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Abstract. We consider the problem of bounding mean first passage 
times and reachability probabilities for the class of population continuous- 
time Markov chains, which capture stochastic interactions between groups 
of identical agents. The quantitative analysis of such models is notori- 
ously difficult since typically neither state-based numerical approaches 
nor methods based on stochastic sampling give efficient and accurate re- 
sults. Here, we propose a novel approach that leverages techniques from 
martingale theory and stochastic processes to generate constraints on the 
statistical moments of first passage time distributions. These constraints 
induce a semi-definite program that can be used to compute exact bounds 
on reachability probabilities and mean first passage times without nu- 
merically solving the transient probability distribution of the process or 
sampling from it. We showcase the method on some test examples and 
tailor it to models exhibiting multimodality, a class of particularly chal- 
lenging scenarios from biology. 
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1 Introduction 
 

Population Continuous-Time Markov Chains (PCTMCs) provide a widely used 
framework to capture stochastic interactions between groups of identical agents. 
This subclass of Continuous-Time Markov Chains (CTMCs) is used to describe 
the stochastic dynamics of systems in various domains. Prominent applications 
are chemical reaction networks in quantitative biology [55], epidemic spread- 
ing [46], performance analysis of technical and information systems [11,22] as 
well as the behavior of collective adaptive systems [9]. 

For the quantitative analysis of CTMCs, many approaches have been devel- 
oped, where properties of interest are often expressed in terms of temporal logics 
such as CSL [2,6,5], MTL [14], and timed-automata specifications [15,41]. In ad- 
dition, there exist efficient software tools [31,38,17] that can be used to analyze 
and verify system properties. The computation of reachability probabilities is a 
central problem in this context. 
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Popular exact methods for CMTCs rely on numerical approaches that ex- 
plicitly consider each system state individually. A major problem is that these 
methods cannot scale in the context of population models with large copy num- 
bers of agents. A popular alternative to tackle this problem is statistical model 
checking, which is based on stochastic simulation [16]. For PCTMCs arising in 
the context of chemical reaction networks, trajectories of the process are usually 
generated using the Stochastic Simulation Algorithm (SSA) [25]. However, since 
the number of possible interactions grows with the number of agents, stochas- 
tic simulations of PCTMCs are time-consuming. Moreover, they are subject to 
inherent statistical uncertainty and give only statistically estimated bounds. 

As an alternative, recent work concentrates on numerical methods that ap- 
proximate the statistical  moments  of  the  system  without  the  need  to  compute  
the probability of each state. For groups of identically behaving  agents,  it  is  possible 
to derive systems of differential equations for the evolution of the  sta-  tistical 
population moments [10,51,12,21,50,22]. However, as the system of exact moment 
equations is  infinite-dimensional,  approximation  schemes  typically  rely  on certain 
assumptions  about  the  underlying  probability  distribution  to  truncate  it. For 
example, one might employ a “low dispersion closure” which assumes that higher-
order moments are the same as those of a normal distribution [30]. Such 
approximations are, by nature, ad-hoc and do not come with any guarantees. 

Moment-based methods often scale well in terms of population sizes. How- 
ever, it is not possible to control the effects of the introduced approximations, 
which in some cases can lead to large errors [50]. This issue reverberates on the 
application of these methods to compute reachability probabilities and mean 
first passage times [28,12,13]. Moreover, they can suffer from numerical instabil- 
ities, in particular, when the maximum order of the considered moments has to 
be increased to more appropriately describe the underlying distribution. 

Here, we put forward a method based solely on moments that gives exact 
bounds for Mean First Passage Times (MFPTs) and reachability probabilities in 
PCTMCs. For a set of states, the MFPT within a fixed time-horizon T directly 
characterizes the probability of reaching that set within T time units. Thus, safe 
upper and lower bounds on MFPTs can constitute a core component for the veri- 
fication of properties in PCTMCs. Our approach extends recent work on moment 
bounds [47,20] and it is based on a martingale formulation of the stopped process 
that we derive from the exact moment equations. From this formalization, we 
deduce a set of linear moment constraints from which we derive upper and lower 
moment bounds using semi-definite programming (SDP). Monotone sequences 
of both upper and lower bounds can be obtained by increasing the order of the 
relaxation. Crucially, no closure approximations are introduced. Therefore the 
bounds are exact up to the numerical accuracy of the SDP solver. 

To experimentally validate our method in terms of accuracy and feasibility, 
we run some tests on examples from biology, leveraging an existing SDP solver 
and obtaining encouraging results. Comparing with other moment-based meth- 
ods, our approach is not based on approximations due to closure schemes, thus 
providing guarantees on the bounds up to the numerical accuracy of the compu- 
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tations. However, similarly to other moment-based methods, we also found the 
insurgence of numerical instabilities because moments of higher order tend to 
span over many orders of magnitude. We ameliorate this problem by considering 
scaling strategies that reduce such variability. We also extend our approach to 
deal with PCTMCs exhibiting strong multimodal behavior, due to the presence 
of populations having low copy numbers. This extension exploits some ideas from 
hybrid moment closures [34]. 

In summary, this paper presents the following novel contributions: 
 

– the derivation of moment constraints, based on a martingale formulation, for 
bounding first passage times and reachability probabilities using a convex 
programming scheme; 

– the extension of this scheme using hybrid moment conditions to systems 
exhibiting multimodal behavior; 

– a scaling strategy for improved robustness during optimization 

The paper is structured as follows: Section 2 covers work related to the 
analysis of first passage times in PCTMCs and recent work on moment bounds. 
Section 3 introduces the PCTMC framework and its semantics. In Section 4  
we derive a martingale from the moment dynamics of a PCTMC. Based on  
this process, in Section 5 we formulate linear and semi-definite constraints to 
state a semi-definite program to compute bounds on the MFPT and reachability 
probabilities. In Section 6, we discuss the practical considerations of the SDP 
implementation and provide results on a set of case studies. Finally, in Section 7 
we provide concluding remarks and directions of future work. 

 
2 Related Work 

 
Considerable effort has been directed at the analysis of first passage time dis- 
tributions in PCTMCs. Most works can either focus on an explicit state-space 
analysis [7,43,37,36] or employ approximation techniques for which, in general, 
no error bounds can be given [49,28,13]. For some model classes such as kinetic 
proofreading, analytic solutions are possible [43,8,32]. 

Barzel and Biham [7] propose a recursive scheme that consists of one equation 
for each state, expressing the average time the system needs to transition from 
that state to the target state. Kuntz et al. [36] propose to employ moment bounds 
in a linear programming approach to compute exit time distribution using state- 
space truncation schemes. In Ref. [37] the authors propose a finite state-space 
projection scheme to bound first passage time distributions 

Hayden et al. [28] use moment closure approximations and Chebychev’s in- 
equality to gain an understanding of first passage time dynamics. Schnoerr et 
al. [49] also employ a moment closure approximation and further approximate 
threshold functions to derive an approximate first passage time distribution. 
Bortolussi and Lanciani [13] use a mean-field approximation which is required 
to reach the target region. 
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Recently, several groups independently suggested the use of semi-definite 
optimization for the computation of moment bounds for the limiting distri- 
bution [23,19,35,47]. In this approach, the differential equations describing the 
moment dynamics are set to zero and form linear constraints [3]. Alongside, 
semi-definite constraints can be placed on the moment matrices. These give a 
semi-definite program that can be solved efficiently. 

This approach has been extended to the transient case [20,48]. The approach 
is similar in both works and is a cornerstone of the MFPT analysis presented 
here. They differ mainly by the fact that Sakurai and Hori apply a polynomial 
time-weighting [48], while Dowdy and Barton use an exponential one [20]. We 
adopt the former approach because it can be naturally adapted to the description 
of densities over time. The resulting forms can also be adapted to statistical 
estimation problems [4]. 

Semi-definite programming has been applied to a wide range of problems, 
including stochastic processes in the context of financial mathematics [40,33].   
For  good introductions and overviews of application areas, we  refer the reader   
to Parrilo [45] and, more recently, Lasserre [39]. 

Particularly relevant  for this work is the application of convex optimization   
to first passage times. Helmes et al. [29] formulated a linear program using the 
Hausdorff moment conditions to bound moments of the first passage time distri- 
bution in Markovian processes. Semi-definite optimization has been successfully 
applied in financial mathematics by Kashima and Kawai [33], as well as Lasserre 
et al. [40] to bound prices of exotic options. 

 

3 Preliminaries 
 

A Population Continuous-Time Markov Chain (PCTMC) describes the interac- 

tions among a set of agents of nS types S1, . . . , SnS in a well-stirred reactor. 
In the sequel, we will also use other letters than Si as agent types. Since we 

assume that all agents are equally distributed in space, we only keep track of 
the overall copy number of agents for each type. Therefore the state-space is 

NnS . The interactions are expressed as reactions with a certain gain and 
loss of agents, given by the non-negative integer vectors v− and v+ for some 

j j 

reaction j, respectively. Such a reaction is denoted as 

nS 

v−S   
aj

 

nS 

v+S . (1) 
 

  

The reaction rate constant aj > 0 determines the propensity function αj of the 
reaction. If just a constant is given, mass-action propensities are assumed, where 

for x ∈ S we define  

αj(x) := aj 

 

nS 

 
 

i=1 

xi 

vj
−
i 

 
. (2) 

This choice of propensity function is natural, since it is proportional to the num- 
ber of reactant combinations. The system’s behavior is described by a stochastic 

i=1 i=1 

. Σ 
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process {Xt}t≥0. We denote the abundance of a given agent type Si in Xt 

by X(Si). The propensity αj(x) gives the infinitesimal probability of a reaction 
occurring, given a state x. That is, for vj = v+ − v− and a small time step 

j j 

∆t > 0, 

Pr(Xt+∆t = x + vj | Xt = x) = αj(x)∆t + o(∆t) . (3) 

Therefore, given a system of nR reactions, the semantics of Xt is given by a 
continuous-time Markov chain (CTMC) on with infinitesimal generator matrix 
Q with entries 

Q = 

.Σ
j:x+vj =y αj(x) ,   if x ƒ= y, 

 
(4) 

x,y nR 

j=1 αj(x) , otherwise. 

Accordingly, given an initial distribution on , the time-evolution of the process’ 
distribution is given by the Kolmogorov forward equation. For a single state, in  
the context of quantitative biology, it is commonly referred to as the chemical 
master equation (CME) 

dπ 
(x, t) = 

Σ 
(α (x − v )π(x − v , t) − α (x)π(x, t)) , (5) 

where π(x, t) = Pr(Xt = x) and Pr(X0 = x) = π(x, 0). 
Consider the following simple PCTMC with non-linear propensities as an exam- 
ple. 

Model 1 (Dimerization). We first examine a simple dimerization model on 
an unbounded state-space with reactions 

∅ −→
λ   

M, 2M −→
δ   

D 

and initial condition X(M) = X(D) = 0. The semantics is given by a CTMC 
0 0 

Xt = (X(M), X(D))T, where (S1, S2) = (M, D). The reaction propensities ac- 
t t 

cording to (2) are α1(x) = λ and α2(x) = δ x(M)(x(M) − 1)/2. The change 

vectors  v1
−  =  (0, 0)T,  v+  =  (1, 0)T,  v2

−  =  (2, 0)T,  and  v+  =  (0, 1)T.  Conse- 

quently, v1 = (1, 0)T and v2 = (−2, 1)T. 

For a state (x(M), x(D)) ∈ N2, where x(M) ≥ 2, the CME (5) becomes 

d 
π((x(M), x(D)), t) =λπ((x(M) 1, x(D)), t) 

dt 

+ 
δ 

(x(M) + 2)(x(M) + 1)π((x(M) + 2, x(D) 1), t) 
2 

δ 
− (λ + 

2 
x (M ) (x(M ) − 1))π((x (M ) , x(D) ), t) . 

This explicit representation of state probabilities is often not possible, because 
there are infinitely many states. Usually the state-space is truncated to contain 
all relevant states [1] or one switches to an approximation such as the mean- 
field [11]. 
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In this work, we are interested in first passage times of such processes. That 
is the time, the process first enters a set of target states B . Naturally, the 
analysis of first passage times is equivalent to the analysis of times at which the 
process exits the complement B. More formally, the first passage time τ for 
some target set B is defined as the random variable 

τ = inf{t ≥ 0 | Xt ∈ B} . (6) 

In this example, we are interested in the time at which the number of type M 
agents exceed some threshold H. With the framework presented in the sequel, 
one can bound the expected value of this time using semi-definite programming. 
Further, it is possible to impose a time-horizon T , and find bounds on the prob- 

ability of X(M) H for some 0 t T . The employed framework is centered 
around semi-definite relaxations of the generalized moment problem [39]. These 
require linear constraints on the moments of measures. In the following section, 
we derive such constraints. 

 

4 Martingale Formulation 

Next, we will discuss the ordinary differential equations for the evolution of 
the statistical moments of the process. The moments over the state-space are 
then used to derive temporal moments, i.e. moments of measures over both the 
state-space and the time. This extended description results in a process with the 
martingale property. This property can be used to formulate linear constraints 
on the temporal moments and, as a special case, the mean first-passage time. In 
combination with semi-definite properties of moment matrices, we can formulate 
mathematical programs that yield upper and lower bounds on mean first passage 
times. 

We start with the description of the raw moments dynamics. In particular, 
a raw moment is 

E (Xm) = E 

nS 
 
 

i=1 

mi , m ∈ NnS
 

with respect to some probability measure. The order of a moment E (Xm) 
is given by the sum of its exponents, i.e. i mi. Note that the notion of ex- 
pected value can be generalized to any measure µ on a Borel-measurable space 
(E, B(E)), where the m-th raw moment is 

∫
E x dµ(x). Throughout we assume 

m 
 

that moments of arbitrary order remain finite over  time, i.e. E ( Xm )  <   , 
t    0. In Ref. [26] the authors propose a framework to verify this property for a 
given model. 

Let f be a polynomial function, t 0. Using the CME (5), we can derive or- 

dinary differential equations (ODEs) describing the dynamics of E (f (Xt)) [21]. 
Specifically, 

d 
E (f (X )) = 

Σ 
E ((f (X 

 

 

+ v ) − f (X )) α (X )) . (7) 
j=1 

X 

t 
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t 

. Σ 

. Σ 

≥ 

t 

dt 
t t t t 

dt t t t t t 

t t 

∫ T dw(t) 

0 = w(T )E (f (XT )) − w(0)E (f (X0)) − E 
dt 

f (Xt) dt 

t 

0 

 

Let us consider Model 1 as an example and agent type M . Further, let Xt = 
X(M) for ease of exposition. When choosing f (Xt) = Xm, m = 1 and m = 2 we 

t t 

obtain two differential equations describing the change of the first two moments 
of species M , E (Xt) and E X2 , respectively. 

d 
E (X ) = λE 

.
X0

Σ 
− 2δ 

.
E 
.
X2

Σ 
− E (X )

Σ 
(8) 

d 
E 
.
X2

Σ 
= λ(2E (X ) + 1) − 4δ 

.
E 
.
X3

Σ 
− 2E 

.
X2

Σ 
+ E (X )

Σ 
. (9) 

 

Fixing initial moments, the ODE system describes the moments over time ex- 
actly. However, these ODEs cannot be integrated because the system is not 

closed. The right-hand side for moment E (Xm) always contains E  Xm+1 . To 
solve the initial value problem, one typically resorts to ad-hoc approximations 
of the highest order moments to close the system. Here we do not need such 
approximations because we do not numerically integrate the moment equations. 
Instead we adopt an approach [20,48] that extends the description of state-space 
moments to a temporal one. 

This is achieved by  the introduction of a time-dependent polynomial w(t)  
that is multiplied to (7). An integration by parts on [0, T ] yields [20,48] 

 

w(T ) E (f (XT )) − w(0) E (f (X0)) − 

ΣnR  ∫  T 

 
 

  

dt 
E (f (Xt)) dt 

 

(10) 

 

We now want to interchange the order of integration and the summation due to  
the expected value. To this end, we have to assume the absolute convergence of 
the integrals. On finite time intervals [0, T ] this holds because w is polynomial 
and we assumed finite moments for all t 0. Interchanging the summation and 
integral of a monomial xm, i.e. pulling all expectation operators outside 

 
T 

g(t)E (Xm) dt = E 
0 

.∫ T
 

 
 

 
g(t)Xm dt

Σ 

. 

 

Hence, we are able to to pull out the expectation operator in (10). 

.∫ T dw(t) 
Σ

 
 

nR 

− 
j=1 

.∫ T
 

 
 w(t)(f (Xt + vj) − f (Xt))αj(Xt) dt

Σ 

, 

(11) 

This gives us the expected value of a time-dependent function of the original 
process. The function can be viewed as a stochastic process of its own where 

0 
E 

0 

0 j=1 

= 

∫ 

Σ 

w(t) E ((f (Xt + vj) − f (Xt)) αj(Xt)) dt . 

0 
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{ } 

∈ 

t 

⊆ S 

{ | ≥ } 
∧ { } 

τ 

τ 

= TkXm − 0kXm + ci tki Xt 

− − 

 

the time-horizon T is the index variable. A key property of this process is also 
illustrated by (11): The process’ expected value remains  0,  regardless  of  the 
choice of T . This martingale property is  particularly  useful  because  it  can  be 
used to formulate linear constraints on stopping times of the process. Explicitly,       

we can define this process ZT T ≥0 parameterized by the time-weighting w and 
polynomial f . 

ZT := w(T )f (XT ) − w(0)f (X0) − 

ΣnR  ∫  T 

 
  

T dw(t) 

dt 
f (Xt) dt 

 

 
(12) 

A useful choice for f and w are monomials. When choosing w(t) = tk with k N 

and f (X) = Xm the process takes the form 
 

(m,k) 
 

Σ ∫ T 
m

 

  
  

where (mi)i, (ki)i, and (ci)i are finite sequences resulting from the substitution 
of f and w and expansion of (12). This choice allows to naturally characterize 
the behavior in time and state-space as moments, because the expected value of 
(13) then becomes a linear form of moments. We will use these as constraints in 
the semi-definite program used to bound MFPTs. 

If we apply this to our previous example (8), letting m = 1 and k = 1 we 
obtain the following process for Model 1. 

 

(1,1) 
T = TXT − 

T 

Xt dt λ 
0 

T 

t dt 2δ 
0 

T 

tXt dt + 2δ 
0 

T 

tX2 dt, 
0 

where the sequences above are (mi)i = (1, 0, 1, 2), (ki)i = (0, 1, 1, 1), and (ci)i = 
(−1, −λ, −2δ, 2δ). 

5 Bounds for Mean First Passage Times 

We now turn to the analysis of first passage times within some time-bound T > 0. 
Given some subset of the state-space B   the first passage time is given by   
the continuous random variable 

τ = inf{t ≥ 0 | Xt ∈ B} ∧ T , (14) 

where a b := min a, b . For this work, we only look at threshold hitting times, 

i.e. we set a threshold H for species S and thus B =  x x(S) H  . Note, 
that this framework allows for a more general class of target sets, which are 
discussed in Section 5.5. In the sequel, we will use τ as a stopping time in 
our martingale formulation and consider Z(m,k) instead of Z(m,k). Since (13) 

τ T 

defines a martingale, Z(m,k) remains a martingale by Doob’s optional sampling 

theorem [24]. In particular, this implies that E(Z(m,k)) = 0 for all moment orders 
m and degrees k in the weighting function w(t). 

0 i 

0 T T 

0 j=1 

− 

∫ 

0 

∫ ∫ ∫ ∫ 

w(t)(f (Xt + vj) − f (Xt))αj(Xt) dt , 

Z i dt (13) 

Z 
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k m 

. Σ 

. Σ
the final process state at the hitting time via E  τ  

X  . 

≥ } ∧ 

× 

τk Xm 
tki Xt 

i dt 
0 

 

5.1 Linear Moment Constraints 

To simplify our presentation, we fix an initial state x0, i.e. P (X0 = x0) = 1. 

Using E(Z(m,k)) = 0 and the form (13) for Z(m,k) yields the following linear τ τ 

constraint on expected values. 

. Σ Σ 
 

 
 

 

.∫ τ 
m 

Σ 

 

where 00 = 1. Hence, we have established a relationship between the process 
dynamics up to the hitting time via expected values of the time-integrals and 

k  m 
τ 

For the ease of exposition, we now turn to the analysis of first passage times 
in one-dimensional processes w.r.t. an upper threshold H. In particular, we will 
consider moments Xm of a one-dimensional process for m = 0, 1, 2 The 
approach proposed in the sequel, however, can be extended to multi-dimensional 
processes and more complex target sets B. 

Consider again Model 1 and assume that we are interested in the time at  
which species M exceeds threshold H while fixing the considered time-horizon  

to T = 4. That  is,  we  are  interested  in  the  stopping  time  τ  =  inf{t ≥ 0  | 
Xt 10 4. Since  the abundance of  D does not influence M , we  can ignore  
species D and treat the process as one-dimensional. Figure 1 shows three example 
trajectories: Two reach an upper threshold H = 10, while one reaches the final 
time-horizon T  = 4 The figure also illustrates another aspect present in (15).       
It gives a connection between the terminal distribution, i.e. the distribution of     
Xτ , and the dynamic behavior up to τ . The statistics at τ are described by a 

distribution whose moments  are represented by  the E τkXτ m  term in (15).  
This distribution corresponding two moments encompasses both cases of how τ 
can be reached. In the first case threshold H is reached and the second case the 
process reaches the time-horizon T . In the following we will define the interplay 
between these measures more formally. 

Therefore we can view (15) as the description of a relationship between two 
measures [39, Chapter 9.2]: 

– Expected Occupation Measure ξ supported on [0, H] × [0, T ]: 

ξ(A × C) := E 

.∫

 

 
 
[0,τ ]∩C 

1∈A(Xt) dt

Σ 

, (16) 

 

– Exit Location Probability supported on ({H} × [0, T ]) ∪ ([0, H] × {T }): 

ν(A × C) := Pr((Xτ , τ ) ∈ A × C), (17) 

where A C is a measurable set, i.e. A and C are elements of the Borel σ-algebras 
on [0, H] and [0, T ], respectively. 

Using Figure 1, one can gain an intuition for these two measures. The ex- 
pected occupation measure is shaded in blue. As the name implies ξ(A × C) 

i 

τ 0 = E − 0 x0 + ciE , (15) 



10 M. Backenköhler et al. 
 

× 

× 

. Σ
E (X   ; τ = T ) + E  τ  ; 

τ < T, X   = Hτ 

τ 

τ τ 

− 0 x0 + k m 

 

 
0.5 
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10 
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0 

0 1 2 3 4 

t 

 

0.0 0.2 

 

Fig. 1. The relationship between the occupation measure ξ and the exit location prob- 
ability measures ν1 and ν2. The shaded area indicates the structure of the occupation 
measure. Three example trajectories are additionally plotted with their exit location 
highlighted. The plots are based on 10,000 sample trajectories. 

 
 

tells us how much time the process spends in A up to τ restricting to the time 

instants belonging to C. In particular, ξ([0, H] [0, T ]) = E (τ ). The exit loca- 
tion probability ν, while being a two-dimensional distribution, can be viewed as   
a composition of a density describing the time at which the process reaches H    
(if it does) and a probability mass function on the states of the process if the time-

horizon is reached without exceeding H. We  partition the measure ν into   ν1 and 

ν2 by conditioning on τ = T . Thus, 

ν1(C) := Pr(τ ∈ C, τ < T ) and ν2(A) := Pr(XT ∈ A, τ = T ) 

and hence ν(A C) = ν1(C)+ν2(A). To refer to the moments of these measures, 
we define partial moments 

E (g(X); f (Y ) = y) := E (g(X) | f (Y ) = y) Pr(f (Y ) = y) , 

for some polynomial g and some indicator function f . Then 

E 
.
τ kXm

Σ 
= T kE (Xm; τ = T ) + HmE 

.
τ k; τ < T, Xτ = H

Σ 
. 

The partial expectations in terms of ν1, ν2 

m k 
τ 

Therefore the linear moment constraints have the form 

0 = TkE (Xm; τ = T ) + HmE 
.
τk; τ < T, Xτ = H

Σ
 

 

Σ .∫ τ 
m 

Σ 
 

  

(18) 

0 i 

X
t  

ciE tki Xt  
i  dt . 
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t 

. Σ 

∈ { } 

. Σ 

1 

Σ Σ 

0 

 

Next, we consider infinite sequences of partial moments y1 = (y1k)k∈N, y2 = 
(y2m)m∈N, and z = (zmk)(m,k)T∈N2 of ν1, ν2, and ξ, respectively. 

y1k := E 
.
τk; τ < T 

Σ 
, y2m := E (Xm; τ = T ) , zkm := E 

.∫ Σ

 
τ 

tkXm dt 

 

5.2 Objective 
 

Given the above measures and their corresponding moments, we can now identify 
the moments we are particularly interested in. We formulate an optimization 
problem with variables corresponding to the moments defined above. The MFPT 
is exactly the zeroth moment of ξ, 

 

z00 = E 

.∫ τ 

 
 

1≤H (Xt) dt

Σ

 

 

= E (τ ) . 

Therefore z00 corresponds to the objective of the optimization problem that gives 
bounds for the MFPT. Furthermore, we can easily change the objective to the 
zeroth moment of ν1, 

y10 = E τ 0; τ < T  = Pr(τ < T ) . 

This moment is the probability of reaching threshold H before reaching time- 
horizon T . Since the target set can be more complex, this formulation can be 
used to perform model checking on a wide variety of properties. 

Moreover, it is possible to formulate objectives not directly corresponding to 
a raw moment such as the variance [48,19]. 

 
5.3 Semi-Deftnite Constraints 

 
The linear constraints alone are not sufficient to identify moment bounds. We 
further leverage the fact that a necessary condition for a positive measure that    

the moment matrices are positive semi-definite. A matrix M ∈ Rn×n is positive 
semi-definite, denoted by M ≤ 0 if and only if 

vT M v ≥ 0    ∀v ∈ Rn . 

As an example, let us consider a one-dimensional random variable Z with mo- 
ment sequence z. For moment order r, the entries of the (r +1)×(r +1) moment 
matrix Mr(x) are given by the raw moments. In particular, 

(Mr(z))ij = zi+j−2 = E Zi+j−2
 

for i, j Nr where Nr = 0, 1, . . . , r and the maximum order in the matrix is 
2r. For instance, 

M (x) =  
x0 x1 (19) 
x1 x2 

0 

τ 



12 M. Backenköhler et al. 
 

1 

. Σ 

× 
− 

Σ Σ

1 H 2 

Σ 
A Xij 

Σ 
A X   ≤ b  , k = 1, . . . , mij

 k 

∈ ∈ 

 

needs to be positive semi-definite. By Sylvester’s criterion this means det M1 ≥ 0 
and x0 ≥ 0. We can easily see that in this case this entails 

det M1 = x0x2 − x2 = E X2 − E (X)2 = Var(X) ≥ 0 . 

This restriction is natural since the variance is always non-negative. This gives 
us the following restrictions on the moment matrices. 

Mr(z) ≤ 0, Mr(y1) ≤ 0, and    Mr(y2) ≤ 0 (20) 

for arbitrary orders r, providing a first tranche of moment constraints. 
Furthermore, we need to enforce the restriction of the measures ξ, ν1, and 

ν2 to their supports. This can be done, by defining non-negative polynomials on 
the intended support of the measure. For  example, ν2 has support [0, H]. We  
can now define 

uH (t, x) = Hx − x2, x ∈ R 

as a polynomial that is non-negative on [0, H]. Using such polynomials, we can 
construct localizing matrices, which have to be positive semi-definite [39]. Ap- 
plying uH to the moment matrix of measure ν2, i.e. M1(y2) 

M (u  , y ) =  
Hy20 − y22 Hy21 − y23 

Hy21 − y23 Hy22 − y24 

with the constraint M1(uH , y2) ≤ 0, where the application of a polynomial such 
as uH to a moment matrix is formally defined for the multidimensional case in 

Section 5.5. Similarly, let uT (t, x) = Tt t2 to restrict ν1 to [0, T ). The expected 
occupation measure ξ is constrained similarly to its domain [0, H] [0, T ]. This 
gives us the following restrictions on the moment matrices. 

Mr(uT , z) ≤ 0, Mr(uH , z) ≤ 0, Mr(uT , y1) ≤ 0, Mr(uH , y2) ≤ 0 . (21) 

 
5.4 A Semi-deftnite Program to Bound MFPTs 

With the linear constraints given in (15) and the semi-definite constraints (20)   
and (21) discussed in the previous sections, we can now formulate a semi-definite 
program (SDP). An SDP is a convex optimization problem over the set of positive 

semi-definite n × n-matrices X under linear constraints: 

min 
X∈X 

(0) 
ij 

i,j 

such that X ≤ 0 
(k) 
ij 

(22) 

i,j 

 

with constant matrices A(i)    Rn×n, i = 0, . . . , m and constants bk    R, k =   
1, . . . , m to define a set of m linear constraints. Such a problem is convex and 
can be solved efficiently [56]. 
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∞ 

∈ 

r 

. Σ 

r 

0 i i 

coefficient vector u = {uγ}, i.e. u(x) = γ∈Nn uγxγ, the localizing matrix is 

 

Now we can state the SDP relaxation to the MFPT problem for any order 
0  < r < . With each moment sequence x we associate a sequence proxy 
variables x³

 used in the optimization problem. 

min / max    z0
J 
0 

such that Mr(z³) ≤ 0, Mr(uT , z³) ≤ 0, Mr(uH , z³) ≤ 0 

Mr(y
1

³ ) ≤ 0, Mr(uT , y
1

³ ) ≤ 0 

Mr(y
2

³ ) ≤ 0, Mr(uH , y
2

³ ) ≤ 0 

0 = y1
J 
k Hm − y2

J 
mT k − 0kxm + 

Σ 
cizk

J  
m  , ∀m, k 

(23) 

 

This SDP can be compiled to the standard form (22). To this end, the moment 
matrices can be arranged in a block-diagonal form and the localizing constraints 
(21) can be encoded by the introduction of new variables and appropriate equal- 
ity constraints. This transformation can be done automatically using modeling 
frameworks such as CVXPY [18]. We therefore only give the SDP in the more 
intuitive format. This problem can be solved using off-the-shelf SDP solvers such 
as MOSEK [42], CVXOPT [56], or SCS [44]. 

In principle, we can choose an arbitrarily large order r for the moment ma- 
trices and their corresponding constraints, because there are infinitely many 
moments. In practice, however, the order is bounded by practical issues such  
as the program size (number of constraints and variables) and numerical issues. 
These issues are discussed in Section 6 in more detail. Choosing a finite r is   a 
relaxation of the problem since it removes constraints regarding higher-order 
moments. 

 
5.5 Multi-Dimensional Generalization 

For a general multi-dimensional moment sequence y = (E (Xm))m Nns , the 
moment matrix is [39] 

Mr(y)(α, β) = yα+β, ∀α, β ∈ Nn
 

where row and column indices, α and β, are ordered according to the canonical 
basis 

2 r r T 

vr(x) = (1, x1, x2, . . . , xn, x1, x1x2, . . . , x1xn, . . . , x1, . . . , xn) . (24) 

Equivalently, Mr(y) = E vr(x)vr(x)T . For a moment sequence the semi- 
definite restriction Mr(y) ≤ 0 must hold. 

Measures can be restricted  to  semi-algebraic  sets  {x  ∈ Rn  | uj(x)  ≥ 0, j = 
1, . . . , m}, where uj, j = 1, . . . , m are polynomials [39]. This is done by plac- 
ing restrictions on the localizing matricΣes. For each polynomial ui ∈ R[x] with 

 

Mr(u, y)(α, β) =  
Σ  

uγyγ+α+β, ∀α, β ∈ Nn. 

γ∈Nn 

i 
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S \ 

t t 

≤ 

Σ 

 

Requiring that this matrix is positive semi-definite restricts the measure to {x | 
ui(x) ≥ 0}. This way we can, for example, restrict the moment sequence y to 
measures that are positive w.r.t. dimension j. Simply letting u(x) = xj and 
requiring M1(u, y) ≤ 0 for i = 1, . . . , nS gives us this restriction. 

 

6 Implementation and Evaluation 
 

The implementation of the SDP (23) is straightforward using modeling frame- 
works and off-the-shelf solvers. However, as noted in previous work [20,47,19,48] 
on moment-based SDPs the direct implementation of the problem may lead to 
difficulties for the solver. A source of these is that moments of various orders 
by nature may differ by many orders of magnitude. A re-scaling of the mo- 
ments [19,48] such that moments only vary by few orders of magnitude may 
alleviate this problem. In other scenarios such as the bounding of general tran- 
sient or steady-state moments, the scaling can be particularly difficult, because 
the magnitude of moments is generally not known a priori. However, for the 
MFPT problem, we propose the following moment scaling. 

 
6.1 Moment Scaling 

 
Using the fact that   B is often finite, it is possible to derive trivial bounds,   
which can be used to scale moments. If, for example, we have a one-dimensional 

process Xt with X0 = 0 a.s. and are interested in the hitting time of an upper 

threshold H > 0 until time T > 0 for i, k ∈ N 

 

zik = E 

.∫ τ 

 
 

 
T 

tiXk dt ≤ E 
 

tiXk dt

Σ 

≤ H 

 
T 

ti dt = 
0 

T i+1Hk 
. 

i + 1 
 

Thus, we fix a scaling vector d with entries dik = T i+1Hk in the same order as 
the canonical base vector (24). Using this scaling vector, we can define a scaling 

matrix D = ddT. Clearly, D 0. Now we can formulate the optimization (23) 

over a scaled version D−1M (z³) instead of M (z³). The moment matrices of the 
exit location probabilities are scaled in the same way. Alternatively, one can 
use approximations such as moment closures or bounds obtained by lower-order 
relaxations or solve a sequence of problems, incrementally increasing the time- 
horizon, and adjust the scaling accordingly [20]. 

In Figure 2 we illustrate the influence the scaling has on the optimization vari- 
ables. While the unscaled version shows large differences between values, these 
differences become significantly smaller in the scaled version of the problem. 

 
6.2 Case Studies 

We implemented and solved the SDP programs described above using optimiza- 
tion suite MOSEK [42] (version 9.1.2) via the CVXPY interface [18] (version 
1.0.24). 

0 0 

k 
∫ .∫ 
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∞ 

 

 

unscaled scaled 

 

5 

 

4 

 

3 

 

2 

 

1 

 

0 

 

 

Fig. 2. The unscaled and scaled value the moment matrix proxy variable M (z³) after 
optimization using MOSEK. The indices are given along the logarithmic (base 10) 
values. The unscaled version (left) shows large differences in magnitudes, while on the 
scaling suppresses these large variations (right). The case study used here is Model 1, 
with a threshold H = 25 for species M and a time-horizon T = 1. The relaxation order 
r = 2. Therefore moments of orders up to 2r = 4 appear. 

 

 

Dimerization As a first case study, we  use Model 1 with parameters λ = 100  
and δ = 0.2. In this  model,  we  are  interested  in  the  time  at which  the  number 
of agents of type M surpasses a threshold of 25 before some time-horizon T , 

i.e. τ = inf{t ≥ 0 | Xt ≥ 25} ∧ T . First, we  set no finite time-horizon T , i.e. 

T = . This is achieved by  dropping the moments y2 of measure ν2 in the  
linear constraints (23). This can be done because the threshold on M makes the 
state-space finite and therefore the first passage time distribution is a phase- 
type distribution which possesses finite moments [54, Chapter 7.6]. The empirical 
FPT distribution based on 100,000 SSA simulations is given in Figure 3a and 
the bounds, given different moment orders, are given in Figure 3b. As we can 
see in Figure 3b, the bounds capture the MFPT precisely for orders 5, 6. The 
difference between upper and lower bound decreases roughly exponentially with 
increasing relaxation order r. We found that this trend was consistent among 
the case studies presented here (cf. Figure 5). 

Next, we look at first passage times within a finite time-horizon T . In Fig-  
ure 4a we summarize the bounds obtained for the MFPT over T . While low-order 
relaxations (light) give rather loose bounds, the bounds are already fairly tight 
when using r = 4. In many cases, hitting probabilities, that is, the probability       
of reaching the threshold before time T , are of particular interest. This is done   
by switching the optimization objective in (23) from the mass of the expected 

occupation measure ξ to the mass of ν1. In terms of moments, the objective 

changes from z00 to y10. The need for such a scenario often arises in the context 
of model checking, where one might be interested in the probability of a popu- 
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Fig. 3. First passage times for Model 1 with τ = inf{t ≥ 0 | Xt ≥ 10} ∧∞. The dashed 
red line denotes the sampled MFPT. (a) The distribution of τ estimated based on 
100,000 SSA samples. (b) The bounds based on the SDP in (23) with different moment 
orders. 

 
 

lation exceeding a critical threshold. By varying the time-horizon, we are able 
to recover bounds on the cumulative density F (t) = Pr(Xs = H s < t) of the 
first passage time (Fig. 4b). 

Finally, we look at turn to the dimer species D that is synthesized by the 
combination of two monomers M . Here, we look at the time until the agents  
of type D exceed a threshold of five with a time-horizon T  =  1. Note that   
we do not limit the number of M  agents. Therefore the analyzed state-space  
is countably infinite. As in the previous two examples, we observe a roughly 
exponential decrease in interval size with increasing relaxation order r (cf. Fig. 5 
and Table 1). 

 
 

Parallel Dimerizations As a second study, we consider a 2-dimensional model 
by combining two independent dimerizations. 

 

Model 2 (Parallel independent dimerizations). 
 

∅ 
104 0.1 104 0.1 

−→ M1, 2M1 −→ D1, ∅ −→ M2, 2M2 −→ D2 

As a FPT we consider the time at which either M1 or M2 surpasses a threshold 
of 200 or a time-horizon of T = 10 is reached, i.e. 

 

τ = inf{t ≥ 0 | X(M1 ) ≥ 200} ∧ inf{t ≥ 0 | X(M2 ) ≥ 200} ∧ 10 . 

As before, we ignore the product species D1 and D2 since they do not influence 
τ . The SSA (using n = 10,000 runs) gives the estimate E (τ ) 0.028378 which is 
captured tightly by the SDP bounds (cf. Table 1). For higher relaxation orders  
r ≥ 5 numerical issues prevented the solution of the corresponding SDPs. 
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Fig. 4. First passage times for the dimerization model with τ  = inf{t ≥ 0  |  Xt  ≥ 25} 
∧ T . The results for SDP relaxations of orders 1 (light) to 6 (dark) are shown. (a) The 
bounds on the MFPT for differing time-horizons T . (b) Bounds on the probability to 
reach the threshold before time T . 

 
 

6.3 Hybrid Models and Multi-Modal Behavior 
 

The analysis of switching times is a particularly interesting case of FPTs that 
arises in many contexts. Often mode switching in such systems can be described 
a modulating Markov process whose switching rates may depend on the system 
state (e.g. the population sizes). In biological applications, mode switching often 
describes a change of the DNA state [27,53] and the analysis of switching time 
distribution is of particular interest [52,7]. In the context of PCTMCs, the state- 
space of such models can be given as 

S = NñS  × {0, 1}
n̂S  . 

This state is modeled by n̂S population variables with binary domains. Therefore, 
at each time point, the state of these modulator variables is given by a set of 
Bernoulli random variables. When considering the moments of such a variable 

X, clearly E (Xm) = E (X) = Pr(X = 1) for all m 1. 
We  apply  a  split  of  variables  X t  into  the  high  count  part  X̃t  and  the  bi- 

nary part X̂t  to the expectations in (7). Similarly, we split vj and with a case 
distinction over the mode variable, we arrive at a similar result as in [27]: 

E  X̃m1=y(X̂t)
Σ

 

 

nR 

= 
j=1 

E 
.. 

 
X̃t + ṽj 

 
m 

αj(X̃t, y − v̂j)1=y−v̂j (X̂t) 

nR 

− E ˜  ̃
 

 

(X̂  )
Σ 

. 

(25) 

 

Similarly to the general moment case, we can derive a constraint, by multiplying 
with a time-weighting factor and integrating. 

j=1 

Σ d 

dt 

Σ Σ 
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Table 1. MFPT bounds on Models 1, 2, and 3. 
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For simplicity, here we assume ñS = n̂S = 1. Fixing appropriate sequences 
(ci)i, (mi)i, (ki)i, and (yi)i the constraint has the following form. 

y∈

Σ

{0,1} 
HmE 

.
τ k; X̂τ  = y, τ < T 

Σ 
+ T kE 

.
X̃m; X̂T  = y, τ = T 

Σ
 

= 0kx̃m1=y(x̂0) + ciE 
i 

.∫ τ 

 
 

tki X̃mi  dt; X̂t  = yi 

Σ (26) 

 

This way we can decompose the moment matrices such that for each mode y ∈ 

{0, 1}, we have moment matrices composed of the respective partial moments. 

To this end, let z(y) be the partial moment w.r.t. X̂  = y. The moment constraint 
over the partial moments has a linear structure: 

0 = y1kHm − y2mT k − 0kxm + 
Σ 

ciz(yi) 
 

 

 

. (27) 

 
 

Gene Expression with Negative Feedback As an instance of a multi-modal 
system, we consider a simple gene expression with self-regulating negative feed- 
back which is a common pattern in many genetic circuits [53]. 

 

Model 3 (Negative self-regulated gene expression). This model consists 

of a gene state that is either on or off, i.e. XDon + XDoff = 1, ∀t ≥ 0. Therefore t t 

the system has two modes. 

Don −→ 

 

Doff , Doff −→ 

 

Don 

 
ρ 

, Don −→ 

 

Don 

 

+ P, 
 

P −→
δ
 ∅, P + D 

γ 

on −→ Doff 

The model parameters are (τ0, τ1, ρ, δ, γ) = (10, 10, 2, 0.1, 0.1) and X(Doff ) = 1, 

X(P ) = 0 a.s. 

i 

0 

Σ 

Model Relaxation Order r 

  1 2 3 4 5 

Dimerization (Model 1) lower 0.0909 0.2661 0.2845 0.2867 0.2871 

X(D) ≥ 5, T = 1 upper 1.0000 0.3068 0.2932 0.2886 0.2875 

Double Dim. (Model 2) lower 0.0010 0.0250 0.0275 0.0280 0.0280 

 upper 10.0000 0.0575 0.0323 0.0299 0.0290 

Gene Expression (Model 3) lower 4.0000 6.0028 6.2207 6.3377 6.3772 

 upper 10.7179 6.4619 6.4079 6.4004 6.3835 
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Fig. 5. The interval width, i.e. the difference between upper and lower bound, for 
different case studies and targeted first passage times against the order r of the SDP 
relaxation. 

 

As a first passage time we consider 

τ = inf{t ≥ 0 | X(P ) ≥ 5} ∧ 20 . 

The results are summarized in Table 1. The estimated MFPT based on 

100,000 SSA samples is E (τ ) 6.37795 0.02847 at 99% confidence level. Note 
that our SDP solution for r = 5 yields tighter moment bounds than the statistical 
estimation. 

In Fig. 5 we summarize our results about the decrease of the interval widths  
for increasing relaxation order r by plotting them on a log-scale. We see an ap- 
proximately exponential decrease with increasing r. The semi-definite programs 
above were all solved within at most a few seconds. 

 
7 Conclusion 

 
Numerical methods to compute reachability probabilities and first passage times 
for continuous-time Markov chains that are based on an exhaustive exploration 
of the state-space are exact up to numerical precision. Such methods, however, 
do not scale and cannot be efficiently applied to models with large or infinite 
state-spaces, an issue exacerbated in population models. Moment-based methods 
offer an alternative analysis approach for PCTMCs, which scales with the num- 
ber of different populations in the system but are approximations with little or 
no control of the error. In this paper, we bridge this gap by proposing a rigorous 
approach to derive bounds on first passage times and reachability probabili- 
ties, leveraging a semi-definite programming formulation based on appropriate 
moment constraints. 

The method we propose is shown to be accurate in several examples. It does, 
however, suffer, like all moment-based methods, from numerical instabilities in 
the SDP solver, caused by the fact that moments typically span several orders of 
magnitude. We proposed a scaling of moments to mitigate this effect. However, 
the scaling only addresses the moment matrices but not the linear constraints 
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20 M. Backenköhler et al. 
 

 

which still contain values with varying orders of magnitudes. Therefore, we plan 
as future work to investigate an appropriate scaling for the linear constraints  
or to redefine the moment constraints (e.g. using an exponential time weight- 
ing [20]). Based on this investigation, we expect to make this approach applica- 
ble to more problems including, for example, the computation of bounds of rare 
event probabilities. We also expect that the development of more sophisticated 
scaling techniques will improve approximate moment-based methods. 

Furthermore, moment-based analysis approaches have shown to be successful 
in a wide range of applications such as optimal control problems or the estimation 
of densities [39]. We expect that our proposed ideas can be adapted to a wider 
range of stochastic models such as stochastic hybrid systems, exhibiting partly 
deterministic dynamics. 
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