect. 3.4.8.

3.4.5 Evolution of SMBH mass

To better understand how the black hole mass of central SMBHs evolves with

time I separately study the two mechanisms that contribute to the growth of

the SMBH mass: the accretion of the diffuse gas, Macc
BH , and the merger with

other SMBHs, Mmer
BH . First, I analyze how the mass of single SMBH evolves

with time via the two separate channels. As an example in Fig. 3.11 I plot

the evolution of the three SMBHs shown in Fig. 3.7. As already noted before,

the evolution is characterized by an initial phase of intense gas accretion
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Fig. 3.11: Evolution of the mass of black holes showed in Fig. 3.7. The solid lines
represent the mass of the black holes due to gas accretion. Dashed lines
represent mass gained via BH-BH mergers.

that for these three systems is approximately between z = 5 and z = 3. After

that, SMBHs still grow by gas accretion but at a much smaller rate. On the

contrary the increase of the SMBH mass due to BH-BH mergers becomes

more important and it is the main channel of the SMBH mass growth at

lower redshifts, that is z ≤ 1 for the two most massive SMBHs and z ≤ 0.5

for the smallest one.

In Fig. 3.12 I show the evolution of the complete sample. I plot the

median behaviors with a solid line and the 68 per cent of the total sample

distributions (from the 16th to the 84th percentiles) with the shaded regions.

The total SMBH mass and the masses gained from the two channels are

normalized with respect to the total SMBH mass at z = 0. Finally, the dashed

vertical lines help to identify three significant times: z = 0.5, 1, and 2.

From the SMBH seeding up to z ≈ 2 the total mass of the SMBH grows

almost entirely by gas accretion. Half of the final mass gained through gas

accretion is, indeed, accumulated before z = 2. Then from z ∼ 2 to z ∼ 1

the mass growth due to BH-BH merger becomes more relevant increasing
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Fig. 3.12: Evolution of SMBH mass divided into two growth channels (gas accre-
tion in red and BH-BH mergers in blue) considering the complete sample.
In black we also plotted the total SMBH mass. Solid lines represent me-
dian values of our sample and shadowed regions represent 16 and 84
percentiles.

at a rate comparable to the growth rate of Macc
BH . By z = 1 Mmer

BH makes up

on average 25 per cent of the total mass at that redshift. At lower redshift,

z < 0.5, BH-BH mergers provide the main channel for SMBH mass growth,

and eventually Mmer
BH represents the main component of mass gained by

z = 0, in line with some previous results (e.g., Volonteri & Ciotti 2013;

Dubois et al. 2014; Weinberger et al. 2018). Indeed, the mass accumulated

by gas accretion from z = 1 to z = 0 accounts only for 10 per cent of the

total final mass, while during the same period the SMBH gains 50 per cent

of its final mass via mergers.

The relative importance of the two channels shown in the figure is, how-

ever, characterized by a large scatter. I, therefore, explored whether this is

due to the broad mass range investigated and, thus, whether the described

behavior depends on the mass of the systems. I divided the sample in three
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Fig. 3.13: Same as Fig. 3.12 but considering only clusters with M500 > 1015M� at
z = 0.

mass bins: at z = 0 the least massive objects have M500 below 1014 M�, the

most massive above 1015 M�, and the intermediate in between these two

thresholds. The results show that the trends of the relative ratio of the two

SMBH growth channels are extremely similar to Fig. 3.12 for the samples

of the smallest and intermediate objects. This result is expected for the first

mass bin since it is the most numerous, containing 84 objects, but it was

not guaranteed for the intermediate sample with only 31 systems. The most

massive sample, however, is on average characterized by a continuous and

equivalent growth of both channels after z = 2 (see Fig. 3.13). As a result, at

z = 0 Macc
BH accounts for ≈ 60 per cent of MBH. That said, it has to be noticed

that the scatter remains very large and the distributions related to the two

channels show a large intersecting area. Therefore, it can be concluded that

the scatter shown in Fig. 3.12 is not related to the total mass of the systems.

The stronger relative influence by the SMBH accretion with respect to the

BH-BH merger in most massive clusters can be due to two different factors:

on the one hand AGN feedback is not able to completely balance gas cooling,
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on the other hand BH-BH mergers could be less frequent. In the following I

show some evidence that both phenomena are actually in place.

To demonstrate that the AGNs are less efficient in regulating the gas

cooling in the cores of massive clusters I computed the total energy released

by AGN feedback at z < 1 and related it to the gas mass within 0.1×R500. I

find that the ratio of the two quantities is a strongly decreasing function of

M500 and that it changes by more than a factor of 10 from the least massive

to the most massive systems. This suggests that the heating provided by the

AGN feedback is relatively smaller for large objects where, therefore, the gas

cooling is less contrasted. The central SMBH has therefore more cold gas at

its disposal.

To test the reduced frequency of BH-BH merger, I computed at z = 0 the

number and mass of SMBHs which are inside 0.1×R500 and are not bound

to any substructure. I find that 80 per cent of the most massive systems (16

objects over 20) have several SMBHs in that central regions with a total mass

greater than 10 percent of the mass of the central SMBH. Analysing the first

mass bin (M500 < 1014M�), instead, only 10 per cent of clusters have enough

SMBHs able to account, all together, for at least 10 per cent of the mass of

the central SMBH. This is mostly due to the fact that more massive clusters

host more massive and extended BCGs. When the substructures interact with

these well-established BCGs they are more easily disrupted (see Sect. 3.4.6

for further details) at a larger radii, preventing or delaying mergers between

their SMBHs and the central SMBH.

3.4.6 Recent growth of SMBH and stellar component

In our simulations the SMBH mass increases by a factor of ∼ 2.5 between

1 > z > 0. Ragone-Figueroa et al. (2018) found instead, selecting the most

massive cluster in each Lagrangian region, that the central stellar component

measured within 30 kpc features a significant smaller growth. I checked that

the growth factor of central SMBHs remain unchanged also considering this

reduced subsample. This difference is due to the fact that in our simulations

many substructures colliding with the BCG at z < 1 are largely disrupted

and their stars quickly become part of the ICL or settle in the outermost radii

of the BCG itself. This feature confirms some previous results. For example,

Murante et al. (2007) shows that the bulk of the star component of the ICL
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Fig. 3.14: Evolution of M?,in, defined as the stellar mass inside a spherical region
of radius 30 kpc, SMBH mass, and M?,out, defined as the total mass of
the stars enclosed in a spherical shell with radii 30 kpc and 100 kpc. All
the quantities are normalized to their respective values at z = 0. Solid
lines represent median values and shadowed regions represent 16 and
84 percentiles. The three different blue lines represent three definition
of M?,out. In particular the thin blue solid line is the stellar mass in a
spherical shell with radii 100 kpc and 200 kpc while the dashed blue line
is the stellar mass in a spherical shell with radii 50 kpc and 350 kpc.

originates during the assembly of the most massive galaxies in a cluster (and,

in particular, of the BCG) after z ∼ 1.

To visualize this effect, whose detailed study will require a dedicated

analysis, I simply compared the evolution of the SMBH mass and the in-

ner stellar component, defined as M?,in = M?(r/kpc < 30). Furthermore,

I added a measure of the outer stellar component, defined as M?,out =

M?,not−bound(30 < r/kpc < 100). The ”not-bound” identification specifies

that all stars which are gravitationally bound to substructures identified by

Subfind and different from the BCG have been excluded. M?,out, therefore,

comprises both the ICL and the outermost stellar mass of the largest BCG in

the sample. The median values of ∆M?,in, ∆MBH and ∆M?,out are computed
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z = 0 (lower panel). Blue points represent the mass gained by mergers
while red points represent the mass gained by gas accretion. Dashed lines
represent best fitting lines to the data.



3.4 Results 101

after the normalization to their respective mass values at z = 0.

I considered 30 kpc forM?,in because I wanted to evaluate the changes on

the stellar component in the immediate surrounding of the SMBH; further-

more, this was used in Ragone-Figueroa et al. (2018) as one of the possible

definition of the BCG mass. For the outer component, instead, I also consid-

ered the mass of the unbound stars measured in other two spherical shells:

between 100 kpc and 200 kpc and between 50 kpc and 350 kpc. As clear from

Fig. 3.14, the choice of this region does not substantially change the conclu-

sions: while M?,in slowly increases from z = 1 to z = 0, the SMBH mass and

M?,out rapidly increase. At z = 1, indeed, the quantities are about 80 per-

cent, 45, and 35 per cent of their final values, respectively. The remarkable

agreement between the two extra definitions of the outer stellar component –

M?,not−bound(100 < r/kpc < 200) and M?,not−bound(50 < r/kpc < 350), thin

blue solid and dashed line in Fig. 3.14 – implies that the growth rate of the

ICL is independent on the specific radius used.

The final emerging picture is that many small substructures actually reach

the cluster core and merge with the BCG. However, few of their stars remain

in the innermost region. The interaction with the BCG causes that most stars

of the structures are tidal shocked and stripped. Subsequently, they become

gravitationally unbound thereby taking part of the ICL. During the disrup-

tion of the substructures, their most massive SMBHs feel the gravitational

attraction of the underlying potential and sink towards the minimum of the

cluster potential contributing to the growth of the SMBH at the center of

the BCG. It has to be noted, however, that the modeling of BH-BH mergers

is very simplistic and could overestimate the efficiency of this physical pro-

cess which take place at a scale well below the gravitational softening of the

simulations.

3.4.7 The MBH −M500 relation for the two SMBH growth chan-
nels

Given that at z = 1 and z = 0 the SMBHs have grown from both channels

(through gas accretion and BH-BH mergers), it is relevant to check whether

the SMBH mass of the two channels are separately both related to the total

mass or whether only one exhibits a tight correlation while the other mostly

contributes to increase the scatter. This possibility is investigated in Fig. 3.15
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where both Macc
BH and Mmer

BH as a function of M500 have been considered at

z = 1 (upper panel) and at z = 0 (lower panel). As we have seen, at z = 1

the gas accretion is the dominant channel. In Sect. 3.4.5, we saw that this

channel shows only a slight increment from z = 1 to z = 0. For this reason,

the red points, referring to Macc
BH are substantially unchanged in the two

panels. Viceversa, Mmer
BH becomes the dominant component at z = 0. The

results of the linear fits of the relations are reported in Table 3.2 also for the

other redshifts.

From the figure, it is evident that both masses correlate well with M500 at

both redshifts independent of which one of the two is the dominant channel

from the SMBH mass growth. From the table, we notice that the slopes of

the two relations are consistent within 1 σ being the z = 1 slightly steeper as

expected from the Sect. 3.4.3. Most importantly, the two scatters are similar

and both slightly higher than the scatter of the relation of the total SMBH

mass (see Table 3.2).

Finally, it is important to emphasize that Fig. 3.9 suggests that the MBH−
M500 relation is already in place at z = 2 when the SMBH mass was almost

entirely gained only by gas accretion. These results enlighten that, at least

in our simulations, mergers are not essential to establish the relation at first.

3.4.8 MBH −MBH mergers in non-central galaxies

In Sect. 3.4.5 we have studied the growth of SMBH at the center of BGGs/BCGs,

concluding that it is equally contributed by accretion of gas and BH-BH merg-

ers. Therefore, the latter can play an important role in the evolution of these

exceptionally massive objects. However, we can expect the situation to be

sensibly different for satellite galaxies, where a much smaller number of BH-

BH mergers is expected. To have a qualitative idea on the typical number of

mergers experienced by simulated SMBHs of different masses, in Figs. 3.16,

3.17, 3.18, and 3.19 I show the typical merger trees for SMBH whose fi-

nal masses are M ∼ 108 M�, M ∼ 5 × 108 M�, M ∼ 5 × 109 M�, and

M ∼ 1010 M� respectively. It is clear from the plots that the complexity of

the trees increases with the SMBH final mass, as SMBHs of M ∼ 108 M�

experience only few mergers, while SMBH with M ∼ 1010 M� are character-

ized by up to ∼ 20 mergers during their evolution.

To study the number of mergers that different SMBH undergoes in our
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Fig. 3.16: SMBH merger tree for a typical SMBH of MBH ∼ 108 M� in our sim-
ulations. Points are colour-coded according to the mass of the SMBH
particle.
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Fig. 3.17: Same as Fig. 3.16, but for a typical SMBH of MBH ∼ 5× 108 M�.
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Fig. 3.18: Same as Fig. 3.16, but for a typical SMBH of MBH ∼ 5× 109 M�.
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Fig. 3.20: 2D histogram on the MBH −M? plane at z = 0. Each bin is colour-coded
by the median number of major (M2/M1 > 0.25) BH-BH merger events
encountered along the whole merger tree of each z = 0 BH particle.

simulations in a more statistical way, in Fig. 3.20 I show a 2D histogram on

the MBH −M? plane colour-coded by the median number of major mergers

experienced by the SMBHs in each bin. In this analysis a major merger is de-

fined considering a ratio > 0.25 between the masses of the merging SMBHs,

while the stellar mass of galaxies is computed considering all stellar parti-

cles associated to the galaxy by Subfind and within a spherical aperture of

30 pkpc. Moreover, the number of major mergers is computed along all the

SMBH merger tree and not only for the main branch. At this point, it is also

important to remind that the number of mergers within numerical simula-

tions has to be considered as an upper limit. Indeed, the subgrid prescriptions

for BH-BH mergers are quite simplistic and limited by the resolution of the

numerical simulations: as described in Sect. 3.2, two BHs particles merge

whenever their distance is lower than two softening lengths, i.e. ∼ 10 kpc.

This roughly means that a BH-BH merger event always happens during a

merger between two massive galaxies (massive enough to host a central

SMBH).
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From Fig. 3.20 we see that most of the simulated SMBHs do not ex-

perience more than 2 major mergers, with only the most massive SMBHs

(MBH > 109 M�) being characterized by a larger number of merger events,

and just a few cases with N ∼ 10. Since from a theoretical point of view

it is expected that the scatter around the MBH −M? correlation scales like

∼ 1/
√
N , being N the number of major mergers, a non-causal origin to the

observed correlation would requireN ≈ 30, hence a drop in the scatter down

to 1/
√

30 ' 0.18 (see, e.g., section 4.1.4 by Gaspari et al. 2019). Indeed, in

the works by Peng (2007) and Jahnke & Macciò (2011) the proxy for uncorre-

lated distributions is taken to be a dispersion of 2 dex and 3 dex respectively.

In these cases, to reproduce the observed value of the scatter around the

MBH −M? correlation of 0.40 as reported by Gaspari et al. (2019), the num-

ber N of mergers required would be 25 and 56 respectively. Therefore, the

result obtained disfavour the non causal origin of the correlation.

Apart from the requirement of a large number of BH-BH mergers, a cor-

relation driven by a non-causal origin would be characterized by two charac-

teristic features: (i) a decreasing scatter toward higher masses, where N is

expected to be larger; (ii) a convergence toward a linear relation. However,

as I show in Table 3.3, in our simulations the scatter does not show any

particular trend with respect to N . Interestingly, we also note that the slope

of the relation is steeper at increasing value of N , departing from the linear

correlation, in clear contrast with theoretical predictions based on BH-BH

mergers. Therefore, even if these arguments can not be considered as con-

clusive given the uncertainties regarding the employed subgrid models and

possible dependence on the numerical resolution of the simulations, which

will be investigated in future works, the set of numerical simulations ana-

lyzed in this Chapter suggest a causal connection between SMBH and hosting

galaxies where the observed correlations are driven by AGN feedback.
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Table 3.3: Results of linear regression for the MBH −M? correlation in the form
Log(MBH) = α + β Log(M?). Different rows refer to different samples
selected by the numbers of major mergers (first column) that SMBHs
undergo along the whole merger tree.

Nmerger α β σ

all −6.65± 0.09 1.37± 0.01 0.17
0 −4.61± 0.15 1.18± 0.01 0.17

[1, 3] −7.87± 0.23 1.48± 0.02 0.18
> 3 −10.2± 1.1 1.69± 0.09 0.20

3.5 Discussion

As previously remarked the correlation between the BCG mass and the SMBH

mass has been diffusely studied and often used to extract the mass of the

SMBH knowing the mass of the hosting galaxy. In Bogdán et al. (2018), the

authors found in their observed sample that the scatter between the SMBH

mass and the global cluster properties is tighter by almost 40 per cent than

the scatter of the MBH −MBCG relation. Indeed, in their Table 4 they report

σMBH|MBCG
= 0.61 and σMBH|T = 0.38. The values of the scatters increase

in the later analysis by Phipps et al. (2019) because of the method used to

derive MBH, the authors suggest. Despite, also in that case the two intrin-

sic scatters in MBH are comparable between each other. As a consequence,

the global properties of cluster within R500 are also suitable to estimate the

SMBH mass. I show in Sect. 3.4.1 that the distribution of our simulated data

is in reasonable agreement with the observations by Bogdán et al. (2018)

and Gaspari et al. (2019), who used dynamical measurements of MBH. I

demonstrate that for our simulated objects there is a clear correlation be-

tween the mass of the SMBHs, located at the minimum of the potential well,

and the temperature or total mass of the clusters within R500. In this section I

discuss the properties of all the relations related to central SMBHs described

in this Chapter and listed in Table 3.2.

To this end I refer to Fig. 3.21 where I show the covariance matrix be-

tween the deviations of all the quantities of interest from their best-fitting

relations, that are their residual at fixed mass. These are defined as logarith-

mic differences between the actual value, generically referred as X, and the
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Table 3.4: Correlation matrix. Each element represents the Spearman coefficient of
the quantities of interest. The three values refer to z = 0, z = 0.5 and
z = 1 respectively. The values in bold have probability to be different
from 0 below 0.2 per cent.

δ(T500) δ(MBCG) δ(MBH) δ(Macc
BH)

δ(MBCG) 0.498— 0.072 — 0.255
δ(MBH) 0.322 — 0.210 — 0.355 0.557 — 0.693 — 0.694
δ(Macc

BH) 0.310 — 0.243 — 0.267 0.288 — 0.405 — 0.485 0.684 — 0.804 — 0.865
δ(Mmer

BH ) 0.230 — 0.087 — 0.277 0.612 — 0.751 — 0.679 0.777 — 0.753 — 0.737 0.190 — 0.304 — 0.384

expected value, XFIT, from the X −M500 relations5 provided in Table 3.2:

δ(X) = log[X/XFIT]. (3.6)

The deviations are computed for each quantityX = T500,MBCG,MBH,Mmer
BH ,

Macc
BH . The panels above the diagonal refer to z = 1 while those below

to z = 0. The diagonal panels show the distribution of δ(X) at z = 0. I

used the temperature subsample whenever δ(T500) is considered. For each

pair of deviations I listed the Spearman correlation coefficients in Table 3.4

computed at z = 0, 0.5, 1 and I marked in bold the correlations whose

probability to be consistent with zero is less than 2 per thousand and its

module is greater than 0.4. A strong correlation between δ(MBH) and δ(X)

is converted into a small scatter in the relation MBH −X.

As previously commented, the scatter σMBH|T500
is comparable to σMBH|M500

(see Table 3.2). As a consequence, the temperature and the total cluster mass

are equally good proxy for the SMBH mass. The similarity between these

two proxies can be explained by looking at the correlation between δ(T500)

and δ(MBH) in Fig. 3.21. The panels for the two considered redshifts, z = 0

and z = 1, highlight how the variations of cluster temperature are not di-

rectly reflected into variations of the SMBH mass. At first sight, this can be

surprising as one could expect that both quantities are strongly dependent

on the dynamical activities of the cluster core and, especially, sensitive to

merger events that impact the innermost region of the clusters. However, the

response of the temperature and the SMBH mass to merger is not simultane-

ous: we saw in Sect 3.4.2 that the typical delay between the increase of the

MBH after a merger can be around 1-3 Gyr, while the temperature increase

typically occurs in less than 1 Gyr from the merging episode. In addition, the

5The (M500, TX) relation has previously been inverted into (TX ,M500).
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Fig. 3.21: Covariance matrix. Each axis represents the logarithmic difference be-
tween the actual value of a quantity X and the expected value from the
linear relation (X-M500) at its fixed mass, as defined by Eq. 3.6. Panels
above the diagonal refer to z = 1 while panels below the diagonal refer
to z = 0. The diagonal panels show the distribution of δ(X) at z = 0. Red
points define clusters which have experienced a mass growth of at least
40% during the last Gyr.

rapid increase of the ICM temperature is followed by a small drop caused

by the expansion of the shock towards the more external regions. This tem-

perature oscillation along with the mismatch between the two time-delays

explain why the correlation coefficients between δ(T500) and all MBH compo-

nents are always low and with a high probability to be consistent with zero.

These characteristics are also in place when the temperature variations are

compared with the variation on the SMBH mass due to BH-BH mergers.

When comparing, instead, the scatter of the relation between the SMBH
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mass and the cluster properties with the scatter of the MBH−MBCG relation,

we find that σMBH|MBCG
is smaller at all times. At redshift z = 0, for example,

σMBH|M500
is ≈ 25 per cent larger, although the two scatters are in agreement

between 2σ. The difference between the scatters is more significant at z ≥ 1

where typically σMBH|M500
is ≈ 1.4 × σMBH|MBCG

. In the covariance matrix

formalism this translates into a correlation between δ(MBCG) and δ(MBH).

Indeed, at z ≤ 1 the correlation is ≥ 0.55. Moreover, the correlation is

stronger if computed with respect to Mmer
BH when it reaches values around

0.7. As we can see from Fig. 3.21, the correlation at z = 0 is significant

for the presence of situations of either pre-mergers or mergers with a large

impact parameter when both MBCG and MBH (and in particular Mmer
BH ) are

smaller than the average of the sample at fixed total mass (i.e., their δ is

negative). At z = 1, we also notice a correlation between the variations of

the two quantities in the other direction (both δ(MBCG) and δ(Mmer
BH ) greater

than zero) implying that the SMBHs that gained mass through z ≥ 1 mergers

are hosted in BCG with higher stellar mass with respect to the average of the

sample.

In Fig. 3.7, I show that the scatter of the MBH − M500 relation is in-

fluenced by the presence of the systems that recently experienced a major

merger. Indeed, all objects that increased their total mass by at least 40 per

cent in the last Gyr are in the bottom part of the overall distribution (see

Sect. 3.4.2 and Fig. 3.7). In Fig. 3.21 I identify these objects as red points.

In the majority of the cases their variations with respect to the mean are

negative. When we exclude these objects and reapply our fitting procedure6,

we find that the scatter of the MBH−M500 relation reduces by almost 20 per

cent (σMBH|M500
= 0.14 ± 0.01), it remains comparable to the re-computed

scatter of the MBH − T500 relation (σMBH|T500
= 0.14± 0.02) and consistent

with the new σMBH|MBCG
= 0.13± 0.01. In other words, even if the removal

of the dynamically active objects induces a decrease in the scatters of all

of the three relations, the most important reduction impacts the scatter at

fixed total mass, reducing the gap between σMBH|MBCG
and the scatter of the

relations involving global cluster properties.

6The best-fitting relations of the samples derived by excluding the clusters with recent fast
accretion are:
MBH/(109M�) = 100.49±0.02 × (M500/1014M�)0.77±0.03;
MBH/(109M�) = 100.56±0.02 × (T/2keV)1.32±0.06;
MBH/(109M�) = 10−0.41±0.03 × (MBCG/1011M�)1.17±0.04.
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In the interpretation of these results from simulations, it is important to

remember that the simulated data do not reproduce the observed scatter of

the MBH −MBCG relation (Fig. 3.1 and also Ragone-Figueroa et al. 2013;

Bogdán et al. 2018). On one hand the growth of simulated SMBHs is regu-

lated by simplistic subgrid models that do not capture all physical processes

in place and might lead to a reduced scatter. On the other hand, as explained

when discussing Fig. 3.1, a large portion of the observed scatter around the

MBH −MBCG relation can be ascribed to observational uncertainties associ-

ated either with the quantity definition (e.g., treatment of intra-cluster light,

BCG boundary definition) or with the measurement procedures (e.g., not

fixed aperture mass for the BCG or application of scaling relation to infer

the SMBH mass). In simulations, instead, the BCG and SMBH masses are

always known and precisely defined. These arguments not only provide a

possible explanation for the difference between the simulated and observed

scatters but also underline that the errors on the measures of MBCG de-

rived from observations are not easily reducible. The estimate of the SMBH

mass from the BCG mass can always be subject to these uncertainties. The

global cluster properties are also subject to systematics, which however can

be treated as follows. A systematic bias on the global temperature can be

dealt with precise instrument calibration or with multi-temperature fitting.

The uncertainties on the total mass are reduced when measurements coming

from various wavelengths are combined, such as mass reconstruction from

gravitational strong and weak lensing, galaxy dynamics, SZ, and X-ray. These

considerations, along with the limited difference in the relation scatters, em-

phasize how the global cluster properties can be powerful proxies for the

SMBH mass. This conclusion is even stronger at high redshift, such as z = 1.

As a final comment, we note that in this analysis the correlation between

MBH and the stellar velocity dispersion has not been considered. This analy-

sis could add important pieces of information, since a few authors still regard

the MBH − σe as the fundamental one (e.g., Shankar et al. 2016). Unfortu-

nately, the current numerical resolution of the simulations does not allow

a reliable estimate of this quantity. Therefore, this analysis is left for future

works.
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3.6 Summary

In this Chapter I showed that a number of observations found strong cor-

relations between the mass of SMBHs at the center of galaxy clusters and

global properties of the cluster itself, like its mass (M500) and its X-ray tem-

perature (T500). Interestingly, the scatter around this correlation was found

to be lower than the one around the so called Magorrian correlation, i.e.

MBH −M?. Moreover, even though there is a general consensus on the pres-

ence of such correlations (MBH − M500, MBH − T500), their origin is still

debated. In the work led by Gaspari we showed that the correlation involv-

ing X-ray temperature is not limited to clusters and groups, but is indeed the

tightest relation involving all the SMBHs with mass measured by dynamical

means (Gaspari et al. 2019). This evidence has been regarded as an indi-

rect proof in favour of a physical connection between SMBHs and hosting

galaxy/groups/clusters (Gaspari & Sadowski 2017, Gaspari et al. 2019). On

the other hand, Lakhchaura et al. (2019) found that correlations involving

X-ray temperature are present only when SMBHs central to groups and clus-

ters are considered, while for non-central galaxies this correlation is absent.

This result hints that the observed correlations are driven by mergers.

To discern the physical processes that drive the observed correlations,

in this Chapter I studied correlations involving central SMBHs and cluster

properties in our cosmological simulations. After showing the agreement

between numerical results and the observational data at z = 0, I explored

how the relation between the SMBH mass and the cluster mass establishes

by looking at the co-evolution of these quantities in individual systems. I

then looked at the evolution of the entire sample considering four different

times (z = 0.5, 1, 1.5, and 2). Finally, I characterized the role played by the

two channels (accretion of gas and BH-BH merging) for the SMBH growth,

for both SMBHs in BCGs and satellite galaxies. The main results can be

summarized as follows.

• The MBH −M500 relation at z = 0 originates from a non-simultaneous

growth of the SMBH and of the cluster. In particular, objects evolve

on the MBH −M500 plane either at almost constant MBH or at almost

constant M500. After the seeding, SMBHs immediately gain mass at

the Eddington limit by the accretion from the abundant surrounding

gas, which is mostly cold and thus efficient at increasing the SMBH
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mass. This phase typically lasts half Gyr and can lead to the formation

of SMBHs with a mass already of the order of MBH ≈ 108 − 109 M�.

The fast SMBH growth ends when the MBH is high enough to cause an

intense feedback that leads to the ejection of part of the gas outside

the shallow potential wells of the hosting galaxies. After this phase, the

systems lie on the MBH−M500 relation. Subsequent evolution is driven

by the rapid increase of the cluster total mass during cluster mergers.

These phases typically last 1 Gyr. After that, the substructures move

towards the cluster center and, eventually, reach the core feeding the

central SMBH with gas and/or inducing a BH-BH mergers. Clusters

that recently experienced major merger events are in general below

the mean relation.

• In our simulations, SMBHs grow by two different channels. Gas accre-

tion is the most relevant channel at redshift z > 2 and the only player

at the earliest times. The accretion is slowed down only when the

SMBHs are massive enough to balance gas cooling via AGN feedback.

At lower redshift (z = 1) one quarter of the SMBH mass is ascribed

to mergers. From that time to z = 0 the BH-BH merger contribution

becomes progressively more important. Indeed, mergers contribute by

about 60 percent of the total z = 0 SMBH mass on average. Since the

contribution to the z = 0 MBH is almost equally contributed by gas

accretion and BH-BH mergers, the observed correlation is the result

of both these two processes that operated at different times. I remark,

however, that even though mergers are important for the evolution

of these SMBHs, a correlation is already in place at z = 2, when gas

accretion is the only important contributor to MBH.

• The MBH −M500 and MBH − T500 relations present a similar scatter,

meaning that they are equally valid SMBH mass proxy. On the other

hand, the scatter of the MBH − MBCG relation, at z = 0, is ≈ 25%

lower in our simulations, although the two values are in agreement

within 2σ. However, it is important to stress that the observed scatter

of the MBH −MBCG relation is larger then the simulated one, mainly

for two reasons: the numerical limitation of a simplistic description of

SMBHs growth and the large uncertainties affecting the observational

measurements of both SMBH and BCG masses. That said, when the
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most dynamically active objects are discarded from the sample, the

scatters of all relations (MBH −MBCG, MBH −M500 and MBH − T500)

become similar, thus strengthening the predicting power of the cluster

global quantities on the mass of the central SMBH.

• Finally, even though BH-BH mergers represent an important channel

for central SMBH growth, the same is not true for SMBHs at the center

of satellite galaxies. In this case, the typical number of major mergers

that SMBHs withMBH < 109 M� undergo along the whole merger tree

is Nmerg . 4. Since it would require Nmerg ≈ 30 (e.g., Gaspari et al.

2019) to completely explain the observed correlations involving MBH

by means of BH-BH mergers, our numerical simulations suggest that

SMBHs and hosting galaxies are causally connected.



Chapter 4

Star formation rate in
Protocluster regions

In this Chapter I study the star formation rate (SFR) in 12 of our cosmo-

logical hydrodynamical simulations of galaxy (proto-)clusters in the redshift

range 0 < z < 4, comparing them to recent observational studies; I also

investigated the effect of varying the parameters of the star formation model

on galaxy properties such as SFR, star-formation efficiency, and gas fraction.

The Chapter is structured as follow: after a brief introduction in Sect. 4.1,

in Sect. 4.2 I describe the simulations set up, with particular focus on the AGN

feedback implementation and the subgrid star formation model. In addition

the BCGs properties and the stellar mass function at z = 0 will be compared

with observations. In Sect. 4.3 and Sect. 4.4 I compare the predicted SFRs

in protocluster regions with the available observations at z ∼ 2 and z ∼ 4

respectively, and I analyze the main sequence of star forming galaxies at both

redshifts. In Sect. 4.5 I show the evolution of the mass normalized SFR in

clusters and protoclusters. In Sect. 4.6 I study gas related properties of our

simulated galaxies, in comparison with observations, before concluding with

a summary of the results in Sect. 4.7.

The work presented in this Chapter is based on the paper published on

Astronomy & Astrophysics:

• Bassini, L.; Rasia, E.; Borgani, S.; Granato, G. L.; Ragone-Figueroa, C.;

Biffi, V.; Ragagnin, A.; Dolag, K.; Lin, W.; Murante, G.; Napolitano, N.

R.; Taffoni, G.; Tornatore, L.; Wang, Y.:
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The DIANOGA simulations of galaxy clusters: characterising star forma-
tion in protoclusters,
Astronomy & Astrophysics, Volume 642, October 2020, id.A37, 19 pp.

4.1 Scientific context

In Chapter 1 we have seen that today galaxy clusters are populated by mas-

sive ellipticals, whose stellar population is typically very old, with stars nearly

as old as the Universe. Both observations (see Fig. 1.6) and theoretical mod-

els (see Fig 1.7) suggest that these massive galaxies are subject to passive

evolution at z < 1 and have formation times zf & 2. For these reasons, it is

expected that protocluster regions at high redshift (z & 2) are characterized

by very high star formations rates.

At these high redshifts, structures lack the presence of a massive virial-

ized halo and often multiple less massive halos are spread over large scales

(see Sect. 1.3.1). This is in line with theoretical expectations from numeri-

cal simulations, which predict a hierarchical formation of massive clusters

formed by the assembling of smaller halos that at z = 2 might occupy a

region as large as 20 cMpc (see Fig. 1.12).

Since at this redshift protoclusters are not virialized, it is difficult to

detect them with techniques based on the ICM properties. Hence different

methods have been used, such as those based on galaxy over-densities. This

approach, however, can bias the results, depending on the galaxy properties

used for the selection. In this respect, an important population of galaxies

are DSFG. As discussed in Sect. 1.3.1, these galaxies are supposed to be the

progenitor of local massive ellipticals, and trace the dusty star-forming phase

of protoclusters.

As shown by Granato et al. (2015)1, numerical simulations have been

unable to reproduce the high SFRs observed in protoclusters characterized

by overdensities of DSFGs, as simulations lack sufficiently high peaks of

star formation activity at early epochs. Indeed, Granato et al. (2015) found

that the bulk of star formation in the progenitors of massive galaxy clusters

occurred at higher rates and lasted less than in simulations. However, at the

1In his work, Granato et al. (2015) used the Dianoga set run with the same mass resolution
as the simulations presented in Chapter 3, with a slightly different implementations of the
hydro-solver and subgrid models. See Granato et al. (2015) for further details.
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time only observations accessible with the Herschel satellite were available,

with information only on the integrated SFR on the Mpc scale. In the last few

years, with instruments like ALMA, it has been possible both to resolve single

sources within protoclusters and have information on the galaxy cold gas

content (e.g., Wang et al. 2018, Gómez-Guijarro et al. 2019, Hill et al. 2020).

On the simulations side, we produced a new run of the Dianoga simulations

at a ten times higher mass resolution, needed to resolve higher density peaks

and related higher SFRs. Hence, times are ready for a deeper inspection on

the simulations capability of reproducing protocluster properties around the

time of their formation.

4.2 Simulations

The work presented in this Chapter is based on the 12 zoom-in simulations

D1, D2, D3, D4, D5, D6, D7, D9, D10, D18, D22, D25 (i.e., the five smaller

clusters and seven massive objects listed in Table 2.1). The masses of the

particles in the high resolution region are mDM = 8.44 × 107 h−1M� for

DM and mgas = 1.56 × 107 h−1M� for the initial gas particles. This mass

resolution is ten times higher than the one employed for the simulations

presented in Chapter 3, to which I will refer as LR simulations. The Plummer

equivalent gravitational softening used for DM particles is 4.2 h−1 comoving

kpc (ckpc) for z > 2 and 1.4 h−1 physical kpc (pkpc) otherwise. The softening

lengths for gas, star, and black holes (BHs) particles are 1.4 h−1, 0.35 h−1,

and 0.35 h−1 ckpc respectively.

4.2.1 SMBHs positioning and feeding

Similarly to the procedure already described in Sect. 3.2, we define dur-

ing run time groups of particles using the FoF algorithm. Hence, BHs are

spawned at the center of each FoF group with a seed mass of 4×105 h−1 M�.

The conditions for the seeding are the same used for the LR simulations

(see Sect. 3.2.1), with the exceptions of conditions (i) and (ii), where we

decreased the mass thresholds on the conditions due to the improved reso-

lution. In particular, the mass threshold imposed on the FoF group is now

1011 h−1 M�, and the threshold on stellar mass is 2× 109 h−1 M�.

As the simulation evolves, the presence of wandering BHs is avoided by
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adopting a different strategy with respect to the set of simulations presented

in Chapter 3. In the previous implementation we pinned the BHs, meaning

that we re-positioned them at each time step at the location of the most

bound particle of a halo. Here, instead, we assign to the BH a large dynamical

mass and we employ low values of star and BH particles softening lengths.

Namely, the BH dynamical mass at seeding is imposed to be equal to the

DM particle mass until the actual BH mass outgrows that value and the

softening values are four times smaller than before, once re-scaled to the

higher resolution. These numerical prescriptions are sufficient to mimic a

dynamical friction without the necessity to explicitly include a dynamical

friction force (Steinborn et al. 2016). Even though this scheme performs

overall well at the current numerical resolution, BH centering remains a

major challenge for our numerical simulations, and it still can happen that a

BH moves from the center of a structure. This is particularly problematic in

cluster simulations, where the spurious removal of the SMBH at the center of

the BCG might easily lead to catastrophic cooling, with resulting high BCG

mass and SFR of the order of ∼ 103 M� yr−1 at z ∼ 0. Indeed, in 1 out of

the 12 simulations employed in this Chapter, the proto-BCG looses its central

BH at z ∼ 4, and is characterized by an exceedingly high SFR at z = 0. Even

though it is not an issue for the conclusions of this analysis (see Sect. 4.6),

the problem needs to be addressed in future simulations.

After the BH particles are seeded, they can grow by accretion of the

surrounding gas (following Eq. 2.31), and by merger with other BHs. The

conditions applied for the mergers of two BHs are the same as the ones

described in Sect. 3.2.1, with the addition of the third condition: |Vpot,rel|+
v2

rel < 0.5×c2
s, where vrel is the relative velocity between the two BH particles,

cs is the sound speed and Vpot,rel is the difference between the gravitational

potentials computed at the positions of the BH particles.

4.2.2 AGN feedback and model calibration

The AGN feedback is implemented accordingly to the scheme already de-

scribed in Chapter 3 with two main modifications. First, in this implementa-

tion we do not use a temperature threshold to define multiphase gas particles.

Second, the energy released by AGN feedback is not used to evaporate the

cold phase of gas particles, but it is only coupled to their hot phase. As I will
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Fig. 4.1: Correlation between the galaxies stellar mass and the central SMBHs mass.
Observational data are taken from McConnell & Ma (2013) (dashed black
line) and from Gaspari et al. (2019) (red circles). The simulated stellar
masses for satellite galaxies (cyan points) are obtained considering the star
particles, bound to the substructure (accordingly to Subfind) and within 50
pkpc from its center. The mass of the central galaxies (dark-blue squares)
is obtained by summing over all stellar particles within an aperture of
0.15×R500.

show in Sect 4.2.3 these modifications are motivated by the fact that this

implementation results in a better agreement between the simulated galaxy

stellar mass function and the observed one, with the side effect of producing

too massive BCGs at z = 0 (see Sect. 4.2.4).

As done for the LR simulations, the values of εf and εr of Eq. 2.32 are

chosen in order to reproduce the observed normalization of the Magorrian

relation (Magorrian et al. 1998). In particular, we aim at reaching agree-

ment with the observational results reported by McConnell & Ma (2013)

and more recently by Gaspari et al. (2019). The value chosen for εr is 0.07

independently of ṀBondi,α, while εf is lower than 1 and fixed equal to 0.15

only in quasar-mode, when ṀBondi,α/ṀEddington > 0.01. The values of both

parameters are different from the ones chosen for the LR simulations (see
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Sect. 3.2.2). This is not surprising, because the two set of simulations dif-

fer in the implementation of the AGN feedback, and even more importantly

in the numerical resolutions. Indeed, the model for AGN feedback has not

reached a strong convergence yet, meaning that each time the resolution of

the simulation is changed, the parameters have to be re-calibrated accord-

ingly.

In Fig. 4.1 I show numerical results in comparison with observations. In

the plot, dark-blue squares represent central galaxies, defined as galaxies at

the centre of groups with at least 100 substructures. All other simulated galax-

ies are represented by light-blue points. Stellar masses of non-central galaxies

are computed considering the star particles associated to the substructures

identified by Subfind and within a sphere of 50 pkpc. Stellar masses of cen-

tral galaxies are computed considering an aperture of 0.15×R500 to match

the aperture used by Gaspari et al. (2019). We note that even though sim-

ulations correctly reproduce the normalisation of the observed correlation,

the scatter is still under-reproduced, especially at the high mass end. Indeed,

the intrinsic scatter around the observed correlation of Gaspari et al. (2019)

is σ = 0.40 ± 0.03, while it is a factor of two lower in our simulations2

(σ = 0.20). As discussed in Sect. 3.2.2, even though the observed scatter can

be marginally boosted by uncertainties in the assumptions made to obtain

these quantities from observational data (e.g. star formation history, IMF,

metallicity, etc.), the most probable explanation for this difference is that

the subgrid models adopted do not capture the diversity of conditions of BH

accretion and AGN feedback at small scales.

4.2.3 Galaxy stellar mass function

Again, since our models have been calibrated only to match the SFE in galax-

ies and the Magorrian relation, it is interesting to study the prediction of our

simulations regarding other galaxy properties. First, I start by comparing the

observed and simulated GSMF. Since the observed GSMF is computed in the

field, I use the same normalization for the simulated GSMF as discussed in

Sect. 3.2.3. The stellar mass of each galaxy is then computed using three

different definitions: the sum of all stellar particles that Subfind associates

2For the linear regression we used the public Python package linmix
(https://github.com/jmeyers314/linmix), which accounts for measurement errors in
both the dependent and independent variables.
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Fig. 4.2: Galaxy stellar mass function (GSMF) at z = 0. Observational data are
taken from Bernardi et al. (2013) (black solid line). Simulations data are
derived considering as stellar mass the sum of all stellar particles bound
to the galaxy by Subfind (red triangles), and the same sum restricted to
particles within 50 pkpc (green hexagon) and 30 pkpc (blue squares).
Error bars are computed assuming Poissonian errors. Filled and empty
marks represent the mass bins with respectively more than and less than
10 galaxies.

to a substructure and the same sum limited to stellar particles within 30

pkpc and 50 pkpc from the center. The results are shown in Fig. 4.2, where

I plot the GSMF obtained with the three definitions of stellar mass. Results

from simulations agree with observations from Bernardi et al. (2013) start-

ing from the stellar mass of galaxies that can be considered as well-resolved

in our simulated set (M? > 1010 M�). The main difference with respect to

observations is around 1010 M�, where simulations have too many galax-

ies. As noted by Henden et al. (2019), larger values of the softening length

numerically decrease the number of galaxies at these masses. However, an

investigation of the stellar feedback will be needed to better describe the

GSMF at our low-mass end. In particular, adopting a variable mass loading

factor as suggested by Muratov et al. (2015), with larger values at lower
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stellar masses, will likely help to improve the agreement with observational

results. Regarding the different definitions of stellar mass, there is no statis-

tical difference in the results once a fixed aperture is used, as Subfind likely

also associates a fraction of the ICL to massive galaxies. The good agreement

with observational data is an improvement with respect to the GSMF relative

to our LR simulations (see Fig. 3.3). In that case, I showed that the GSMF

was a factor of approximately two below the results of Bernardi et al. (2013)

at M? ∼ 1011 M�. This difference, as I discuss in the following subsection,

is not due to the increased resolution but to the different implementation of

the AGN feedback.

4.2.4 Properties of the BCG

In this section I study the properties of our BCGs at z = 0. In particular I

study their mass and their SFR.

M?,BCG −M500 correlation

In Fig. 4.3 I show the correlation between the stellar mass of the BCG and

M500. In this plot, M?,BCG is defined as the total stellar mass associated

to the halo (according to Subfind) and within a 2D aperture of 50 pkpc. I

checked that using different line-of-sight directions brings no more than 40%

difference in the estimated stellar mass, with a median difference of 2% for

our sample. In the plot, I also highlight the properties of the BCG that lost

its central BH at z ∼ 4 (see Sect. 4.2.1).

From the figure, we see that this set of simulations tends to have overly

massive BCGs with respect to observational data (a factor of two at M500 =

3× 1014 M�), in line with the findings of other groups (e.g. Bahé et al. 2017,

Pillepich et al. 2018, Henden et al. 2019). Moreover, these simulations have

more massive BCGs than our LR simulations (orange line in the plot, see

also Fig. 3.2), being a factor of 2.3 more massive at M500 = 3 × 1014 M�.

A possible explanation could be the different resolution. However, in order

to investigate this hypothesis we ran a simulation at a ten-times-lower mass

resolution and obtained only a ∼ 12% lower BCG mass. Hence the BCG

mass is very stable against the mass resolution of the simulation (see also

the discussion in Ragone-Figueroa et al. 2018). To check whether or not

the different results with respect to LR simulations are due to the different
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Fig. 4.3: Correlation between BCG stellar mass and M500 at z = 0. Observations
are taken from DeMaio et al. (2018) (blacks quares) and Kravtsov et al.
(2018) (black triangles). The simulated values are shown as blue points.
The red hexagon refers to the BCG that lost its central BH (see Sect. 4.2.1).
The orange line is the fit to LR simulations (Ragone-Figueroa et al. 2018).
BCG masses are obtained summing over all stellar particles bound to the
main subhalo of a group or cluster by Subfind (BCG+ICL) and within a
2D aperture of 50 pkpc.

implementations of the AGN feedback adopted, we ran two more simulations:

one at the current mass resolution and the other with a ten-times-lower

resolution, both implementing the same AGN prescription as that in Ragone-

Figueroa et al. (2018) (i.e., the same adopted for the simulations presented

in Chapter 3). I recall that in this setup, gas particles need to be colder

than a fixed temperature threshold to be considered multiphase and the

energy released by the AGN feedback is used to evaporate the cold gas (see

Sect. 3.2.2). Even in this case, there is no particular trend with resolution, the

results being in agreement within 5%. Moreover, the BCG masses obtained

in these last two runs are in agreement within 30% the results of our LR

simulations (orange line in Fig. 4.3). In addition, with the Ragone-Figueroa

et al. (2018) setup, together with a lower BCG mass, we also get a lower
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normalisation for the GSMF, in line with the results presented in Sect. 3.2.3.

We conclude that the different BCG masses are not due to the increased

resolution but to the different prescriptions for the AGN feedback. In par-

ticular, not including a temperature threshold for particles to become multi-

phase reduce the efficiency of AGN feedback. Indeed, after receiving thermal

energy and exiting the multiphase stage, particles are still found in very

dense regions. Therefore, they rapidly re-become multiphase, losing the en-

ergy gained from AGN feedback within the two-phase ISM model of star

formation (see also the discussion in Sect. 3.2.2). Finally, with the current

implementation of feedback, we conclude that it is difficult to simultaneously

reproduce both the observed MBCG −M500 relation and the GSMF. In this

respect, it is however always important to keep in mind that observational

data are affected by different uncertainties. In the context of the stellar mass

function, the main source of uncertainty is the algorithm used to assign to

each galaxy a value of M?/L (Bernardi et al. 2017). Apart from the GSMF of

Bernardi et al. (2013) that we used in Fig. 3.3, other works based on different

values for the stellar to mass ratio report lower normalization for the GSMF,

especially at the highest mass end. A lower normalization for the observed

GSMF would enable to reach a better agreement between observations and

simulations for the BCG stellar masses. However, it is still unclear which

method to derive the M?/L in observations is the more accurate (Bernardi

et al. 2017).

Star formation rate of BGCs

In Fig. 4.4 I show the SFR of our simulated BCGs in comparison with ob-

servational data. Observations are taken from McDonald et al. (2018) and

constitute a subsample of the BCGs used in Fraser-McKelvie et al. (2014).

The original selection has been made considering all galaxy clusters in a

volume-limited sample, z < 0.1, with a measured X-ray luminosity in the

ROSAT 0.1 − 2.4 keV band LX > 1044 erg s−1. This luminosity cut ensures

a completeness > 80% for the cluster sample (see Fraser-McKelvie et al.

2014). Moreover, selecting the sample on cluster properties rather than BCG

properties enables us to correctly account for low values of SFR and non-

detections. However, it has been noted that the SFRs published in Fraser-

McKelvie et al. (2014) lack important k-corrections which lead to biased
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Fig. 4.4: Star formation rate of BCGs in observations and simulations. Grey circles
are BCGs of our simulations from different snapshots, while the grey tri-
angle represents the BCG that lost its central BH at z ∼ 4 (see Sect. 4.2.1).
BCGs from the same snapshot are shifted only for visualisation purposes.
The median values are shown as blue circles and the vertical bars indicate
the range between the 16th and 84th percentiles. A 2D aperture of 30 pkpc
is used. Red squares are BCGs from the sample of McDonald et al. (2018)
(see text for more details).

results (see Green et al. 2016). McDonald et al. (2018) recomputed the SFRs

using 12 µm flux following the procedure of Green et al. (2016) for all the

clusters with LX > 3.3× 1044 erg s−1. The final sample comprises 33 objects

and is complete above the cut in X-ray luminosity. In grey I show the re-

sults of our simulations. I emphasise that the BCGs are taken from the same

simulated regions at different redshifts, and therefore are not independent.

In blue I plot the median value with 16th and 84th percentiles. To mimic

the selection of McDonald et al. (2018), I considered only the 11 clusters

with M500 > 2.8 × 1014 M� (M200 & 4 × 1014 M�), which corresponds to

LX > 3.3 × 1044 erg s−1 following the correlation between LX and M500

showed by Truong et al. (2018). The simulations used in the work of Truong

et al. (2018) are not the same as those used for this work, but I checked
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Fig. 4.5: Specific SFR of BCGs in observations and simulations. Grey circles are
BCGs of our simulations from different snapshots (blue circles are median
values with 16th and 84th percentiles), while the grey triangle is used for
the BCG that lost its central BH at z ∼ 4 (see Sect. 4.2.1). BCGs from the
same snapshot are shifted only for visualisation purposes. A 2D aperture
of 30 pkpc is used. Red squares are BCGs from the sample of McDonald
et al. (2018) (see text for more details).

that using a relation based on our clusters leads to the same final sample.

The SFR in simulations is the instantaneous SFR predicted by the effective

model for multiphase particles computed considering all the particles bound

to the group by Subfind and within a 2D aperture of 30 pkpc. I employed this

aperture to directly compare with other numerical simulations, after check-

ing that the aperture choice does not affect our conclusions. Our simulations

present a high residual SFR at these low redshifts (∼ 10 M� yr−1 against

the average observed SFR of ∼ 0.3 M� yr−1). Considering a 3D aperture

of 30 pkpc brings us to the same conclusions, as the bulk of SFR is located

near the centre of the cluster and the median difference between a 3D and

a 2D aperture is 25%. Similar results were also found by other groups. Hen-

den et al. (2019) made a similar analysis considering all the clusters with

M200 > 1014M� and computed the instantaneous SFR within a spherical
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aperture of 30 kpc at z = 0.2. Their results show that their BCGs form stars

at a rate similar to ours when they do not have a null SFR (see their Fig. 8).

Even though the disagreement between simulations and observations is

quite large (a factor of ∼ 30 at z ∼ 0 according to our results), it is important

to keep in mind that measuring the SFR of galaxies is always a non-trivial

task, especially in the case of BCGs due to their low SFR values and to the

crowded environment. In the particular case of the sample used in our com-

parison, the SFR is obtained from the 12 µm luminosity through the relation

derived by Cluver et al. (2014). However, this relation is calibrated on star-

forming galaxies and flattens at SFR < 5 M� yr−1. For this reason the values

of SFR inferred from observations of BCGs are likely to be underestimated,

thus possibly alleviating the tension outlined in Fig. 4.4. The same caution

should be exercised when considering the conclusions drawn in the following

paragraph.

In Fig. 4.5 I plot the sSFR for our simulations and the McDonald et al.

(2018) observations. As I did for the SFR, I checked that the choice of the

aperture does not affect our results. Indeed, the results obtained using an

aperture of 30 and 50 pkpc are in agreement within 30% at z = 0. Also in

this case, numerical simulations appear to be an order of magnitude above

observations. Similar results were also found by other groups. Davies et al.

(2019) showed that Eagle simulation presents a sSFR∼ 10−11 yr−1 atM200 ∼
1014M� and z = 0, and that IllustrisTNG BCGs have a sSFR of ∼ 2.5× 10−12

atM200 ∼ 1014M�, which is a factor of three higher than the median value of

the McDonald et al. (2018) BCGs. Moreover, considering that the BCG sSFR

is an increasing function of mass in IllustrisTNG (see Fig. 12 of Davies et al.

2019) and that the sample of McDonald et al. (2018) is of massive clusters

(LX > 3.3 × 1044 erg s−1), the factor of approximately three is probably a

lower limit.

For our simulations, a possible solution to this mismatch could be a more

effective AGN feedback. However, Ragone-Figueroa et al. (2018) found a

very similar result (sSFR ∼ 1.5×10−11 yr−1 at z = 0) with an implementation

of the AGN feedback that is more effective in quenching star formation (see

also results in Sect. 4.2.3 and Sect. 4.2.4). Moreover, with the current scheme

a more effective feedback could (at least in principle) reduce the gap in the

SFR between simulated and observed BCGs, at the cost of an increase in the

difference in the GSMF (see Sect. 4.2.3). Therefore, a better solution would
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be to modify the prescription of the AGN feedback in order to have more

efficient quenching only for massive galaxies.

4.3 Protoclusters at z ∼ 2

In this section I compare our simulations to observational results of proto-

cluster regions of different sizes and identified at z ∼ 2. As I am interested in

comparing values of SFR, I include only protocluster regions with coverage

in the FIR and submillimetre wavelengths, because the total star formation

budget is mainly contributed by its obscured component. In particular, I com-

pare with the observations of Clements et al. (2014), Dannerbauer et al.

(2014), Wang et al. (2016), Kato et al. (2016), Coogan et al. (2018), and

Gómez-Guijarro et al. (2019).

4.3.1 Protocluster SFR within ∼ 1 pMpc

In Fig. 4.6 I compare the observed star formation rate obtained by Clements

et al. (2014), Dannerbauer et al. (2014), and Kato et al. (2016) with the

same quantity computed in simulations. With the red bands I show the pro-

tocluster regions at 1 . z . 3 identified as clumps in Planck 857 GHz band

by Clements et al. (2014). This frequency is suitable for identifying DSFGs,

which trace star-bursting phases of protoclusters (e.g. Granato et al. 2004).

Clements et al. (2014) retrieve the far-infrared luminosity, LFIR, by fitting

the spectral energy distribution (SED) with a modified black body formula,

and then they compute the SFR using the relation given by Bell (2003),

which assumes a Salpeter IMF (Salpeter 1955). In order to compare with

our simulations, which instead adopt a Chabrier IMF (Chabrier 2003), I di-

vided the Clements et al. (2014) values of SFR by 1.74. I also include in our

comparison the analysis that these latter authors performed on the fields pre-

viously introduced by Stevens et al. (2010), who analysed the density flux of

submillimetre galaxies (SMGs) obtained at 850 µm in five fields centred on

QSOs in the redshift range 1.7 < z < 2.8. The SFRs for these fields are com-

puted following the procedure already described, with the only difference

being that the FIR luminosity is computed from the F850 flux using an Arp

220 spectral template. Also in this case I corrected for the choice of the IMF.

Among the four clumps and five fields analysed in Clements et al. (2014) I



4.3 Protoclusters at z ∼ 2 129

1013 1014

M500 [M�]

102

103

104

SF
R

[M
�
·y

r−
1 ]

Fig. 4.6: Star formation rate of protocluster regions at z ∼ 2 in observations and
simulations within an aperture of∼ 2 pMpc. Red bands refer to two clumps
from Clements et al. (2014), black solid lines refer to four fields from
Stevens et al. (2010) and analysed by Clements et al. (2014). The blue
square highlights to the Spiderweb structure (Dannerbauer et al. 2014).
The green square and green band show the two protoclusters analysed by
Kato et al. (2016) (HS1700 and 2QZCluster, respectively). Black circles
and triangles refer to numerical simulations, where the SFR is plotted
against protocluster mass (see text). We used black circles for groups which
end up in the central cluster of the region at z = 0, and black triangles
otherwise.

include in the comparison the six residing at 1.74 < z < 2.27 (the values of

SFR for the four fields are 2240, 2330, 3966, and 4095 M� yr−1, and thus

they overlap in Fig. 4.6). The physical volume used to compute the SFRs in

Clements et al. (2014) clumps is 4.2 Mpc3, equal to a sphere of 1 Mpc radius,

while the fields are characterised by a volume of 1.4 Mpc3, equivalent to a

sphere of 0.7 Mpc radius.

Dannerbauer et al. (2014) studied the FIR properties of the protocluster

associated to the radio-galaxy HzRG MRC1138-262 at z = 2.16 (also known

as Spiderweb galaxy, Pentericci et al. 2000, Miley et al. 2006). This structure

is characterised by an overdensity of Lyman alpha emitters (LAEs), and has
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been studied at different submillimetre wavelengths (see Dannerbauer et al.

2014 and references there in). Observations in the FIR (100, 160, 250, 350,

500, and 850 µm) were used to fit the SED of detected sources assuming

a grey body formula, which was used to compute the total FIR luminos-

ity and the correlated SFR through the relation given by Kennicutt (1998).

The resulting SFR computed within a sphere of 1 pMpc radius, corrected

to a Chabrier IMF, is ∼ 3600 M� yr−1 and is showed as a blue square in

Fig. 4.6. Numerical simulations suggest that this protocluster is the progen-

itor of a massive z = 0 cluster (Saro et al. 2009), with a predicted mass of

M200 ∼ 1015 M� yr−1. Therefore, this structure is a candidate progenitor

of the massive simulated clusters used in this study. Finally, I also show the

observations in the FIR of another two known protoclusters: 2QZCluster

(z = 2.23, Matsuda et al. 2011) and HS1700 (z = 2.3, Steidel et al. 2005).

Kato et al. (2016) used SPIRE bands (250, 350, and 500 µm) to obtain a

colour-selected sample of DSFGs possibly associated to these two protoclus-

ters. In their work, these latter authors found overdensities of DSFGs in both

protoclusters regions, even though the redshift of these sources is not yet

confirmed. Assuming a grey-body spectrum, these latter authors computed

LIR in the ∼ 1 pMpc region containing the highest number of DSFGs, ob-

taining values very similar to the one reported by Clements et al. (2014). I

show Kato et al. (2016) results in Fig. 4.6 as a green square (HS1700) and

green band (2QZCluster). In both cases the upper limit on the value of SFR

is obtained assuming that all the detected sources are within the protocluster,

while the lower limit is obtained subtracting field average values (see Kato

et al. 2016 for further details).

Regarding the data from simulations, I considered at z = 2 the five most

massive groups identified by Subfind in each of the analysed regions. The

mass M500 of the group is given by Subfind, while the SFR is the sum of

the instantaneous SFR of all gas particles within a sphere of 1 Mpc radius

from the centre of the group. This aperture matches the volume adopted

for Clements et al. (2014) clumps, and is slightly larger than the volume of

Stevens et al. (2010) fields. In addition, I adopt another possible definition

of the SFR: the SFR averaged over ∼ 100 Myr. Although this may be the op-

timal choice when comparing to DSFGs, it does not quantitatively affect our

results as our most highly star forming protocluster region is characterised by

a 2% difference in the SFR when the two methods are used. For this reason I
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only use the instantaneous SFR throughout the paper. In Fig. 4.6 I also differ-

entiate between the progenitors of the most massive cluster at the centre of

each region by z = 0 and the groups that will form other objects. From the

plot it is clear that the simulated protoclusters do not reproduce the high SFR

observed, as the difference between the highest value of SFR rate reached

within our set of simulated protoclusters (∼ 1300 M� yr−1) is a factor of ap-

proximately five lower than the SFR measured in one of the Clements et al.

(2014) clumps (∼ 7000 M� yr−1), and a factor of approximately three lower

than the SFR measured within the protocluster associated to the Spiderweb

galaxy (∼ 3600 M� yr−1). This result is in agreement with the conclusions

of Granato et al. (2015), who used a set of simulations with the same initial

conditions used here but at ten-times-lower mass resolution and a previous

version of our code (the main difference being the prescription for AGN

feedback and BH repositioning; see Ragone-Figueroa et al. 2013) together

with dust reprocessing and radiative transfer post-processing performed with

GRASIL-3D (Domı́nguez-Tenreiro et al. 2014) to directly compare FIR fluxes

with Clements et al. (2014). Granato et al. (2015) concluded that simula-

tions fail to reproduce the observed fluxes at z = 2 by a factor & 3−4. Given

the results shown in Fig. 4.6, we conclude that the results of Granato et al.

(2015) hold at higher resolution and are not dependent on the particular

prescription adopted for AGN feedback.

4.3.2 Protocluster SFR within ∼ 100 pkpc

In Fig. 4.7 I compare simulations with observations by Wang et al. (2016)

(blue square), Coogan et al. (2018) (red square), and Gómez-Guijarro et al.

(2019) (green bands). In particular, Wang et al. (2016) recently discovered

a cluster (CL J1001+0220) at z = 2.506. This structure, detected as an over-

density of distant red galaxies (DRGs), appears as a massive, virialised halo.

Through an analysis of the velocity dispersion, stellar mass content, and also

the detected X-ray emission, Wang et al. (2016) estimated the cluster mass

to be 1013.9±0.2M�. However, differently from local clusters, CL J1001+0220

is characterised by a high fraction of massive (M? > 1011M�) star forming

galaxies. The SFR in the 80 pkpc core region, computed from FIR luminosity

and corrected to a Chabrier IMF, is estimated to be ∼ 2000 M� yr−1. More-

over, the fraction of starbursting galaxies is ∼ 25%, much higher than the
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Fig. 4.7: Star formation rate of protocluster regions at 2 < z < 2.6 in observations
and simulations within an aperture of ∼ 100 pkpc. Green bands refer
to two protoclusters from Gómez-Guijarro et al. (2019), the blue square
refers to Wang et al. (2016), and the red square refers to Coogan et al.
(2018). Black circles and triangles refer to numerical simulations, where
the SFR is plotted against protocluster core mass. We used black circles
for groups which end up in the central cluster of the region at z = 0, and
black triangles otherwise.

value in the field which is about 3% accordingly to Schreiber et al. (2015).

Gómez-Guijarro et al. (2019) spectroscopically confirmed two protoclusters

through CO emission lines (a third one was analysed in the same work, but it

was associated with the well-known CL J1001+0220 cluster in the COSMOS

field; see Wang et al. 2016, Wang et al. 2018). These objects were previously

recognised as separate sources by Bussmann et al. (2015) who observed

with ALMA 29 bright DSFGs taken from the Hermes Survey (Oliver et al.

2012). The two new protoclusters are composed of four and five gas rich

DSFGs over a region of 125 pkpc and 64 pkpc at z = 2.171 and z = 2.602,

respectively. The LIR used to compute the SFRs of single sources following

Kennicutt (1998) are computed integrating the SED fitted from the available

IR flux measurements at 24, 250, 350, 500 µm, and 3 mm.



4.3 Protoclusters at z ∼ 2 133

1010 1011 1012

M? [M�]

10−1

100

101

102

103

SF
R

[M
�
·y

r−
1 ]

Whitaker+14
Schreiber+15
Wang+18
Gomez+19

Fig. 4.8: Star formation rate as a function of galaxy stellar mass at z ∼ 2.3. Red
solid and dashed lines are observational data from Whitaker et al. (2014)
and Schreiber et al. (2015), respectively. Green hexagons and blue squares
are galaxies from the protoclusters of Gómez-Guijarro et al. (2019) and
the cluster of Wang et al. (2018), respectively. Grey points are galaxies
in our simulations. Black dashed line fix the distinction between active
and passive galaxies (Pacifici et al. 2016). Black points represent median
values of star forming galaxies with 16th and 84th percentiles. Both SFRs
and stellar masses are computed considering a 3D aperture of 30 pkpc.

Finally, I also include in the comparison the observations by Coogan

et al. (2018) of the protocluster Cl J1449+0856, identified by Gobat et al.

(2011) as an overdensity of IRAC colour-selected galaxies. The protocluster

has also been detected from the X-ray emission, from which a mass has been

estimated in the range [4−6]×1013 M� (Valentino et al. 2016). Coogan et al.

(2018) employed ALMA observations of 870 µm continuum and the CO(4-3)

emission line to compute the SFR within the ∼ 0.08 pMpc2 cluster central

region (see Coogan et al. 2018 or Strazzullo et al. 2018 for more details on

the computation of the SFR). The value of SFR reported in Fig. 4.7 is the

sum of the SFR obtained for obscured (∼ 400 M� yr−1) and unobscured

(∼ 60 M� yr−1) star formation. As a final remark, we note that the values
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Fig. 4.9: Main sequence of star forming galaxies at z ∼ 2. Red triangles are obser-
vational data from Whitaker et al. (2014). The black line shows median
values for our simulations. Coloured solid and dashed lines are data from
other cosmological simulations and semi-analytical models respectively. In
particular: Eagle (orange solid line, Guo et al. 2016), TNG300 (red solid
line, Donnari et al. 2019), Simba (yellow solid line, Davé et al. 2019), Gal-
form (green dashed line, Guo et al. 2016), L-galaxies (dark green dashed
line, Guo et al. 2016), and GAEA (blue dashed line, Hirschmann et al.
2016). For the GAEA model we also show the results obtained consid-
ering only galaxies that at z = 0 are within galaxy clusters with mass
> 1014.25M� (see text for more details).

of SFR computed through the 870 µm continuum rely on the assumed SED

template. The values reported in Fig. 4.7 are obtained considering a template

for MS galaxies. Considering a template typical of starburst galaxies, the

value of SFR would be twice as high (e.g. Strazzullo et al. 2018).

In numerical simulations I computed the instantaneous SFR considering

a 2D aperture of 90 pkpc (around the mean value of the four observed proto-

clusters that I use as comparison) and integrating 1 pMpc along the line of

sight. The choice of the projected distance does not affect our results as most

of the stars are produced at the centre of the protoclusters. Indeed, I verified

that the results are quantitatively the same integrating up to 3 pMpc along
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the line of sight. Similarly to previous results, the most highly star forming

region within our set of simulations (SFR ∼ 500 M� yr−1) underpredicts the

highest observed SFR (SFR ∼ 2000 M� yr−1) by a factor of approximately

four.

4.3.3 Main sequence of star forming galaxies

To explore a possible origin for the difference between SFRs in simulations

and observations, in Fig. 4.8 I show the observed and simulated correla-

tion between stellar mass and SFR in galaxies. In particular, I compare with

the MS of star forming field galaxies as derived by Whitaker et al. (2014),

obtained considering star forming galaxies selected in UVJ colours in the

redshift range 2 < z < 2.5, and with the MS at z ∼ 2.3 from Schreiber

et al. (2015), who used a similar approach but considered only photome-

try at rest-frame wavelengths larger than 30 µm to avoid pollution from

AGNs. To compare these latter results with our simulations and the results

of Whitaker et al. (2014) I corrected the Schreiber et al. (2015) MS to a

Chabrier IMF. In the plot I also include single galaxies from the protoclusters

of Gómez-Guijarro et al. (2019) and the cluster of Wang et al. (2018). For our

simulations, I use the redshift-dependent threshold in sSFR of Pacifici et al.

(2016), which mimics the selection in UVJ colours, to distinguish quiescent

from star forming galaxies.

As we can see from the plot, the SFRs of simulated galaxies are below

the observed relation by a factor of approximately three. This is a known

discrepancy between simulations (and also semi-analytical models) and ob-

servations (see, e.g. Davé et al. 2016 and Xie et al. 2017). Indeed, around

the peak of the cosmic SFR density, simulations show a normalisation for MS

of star forming galaxies that is a factor of approximately two to three lower

than observations. In Fig. 4.9 I show the results from different numerical

simulations and semi-analytical models. All but our simulations refer to cos-

mological boxes, meaning that a possible bias in our results toward a lower

MS normalisation can be expected when comparing with other simulations.

However, observational works do not find differences between the MS com-

puted in different environments at this redshift (e.g. Koyama et al. 2013).

This result is also in line with the predictions of the GAEA semi-analytical

model (Hirschmann et al. 2016). In particular, I computed the MS of star
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forming galaxies considering only the main progenitors of the galaxies that

are found in a cluster with mass Mvir > 1014.25 M� at z = 0 (GAEA clusters

in the plot), finding no more than a 30% difference with respect to the MS

obtained considering all active galaxies in the simulation.

The discrepancy outlined in Fig. 4.9 is an interesting feature given the

fact that this difference persists also in numerical simulations which repro-

duce the GSMF at every redshift (e.g. Davé et al. 2019). A systematic factor

of approximately three in the galaxy SFR at z ∼ 2, which naturally arises in

cases where the observed normalisation of the MS is matched, could alleviate

the discrepancy between the SFR in simulated and observed protoclusters

(see Fig. 4.6 and Fig. 4.7). Moreover, looking at individual galaxies in ob-

served protocluster regions in Fig. 4.8, we see that most of them are above

the MS with also a few galaxies classified as starburst. In this respect it is

interesting to note that galaxies within the cluster identified by Wang et al.

(2016), detected also in X-ray and hence probably in a more mature evo-

lutionary stage with respect to the structures identified by Gómez-Guijarro

et al. (2019), are characterised by higher masses and are scattered around

the observed MS. On the contrary, galaxies within Gómez-Guijarro et al.

(2019) structures have lower masses and very high SFRs, all above the MS.

The level of SFR of these galaxies is not reproduced by simulations that,

besides underpredicting the normalisation of the MS, do not exhibit strong

starbursts (see Sect. 4.6.1).

4.4 Protocluster at z ∼ 4

In this section I compare our simulations to observational results of protoclus-

ter regions identified at z ∼ 4. In particular I compare with the observations

by Oteo et al. (2018) and Miller et al. (2018). Before discussing our results,

it is important to make a few considerations. First, the protoclusters stud-

ied at z ∼ 2 in the previous section come from relatively small surveys, the

largest being the one analysed by Clements et al. (2014). This survey en-

compasses 90 deg2, that in the redshift range 0.76 < z < 2.3 corresponds to

∼ 0.6 h−3 cGpc3 in our cosmology, and thus is smaller than the cosmological

box from which the simulated clusters are extracted (see also Granato et al.

2015). This is not true for the protoclusters studied by Oteo et al. (2018)

and Miller et al. (2018). The first has been identified within the H-ATLAS



4.4 Protocluster at z ∼ 4 137

fields, corresponding to a total sky area of ∼ 600 deg2 (Ivison et al. 2016),

while the second comes from a catalogue from ∼ 770 deg2 of the South Pole

Telescope Sunyaev-Zel’dovich (SPT-SZ) survey (Mocanu et al. 2013). The

comoving volume corresponding to the H-ATLAS fields in the redshift range

2.7 < z < 6.4, corresponding to the redshift spanned by the ultra-red galax-

ies selected with Herschel by Ivison et al. (2016), is ∼ 10 h−3 cGpc3, about

ten times larger than the box from which the simulated clusters are extracted.

Therefore, Oteo et al. (2018) and Miller et al. (2018) structures could be

sufficiently rare not to be sampled by our simulations. Moreover, the proto-

clusters analysed at z ∼ 2 include a few bona fide z = 0 massive clusters

(Dannerbauer et al. 2014, Wang et al. 2016, Coogan et al. 2018). However,

this may not be the case for the ones observed by Oteo et al. (2018) and

Miller et al. (2018), as it is not guaranteed that a halo of Mhalo ∼ 1013 M�

at z ∼ 4 will eventually evolve to a Coma-like structure at z = 0. Indeed,

numerical simulations suggest that the value of the mass of the most mas-

sive halo in a protocluster region at z ∼ 4 is not enough to safely predict

the cluster mass by z = 0. An analysis of the large-scale structure, such as

the galaxy overdensity over a scale of ∼ 5 pMpc, would be needed to place

better constraints on the final cluster mass (see Chiang et al. 2013 and Chap-

ter 1). It is important to keep this in mind when comparing observations and

simulations.

The observations by Oteo et al. (2018) and Miller et al. (2018) of two

highly star forming protocluster cores at z ∼ 4 and z ∼ 4.3 are shown in

Fig. 4.10 with a green line and blue squares respectively. The protoclus-

ter core presented by Oteo et al. (2018) was firstly detected as part of an

overdensity of DSFGs in the wide-field LABOCA (a low-resolution bolometer

camera on the APEX telescope) map at 870 µm. Subsequent observations

with ALMA at 2 mm and 3 mm revealed that the most luminous source

consists of at least 11 separate sources, of which ten were spectroscopically

confirmed to be at z = 4.002 and are therefore part of the same structure.

The LIR for the ALMA resolved sources are computed considering the flux

density at 2 mm (∼ 400 µm at rest frame) and assuming an ALESS tem-

plate for the SED. The resulting SFR (corrected to a Chabrier IMF) in the

260 pkpc × 310 pkpc central region is ∼ 3700 M� yr−1. It has to be noted

that this value is highly uncertain as it depends on the assumed SED tem-

plate. However, Oteo et al. (2018) showed that within a large range of
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SED templates, only the one reported by Pearson et al. (2013) yields a

lower SFR than the one obtained with ALESS (by a factor of 0.66). The

protocluster from Miller et al. (2018), SPT2349-56, was first detected by

the South Pole Telescope (SPT). Subsequent follow up observations with

LABOCA and ALMA led to the identification of 14 sources in an extremely

small area (∼ 130 kpc diameter) at z = 4.3. Star formation rates were de-

rived from 870 µm flux density (S870 µm) assuming a SFR-to-S870 µm ratio of

150 ± 50 M� yr−1/mJy, which is typical for SMGs. The gas mass of all 14

galaxies was computed from CO(4-3) line luminosity (converted to CO(1-

0) line luminosity through the ratio r4,1 = 0.41 ± 0.07) assuming a CO/H2

conversion factor of αCO = 0.8 M�
K km s−2 pc2 and through the relation:

Mgas = αCOL
′
CO(1−0). (4.1)

When the CO(4-3) line is not detected, [CII] line luminosity is converted

to CO(4-3) using the average CO(4-3)/[CII] ratio for their detected sample

(Miller et al. 2018).

The SFR in simulations is computed considering a 2D aperture of 130 pkpc

and integrating 1 pMpc along the line of sight. I also verified that the choice

of the length of the cylinder does not quantitatively affect our results. In

particular, integrating over the whole box along the line of sight and using

different orientations for the cylinder axis induce differences in the measured

SFR not higher than 50% at SFR > 400 M� yr−1. This suggests that at this

redshift, the star formation takes place only in the densest simulated regions.

As I did at z ∼ 2, for each of our regions I selected the five most massive

groups at z = 4.3. Also in this case, the most star forming group within our

simulations differs from observations by a factor of approximately four.

However, it is important to remember that both SPT2349-56 and the pro-

tocluster observed by Oteo et al. (2018) represent very rare objects. In fact,

none of our simulated protoclusters at z ∼ 4 has more than seven star form-

ing galaxies with a mass higher than 1010 M�, while Oteo et al. (2018) and

Miller et al. (2018) spectroscopically confirmed 10 and 14 sources, respec-

tively. Thus, we conclude that among the main progenitors of our 12 clusters

(7 of which very massive), we do not have a structure with the same number

of star forming galaxies as these observed protoclusters. Even though this

could certainly be due to the limited statistics of the simulated volumes, it
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Fig. 4.10: Star formation rate as a function of M500 at z ∼ 4.3. The blue square
and green line are the observed values of Miller et al. (2018) and Oteo
et al. (2018) protoclusters respectively. Black symbols refer to the SFR
computed in a cylinder 1 pMpc long and within a circular aperture of
130 pkpc in our simulations. The five most massive groups of each region
are shown. We used black circles for groups which end up in the central
cluster of the region at z = 0, and black triangles otherwise.

could also be related to the star formation subgrid model, which does not

correctly describe galaxy properties at this redshift, or both. Nevertheless,

assuming that doubling the number of star forming galaxies within a proto-

cluster to match the observed number within SPT2349-56 would also double

the total SFR, the SFR of the ‘boosted’ simulated protoclusters would still be

a factor of approximately two lower than the observed SFR.

In Fig. 4.11 I show the MS of star forming galaxies at 4 < z < 4.8. In

particular I compare our simulations with the MS for the field as observed

by Steinhardt et al. (2014), together with detected galaxies in SPT2349-56

as reported by Hill et al. (2020), who updated the values of SFR of Miller

et al. (2018) and estimated the mass of single galaxies by dynamical methods

(through their measured line widths). As we can see from the plot, simula-

tions show relatively good agreement with observations with no statistical
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Fig. 4.11: Star formation rate as a function of galaxy stellar mass at z ∼ 4.3. The
red line shows observational data from Steinhardt et al. (2014). Orange
dots represent galaxies of SPT2349-56 as analysed in Hill et al. (2020).
Grey points are galaxies in our simulations. The black dashed line fixes
the distinction between quiescent and star forming galaxies (Pacifici et al.
2016). Black points represent median values with 16th and 84th per-
centiles for star forming galaxies. Green circles are galaxies from the
simulated protoclusters shown in Fig. 4.10.

difference in the normalisation of the MS. Therefore, we cannot explain the

difference we observe in terms of SFR as being due to a systematic offset

on the SFR-M? plane. However, if we look at the galaxies in SPT2349-56,

we see that they are scattered around the MS with also a few strong star-

bursts. On the contrary, galaxies in our simulated protoclusters are mainly

MS galaxies with a very small scatter. Therefore, we conclude that at z ∼ 4

our simulations fail to reproduce the high SFR observed because they are

unable to produce strong starbursts lying well above the MS.



4.5 Redshift evolution of mass normalized SFR 141

4.5 Redshift evolution of mass normalized SFR

In this section I show the evolution of the SFR once normalised by the cluster

mass, Σ(SFR)/Mcl. The results are shown in Fig. 4.12.

Σ(SFR)/Mcl is an increasing function of redshift with an observationally

driven empirical parametrisation of (1 + z)n (e.g. Cowie et al. 2004, Geach

et al. 2006). Popesso et al. (2012) used a sample of nine groups in the

redshift range 0.1 < z < 1.6 and nine clusters in the redshift range 0.1 <

z < 0.85 and derived the best fit to be (213 ± 44) × z1.33±0.34 and (66 ±
23) × z1.77±0.36 for groups and clusters, respectively. Popesso et al. (2012)

also showed that there is no evidence for a significant Σ(SFR)/Mcl −Mcl or

Mcl− z correlation, concluding that Σ(SFR)/Mcl− z is a genuine correlation

(not driven by a decreasing mass evolution with redshift within their sample).

Recent observations of highly star forming protocluster regions suggest a

stronger evolution with redshift, ∝ (1 + z)7 (e.g. Smail et al. 2014, Ma et al.

2015, Santos et al. 2015, Smith et al. 2019), in line with the trend found by

Cowie et al. (2004) for the number of star-forming ultraluminous infrared

galaxies (ULIRGs) in the redshift range 0 < z < 1.5. In Fig. 4.12 I add the

previously cited protocluster regions at high redshift. We note that for these

protoclusters the SFR is computed within an aperture of ∼ 1 pMpc, with two

exceptions: Miller et al. (2018) computed the SFR within a 2D aperture of

∼ 130 pkpc and Wang et al. (2016) computed the SFR in a 2D aperture of

∼ 80 pkpc. All the SFRs derived assuming the Salpeter IMF are converted to

a Chabrier IMF.

To build the comparison I considered clusters and groups in our simula-

tions with a mass threshold varying with redshift. In particular, the minimum

mass considered is M200 > 1014 at z = 0, decreasing linearly with redshift

up to M200 > 1013 at z = 4.3. I made this choice to mimic as close as pos-

sible the minimum mass of the protoclusters and clusters in Fig. 4.12 at all

redshifts. To mark a few examples, Popesso et al. (2012) clusters are in the

mass range [3.9, 27.6]× 1014 M�; the cluster by Smith et al. (2019) at z ∼ 2

has an estimated mass of 0.5× 1014 M�; and the protocluster by Miller et al.

(2018) at z ∼ 4.3 has an estimated mass of 1.16 ± 0.70 × 1013 M�. I use

M200 (like Popesso et al. 2012) as an estimate of the cluster mass and I com-

pute the instantaneous SFR considering all gas particles within R200. This

choice confers the advantage that it matches the aperture used by Wang et al.
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Fig. 4.12: Star formation rate normalised by cluster mass as a function of redshift.
Black squares represent median values from Dianoga simulations (grey
points). See the text for a complete explanation of sample selection. The
dashed black line is the best fit to simulations. Coloured points are obser-
vational data from Popesso et al. (2012), Ma et al. (2015), Smail et al.
(2014), Santos et al. (2015), Wang et al. (2016), Miller et al. (2018), and
Smith et al. (2019). The solid black line ∼ (1 + z)7 shows an empirical
fit to data suggested by Cowie et al. (2004) and Geach et al. (2006).

(2016) and Miller et al. (2018), the two observations at the highest redshifts

(R200 ∼ 300 pkpc and R200 ∼ 150 pkpc at z = 3 and z = 4 respectively).

Simulated clusters show a clear evolution with redshift; however, the

trend is shallower than in observations and is better described by ∝ (1 +

z)3.84±0.15. In particular, simulations predict a higher SFR at low redshift,

reflecting the results already discussed in Fig. 4.4. At redshift z > 2, the
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Fig. 4.13: Star formation rate distribution of star forming galaxies at fixed stellar
mass at z = 2. Blue points refer to Dianoga simulations, green squares
to Magneticum Box2b, and red triangles to Magneticum Box2. SFRMS

is computed independently for every simulation. NMS is the number of
galaxies within the bin corresponding to SFR=SFRMS. Only bins with
at least ten galaxies are shown. Coloured solid lines are Gaussian fits to
simulations. Vertical black dashed line define the threshold above which
data are used to estimate the fit.

predicted SFR is much lower, mirroring the outcome of the discussion of the

previous sections. A similar mismatch with respect to observations has also

been pointed out by Ragone-Figueroa et al. (2018) for the sSFR of BCGs of

our lower resolution simulations.

4.6 Discussion

In recent years, a good number of observational studies have confirmed the

detection of protocluster regions characterised by SFRs from several hun-

dreds to several thousands of M� yr−1 (Clements et al. 2014, Dannerbauer
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et al. 2014, Umehata et al. 2015, Wang et al. 2016, Oteo et al. 2018, Coogan

et al. 2018, Miller et al. 2018, Gómez-Guijarro et al. 2019, Smith et al. 2019,

Lacaille et al. 2019). These high values of SFR are often dominated by DS-

FGs, with typical SFRs from ∼ 100 M� yr−1 to ∼ 1000 M� yr−1. The physical

reason of these high values of SFR is debated. Some observations suggest

that starburst galaxies and SMGs are characterised by a high star forma-

tion efficiency (e.g. Daddi et al. 2010). Other recent observations suggest

that the starbursting phase of galaxies is related to high gas fractions (e.g.

Scoville et al. 2016, Gómez-Guijarro et al. 2019). Finally, some observations

suggest that starburst galaxies are characterised by both high star formation

efficiency and high gas fraction (Genzel et al. 2015, Béthermin et al. 2015).

In this section I focus on starburst galaxies in our simulations and the

differences in terms of star formation efficiency and gas fraction with respect

to galaxies in the observed protoclusters used as references in Sects. 4.3

and 4.4. I also investigate the implications for the subresolution model of

star formation adopted in our simulations.

4.6.1 Starburst galaxies in numerical simulations

Galaxies are usually defined as starburst depending on how much their

SFR is above the SFR of MS galaxies with the same mass and at the same

redshift. Here, following Schreiber et al. (2015), I consider the threshold

SFR/SFRMS > 4. In the M?−SFR plane, starburst galaxies do not only rep-

resent the tail of the MS distribution. Indeed several studies have shown

that at fixed stellar mass and redshift, the distribution of galaxies around the

MS is better described by a double Gaussian (Sargent et al. 2012, Schreiber

et al. 2015), where the second component describes the population of star-

burst galaxies. This population is estimated to comprise 3% of star forming

galaxies without significant redshift dependence (Schreiber et al. 2015).

Following the works mentioned above I study the starburst population in

our simulations by plotting the distribution of galaxies around the MS in two

mass bins at z = 2; see Fig. 4.13. Since in principle it is not guaranteed that

the most star forming galaxies will be within protocluster regions, I also plot

the results from the Magneticum simulations3. The Magneticum simulations

are a set of hydrodynamical simulations of different cosmological volumes

3http://www.magneticum.org/
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Fig. 4.14: Galaxy correlations at z = 2.3. Top panel: Gas fraction as a function of
stellar mass. Bottom panel: Depletion time as a function of stellar mass.
Grey circles refer to Dianoga simulations at z=2.3. Green hexagons and
blue squares are data from Gómez-Guijarro et al. (2019) and Wang et al.
(2018) respectively. The orange dashed line is the functional form of
Liu et al. (2019) for MS galaxies at z = 2.3, while the shaded region
encompasses galaxies with an SFR that is four times lower and higher
than MS galaxies. Red dashed lines are obtained combining the MS by
Whitaker et al. (2014) and the integrated Kennicutt-Schmidt law from
Sargent et al. (2014, orange line in the plot).



146 Star formation rate in Protocluster regions

(Hirschmann et al. 2014, Ragagnin et al. 2017) performed with the same

GADGET-3 code used in our simulations (see Hirschmann et al. 2014 for the

differences in the AGN feedback implementation). From the Magneticum

set, I consider the Box2 and Box2b (352 and 640 h−1 Mpc respectively). The

mass resolution is mDM = 6.9× 108 h−1 M�, a factor of ten lower than the

one used for this work.

In Fig. 4.13 the value of SFRMS is computed for each simulation con-

sidering only active galaxies (see Sect. 4.3, Fig. 4.8). The two mass bins

analysed are chosen following Sargent et al. (2012). I analysed only the two

lower mass bins as at higher masses the number of galaxies in the Dianoga

simulations is too low for a statistical analysis. Blue points are Dianoga sim-

ulations, red triangles are results for Box2, and green squares are results

for Box2b. Only bins with at least ten galaxies are plotted. Solid lines are

Gaussian fits to the data, which were obtained considering only galaxies with

SFR > 0.5× SFRMS. This cut, marked as a vertical black dashed line in the

plot, is needed to avoid considering galaxies on their way to being quenched

(but still selected as active by our cut in sSFR) in the Gaussian fit. The three

simulations are in very good agreement in both mass bins, despite the differ-

ent box sizes and environment, and can all be fitted with a single Gaussian

with a standard deviation estimated to be 0.19 < σ < 0.21. This value is in

agreement with the results of Sargent et al. (2012) (σ = 0.188), but is lower

than the estimate of Schreiber et al. (2015) (σ = 0.31). Finally, the fraction

of starburst galaxies (i.e. SFR/SFRMS > 4 ) is 0.03% < fSB < 0.2%, at least

one order of magnitude lower than what was estimated by Schreiber et al.

(2015).

As a final warning, it is also important to keep in mind that the obser-

vational estimates of the values of SFR, in particular for starburst galaxies,

are affected by a number of uncertainties. A relevant role is played by the

assumption of the IMF, as studies on the chemical abundances and abun-

dance ratios suggest that starburst galaxies are characterised by a top-heavy

stellar IMF (e.g. Romano et al. 2017, Romano et al. 2019). If this proves to

be correct, it could have important implications for the estimated values of

SFR, affecting as a consequence also the conclusions reached in this section.

Indeed, a more top-heavy IMF would lower the SFR values obtained through

observations, while affecting numerical predictions to a much lesser extent

(see also the discussion by Granato et al. 2015).
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4.6.2 Star formation efficiency and gas fraction

In this section I study the cold gas and SFR properties of our simulated

galaxies to determine which variable is more related to the underestimated

normalisation of the MS at z ∼ 2 (see Sect. 4.3) and to the absence of

starburst galaxies.

In Fig. 4.14 and Fig. 4.15 I study the gas fraction and the depletion time

in simulations and observations at z ∼ 2 and z ∼ 4 respectively. The two are

defined as

fgas =
Mgas

Mgas +M?
, (4.2)

where Mgas is the cold gas mass that in simulations is computed considering

only the cold phase of SPH particles, and

tdep =
Mgas

SFR
. (4.3)

I plot at z ∼ 2 and at z ∼ 4 all the galaxies in the observed protoclusters used

in Sects. 4.3 and 4.4, respectively. Moreover, I add the functional forms of

fgas and tdep from Liu et al. (2019), which depend on redshift, stellar mass,

and relative distance from the MS (SFR/SFRMS). The red dashed line in

Fig. 4.14 was computed as follows: given a galaxy stellar mass, I assume that

the expected SFR for a MS galaxy is given by the MS relation of Whitaker

et al. (2014). Given the SFR, I assume that the mass of molecular gas is

given by Eq. 4 of Sargent et al. (2014) for normal galaxies. Combining M?,

Mgas, and SFR I obtain the expected values of fgas and tdep for normal star

forming galaxies. This procedure is supported also by recent observations

with ALMA, which show that massive (M? > 1010 M�) MS galaxies obey

the star formation law for star-forming galaxies (Liu et al. 2019). From

Figs. 4.14 and 4.15 we see that observational data are not in agreement

among each other. In particular, data from Hill et al. (2020) at z ∼ 4 suggest

that starburst galaxies are characterised by a shorter depletion time (and

thus a high star formation efficiency) than normal star forming galaxies.

This is supported by other observations (i.e. Daddi et al. 2010, Sargent et al.

2014, Liu et al. 2019). On the other hand, data from Gómez-Guijarro et al.

(2019) and Wang et al. (2018) at z ∼ 2.4 are characterised by a high gas

fraction but a star formation efficiency (or depletion time) that is consistent

with the integrated Kennicutt-Schmidt law for normal star forming galaxies.
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This is also consistent with numerical simulations, where the position on

the MS depends on the gas fraction (see Fig. 8 of Davé et al. 2019). The

difference among the observational results is largely due to the different

values of the parameter αCO used to derive the molecular gas mass from the

CO line luminosity L′CO(1−0) through Eq. 4.1. Gómez-Guijarro et al. (2019)

used αCO = 3.5, typical for normal star forming galaxies at solar metallicity.

Wang et al. (2018) adopted the mass–metallicity relation by Genzel et al.

(2015) to retrieve the galaxy metallicity for the members of their cluster, and

then computed the metalicity-dependent value of αCO following Genzel et al.

(2015) and Tacconi et al. (2018). The values reported for the αCO are in

the range [4.06, 4.12], again consistent with normal star forming galaxies at

solar metallicity. Hill et al. (2020), on the other hand, used αCO = 1, typical

for high-redshift SMGs. Due to these arguments, it remains unclear whether

starburst galaxies in protocluster environments are mainly driven by a high

gas fraction or a high star formation efficiency, as the results strongly depend

on the assumptions needed to derive gas-related quantities.

If we look at the population of normal star forming galaxies at z ∼ 2 (red

and orange dashed lines in Fig. 4.14) we see that our simulations match the

observed star formation efficiency. This is expected, since the star formation

efficiency of our model is tuned in order to reproduce the Kennicutt-Schmidt

relation. On the other hand, the simulated gas fractions are consistently

lower than observations. In particular, at M? = 1010 M�, observations show

a Mgas that is higher by a factor of ∼ 3.5. This factor is very similar to the

difference in the observed and simulated MS (see Fig. 4.8). Thus, the lower

normalisation in the simulated MS seems to be driven by an underestimated

gas fraction.

It is also interesting to study the correlation between the MS galaxies

and gas-related properties in simulations. In Fig. 4.16 I show the MS colour-

coded with respect to fgas (upper panel) and tdep (lower panel). At fixed

stellar mass, galaxies below the MS are characterised by both a long depletion

time and low gas fraction. Vice versa, galaxies above the MS have both

short depletion times and high gas fraction. This visual impression is also

confirmed by the computation of the Pearson’s correlation coefficient for

the two relations: Log(SFR/SFRMS) − Log(fgas) and Log(SFR/SFRMS) −
Log(tdep). The results are r = 0.62 and r = −0.63 for the two relations

respectively. Moreover, results of the two linear regressions suggest that in
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our simulations the position on the MS scales with fgas and tdep with similar

slopes: SFR/SFRMS ∝ f0.85
gas and SFR/SFRMS ∝ t−1

dep.

4.6.3 Simulation tests

In the previous sections I showed that our simulations underestimate the

normalisation of the MS relation at z ∼ 2 by a factor of approximately three.

Moreover, we have seen that the star formation model (Springel & Hernquist

2003) implemented in our code, with the current choice for the model param-

eters set to reproduce quiescent mode of star formation, does not reproduce

the observed population of starburst galaxies at z > 2. While the normali-

sation of the MS seems to be mainly related to the gas fraction, it remains

unclear whether we miss starburst galaxies because we do not correctly sam-

ple the star formation efficiency, the gas fraction, or both. Therefore, we

performed a set of simulations aiming at checking whether the fraction of

starburst galaxies and MS normalisation are sensitive to the choice of the pa-

rameters of the subgrid model. All the following simulations are performed

for only one of our regions, a cluster with M200 = 5.4× 1014 M� at z = 0. In

Figs. 4.17, 4.18, and 4.19 I show the results for the MS, SFE, and gas fraction

at z ∼ 3, respectively. The choice of the redshift is somewhat arbitrary, as I

do not aim to compare simulations with particular observational data but

to study the effect of different parameters on our results. Each panel refers

to a different simulation, while I plot with grey circles the results for the

reference simulation used in the previous sections. In the following I briefly

discuss the specific changes for each simulation and the effects on the results.

Increasing the star formation efficiency (t0 0.3x)

I recall that in the Springel & Hernquist (2003) model, the characteristic

time for star formation, t?, is t? ∝ t?0 tdyn , where t?0 is a parameter usually

tuned to reproduce the Kennicutt relation (see Chapter 2). Here I increase

the efficiency to match the observed SFE of Hill et al. (2020) (see Fig. 4.15)

by lowering t?0 by a factor of three. The results of this test are shown in the

top-left panel of the figures. From Fig. 4.18 we see that indeed the SFE is

higher, but there is little difference in the MS (see Fig. 4.17). Moreover, there

is no difference in the fraction of starburst galaxies. In fact, the model is so

tightly self-regulated that in response to a high SFE we have a lower gas
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fraction (see Fig. 4.19), resulting in similar SFRs.

Increasing the star formation threshold (SFTh 10x and SFTh t0)

In the SFTh 10x simulation I increased the density threshold, ρthr, by a factor

of ten; this threshold is used to decide whether or not a gas particle becomes

multiphase (only multiphase particles can form stars; see Chapter 3 and

Springel & Hernquist 2003). Increasing this threshold should allow a larger

reservoir of gas to accumulate and reach higher densities before starting

to produce stars, increasing the gas fraction and the overall SFR. However,

from the top-right panel of Figs. 4.17, 4.18, and 4.19 we see that we do not

have major differences in terms of MS normalisation, SFE, and gas fraction.

The only appreciable difference is the reduction of the most massive galaxies

and the increase of passive galaxies. Indeed, higher densities at the centre of

galaxies also means more gas accretion onto the central BH and consequently

a stronger AGN feedback.

In the SFTh t0 run (central-left panel) I increased both the density thresh-

old for multiphase particles by a factor of ten and the SFE by a factor of three.

Again, the self-regulation of the star formation model and the AGN feedback

prevent any appreciable difference with respect to our fiducial run.

Increasing timescale for cold gas evaporation (A0 0.1x)

Following Springel & Hernquist (2003), even if the subgrid model is explicitly

constructed to reproduce quiescent star formation, starburst should arise

whenever the timescale for star formation is shorter than the timescale for the

evaporation of cold gas. In fact, in this regime self-regulation is expected to

break down with cold gas transformed into stars before it can be evaporated

by stellar feedback. In practice, the relation that should be satisfied is:

tc
t?

=

(
ρ

ρthr

)4/5 1

βA0
> 1, (4.4)

where ρthr is the density threshold for a particle to become multiphase, β is

the fraction of stars that instantly die as supernovae, and A0 is a parameter

of the model that defines the energy of supernovae used to evaporate cold

gas. In this test we reduced the value of A0 by a factor of ten. From the

results shown in the central-right panels we see no improvement in terms
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of starburst galaxies. Thus, even if I checked that single gas particles satisfy

Eq. 4.4, this is not sufficient to have a high-enough integrated value of SFR.

Varying AGN feedback implementation (Tthr)

To quantify the effect of a specific aspect of the AGN feedback implemen-

tation on our results I also ran a simulation with the same AGN feedback

prescription as that of Ragone-Figueroa et al. (2018). I recall that in that

setup there is an extra condition on the temperature (T<Tthr) to consider

a particle as multiphase and that the energy released by AGN feedback is

used to evaporate molecular clouds, while in the current implementation the

energy is coupled only to the hot phase of multiphase particles. From the

bottom-left panels of Figs. 4.17, 4.18, and 4.19 we can see that the only differ-

ence with respect to our fiducial run is that in this case we have less massive

galaxies. This is expected from the results shown in Sects. 4.2.3 and 4.2.4,

where it is clear that the feedback implementation of Ragone-Figueroa et al.

(2018) is more effective in quenching star formation.

No AGN feedback (No-AGN)

Finally, I also performed a simulation without AGN feedback (bottom-right

panels). This is of course to test an extreme scenario, as the absence of AGN

feedback would result in GSMF, BCG masses, and SFR inconsistent with low-

redshift observations. From Fig. 4.17, we see that in this run we have fewer

galaxies on their way to becoming passive, and more massive galaxies, as

expected. However, the MS retain the same normalisation and there is no

sign of an increased fraction of starburst galaxies. Moreover, it is interesting

to note that in the No-AGN run the SFE is higher in the low-mass regime

(see Fig. 4.18). This difference is due to the fact that without AGN feedback

the gas reaches higher density, especially in the low-mass regime where the

feedback is more efficient in expelling gas outside the shallow potential wells

of galaxies.
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Fig. 4.15: Galaxy correlations at z = 4.3. Top panel: Gas fraction as a function of
stellar mass. Bottom panel: Depletion time as a function of stellar mass.
Grey circles refer to Dianoga simulations at z=4.3. Brown circles are data
from Hill et al. (2020). The orange dashed line is the functional form
of Liu et al. (2019) for MS galaxies at z = 4.3, while the shaded region
encompass galaxies with an SFR that is four times lower and higher than
MS galaxies.
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Fig. 4.17: Main sequence of star forming galaxies at z = 3 for different simula-
tions. Grey points refer to the results relative to the same region used
for the tests with the set up used for this work. Different panels refer
to: t0 0.3x: shorter timescale for star formation; SFTh 10x: increased den-
sity threshold for star formation; SFTh t0: increased density threshold
for star formation and shorter star formation timescale; A0 0.1x: reduced
supernova thermal feedback; Tthr: AGN feedback implementation as in
Ragone-Figueroa et al. (2018); No-AGN: no AGN feedback.



4.6 Discussion 155

100

101

102

SF
R

[M
�

yr
−

1 ]

t0 0.3x SFTh 10x

100

101

102

SF
R

[M
�

yr
−

1 ]

SFTh t0 A0 0.1x

109 1010

Cold Gas Mass [M�]

100

101

102

SF
R

[M
�

yr
−

1 ]

Tthr

109 1010

Cold Gas Mass [M�]

No-AGN
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for the tests with the set up used for this work. Different panels refer
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Fig. 4.19: Correlation between stellar mass and cold gas mass at z = 3 for different
simulations. Grey points refer to the results relative to the same region
used for the tests with the set up used for this work. Different panels
refer to: t0 0.3x: shorter timescale for star formation; SFTh 10x: increased
density threshold for star formation; SFTh t0: increased density threshold
for star formation and shorter star formation timescale; A0 0.1x: reduced
supernova thermal feedback; Tthr: AGN feedback implementation as in
Ragone-Figueroa et al. (2018); No-AGN: no AGN feedback.
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4.7 Summary

In Chapter 1 we have seen that most of the stars within galaxy clusters are

produced during burst of star formation at redshift z & 2. These events take

place within the large number of halos which compose a protocluster region,

that in turn is spread over tens of Mpc. The number of detected protocluster

regions is rapidly increasing in the recent years, even though these observa-

tions largely come from highly biased detection techniques. A powerful tool

to meaningfully interpret these observational data are cosmological simula-

tions. However, before to use cosmological simulations as a predictive tool,

it is important to test them against the available observational data.

For these reasons, in this Chapter I studied the SFR of simulated (proto)cluster

regions and the gas properties of (proto)clusters galaxies in the redshift

range 0 < z < 4, in comparison to the available observations. The main

results of this analysis can be summarized as follow:

• At z ∼ 0 the SFR within simulated galaxy clusters is higher than obser-

vations. This is mainly driven by higher residual values of SFR within

the BCGs, as the current AGN feedback model does not provide enough

quenching in the highest galaxy mass regime. The parameters of the

AGN feedback can be calibrated in order to obtain BCG masses that are

consistent with observations. However, this result come at the price of

an under-predicted normalization of the GSMF. These results highlight

that with the current model of AGN feedback (Springel et al. 2005,

Ragone-Figueroa et al. 2013) it is not possible to reproduce both the

GSMF and z = 0 BCG masses.

• At z ∼ 2 simulations under-predict the SFR of highly star forming

protocluster regions by a factor of 4 or even larger, in line with the

results presented in Granato et al. (2015), which were based on a

larger set of lower resolution simulations. This result is indeed stable

against numerical resolution and is the combination of two effects: (i)

simulations under-predict the normalization of the main sequence at

2 < z < 2.5 by a factor of 3; (ii) simulations predict a fraction of star-

burst galaxies (defined as galaxies with a SFR at least four times higher

than main sequence galaxies) of [0.2%− 0.03%], at least a factor of ten

lower than what is found in recent observations (e.g., Schreiber et al.
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2015). I verified that this result is independent from the enviroment

by studying the Magneticum cosmological boxes of sizes 352 and 640

h−1 Mpc. The paucity of starburst galaxies is also found at z ∼ 4. As a

consequence, simulations under-predict the SFR of highly star forming

protocluster regions by a factor of 4 also at this higher redshift.

• Comparison with observations suggest that simulations under-predict

the gas fraction in galaxies at the peak of the cosmic star formation

rate density and consequently the normalization of the main sequence.

However, observations of galaxy properties in dense enviroment are

not in agreement among each other and strongly depend on the as-

sumptions made to derive the molecular gas mass. Hence, it is not

clear whether simulations under reproduce starburst galaxy popula-

tion because of a low gas fraction or low star formation efficiency.

• The results obtained in this Chapter indicate that the Springel & Hern-

quist (2003) model is suitable to reproduce the self-regulated evolution

of quiescent-low redshift star formation but not violent events like high

redshift starbursts. Indeed, I verified that the same results hold within

a wide range of values for the model parameters and does not depend

on the implementation of the AGN feedback.

Before concluding, it is important to remark that all the observations

used through this Chapter can be affected by systematic errors. This is true

for both the stellar mass, whose estimate relies on a number of assumptions

like star formation history, the IMF, the metallicity, and the optical depth,

but also for the SFR, which is usually obtained by converting the FIR and

UV luminosities assuming some conversion factor which does not include

any additional information about the composition of the underlying stellar

populations. These assumptions limit the accuracy of stellar masses and SFRs

measurements, with typical errors of ∼ 0.3 dex. Moreover, fixing some of the

physical parameters that are needed to derive the stellar mass and the SFR

from the SED, can lead to systematic errors (e.g., Leja et al. 2019a). One

example is the tension between the local cosmic stellar mass density derived

from the local GSMF and the one obtained by integrating the cosmic star

formation rate density, the latter being higher by ∼ 0.3 dex. In this respect,

Leja et al. (2019b) showed that this tension can be solved by employing
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a non-parametric estimate for the star formation history, which brings con-

temporarely to higher stellar masses and lower SFRs. If this method will be

proved to be reliable, it will obviously reduce also the tension between theory

and observations highlighted in Fig. 4.9, although enhancing the tensions de-

scribed in Figs 4.4 and 4.3. However, systematic differences in the measured

stellar masses will also affect the normalization of the GSMF (see Leja et al.

2020), on which most of the models used in cosmological simulations are

tuned. Therefore, to correctly establish the effects that such systematics have

on the simulated MS, it will be necessary to re-calibrate the parameters of

the star formation and AGN models, which will also affect the normalization

of the MS. This will need to be addressed in future works.
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Chapter 5

Conclusions

This PhD thesis addresses the evolution of SMBHs and of the star formation

rate within clusters of galaxies from a theoretical perspective. SMBHs at the

center of galaxy clusters recently became the subject of an intense research

interest, since their mass has been found to strongly correlate with a number

of properties of the hosting clusters, like their mass and X-ray temperature.

At the same time, the physical processes that drive these correlations are still

debated. On the one side, being galaxy clusters very dynamical systems, the

observed correlations can be driven by the relatively large number of mergers

that are expected within these high density environments (e.g., Lakhchaura

et al. 2019). On the other side, the connection can be causal, with AGN feed-

back playing a key role (e.g., Gaspari et al. 2019). The work presented in this

thesis aim at constraining the relative importance of these processes in the

growth of central SMBHs and their role in building the observed correlations.

By all means, a number of circumstantial evidences point toward AGN feed-

back as the leading mechanism in regulating the star formation rate at least

within local galaxy clusters, as a feedback process is needed to avoid strong

cooling flows within clusters cores. At the same time, recent observations tar-

geted on high redshift galaxy protoclusters, i.e. the infancy stages of cluster

formation, highlight the presence of exceptionally high values of SFRs within

these regions, with values reaching thousands of M� yr−1, suggesting that

feedback processes at high redshift have still to come into play in quenching

star formation. These events might be ubiquitous in protocluster history and

are currently associated with the formation time of the massive ellipticals
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which are observed in local galaxy clusters. A theoretical description of these

bursts of star formation would be extremely important in order to predict

the incidence of these events and to characterize the star formation history

of galaxy clusters. Therefore, in this Thesis I also compare the prediction of

theoretical models regarding the star formation rate in protocluster regions

in the redshift range 2 < z < 4, comparing them with recent observational

results.

The most advanced theoretical tool to tackle the aforementioned prob-

lems are cosmological hydrodynamical simulations. In particular, in this the-

sis I used a set of 29 zoom-in cosmological simulations centred on the 24

most massive clusters extracted from a cosmological box of 1 Gpc side, to-

gether with 5 randomly chosen smaller objects (see Sect. 2.5). The simula-

tions are run with the GADGET3 code, a developer version of the public code

GADGET2, and include a set of sub-resolution models to effectively describe

baryonic physics. These models include metal-dependent radiative cooling,

star formation and associated feedback, metal enrichment and chemical evo-

lution, and AGN feedback.

The possible symbiotic growth of central SMBHs and hosting clusters has

been studied through the evolution of single systems upon the MBH −M500

plane. This analysis, summarized in Fig. 3.7, showed that the evolution of

the systems can be divided into two phases. At z & 2 the SMBHs growth is

dominated by the rapid accretion of cold gas, which eventually leads to a

strong AGN feedback and consequent expulsion of the remaining gas from

the shallow potential well of the proto-cluster. At the end of this phase, the

systems already lie upon the MBH −M500 relation. Subsequent evolution

is then driven by cluster mergers, which cause an increment of the cluster

mass, and feed the central SMBHs by inducing BH-BH mergers. This is clear

from Fig. 3.12, which shows the evolution of SMBH mass divided into the

two growth channels: gas accretion and BH-BH mergers. From this figure

it is evident that at z < 1 gas accretion proceeds in a more gentle and

self-regulated fashion and the mass growth is largely dominated by BH-BH

mergers, which at z = 0 comprise ∼ 60% of the total SMBHs mass. Given

the results obtained, and in particular considering that the correlations are

already in place when the mass gained through mergers is negligible, our

simulations suggest a causal origin to the correlations between SMBHs and

hosting clusters, mediated through AGN feedback.
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At the same time, caution has to be applied in interpreting these results,

since simulations are affected by limitations. For what concern the physics

related to SMBHs, and similarly to all other physical processes not resolved

by cosmological simulations, we have to remind that their description is not

numerically described and resolved from first principles, but relies on phe-

nomenological sub-resolution models, which are usually described through

a suitable parametrization of such processes. As such, these models depend

on parameters which are generally tuned to reproduce low redshift observa-

tional constraints. Even though low redshift results agree well with observa-

tions, this does not necessarily imply that the time evolution is realistically

described. Finally, it is also important to keep in mind that the large majority

of the sub-resolution models used in cosmological simulations by definition

do not provide numerically converged results. This means that as resolution

increases, models parameters need to be re-tuned. Again, this does not di-

rectly imply that the full evolutionary history will be the same, and some

resolution-related differences might be expected.

As for the effects of the resolution on the AGN feedback model imple-

mented in GADGET3, I recall that with the current sub-resolution model

implementation both the feeding and feedback processes are related to the

distribution of gas particles within a region of tens of kpc, e.g. on galactic

scales. This is likely the reason why the scatter around the Magorrian corre-

lation is under-reproduced within our simulations (see Figs. 3.1 and 4.1).

Increasing the resolution will affect the region of space at which both the

feeding and feedback processes operate, likely affecting the actual level and

timing of gas accretion. Future studies, based on higher numerical resolu-

tions, will help to quantify these effects. Moreover, I also showed that with

the current implementation of the AGN feedback we can not reproduce the

low values of SFR which are observed in local massive BCGs (∼ 0.1 M� yr−1),

which in simulations are over-predicted by a factor of ∼ 30 (see Figs. 4.4

and 4.5). Similarly, we have also seen that in this framework it seems unfea-

sible to reproduce both the correct normalization of the galaxy stellar mass

function and realistic BCG masses (see discussion in Sect. 4.2.4). There-

fore, a theoretical effort to produce a better modelization for AGN feedback

is needed. This result will be likely possible by exploiting the capability of

zoom-in simulations on galactic scales, suited to resolve the multiphase struc-

ture of the interstellar medium and the related physical processes operating
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on pc scales. These simulations can then be used to develop effective mod-

els for lower-resolution cosmological simulations (e.g., Gaspari & Sadowski

2017).

Constraints on the origin of the observed correlations can also be placed

by quantifying the number of mergers that simulated SMBHs undergo dur-

ing cosmic time. This analysis, presented in Sect. 3.4.8, highlighted that

only SMBHs with MBH > 109 M� undergo more that 3 major mergers, thus

disfavouring once again a non-causal origin to the observed correlations.

This result is strengthen by the necessarely simplified description of BH-BH

mergers adopted in our simulations, since the results obtained has to be con-

sidered as upper-limits. Indeed, I recall that in our simulations two SMBHs

are forced to merge whenever their distance is . 10 kpc, thus whenever a

merger between galaxies occurs. At the same time, the results might depend

on the timing of the seeding, which is in turn determined by the resolution of

the simulation. For the simulations used for this analysis, a seed of ∼ 105 M�

is spawned at the center of each FoF group having a mass & 1012 M�. This

threshold scales with the mass resolution of the simulation, meaning that

at higher resolution BH seeds are spawned at higher redshift within lower

massive halos, likely enhancing the number of mergers that BH particles

experience at high redshift. Finally, it is important to remark that modern

cosmological simulations do not have reached a high enough resolution to

resolve the processes of dynamical friction that enables merging SMBHs to

approach each other from ∼ kpc to ∼ pc scales. This process, which in simu-

lations is instantaneous, can take several Gyrs. At pc scales, other processes

take place, like stellar hardening, e.g. three body encounters between SMBH

binary and individual stars. If this process is efficient enough to bring SMBHs

at a distance of ∼ 10−2 − 10−3 pc, the emission of gravitational waves will

eventually enable the merger between the two SMBHs. As such, the theoret-

ical predictions on the number of mergers experienced by SMBHs are very

uncertain, depending on a number of physical processes operating at differ-

ent scales. Eventually, it will be possible to place constraints on the merger

rates between SMBHs by exploiting the emission of gravitational waves. This

observational probe will be only possible with instruments like LISA, whose

launch is planned in 2034. The merger rates measured by LISA will place

constraints on the mechanism of formation of the first intermediate-mass

BHs, and on the dynamical and environmental processes which determine
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their coalescence.

Even though the sSFR within simulated central galaxies at z = 0 exceeds

the values derived from observations, the situation is reversed at z > 2 (see

Fig. 4.12). In particular, in Chapter 4 I showed how numerical simulations

struggle to reproduce the high values of SFR which are observed within

protocluster regions at z & 2 (see Figs 4.6, 4.7, 4.10). Interestingly, these

differences are related to a general difficulty for theoretical models to re-

produce star formation properties of galaxies at these redshifts, regardless

of their environment. Indeed, in Fig. 4.16 I showed how most (if not all)

cosmological simulations under-predict the normalization of the main se-

quence at z ∼ 2. Furthermore, the distribution of SFR values at fixed stellar

mass around the main sequence is well fitted by a single Gaussian, mean-

ing that in cosmological simulations the population of starburst galaxies is

largely missed. Interestingly, these results do not depend on the particular

implementation of the AGN model, nor on the star formation sub-resolution

model parameters, hinting that these limits are intrinsic of the sub-resolution

model for star formation (i.e., Springel & Hernquist 2003). The capability

to reproduce these high values of star formation rates will be an important

task for future developments of the sub-resolution models for star formation

implemented in cosmological simulations.

In this respect, future surveys will be extremely valuable to better under-

stand the physical properties of highly star forming galaxies (and of high

redshift galaxies in general). For example, observations at radio wavelength

with instruments like SKA (and its precursors) will enable to obtain informa-

tion on the atomic gas content of high redshift galaxies through observations

of the 21-centimetre radiation. Moreover, the future installation of ALMA

bands 1 and 2 will enable to observe the CO(1-0) line transition at high

redshift, needed to limit the uncertainties affecting the measures of molec-

ular gas masses. Indeed, the currently implemented ALMA bands can only

target higher-J transition lines, inevitably introducing uncertainty on the de-

rived molecular gas mass due to unknown gas excitation. The information

gathered with these instruments will enable to place better constraints on

gas-related properties of high redshift galaxies, such as gas fractions, star

formation efficiencies, and atomic and molecular mass functions. These ob-

servables will be of key importance in constraining feedback processes in
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current theoretical models.

In the framework of galaxy clusters, during the last years an increasing

number of observations shed light on the relationship between over-densities

of dusty star forming galaxies and sub-millimetre galaxies to protocluster

regions. At the same time, these results have been mostly obtained from ob-

servations targeted in the FIR and sub-millimetre wavelengths, and thus are

biased toward the highest values of SFRs. In this respect, a better modeliza-

tion of high redshift galaxy star formation properties would greatly improve

the predictive power of cosmological hydrodynamical simulations, enabling

to predict the incidence of these bursts of star formation within protocluster

regions and to realistically describe the star formation history of protoclusters

in general. Concurrently, a better understanding of the evolution of galaxy

clusters will also come from future observations, as missions like Euclid will

open up the discovery space, finding a large number of high-redshift clusters

and proto-clusters. Subsequent followup with instruments aimed at different

wavelengths toward this large and homogeneous sample of systems will real-

istically enable to draw the evolutionary pattern of the most massive objects

in the universe.
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Appendix A

ΛCDM cosmological model

I this Appendix I review the main equations of the standard model of cos-

mology that have been used in this thesis.

A.1 Space-time metric

Observations of the CMB tell us that the early universe was nearly isotropic.

Assuming that we do not occupy any particular place in the universe, this

isotropy also imply homogeneity. These properties are also valid in the local

universe, if the density field is smoothed over scales larger than ∼ 100 Mpc.

This evidence is known as the cosmological principle, stating that the uni-

verse is isotropic and homogeneous if observed over scales large enough.

Starting from these symmetries, it is possible to write the metric that de-

scribes space-time as

ds2 = c2dt2 − a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
, (A.1)

where t is the temporal coordinate, and r, θ, and φ are the radial and angular

coordinates. The constant k defines the geometry of the spacetime, with ob-

servations suggesting k = 0, i.e. a flat geometry (e.g., Planck Collaboration

et al. 2018b). The factor a(t) is commonly defined as the scale factor and

determines how the proper (or physical) distance between two cosmologi-

cal objects changes with time. From the expression of the metric it easy to

recover few important results. Let’s consider, for example, the proper dis-
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tance between two galaxies at fixed time t in a flat geometry: dprop = a(t)r.

Differentiating with respect to time brings:

ddprop

dt
= vprop = ȧ(t)r =

ȧ(t)

a(t)
a(t)r = H(t)dprop. (A.2)

H(t) is the Hubble parameter and Eq. A.2 is now referred as the Hubble-

Lemaitre law (Hubble, 1929). The latest data released by Planck (Planck

Collaboration et al., 2018b) fixes H(t = 0) = H0 = 67.4 ± 0.5 km/s/Mpc.

It is also useful to express the Hubble parameter by means of a dimension-

less parameter, h, such that different values of H0 for different cosmological

models will be encodend in h: H0 = 100 h km/s/Mpc. The second result

that can be recovered regards electromagnetic radiation. Given that the scale

factor evolves with time, the wavelength of a given radiation will evolve with

it. In particular, if the universe expands the wavelength will increase as a

consequence of the expansion, following the relation: λe/λo = a(te)/a(to),

where te and to are the emission and observation times and λe and λo the

relative wavelengths at the respective times. Hence it is possible to define a

cosmological redshift as:

z =
λo − λe
λe

=
1− a
a

, (A.3)

where to = t0 = present time and the normalization a(t0) = 1 is assumed.

Therefore, in an expanding universe, radiation will be stretched to longer

wavelengths as the universe evolves.

Given the metric Eq. A.1, the evolution of the universe is determined by

the evolution of the parameter a(t). To describe its dynamics, it is necessary

to define an underlying theory of gravity. Using the Einstein’s equations of

general relativity, the expressions which describe the time evolution of the

scale factor are the Friedmann equations, that can be written in the form:

(
ȧ

a

)2

= H2 =
8πG

3
ρ− kc2

a2
+

Λc2

3
, (A.4)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
, (A.5)

where ρc2 is the mean energy density of the universe, p its pressure, and Λ

the so called cosmological constant. From Eq. A.5 it is clear the effect of the
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presence of a positive cosmological constant, which leads to an acceleration

of the expansion of the universe. Indeed, the effect of the cosmological con-

stant can be accounted defining an effective density, ρ̃ = ρ+Λc2/8πG and an

associated effective pressure, p̃ = p− Λc2/8πG. The pressure associated to

the cosmological constant is negative, as acting to accelerate the expansion

of the universe. Another useful parameter that can be derived directly for

Eq. A.4 is the critical density, i.e. the density at which the curvature of the

universe is 0:

ρ̃cri =
3H2

8πG
. (A.6)

This definition is a useful metric of comparison, and often used to define the

mass of galaxy clusters (see Sect. A.3).

From Eq. A.4 and Eq. A.5 it is clear that the evolution of the scale param-

eter is driven by the energy content of the universe. As this is contributed

by matter (ρM), radiation (ργ), and by the cosmological constant (ρΛ), it

is essential to derive the time evolution of all these components. Assuming

mass conservation, the matter density will evolve as an inverse of a volume.

Given that the volume scales as V ∝ a3, the matter density will scale as

ρM = ρM,0a
−3, where ρM,0 is the matter density as measured today. To com-

pute the evolution of the radiation energy density, it has to be taken into

account that beside the volume evolution, all wavelengths are stretched by

a factor a in an expanding universe (see Eq. A.3). Therefore, ργ = ργ,0a
−4.

Finally, the energy density related to the cosmological constant does not de-

pends on the scale factor. Defining, as it is usually done, ΩX = ρX,0/ρcrit,0,

the evolution of the Hubble parameter in a flat universe will be given by:

H2 = H2
0

[
ΩM (1 + z)3 + Ωγ(1 + z)4 + ΩΛ

]
= H2

0E(z)2, (A.7)

where H0 is the Hubble constant today.

A.2 Linear evolution theory

If the universe was fully described by the metric defined in Eq. A.1 there

would not be galaxies or galaxy clusters, being the universe homogeneous at

every scale. However, on small scales, the early universe was characterized

by small fluctuations in the density field, as observations of the CMB show.

Perturbations in the density field can be described by the density contrast,
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defined as δρ(x̄) = (ρ(x̄)− ρ̄m)/ρ̄m, where ρ̄m is the mean matter density at

a given time. In general, it is easier to define quantities in the momentum

space and consider the Fourier transform of δρ(x̄): δ(k̄). Assuming that the

density contrast is an isotropic and homogeneous Gaussian random field, its

statistic is fully described by its second moment, the power spectrum P (k).

The probability distribution for a given δ(k̄) is given by:

Prob
[
δ(k̄)

]
=

1√
2πP (k)

exp

(
− δ2(k̄)

2P (k)

)
, (A.8)

where the interpretation of the power spectrum as the variance of the density

contrast distribution is explicit. Therefore, to fully describe the statistical

properties of the density field at each time it is necessary to define the initial

power spectrum at early times, right after the inflationary stage, and its

evolution. The initial conditions are usually considered to be a power law:

P (k) = Ask
ns , (A.9)

while its evolution at each scale can be only computed by means of numerical

methods, like cosmological simulations. However, a linear approximation can

be used to derive the main results. In the linear regime, each δ(k̄) evolves

independently from the other wave vectors as

δ(k̄, t0) = D+(t)× T (k)× δ(k̄, ti), (A.10)

where T(k) is the so called transfer function

T (k) = constant×





1, k < keq

k−2, k > keq

(A.11)

being keq the wave vector corresponding to the size of the horizon at matter-

radiation equality. This factor takes in consideration that perturbations of

different sizes evolve differently in the range of time between the end of

inflation and recombination, depending if they enter the horizon before or

after matter-radiation equality. D+(a) is the linear growth factor, normalized

to 1 at a = 1, and is given by

D+(a) =
5ΩM

2
E(a)

∫ a

0

da′

[a′E(a′)]3
. (A.12)
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Fig. A.1: The observed matter power spectrum. Black line is the theoretical pre-
diction, while colored points are data from different cosmological probes.
Dashed line is deviation from the linear evolution from non linear cluster-
ing at small scales. Credits: Planck Collaboration et al. (2018a).

Therefore, the power spectrum at any time can be written as

P (k, t0) = D+(t)2T 2(k)P (k, ti), (A.13)

and P (k, ti) can be taken in the form given by Eq. A.9. The resulting power

spectrum today will be then

P (k) ∼




kns , k < keq

kns−4, k > keq

, (A.14)

with the turnover near k = keq ≈ 0.01 Mpc−1. In Fig. A.1 it is shown the

matter power spectrum as measured by different probes. The agreement

between the model (black line) and the data is evident, and the two power-

laws are clearly visible with a turnover around k ∼ 10−2h Mpc−1. From CMB

data it is also possible to measure the value of the spectral index ns, which

recent data fix to ns = 0.965± 0.004 (Planck Collaboration et al., 2018b).
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Another important quantity related to the density contrast is the density

contrast smoothed over some scaleR, δ(x̄, R) =
∫
d3x′W (x̄−x̄′, R)δ(x̄′). This

is important, as the density contrast can be easily defined mathematically in

each point of space, but from an observational point of view it is necessary

to smooth over a given volume. W (x̄, R) is called window function and can

be chosen in a somewhat arbitrarily way as a spherical top-hat, Gaussian, or

related functions. To a given scale R it is always possible to associate a mass

M, and the two will be interchangeable. Indeed, using a top hat window

function it is possible to define

M̄(R) =

∫
d3x W (x̄, R)ρ̄m =

4πR3

3
ρ̄m, (A.15)

where ρ̄m is the average matter density. The smoothed mass distribution is

then related to the smoothed density contrast by

M(x̄, R) = M̄(R)(1 + δ(x̄, R)), (A.16)

and it is possible to interpret the smoothed density contrast as

δ(x̄, R) = δM(x̄, R). (A.17)

Finally the smoothed mass distribution can be espressed as a function of the

power spectrum as

σ2(M) = 〈δ2(x̄, R)〉 =
1

(2π)3

∫
d3k W̃ 2(kR)P (k), (A.18)

where W̃ (kR) is the Fourier transform of the window function. Assuming

again a power spectrum as defined in Eq. A.9, it is possible to derive

σ2(M) ∼ 1

M (ns+3)/3
. (A.19)

Therefore, the variance is larger at smaller masses, leading to the expectation

of a hierarchical universe where smaller structures are expected to collapse

earlier on average. A parameter of the standard ΛCDM cosmology is the

variance σ2(R) computed considering a top hat window function and a scale

radius R = 8h−1 Mpc, usually defined as σ8. High value of σ8 means high

variance and thus structures begin to collapse earlier. Recent observations
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fix the value of this parameter to σ8 = 0.811± 0.006 (Planck Collaboration

et al., 2018b).

Even though the linear approximation leads to important results, it can-

not be used to derive the clustering properties that we observe in the local

universe. In fact, when the amplitude of density contrast fluctuations reach

unity, i.e. σ2(M) ∼ 1, the linear approximation breaks down. Further evolu-

tion must be studied by means of more sophisticated (but still approximated)

theoretical models, or by means of numerical simulations. In the following

section I describe the spherical collapse model, one of the simplest, and yet

very instructive, model for non linear evolution.

A.3 Spherical collapse model

The simplest scenario is described by a spherically simmetric perturbation

with constant density evolved in an Einstein-De Sitter universe with ΩΛ = 0.

The dynamics of the problem is fully described by the evolution of the radius

of the over-density, R, and thus it reduces to a 1D problem. The dynamics is

characterized by a first phase of expansion, where R(t) increases at a smaller

rate than the cosmic expansion, causing an increasing of the initial over-

density as predicted from Eq.A.12. At the turnaround time, tta, the evolution

of the over-density detaches from the cosmic flow, and R(t) decreases until

virialization is reached at tcoll. The solution is described by means of the

virial theorem, and here I just highlight the main results.

First, we notice that at tta the total energy is equal to the gravitational

energy E = −3GM2/(5Rta). At the time of collapse, assuming that the

system is virialized, it follows from the virial theorem that E = Ep/2 =

−3GM2/(10Rcoll). From energy conservation it then follows that Rta = 2×
Rcoll. Moreover, the ratio between the density of the collapsed object and the

average cosmic density can be computed considering that the time interval

tcoll − tta = tta is equal to the free-fall time tff =
√

3π/(32Gρta). This last

relation can be inverted to derive the density at the time of the turn-around

ρta = 3π/(32Gt2ta). Given that Rta = 2×Rcoll, it is also possible to compute

the density at the time of collapse ρcoll = 8ρta = 3π/(4Gt2ta) = 3π/(Gt2coll).

In an Einstein-de-Sitter universe with ΩΛ = 0 the background density evolves

as ρ̄m = 1/(6πGt2). The density contrast at the time of virialization will then
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be:

∆ =
ρcoll
ρ̄

= 18π2 = 177.653. (A.20)

The density contrast at the time of virialization for different cosmologies can

be computed by estimating ρcoll and ρ̄(tcoll). For the particular case of the

cosmological model used for our cosmological simulations (Komatsu et al.

2011), ∆ = 98.

This is an important and usefull quantity. Indeed, both in observations

and theorical works, such as numerical simulations, cluster of galaxies are

defined as regions of space with an average density ∆ times the average (or

sometimes critical) density of the universe.
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incapace di mantenere un briciolo di serietà ad ogni pubblicità di Giorgio
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no mqyestion about it!



178 Acknowledgements



List of Figures

1.1 Hubble, Chandra, and Spitzer composite image of the massive

galaxy cluster J1426.5+3508. Credits: https://hubblesite.org/image/3690/news/15-

galaxy-clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Hubble image of the galaxy cluster Abell S1063. In the image

are clearly visible the distortion on galaxy shapes due to gravi-

tational lensing. Credits: https://hubblesite.org/image/4293/news/15-

galaxy-clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Projected density field for a 15 Mpc/h thick slice at redshift

z = 0 for the dark matter only Millenium simulation. The dens-

est regions are showed in yellow and orange and corresponds

to clusters and groups of galaxies. Credits: https://wwwmpa.mpa-

garching.mpg.de/galform/virgo/millennium/ . . . . . . . . . 5

1.4 Ratio between stellar and total mass in clusters within R500.

Both observational results and results from few numerical

simulations are shown. Credits: Henden et al. (2019). . . . . 6

1.5 Rest frame colour distribution as a function of galaxy number

density (top x-axis) and absolute magnitude (Mr, right y-axis).

Solid lines represent double Gaussians fit to the data. Credits:

Balogh et al. (2004). . . . . . . . . . . . . . . . . . . . . . . . 7



180 LIST OF FIGURES

1.6 Specific star formation rate as function of look-back time for

early-type galaxies of various masses as indicated by the la-

bels. The grey hatched curves indicate the range of possible

variation in the formation time-scales that are allowed within

the intrinsic scatter of the α/Fe ratios derived. Intermediate-

and low-mass galaxies in low-density environments get reju-

venated via minor star formation events below redshift z ∼
0.2. This suggests a phase transition from a self-regulated

formation phase without environmental dependence to a re-

juvenation phase, in which the environment plays a decisive

role possibly through galaxy mergers and interactions. Credits

to Thomas et al. (2010). . . . . . . . . . . . . . . . . . . . . . 8

1.7 BCG mass evolution in cosmological simulations of galaxy

clusters. The mass of the BCG is defined as the total stellar

mass within 0.1 × R500. The red line shows the stellar mass,

which at z = 0 is within the BCG, already formed at a given

lookback time. The blue line shows the stellar mass that is

already assembled within the main progenitor of the BCG at a

given lookback time. Shaded regions encompass the 16% and

84% percentiles for the sample of simulated clusters. Credits:

Ragone-Figueroa et al. (2018). . . . . . . . . . . . . . . . . . 9

1.8 Gas fraction within galaxy clusters both in simulations (FA-

BLE and C-EAGLE) and observations (grey points). Horizontal

dashed line represents the cosmic baryon fraction in the used

cosmology. Credits: Henden et al. (2019). . . . . . . . . . . . 11

1.9 Correlation between temperature and galaxy velocity disper-

sion within galaxy groups and clusters. The best fit relation

is σ ∝ T 0.65±0.03 for clusters and σ ∝ T 0.64±0.038 and groups.

The relation is very near to the theoretical expectation (σ ∝
T 0.5) derived assuming that both the ICM and galaxies are

in equilibrium within the common gravitational well of the

cluster. Credits: Xue & Wu (2000). . . . . . . . . . . . . . . . 13

1.10 Image of the inner ∼ 700 kpc of the MS0735.6+7421 cluster

combining the X-ray (blue), I-band (white), and radio wave-

lengths (red). Credits: McNamara et al. 2009. . . . . . . . . . 17



LIST OF FIGURES 181

1.11 Comparison between the mechanical power being injected by

the AGN in the BCG (Pcav) and the cooling luminosity (Lcool)

of the cluster at 7.7 Gyrs. Different symbols are from different

samples and redshift (see legend and Hlavacek-Larrondo et al.

2015 for further details). The diagonal lines indicate Pcav =

LX assuming pV , 4pV or 16pV as the energy deposited, where

p is the thermal pressure of the ICM at the radius of the bubble

and V is the volume of the cavity. Credits: Hlavacek-Larrondo

et al. (2015). . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.12 Spatial extent of protoclusters at z = 2 (left panel), z = 1

(centre panel), and z = 0 (right panel), with different final

masses as indicated in the Figure. All distances are comoving.

Black points represent a galaxy of stellar mass greater than

108 h−1 M� that will end up in the cluster while grey points

represent those that will not. The red circle corresponds to the

z = 0 centre and comoving viral radius of the cluster. Credits:

Muldrew et al. (2015). . . . . . . . . . . . . . . . . . . . . . 20

1.13 Evolution of the mass of the main progenitor for clusters of

different final masses in numerical simulations. The lines and

errorbars show median values with 1− σ scatter. Credits: Chi-

ang et al. (2013). . . . . . . . . . . . . . . . . . . . . . . . . 21

1.14 Correlation between the mass of the most massive progenitor

of a galaxy cluster at z = 2 and the z = 0 cluster mass. Points

are color-coded according to the ratio between the most mas-

sive and the second most massive progenitors of the cluster at

z = 2. Credits: Muldrew et al. (2015). . . . . . . . . . . . . . 22

1.15 Correlation between galaxy overdensity δgal at z = 2, 3, 4, 5

and final cluster mass in numerical simulations. δgal is com-

puted considering two windows of 15 cMpc (left panel) and

25 cMpc (right panel). In both cases only galaxies with SFR

> 1 M� yr−1 have been considered. Credits: Chiang et al.

(2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



182 LIST OF FIGURES

1.16 SFR normalised by cluster mass as a function of redshift. Coloured

points are observational data from Popesso et al. (2012), Ma

et al. (2015), Smail et al. (2014), Santos et al. (2015), Wang

et al. (2016), and Smith et al. (2019). The solid black line

∼ (1 + z)7 shows an empirical fit to data suggested by Cowie

et al. (2004) and Geach et al. (2006). The dashed black line

is the evolution of the same quantity computed for the field

from Madau & Dickinson (2014) data (see main text for fur-

ther details). . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.17 VLT Lyα contours (blue) delineating the gaseous nebula and

the VLA 8 GHz contours (red) delineating the non-thermal

radio emission are superimposed on the composite (g475 +

I814) ACS image. The size of the region showed is 33” × 23”

(25” ∼ 200 kpc). Credits: Miley et al. (2006). . . . . . . . . . 26

1.18 Left panel: total SFR as contributed by all galaxies within the

simulation (black line), the galaxies within protocluster re-

gions (red dashed line), and galaxies within the main halo of

each protocluster (blue dashed line). Colored points are ob-

servational data (see Muldrew et al. 2018 for further details).

Right panel: specific SFR (i.e., SFR per unit of stellar mass)

color-coded as in the left panel. Credits: Muldrew et al. (2018). 28

1.20 Changes in the correlation between MBH and M? from an

initially uncorrelated (within 4 dex in each parameter, blue

points) distribution at high z to z = 0 purely by mass assem-

bly along the merger trees, i.e., without the inclusion of star

formation and SMBH gas accretion. The final distribution is

characterized by near unity slope, with a decreasing scatter at

higher masses. The solid black line shows the observational
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values and shadowed regions represent 16 and 84 percentiles.

The three different blue lines represent three definition of

M?,out. In particular the thin blue solid line is the stellar mass

in a spherical shell with radii 100 kpc and 200 kpc while the
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3.15 Correlation between SMBH mass and M500 at z = 1.0 (upper

panel) and z = 0 (lower panel). Blue points represent the

mass gained by mergers while red points represent the mass

gained by gas accretion. Dashed lines represent best fitting

lines to the data. . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.16 SMBH merger tree for a typical SMBH of MBH ∼ 108 M�

in our simulations. Points are colour-coded according to the

mass of the SMBH particle. . . . . . . . . . . . . . . . . . . . 103

3.17 Same as Fig. 3.16, but for a typical SMBH of MBH ∼ 5×108 M�.103

3.18 Same as Fig. 3.16, but for a typical SMBH of MBH ∼ 5×109 M�.104

3.19 Same as Fig. 3.16, but for a typical SMBH of MBH ∼ 1010 M�. 104

3.20 2D histogram on the MBH −M? plane at z = 0. Each bin is

colour-coded by the median number of major (M2/M1 > 0.25)

BH-BH merger events encountered along the whole merger

tree of each z = 0 BH particle. . . . . . . . . . . . . . . . . . 105

3.21 Covariance matrix. Each axis represents the logarithmic dif-

ference between the actual value of a quantity X and the ex-

pected value from the linear relation (X-M500) at its fixed

mass, as defined by Eq. 3.6. Panels above the diagonal refer

to z = 1 while panels below the diagonal refer to z = 0. The

diagonal panels show the distribution of δ(X) at z = 0. Red

points define clusters which have experienced a mass growth

of at least 40% during the last Gyr. . . . . . . . . . . . . . . . 109

4.1 Correlation between the galaxies stellar mass and the central

SMBHs mass. Observational data are taken from McConnell &

Ma (2013) (dashed black line) and from Gaspari et al. (2019)

(red circles). The simulated stellar masses for satellite galax-

ies (cyan points) are obtained considering the star particles,

bound to the substructure (accordingly to Subfind) and within

50 pkpc from its center. The mass of the central galaxies (dark-

blue squares) is obtained by summing over all stellar particles

within an aperture of 0.15×R500. . . . . . . . . . . . . . . . 119



LIST OF FIGURES 189

4.2 Galaxy stellar mass function (GSMF) at z = 0. Observational

data are taken from Bernardi et al. (2013) (black solid line).

Simulations data are derived considering as stellar mass the

sum of all stellar particles bound to the galaxy by Subfind (red

triangles), and the same sum restricted to particles within 50

pkpc (green hexagon) and 30 pkpc (blue squares). Error bars

are computed assuming Poissonian errors. Filled and empty

marks represent the mass bins with respectively more than

and less than 10 galaxies. . . . . . . . . . . . . . . . . . . . . 121

4.3 Correlation between BCG stellar mass and M500 at z = 0.

Observations are taken from DeMaio et al. (2018) (blacks

quares) and Kravtsov et al. (2018) (black triangles). The simu-

lated values are shown as blue points. The red hexagon refers

to the BCG that lost its central BH (see Sect. 4.2.1). The or-

ange line is the fit to LR simulations (Ragone-Figueroa et al.

2018). BCG masses are obtained summing over all stellar par-

ticles bound to the main subhalo of a group or cluster by

Subfind (BCG+ICL) and within a 2D aperture of 50 pkpc. . . 123

4.4 Star formation rate of BCGs in observations and simulations.

Grey circles are BCGs of our simulations from different snap-

shots, while the grey triangle represents the BCG that lost its

central BH at z ∼ 4 (see Sect. 4.2.1). BCGs from the same

snapshot are shifted only for visualisation purposes. The me-

dian values are shown as blue circles and the vertical bars

indicate the range between the 16th and 84th percentiles. A

2D aperture of 30 pkpc is used. Red squares are BCGs from

the sample of McDonald et al. (2018) (see text for more details).125

4.5 Specific SFR of BCGs in observations and simulations. Grey

circles are BCGs of our simulations from different snapshots

(blue circles are median values with 16th and 84th percentiles),

while the grey triangle is used for the BCG that lost its central

BH at z ∼ 4 (see Sect. 4.2.1). BCGs from the same snapshot

are shifted only for visualisation purposes. A 2D aperture of

30 pkpc is used. Red squares are BCGs from the sample of

McDonald et al. (2018) (see text for more details). . . . . . . 126
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4.6 Star formation rate of protocluster regions at z ∼ 2 in ob-

servations and simulations within an aperture of ∼ 2 pMpc.

Red bands refer to two clumps from Clements et al. (2014),

black solid lines refer to four fields from Stevens et al. (2010)

and analysed by Clements et al. (2014). The blue square high-

lights to the Spiderweb structure (Dannerbauer et al. 2014).

The green square and green band show the two protoclusters

analysed by Kato et al. (2016) (HS1700 and 2QZCluster, re-

spectively). Black circles and triangles refer to numerical sim-

ulations, where the SFR is plotted against protocluster mass

(see text). We used black circles for groups which end up in

the central cluster of the region at z = 0, and black triangles

otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.7 Star formation rate of protocluster regions at 2 < z < 2.6

in observations and simulations within an aperture of ∼ 100

pkpc. Green bands refer to two protoclusters from Gómez-

Guijarro et al. (2019), the blue square refers to Wang et al.

(2016), and the red square refers to Coogan et al. (2018).

Black circles and triangles refer to numerical simulations, where

the SFR is plotted against protocluster core mass. We used

black circles for groups which end up in the central cluster of

the region at z = 0, and black triangles otherwise. . . . . . . . 132

4.8 Star formation rate as a function of galaxy stellar mass at

z ∼ 2.3. Red solid and dashed lines are observational data

from Whitaker et al. (2014) and Schreiber et al. (2015), re-

spectively. Green hexagons and blue squares are galaxies from

the protoclusters of Gómez-Guijarro et al. (2019) and the clus-

ter of Wang et al. (2018), respectively. Grey points are galaxies

in our simulations. Black dashed line fix the distinction be-

tween active and passive galaxies (Pacifici et al. 2016). Black

points represent median values of star forming galaxies with

16th and 84th percentiles. Both SFRs and stellar masses are

computed considering a 3D aperture of 30 pkpc. . . . . . . . . 133
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4.9 Main sequence of star forming galaxies at z ∼ 2. Red trian-

gles are observational data from Whitaker et al. (2014). The

black line shows median values for our simulations. Coloured

solid and dashed lines are data from other cosmological sim-

ulations and semi-analytical models respectively. In particu-

lar: Eagle (orange solid line, Guo et al. 2016), TNG300 (red

solid line, Donnari et al. 2019), Simba (yellow solid line, Davé

et al. 2019), Galform (green dashed line, Guo et al. 2016), L-

galaxies (dark green dashed line, Guo et al. 2016), and GAEA

(blue dashed line, Hirschmann et al. 2016). For the GAEA

model we also show the results obtained considering only

galaxies that at z = 0 are within galaxy clusters with mass

> 1014.25M� (see text for more details). . . . . . . . . . . . . 134

4.10 Star formation rate as a function of M500 at z ∼ 4.3. The

blue square and green line are the observed values of Miller

et al. (2018) and Oteo et al. (2018) protoclusters respectively.

Black symbols refer to the SFR computed in a cylinder 1 pMpc

long and within a circular aperture of 130 pkpc in our simula-

tions. The five most massive groups of each region are shown.

We used black circles for groups which end up in the central

cluster of the region at z = 0, and black triangles otherwise. . 139

4.11 Star formation rate as a function of galaxy stellar mass at z ∼
4.3. The red line shows observational data from Steinhardt

et al. (2014). Orange dots represent galaxies of SPT2349-56

as analysed in Hill et al. (2020). Grey points are galaxies in

our simulations. The black dashed line fixes the distinction

between quiescent and star forming galaxies (Pacifici et al.

2016). Black points represent median values with 16th and

84th percentiles for star forming galaxies. Green circles are

galaxies from the simulated protoclusters shown in Fig. 4.10. 140
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4.12 Star formation rate normalised by cluster mass as a function of

redshift. Black squares represent median values from Dianoga

simulations (grey points). See the text for a complete explana-

tion of sample selection. The dashed black line is the best fit

to simulations. Coloured points are observational data from

Popesso et al. (2012), Ma et al. (2015), Smail et al. (2014),

Santos et al. (2015), Wang et al. (2016), Miller et al. (2018),

and Smith et al. (2019). The solid black line ∼ (1 + z)7 shows

an empirical fit to data suggested by Cowie et al. (2004) and

Geach et al. (2006). . . . . . . . . . . . . . . . . . . . . . . . 142

4.13 Star formation rate distribution of star forming galaxies at

fixed stellar mass at z = 2. Blue points refer to Dianoga simu-

lations, green squares to Magneticum Box2b, and red triangles

to Magneticum Box2. SFRMS is computed independently for

every simulation. NMS is the number of galaxies within the

bin corresponding to SFR=SFRMS. Only bins with at least ten

galaxies are shown. Coloured solid lines are Gaussian fits to

simulations. Vertical black dashed line define the threshold

above which data are used to estimate the fit. . . . . . . . . . 143

4.14 Galaxy correlations at z = 2.3. Top panel: Gas fraction as a

function of stellar mass. Bottom panel: Depletion time as a

function of stellar mass. Grey circles refer to Dianoga simu-

lations at z=2.3. Green hexagons and blue squares are data

from Gómez-Guijarro et al. (2019) and Wang et al. (2018)

respectively. The orange dashed line is the functional form of

Liu et al. (2019) for MS galaxies at z = 2.3, while the shaded

region encompasses galaxies with an SFR that is four times

lower and higher than MS galaxies. Red dashed lines are ob-

tained combining the MS by Whitaker et al. (2014) and the

integrated Kennicutt-Schmidt law from Sargent et al. (2014,

orange line in the plot). . . . . . . . . . . . . . . . . . . . . . 145
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4.15 Galaxy correlations at z = 4.3. Top panel: Gas fraction as a

function of stellar mass. Bottom panel: Depletion time as a

function of stellar mass. Grey circles refer to Dianoga simula-

tions at z=4.3. Brown circles are data from Hill et al. (2020).

The orange dashed line is the functional form of Liu et al.

(2019) for MS galaxies at z = 4.3, while the shaded region

encompass galaxies with an SFR that is four times lower and

higher than MS galaxies. . . . . . . . . . . . . . . . . . . . . 152

4.16 Top panel: 2D histogram of MS star forming galaxies in sim-

ulations at z = 2.3. Each bin is colour-coded with the respec-

tive median value of fgas Bottom panel: Same as upper panel,

colour-coded with respect to tdep . . . . . . . . . . . . . . . . 153

4.17 Main sequence of star forming galaxies at z = 3 for different

simulations. Grey points refer to the results relative to the

same region used for the tests with the set up used for this

work. Different panels refer to: t0 0.3x: shorter timescale for

star formation; SFTh 10x: increased density threshold for star

formation; SFTh t0: increased density threshold for star forma-

tion and shorter star formation timescale; A0 0.1x: reduced

supernova thermal feedback; Tthr: AGN feedback implemen-

tation as in Ragone-Figueroa et al. (2018); No-AGN: no AGN
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4.18 Correlation between cold gas mass and SFR at z = 3 for dif-

ferent simulations. Grey points refer to the results relative to

the same region used for the tests with the set up used for this

work. Different panels refer to: t0 0.3x: shorter timescale for

star formation; SFTh 10x: increased density threshold for star

formation; SFTh t0: increased density threshold for star forma-

tion and shorter star formation timescale; A0 0.1x: reduced
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tation as in Ragone-Figueroa et al. (2018); No-AGN: no AGN

feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



194 LIST OF FIGURES

4.19 Correlation between stellar mass and cold gas mass at z = 3

for different simulations. Grey points refer to the results rel-

ative to the same region used for the tests with the set up

used for this work. Different panels refer to: t0 0.3x: shorter

timescale for star formation; SFTh 10x: increased density thresh-
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plementation as in Ragone-Figueroa et al. (2018); No-AGN:
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A.1 The observed matter power spectrum. Black line is the theo-

retical prediction, while colored points are data from different
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