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ABSTRACT
The existence and properties of the logarithmic layer in a turbulent streamwise oscillating flow are investigated through direct numerical simulations
and wall-resolved large-eddy simulations. The phase dependence of the von Kármán constant and the logarithmic layer intercept is explored for
different values of the Reynolds number and the depth-ratio between the water depth and the Stokes boundary layer thickness. The logarithmic layer
exists for a longer fraction of the oscillating period and a larger fraction of the water depth with increasing values of the Reynolds number. However,
the values of both the von Kármán and the intercept depend on the phase, the Reynolds number and depth-ratio. Additionally, the simulations
characterized by a low value of the depth-ratio and Reynolds number show intermittent existence of the logarithmic layer. Finally, the Reynolds
number based on the friction velocity does not support a previously mentioned analogy between oscillatory flows and steady wall-bounded flows.

Keywords: Boundary layer turbulence; direct numerical simulations; large eddy simulations; logarithmic layer; oscillatory flows; von
Kármán constant

1 Introduction

Turbulent boundary layers are of interest in many engineering
fields such as hydraulic engineering and coastal engineering. As
a result, turbulent boundary layers are often subject to studies
based on large-scale and high Reynolds number simulations.
However, such flows are generally computationally expensive
to fully resolve numerically (Piomelli & Balaras, 2002; Rad-
hakrishnan & Piomelli, 2008). Sufficient resolution is required
in the wall normal direction to resolve the boundary layer. Addi-
tionally, sufficient resolution is also important for resolving the
separation of scales between the large-scale energy carrying

eddies and the small-scale dissipative eddies. As a result, these
difficulties are often bypassed using a so called wall-model,
in which the flow velocity close to the wall are parametrized
(Piomelli & Balaras, 2002; Radhakrishnan & Piomelli, 2008).
Although different wall models exist, the most commonly used
is based on the “law of the wall” (Marusic et al., 2010; Piomelli
& Balaras, 2002; Radhakrishnan & Piomelli, 2008), a classical
theory for wall-bounded flows and described below.

In classical wall-bounded flow theory, it is assumed that the
velocity distribution in a wall-bounded flow can be categorized
in four regions or layers (Nieuwstadt, Boersma, & Wester-
weel, 2016; Radhakrishnan & Piomelli, 2008). Starting at the
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wall, there is, first, the viscous sub-layer, where the flow is
dominated by viscous forces and where the non-dimensional
velocity u+ = 〈u〉/uτ varies linearly with the non-dimensional
height y+ = yuτ /ν according to u+ = y+. In these formulae, 〈u〉
is the ensemble averaged mean velocity in the streamwise direc-
tion, uτ = √

τw/ρ = √
ν(∂〈u〉/∂y)w is the friction velocity, y is

the height above the wall, τw is the wall shear stress, ρ is the fluid
density, and ν is the kinematic viscosity. Second, there is the
buffer layer, where the viscous model is not valid any more and
no simple scaling for the velocity exists. The buffer layer is con-
necting the viscous sub-layer to the third layer, the logarithmic
layer. In the logarithmic layer (in this manuscript also referred
to as log-layer or log-region), the velocity is logarithmically
dependent on y+ according to:

u+ = 1
κ

ln(y+) + B (1)

with κ the von Kármán constant and B the logarithmic layer
intercept. Finally, there is the outer layer, for which a theoretical
expression depending on the type of flow is also possible, but
will not be considered here (e.g. Kundu & Cohen, 2002).

In most models relying on the law of the wall, the first
computational point is assumed to be located within the log-
layer (Piomelli & Balaras, 2002). The suitability of these
models is now widely accepted. First, it is possible to derive
the log-layer analytically, based on scaling arguments (Nieuw-
stadt et al., 2016), and second, the existence of the log-layer
has been observed for steady flows in many studies, includ-
ing numerical simulations (Hoyas & Jiménez, 2006; Jiménez
& Moser, 2007; Kim, Moin, & Moser, 1987), experiments
(Marusic, Monty, Hultmark, & Smits, 2013; Mckeon, Li, Jiang,
Morrison, & Smits, 2004; Perry & Li, 1990) and field mea-
surements (Andreas et al., 2006; Frenzen & Vogel, 1995).
Moreover, a log-region has also been detected in streamwise
oscillating flows (Akhavan, Kamm, & Shapiro, 1991; Hsu,
Lu, & Kwan, 2000; Jensen Sumer, & Fredsøe, 1989; Jonsson
& Carlsen, 1976; Salon, Armenio, & Crise, 2007; Scandura,
Faraci, & Foti, 2016; Tuzi & Blondeaux, 2008) even if its the-
oretical derivation ignores the mean local acceleration (Nieuw-
stadt et al., 2016; Piomelli & Balaras, 2002). It is important to
note that the log-layer was also studied in spanwise oscillating
flows. Under spanwise wall oscillations, the transient behaviour
of the boundary layer when adjusting itself to a lower drag state
has implications for the log-region (Skote, 2014).

In an early study, Jonsson (1980) developed a phase-
dependent expression linking the velocity to the logarithm of
the depth. However, this model was already assuming the exis-
tence of a logarithmic layer. Although Sleath (1987) found
that this theoretical expression agreed well with his measure-
ments, he also admitted that equally good agreement could be
obtained for several different values of the von Kármán constant.
Additionally, the expression was based on rough wall flows,
and Mujal-Colilles, Christensen, Bateman, and Garcia (2016)

showed that rough walls generated different coherent struc-
tures than smooth walls, at least in the transition to turbulence.
Radhakrishnan and Piomelli (2008) obtained good agreement
between numerical simulations of a streamwise oscillating flow
and experimental data at high Reynolds numbers, while using a
law-of-the-wall as boundary condition. They used a hybrid wall
model composed of a viscous sub-layer part (in which the veloc-
ity scales linearly with depth), and a log-layer part, in order to
take into account low Reynolds number effects when the wall
shear stress changes sign. Indeed, several studies have shown
that a log-region does not necessarily exist at all times in flows
for which the mean properties are highly time dependent (Hino,
Kashiwayanagi, Nakayama, & Hara, 1983; Jensen et al., 1989;
Salon et al., 2007). For example, Jensen et al. (1989) found
that for a steamwise oscillating flow there can be large parts
of the oscillation cycle where no logarithmic layer is detected,
with its presence interval depending strongly on the value of the
Reynolds number. As a result, the existence of the log-layer and
its properties need to be thoroughly investigated. Using these
properties, the conditions for which it is justified to use a wall
model in turbulent non-steady flows can be defined.

In this manuscript, we present the results of an analysis
of the existence and the properties of the logarithmic layer
in a canonical unsteady flow: the turbulent oscillating bound-
ary layer. Besides being a classical example of a statistically
time-dependent flow, the turbulent oscillating boundary layer
has many applications, for example, in biology (e.g. pulmonary
flows; see Tuzi & Blondeaux, 2008) and in coastal engineering
(e.g. tidal channel flows; see Gross & Nowell, 1983; Li, Sanford,
& Chao, 2005). Additionally, the existence and properties of
the log-region are crucial in many computer model applications
where the boundary layer cannot be resolved. These properties
need to be known, and this is the purpose of the present study.
Our study is based on results of direct numerical simulations
(DNS) and large eddy simulations (LES) of an open channel
flow driven by a homogeneous, uniform, streamwise, oscillating
pressure gradient:

− 1
ρ

∂P
∂x

= U0ω cos(ωt) (2)

with P the pressure, x the coordinate in the streamwise direc-
tion, U0 the amplitude of the free-stream velocity, ω the angular
frequency and t the time. The flow is characterized by two
non-dimensional parameters: the Reynolds number based on the
thickness of the Stokes boundary layer R = U0δs/ν, charac-
terizing the transition to turbulence (Jensen et al., 1989; Salon
et al., 2007), and the ratio between the water depth h and
the Stokes boundary layer thickness δs (for definitions, see
Section 2). Different configurations are simulated, covering dif-
ferent applications, e.g. high value of R and a relatively low
value of h/δs for simulations of tidal-like boundary layers, or
low value of R and large value of h/δs for simulations of
wave-like boundary layers. As a result, for the first time, the
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logarithmic layer is characterized as a function of R , h/δs and
the phase of the oscillating pressure gradient.

2 Problem formulation

The flow is governed by the non-dimensional equations for con-
servation of mass and momentum of an incompressible flow and
a homogeneous fluid:

∂ ū∗
i

∂x∗
i

= 0 (3a)

∂ ū∗
i

∂t∗
+ ū∗

j
∂ ū∗

i

∂x∗
j

= −∂ p̄∗

∂x∗
i

+ 1
R

δs

h
∂2ū∗

i

∂x∗2
j

+ 2
R

h
δs

cos
(

2
R

h
δs

t∗
)

δi1 − ∂τ ∗
ij

∂x∗
j

(3b)

The symbol ·̄ denotes a filtered quantity; ū∗
i = (ū∗, v̄∗, w̄∗) is

the non-dimensional filtered velocity in the non-dimensional x∗
i

direction (i.e. streamwise (x∗), vertical (y∗) and spanwise (z∗));
t∗ is the non-dimensional time; p̄∗ is the non-dimensional pres-
sure; δi1 is the Kronecker delta, and τ ∗

ij is the contribution of
the subgrid-scale stresses to the flow field. These stresses are
either equal to zero (in DNS configuration) or modelled using
the dynamic Smagorinsky approach (in LES configuration); see
Scotti and Piomelli (2001), Salon et al. (2007) and Armenio
and Piomelli (2000). Additionally, the i subscript refers to a
spatial direction while the j subscript refers to an implicit sum-
mation over the three directions. The velocities are scaled with
U0, the time with h/U0, the spatial dimensions with h and the
pressure with ρU2

0. The second term on the right hand side of
Eq. (3b) represents the viscous stresses, while the third term is a
homogeneous large-scale pressure gradient ∂P∗/∂x∗ driving the
flow, such that:

− ∂P∗

∂x∗ = 2
R

h
δs

cos
(

2
R

h
δs

t∗
)

(4)

The two previously discussed non-dimensional quantities (R

and h/δs) appear in the equations, where the thickness of the
Stokes boundary layer is defined as:

δs =
√

2ν

ω
(5)

and the Reynolds number as:

R = U0δs

ν
(6)

If h/δs is large enough, R is the only parameter governing the
transition to turbulence (Jensen et al., 1989; Kaptein, Duran-
Matute, Roman, Armenio, & Clercx, 2019; Salon et al., 2007).
Here, large enough means that the turbulent boundary layer is
not influenced by the water-depth, which is the case for h/δs≥25

for R ≤ 1790 or h/δs ≥ 40 for 1790 ≤ R ≤ 3460 (Kaptein
et al., 2019). The simulated values of the Reynolds number
are R = 990, 1790 and 3460, and for each Reynolds number,
five different h/δs ratios are considered: h/δs = 5, 10, 25, 40 and
70. Previous studies (Jensen et al., 1989; Kaptein et al., 2019)
show that the flow is in the intermittent turbulent regime for
R = 990 and in the fully turbulent regime for R = 1790 and
R = 3460, although fully developed turbulence is not observed
through the entire oscillation cycle. Additionally, damping of
turbulence is observed during part of the cycle for h/δs ≤ 10 and
throughout the entire cycle for h/δs ≤ 5, for these three values
of the Reynolds number (Kaptein et al., 2019). Equations (3a)
and (3b) are integrated numerically using a fractional step finite-
difference method, based on the algorithm of Zhang, Street,
and Khoseff (1994). For more details see Salon et al. (2007)
and Salon, Armenio, and Crise (2009). The size of the compu-
tational domain is 65δs in the streamwise direction and 32δs in
the spanwise direction, except for the simulation with h/δs = 5
and R = 1790 (characterized by a high level of intermittency)
where the domain size is doubled in each horizontal direction.
The domain size is overall in agreement with the size of the
turbulent structures (Costamagna, Vittori, & Blondeaux, 2003;
Jiménez & Moin, 1991), and the horizontal boundary condi-
tions are periodic. At the bottom boundary, a no-slip condition is
applied, and at the top boundary, a no-stress condition is applied.
A sketch of the domain is provided in Fig. 1, alongside the
velocity profiles for the analytical solution of the laminar flow.

The simulations with R = 990 are performed with DNS,
and the simulations with R = 1790 and R = 3460 are per-
formed with LES. The number of grid cells in the vertical varies
from 64 for the simulation R = 990 and h/δs = 5 to 640 for
the simulations with R = 3460 and h/δs = 70. The cells are
clustered close to the bottom boundary such that the first grid
point is at y+ = 1. The value of y+ used for grid considerations
is defined with respect to the maximum of τw over the oscillation
cycle, implying y+ = 1 is a “worst case scenario”. For most of
the oscillation cycle, the first grid point is located at y+ < 1. In
both DNS and LES configuration, there are at least five points
(without counting the bottom boundary itself) located in the vis-
cous sub-layer and part of the buffer layer, i.e. y+ ≤ 11. In the
horizontal directions, 256 grid points are used for R = 990

Figure 1 Sketch of the computational domain. The red profiles repre-
sent the analytical solution of the laminar oscillating flow at four differ-
ent phases ωt = 0, π/2, π and 3π/2. The analytical solution is given
by u(y, t) = −U0 exp(ωt) sin(ωt − y/δs) + U0 sin(ωt) for u0 = 1 and
δs = 1
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Table 1 Numerical settings for each simulation

R h/δs na
x na

y na
z Lx/δ

a
s Lz/δ

a
s Technique

990 5 512 64 512 130 64 DNS
990 10 256 80 256 65 32 DNS
990 25 256 144 256 65 32 DNS
990 40 256 208 256 65 32 DNS
990 70 256 352 256 65 32 DNS
1790 5 256 80 256 130 64 LES
1790 10 128 112 128 65 32 LES
1790 25 128 176 128 65 32 LES
1790 40 128 256 128 65 32 LES
1790 70 128 376 128 65 32 LES
3460 5 192 96 192 65 32 LES
3460 10 192 144 192 65 32 LES
3460 25 192 304 192 65 32 LES
3460 40 192 480 192 65 32 LES
3460 70 192 640 192 65 32 LES

a The symbols nx , ny and nz are the number of grid cells in
the streamwise, vertical and spanwise directions. The symbols
Lx and Lz are the domain size in the streamwise and spanwise
direction.

(DNS configuration), 128 grid points are used for R = 1790
(LES configuration), and 192 grid points are used for R = 3460
(LES configuration). As mentioned by Kaptein et al. (2019), the
horizontal resolution in wall units varies from less than 45y+ in
LES configuration to 12y+ in DNS configuration. The spanwise
grid spacing varies from at most 22y+ for the LES simulations
to 14y+ in DNS configuration. The validation of the software
package is extensively described by Salon et al. (2007) while
the validation of the present dataset is described by Kaptein
et al. (2019). The wall shear stress and the velocity profiles have
been compared to experimental data of Jensen et al. (1989), and
a good agreement was found. Additionally, for two of the sim-
ulations with h/δs ≤ 10 and R ≤ 1790, grid convergence was
checked and obtained by doubling the vertical or the horizontal
resolution. For the particular case with h/δs = 5 and R = 1790,
convergence was only obtained after reducing the value of the

Courant number from 0.6 to 0.3. For h/δs = 5 and R = 990,
grid convergence could not be obtained. An overview of the
simulation settings is given in Table 1.

The velocity field is saved every phase interval 
ωt = π/12
for about 20 periods. Velocity profiles and other statistics
are obtained by plane-averaging, and when possible, phase-
averaging of the velocity fields. The possibility of performing
phase-averaging depends on the nature of the flow. If a flow is
intermittent for a specific phase, phase averaging would com-
bine laminar velocity fields and turbulent velocity fields, which
is not desirable.

3 Results

3.1 Identification of the logarithmic layer

The determination of the existence and the extent of the loga-
rithmic layer is a well-known challenge in the study of turbulent
flows (Hoyas & Jiménez, 2006; Marusic et al., 2013). The log-
arithmic depth dependence of the streamwise velocity is based
on the assumption that the turbulence eddies scale with the dis-
tance from the wall (Townsend, 1961); a hypothesis that has
been frequently debated and that seems only satisfied at very
high values of the Reynolds number (Perry & Li, 1990). As a
result, the velocity profile slightly deviates from the logarithmic
asymptote, even in the so-called logarithmic region (Bernar-
dini, Pirozzoli, & Orlandi, 2014). This is the log-layer defect
and makes the log-layer more challenging to detect (Marusic
et al., 2013).

An additional challenge is that some of the present simula-
tions are characterized by intermittent turbulence. The intermit-
tent character of the flow is visualized for two simulations in
Fig. 2, by means of the resolved turbulent kinetic energy (TKE),
integrated over a 5δs thick layer close to the wall. Identical
phases are marked by a symbol, and the position of these sym-
bols demonstrates that the TKE is nearly constant from cycle
to cycle for R = 1790, h/δs = 70 and ωt = π/12 (low value
of the TKE) and ωt = 2π/3 (high value of the TKE). However,
for R = 990, h/δs = 10 and ωt = π/2 the TKE strongly varies

Figure 2 Resolved TKE within a 5δs thick layer adjacent to the bottom boundary layer for 10 successive half cycles. The two curves represent
simulations with different values of the Reynolds number and the h/δs ratio. The symbols mark the TKE values at specific phases
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from cycle to cycle indicating intermittency for these parameter
settings.

The impact of this intermittency on the velocity profiles can
be seen in Fig. 3, in which the plane-averaged velocity pro-
files have been plotted for three different value combinations of
R, h/δs and the phase of the surface velocity (denoted ωt). The
profiles have not yet been phase-averaged, which means that
each value combination leads to about 20 profiles, each of them
corresponding to a distinct oscillation cycle. The sub-figures of
Fig. 3 clearly show three different regimes. In Fig. 3a, none of
the profiles for the parameter values R = 1790, h/δs = 70 and
ωt = π/12 approaches the theoretical log-law curve given by
Eq. (1): this is the non-logarithmic regime. In Fig. 3b, some of
the profiles for R = 990, h/δs = 10 and ωt = π/2 do approach
this log-law while others are still a long way from it: this is the
intermittent regime. Finally, in Fig. 3c all the profiles for R =
1790, h/δs = 70 and ωt = 2π/3 collapse on the log law: this is
the logarithmic regime. The results of Fig. 3 reveal two impor-
tant findings. First, the log-layer is not necessarily present for
all values of ωt, at given R and h/δs. Second, still at given R

and h/δs, there might be some phases where the presence of the
log-layer for a certain ωt also depends on the specific oscillation
cycle. This latter finding is particularly important when comput-
ing the values of κ and B. The accuracy of these values is related
to the size of statistical sample from which they are computed,
such that phase-averaging is needed for improved precision.
However, it only makes sense to average profiles that have a log-
layer. As a result, conditional averaging will be performed, and
phases with no well-defined log-layer will be excluded. Under
the assumption that a log-layer is a signature of the turbulent
character of a flow, the conditional averaging can be regarded as
averaging exclusively over the turbulent flow fields.

As a result, the plane-averaged velocity profiles with a log-
arithmic layer had to be identified by eye for all values of the
parameters R, h/δs and ωt. This identification is obviously
quite subjective, and had to be performed for about 12 × 2 ×
20 × 5 × 3 = 7200 profiles. The number 12 refers to the num-
ber of phases considered, 2 to the symmetry of the oscillation
cycle, 20 to the number of oscillation cycles, 3 to the number of
different values for R and 5 to the number of different values
for h/δs.

To gain more confidence and objectivity in our estimations,
but also to avoid repeating the subjective identification proce-
dure in the future, we want to find a robust signature of the
log-layer in the simulation data. It has been suggested in pre-
vious work (Afzal & Yajnik, 1973; Bernardini et al., 2014;
Jiménez & Moser, 2007; Pirozzoli, Bernardini, & Orlandi, 2014)
that a good method to analyse velocity profiles could be done
through the log-law diagnostic function � defined as:

� = du+

d ln(y+)
= y+

du+

dy+
(7)

This quantity is supposed to reach a plateau equal to 1/κ (the
inverse of the von Kármán constant) in the log-region but sev-
eral studies (Hoyas & Jiménez, 2006; Jiménez & Moser, 2007)
report that such a flat region is never reached. This finding sug-
gest that the log-law diagnostic function is not more suitable
for detecting the log-layer than the velocity profile. However,
Fig. 4 shows that � still gives valuable information. In Fig. 4a,
the velocity profiles of Fig. 3b (in the intermittent regime) are
reproduced, while differentiating the profiles that are logarithmic
(red-dashed), the profiles that are not logarithmic (grey-solid),
and the profiles for which the presence of the log-layer is
uncertain (black-solid). These three profile categories are then
investigated in terms of � (Fig. 4b), and one specific feature
emerges concerning the height in wall units at which � is locally
maximum. This height is larger than the thickness of the vis-
cous sub-layer (located at y+ = 5) but smaller than the centre of
the buffer layer (located at y+ = 17). As a result, we will call
this height the “thickness of the viscosity dominated layer”: a
layer where the molecular viscosity is dominant but turbulent
fluctuation are not necessarily negligible. The advantage of this
definition is that it can be used for laminar, turbulent and inter-
mittent flows. The thickness of the viscosity dominated layer
seems to be constant and approximately equal to y+ = 10, when
the profile approaches the log-layer, but it increases significantly
up to values of approximately y+ = 22, when the flow does
not have a log-layer. This evolution in the location of the local
maximum has been earlier observed by Hino et al. (1983).

Taking advantage of this trend, two maps of points defined
by the coordinates (ln(y+vs); 〈u(y+vs)〉/U0) are displayed in Fig. 5,

Figure 3 Profiles of the plane-averaged, streamwise non-dimensional velocity u+ in semi-logarithmic scale for three different value combination of
R, h/δs and ωt. (a) R = 1790, h/δs = 70 and ωt = π/12, (b) R = 990, h/δs = 10 and ωt = π/2, and (c) R = 1790, h/δs = 70 and ωt = 2π/3.
The theoretical solution has been obtained for κ = 0.41 and B = 5.5
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Figure 4 (a) Reproduction of the profiles of Fig. 3 while differentiating the profiles having a log-layer (red-dashed) from the ones that did not have
a log-layer (grey-solid) and the ones for which the presence of the log-layer is uncertain (black-solid) and (b) their associated log-layer diagnostic
function � for R = 990, h/δs = 10 and ωt = π/2. The absence of a plateau at 1/κ for � might be difficult to detect in logarithmic scale. Therefore,
this figure has been reproduced in normal scaling in the Appendix, Fig. A1

Figure 5 Points of coordinates (ln(y+vs); 〈u(y+vs)〉/U0), i.e. the height of the viscous sub-layer and its associated velocity. Each point corresponds to
a specific value of the phase ωt, a specific period and a specific value of h/δs. (a) R = 990 and (b) R = 3460. The plane-averaged velocity 〈u〉
has been made non-dimensional with the outer scale U0 instead of the inner scale uτ because in this way the difference between the laminar points
and the turbulent points is emphasized. The points of the laminar solution are obtained by taking the first maximum of y+∂u∞/∂y, where u∞ is the
analytical solution under infinite depth assumption (Kaptein et al., 2019). The start of the oscillating cycle ωt = 0 is marked by the blue circle

with y+vs the height of the first local maximum of � and
〈u(y+vs)〉/U0 the value of the velocity at that height. Figure 5a
contains points from all the simulations with R = 990 while
Fig. 5b contains points from all the simulations with R = 3460.
Each point represents (ln(y+vs); 〈u(y+vs/U0)〉) for a given phase ωt
in an oscillation cycle for one of the simulations. The points
in each panel form a distinct shape with three branches: (i) a
first branch drawing a convex path from the bottom left cor-
ner to the top right corner of the figure, (ii) a second branch
going from the top right corner to the centre of the figure and
(iii) a third branch going from the centre of the figure towards
the bottom. The first and second branches coincide with points
from the laminar analytical solution of Stokes’ second prob-
lem displayed in blue (e.g. Kaptein et al., 2019), while the third
branch approaches the theoretical line y+vs = 11 displayed with
a black dashed line. This line results from the assumption that
the thickness of the viscosity dominated layer can be obtained
by equating the scaling function in the viscous sub-layer, i.e.
u+ = y+, and the scaling function in the logarithmic layer, i.e.
Eq. (1). Forcing the intersection of these two lines at y+ = 11
gives B = 5.2 for κ = 0.41.

The symbols in Figs 5a and b follow the same trend. At the
beginning of the oscillation cycle (denoted by the blue circle),
the light grey diamonds are distributed close to the curve of the
laminar solution. The profiles are in the non-logarithmic regime.
As the oscillation cycle progresses, the grey diamond follow
the blue curve towards the top-right until they reach the phase
at which transition to turbulence occurs. This phase is highly
dependent on the value of R (Jensen et al., 1989). When the
flow transitions to turbulence, the grey diamonds leave the lam-
inar curve and migrate towards the line defined by y+vs = 11.
When approaching this line, the profiles enter the logarithmic
regime, marked by the red points. In the logarithmic regime,
the red points follow approximately the line y+vs = 11, until they
reach again the blue line of the laminar solution. This joining
happens at the end of the deceleration phase, just before a new
boundary layer builds up in the other direction, and might indi-
cate that the presence of the log-layer at theses phases is due to
a history effect rather than equilibrium turbulence.

Although the symbols in Figs 5a and b describe similar paths,
there are also discrepancies. First, it can be seen that the loga-
rithmic branch in Fig. 5b is closer to the theoretical line y+vs = 11
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than the logarithmic branch in panel 5a, but it still deviates
from it. These differences already suggest that the constants κ

and B probably depend on both R and the phase ωt. Second,
some of the light grey diamonds in Fig. 5a are located outside
the branches, on the right of the non-logarithmic branch; these
points are from the shallowest simulations, i.e. with h/δs = 5
and h/δs = 10. These simulations are characterized by such a
high level of intermittency that the symmetry in the oscillation
cycle is broken leading to a net flow in one direction over an
oscillation cycle. This phenomenon is not explicitly shown or
discussed here but has also been observed by Tuzi and Blon-
deaux (2008) and might explain the out-of-trend location of
these points, particularly because for higher Reynolds number
values, all points collapse into the curves (Fig. 5b).

The free-stream phases particularly characterized by inter-
mittency are summarized in Table 2. Intermittent turbulence is
restricted to a few phases in simulations with either a low value
of R or a low value of h/δs. The intermittency will be taken into
account while computing the ensemble-averaged statistics, i.e.
we are considering in these cases conditional phase-averaged
vertical profiles of streamwise velocity. From now on, these
profiles will be both plane and phase averaged. For the phases
characterized by intermittency, only the velocity fields in which

Table 2 Overview of the phases characterized by intermittency.
These phases are defined as the profiles for which, at identical
value of R, h/δs and ωt, the (ln(y+vs); 〈u(y+vs)〉/U0) points are
located simultaneously on the logarithmic branch and significantly
off the logarithmic edge

R h/δs ωt

990 5 7
12 π , 2

3 π , 3
4 π , 5

6 π

990 10 1
2 π , 7

12 π

990 25, 40, 70 5
12 π

1790 5 5
12 π , 1

2 π , 7
12 π

3460 5 1
12 π

the presence of the logarithmic layer is confirmed by diagrams
as shown in Fig. 5 are used in the phase averaging. As mentioned
previously, discarding flow fields with no log-layer comes down
to using only turbulent flow fields for computing the properties
of the log-layer.

3.2 Von Kármán constant and intercept

Even if the velocity profile is characterized by the presence of
a logarithmic region, we anticipated that the characteristics of
this region will depend on the value of the governing param-
eters and on the phase. Here, we obtain the values of the von
Kármán constant κ and the intercept B used in the logarithmic
fit given by Eq. (1). Although it is possible to find κ and B by
fitting Eq. (1) through the log region, we prefer to determine
the constant and the intercept in a different way. In fact, the fit-
ting procedure requires that initially the extent of the log region
is subjectively determined, and this should be done for all the
plane- and phase-averaged velocity profiles (up to 180 profiles).
Instead, we propose a simpler procedure that is easier to repro-
duce. We first assume the necessary but not sufficient condition
that the logarithmic region can only exist for y+min < y+ < y+max.
The depth y+min is then defined as the thickness of the viscosity
dominated layer (which was computed in the previous section),
i.e. y+min = y+vs. The depth y+max is in turn defined as the depth y+ at
which 〈u〉 reaches its first local maximum. In this way, y+max can
be interpreted as the thickness of the boundary layer, depend-
ing on the phase ωt. For y+min < y+ < y+max, we then determine
the depth y+c at which � is minimum and call this depth y+c the
centre of the logarithmic layer. The introduced y+min and y+c are
sketched in Fig. 6a while y+max is sketched in Fig. 6b. The value
of the von Kármán constant is then κ = 1/�(y+c ), and the value
of the intercept is B = u+(y+c ) − ln(y+c )/κ .

Figure 7 displays κ and B as a function of the phase for each
value of R and h/δs. It can be seen, that the average values
of κ and B depend strongly on the value of R. The mean von
Kármán constant κ increases from 0.37 at R = 990 to 0.46 at

Figure 6 Sketch of (a) a velocity profile in logarithmic scale with its corresponding log-layer diagnostic function for R = 990, h/δs = 10 and
ωt = π/2 and (b) a velocity profile for R = 3460, h/δs = 70 and ωt = π/2. The thickness of the viscous sub-layer ymin ≡ y+vs and yc are sketched
on (a) while y+max is sketched on (b)
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Figure 7 Evolution of the von Kármán constant (a) and the intercept B (b) as a function of the phase ωt. The influence of the Reynolds number has
been highlighted by using different coloured symbols for the data points corresponding to simulations with different values of R. All values of h/δs
are considered. Different dotted lines are also displayed in order to indicate specific values of κ and B

R = 3460, which is slightly different from the values obtained
by Tuzi and Blondeaux (2008) in a pipe flow simulation. For
R = 8000 and R/δs = 4 (with R the radius of their pipe), they
found a von Kármán constant of 0.4 and an intercept at 5.5. Note
that R/δs is similar to h/δs except that R is also a measure of the
curvature of the bottom boundary, while the bottom boundary in
the open channel configuration is flat. Similarly, the mean value
of B increases from 4.2 at R = 990 to 8.0 at R = 3460. The
dependence of κ on the Reynolds number was already observed
by Frenzen and Vogel (1995) and Nagib and Chauhan (2008)
for steady flows. However, in those cases, κ decreases with
increasing value of the Reynolds number. Additionally, Maru-
sic et al. (2010) stated that the value of κ depends on the type
of wall-bounded flow (e.g. pipe flow or channel flow), which
might explain the small discrepancies between our results and
the results from Tuzi and Blondeaux (2008). A last feature is
the decrease of both κ and B at the end of the deceleration
phase (around ωt = π ), with a much stronger decrease for B

than for κ . This decrease is remarkable as it is not observed
at the beginning of the acceleration phase (i.e. in the presence
of a favourable pressure gradient), suggesting an asymmetry
between the acceleration and the deceleration phases (i.e. in
the presence of an adverse pressure gradient). The asymme-
try reinforces an assumption mentioned earlier: the observed
log-layer is not related to the turbulence conditions at this par-
ticular phase, but to the remainder of a log-layer that had been
generated in an earlier stage of the flow. Finally, similarly to
the points in Fig. 5, some points are out-of-trend and these
points again correspond to simulations with h/δs = 5, making
the presence of a true logarithmic region at these values of h/δs

questionable.
The established values and observed trends for κ and B are

critically based on their definitions, i.e. κ = 1/�(y+c ) and B =
u+(y+c ) − ln(y+c )/κ . To test the sensitivity of the results to these
definitions, κ and B have also been estimated via a linear fit in
Fig. 8. The fitting interval was chosen such that the relative error

Figure 8 Value of the von Kármán constant (a) and the intercept B (b) as a function of the phase ωt, for R = 3460 and h/δs = 40. Two different
ways of computing κ and B are tested. One is based on the minimum of the log-layer diagnostic function � (blue dots) and the other is based on
fitting a function through an interval depending on the relative error Err of the velocity profile with respect to the log-law (red triangles and green
diamonds)
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Figure 9 Spatial extent and existence interval of the log-layer, depending on R and h/δs: R = 990 (a), R = 1790 (b) and R = 3460 (c). The
open symbols and dashed line mark the start for the logarithmic region and the filled symbols and solid line mark its end

E satisfies:

E(y+) =
∣∣∣∣∣

1
κ

ln(y+) + B − u+(y+)
u+(y+)

∣∣∣∣∣ ≤ ε (8)

with ε maximum value of the error. The new values of κ and
B for R = 3460 and h/δs = 40 are displayed in Fig. 8a and
b, respectively. On one side, it is obvious from this figure that
the previously mentioned discrepancies between the observed
values of κ and B in the present study, and the values in the
literature, can be attributed to the way of computing them. In
fact, when the fitting method is used, the von Kármán constant
becomes extremely close to 0.41 for ε = 0.065. Similarly, the
value of B is then also lower with respect to the method using
κ = 1/�(y+c ) and B = u+(y+c ) − ln(y+c )/κ . For higher values of
ε = 0.115, κ and B decrease further. This result proves that
the method used to determine these constants is crucial for the
accuracy of the results.

On the other side the general trend in the phase-evolution
of κ and B is observed throughout the oscillation cycle, except
for the earlier phases. The reduction in κ and B at the end of the
deceleration phases is still observed and supports once more that
the log-layer presence at these phases is due to a history effect.
In contrast, the different behaviour of κ and B at ωt = π/6 and
π/4 could imply that the formation process of the log-layer is
not yet completed at these phases.

3.3 Spatial and temporal extent of the logarithmic layer

The determination of the spatial extent of the log-layer is some-
thing quite subjective too (Hoyas & Jiménez, 2006; Marusic
et al., 2013). In Section 3.2 we mentioned the necessary con-
dition that the log-layer could only exist for y+min < y+ < y+max.
However, the spatial extent could also be smaller than [y+min :
y+max], such that this condition is not sufficient. Here, we assume
that the spatial extent of the log-layer is the space-interval at
which the relative error, E, defined in Eq. (8), is smaller than
ε = 5 · 10−3. The coefficients used in Eq. (8) are computed
using the method proposed in this paper, κ = 1/�(y+c ) and
B = u+(y+c ) − ln(y+c )/κ . The start and the end of the log-layer
for each ratio h/δs and each R according to this definition are

plotted as a function of the phase in Fig. 9. For all the simula-
tions, the log-layer starts around 25 < y+ < 50 (in agreement
with the literature results of Tennekes & Lumley, 1972) but
extends over different lengths, mainly depending on the value
of R. Clearly, the spatial extent of the log-layer increases with
the value of the Reynolds number, although these increments
are less significant between R = 1790 and R = 3460 than
between R = 990 and R = 1790. In general, the water depth
does not seem to affect the spatial extent except for R = 1790
and h/δs = 5 where it drastically increases when compared to
the other values of h/δs. At ωt = π/2, the log-region extends
up to y+ = 300 while the surface is located at y+ = 414. This
difference is relatively small, particularly considering the small
value of ε that is used to define the spatial extent. The proxim-
ity of the end of the log-layer and the surface could suggests an
interaction between the logarithmic layer and the top boundary.
The choice of the boundary condition plays an important role
in this situation. In a lot of environmental applications, a free-
surface boundary conditions is more realistic. The free-surface
would probably lead to more complex interactions with the log-
layer. However, it also introduces an additional parameter, the
Froude number. The incorporation of a free-surface would make
the isolation of the Reynolds number effects or reduced water-
depth effect more difficult and is not in the scope of the present
study. Finally, peaks in the spatial extent of the log-layer are
observed at the earliest phases where the log-layer is detected.
These peaks might be related to the formation process of the
log-layer already discussed earlier, still ongoing at these phases,
making its detection and extent more sensitive to the setting
of ε or to the evaluation of the characteristic point defined by
(ln(y+vs), 〈u(y+vs)〉/U0). This phenomenon also explains why a
log-layer is detected at ωt = π/5 for R = 1790 and h/δs = 40
but not for the other values of h/δs at R = 1790.

Similarly to the spatial extent, the phase interval during
which the log-layer is present (the presence interval) also
increases with the value of the Reynolds number. The size of
the presence interval also appears to be related to the ratio h/δs.
For R = 3460 and h/δs = 5, the presence interval of the log-
layer is shifted by a phase 
ωt = π/12 towards the earlier
phases, but the size of the presence interval remains approxi-
mately the same compared to the higher h/δs values. For lower
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Figure 10 Start and end of the log-layer depending on the maximum
error ε for R = 3460, h/δs = 40. Each green line or red line marks a
different value of the phase ωt

R values, the influence of the reduction of the water-depth is
more significant as the size of the presence interval reduces. For
R = 990, the presence interval reduces with decreasing h/δs

from π/3 ≤ ωt ≤ 11π/12 at h/δs = 10 to 5π/12 ≤ ωt ≤ π at
h/δs = 5. For R = 1790, the size of presence interval reduces
from π/4 ≤ ωt ≤ 11π/12 at h/δs = 10 to π/3 ≤ ωt ≤ 5π/12,
implying that this size reduction increases with decreasing value
of R.

The findings about the spatial-extent and time-interval pres-
ence of the log-layer have been obtained for a specific value of
ε. To understand how the spatial-extent changes for a different
value of ε, the start and the end of the log-layer are plotted as
function of ε in Fig. 10, for R = 3460, h/δs = 40. Each line
represents the start (or end) of the log-layer at different phase
ωt. For ωt ∈ {π/6; π/4; π/3}, the end of the log-layer reaches a
plateau for a certain value of ε. This plateau is equal to y+max and
implies that the log-layer has reached its maximum extent. For
the other values of ωt, the end of the log-layer increases and the
start of the log-layer decreases uniformly with ε, conserving the
relative extent observed for ε = 5 · 10−3.

3.4 Reynolds number based on the friction velocity

So far, this study shows that the presence of the logarithmic
layer in turbulent oscillating flows depends on three different
parameters R, h/δs and ωt. Nevertheless, previous research
demonstrate that, when fully developed turbulence is observed
in the oscillating flow, the behaviour of the flow is nearly iden-
tical to that of a steady wall-bounded flow (Jensen et al., 1989;
Salon et al., 2007). In these steady boundary layer flows, the
existence and properties of the log-layer are usually investigated
in term of one single parameter: R, the Reynolds number based
on the friction velocity uτ :

R = uτ d
ν

(9)

where d is the channel half depth. As an example, Kim
et al. (1987) detected a log-layer in their velocity profile for
R = 180 in their pioneering DNS study of a steady plane
channel flow. The definition of a characteristic parameter for
unsteady turbulent flows was already discussed for pulsating

flows (Ramaprian & Tu, 1983; Scotti & Piomelli, 2001). It
was proposed to use the eddy viscosity to define a turbulent
Stokes layer thickness as a characteristic length scale rather
than Eq. (5). However, although the eddy viscosity could be
computed directly from the simulations, its depth dependence
implies that a unique value of the eddy viscosity per phase does
not exist.

Instead of using the turbulent Stokes layer thickness, we
investigate the possibility of extending the use of R to an
oscillating flow, to analyse the standard approach used to study
logarithmic layers in steady flows, and to test its validity for
non-steady flows. This extension makes use of a different inter-
pretation of d. In a turbulent plane channel flow, d is also the
largest distance that a fluid parcel can be separated from the
closest wall, such that d is a measure of the thickness of the
wall-dominated layer. As a result, the velocity at a distance d of
the wall is the maximum velocity in the water column. The anal-
ogy with the turbulent oscillating boundary layer is then quickly
made: d should be defined as the height at which the velocity
profile has its (first) maximum. In fact, uτ d/ν = y+max, such that
uτ d/ν has already been sketched in Fig. 6b for R = 3460 and
h/δs = 70.

A first advantage of using R is that d and uτ , and there-
fore R, depend on ωt. Additionally, a previous study on the
same dataset (Kaptein et al., 2019) determined that R is the
only parameter governing the flow as long as d < h throughout
the oscillation cycle, but that h/δs has to be taken into account
if d = h during at least part of cycle. A second advantage of
using R is that it takes into account this specific h/δs depen-
dence. In Fig. 11a, h > d, and it can be seen that both d and uτ

are identical for h/δs = 40 and h/δs = 70 at fixed phase ωt, and
for R = 3460. This similarity implies that R is also identical
for h/δs = 40 and h/δs = 70 at this specific Reynolds number.
In Fig. 11b, h �> d for some part of the oscillation cycle, such
that d and eventually uτ are different between h/δs = 25 and
h/δs = 70 for R = 3460. These differences result in divergent
R for these two cases.

In summary, R depends on the phase ωt, the Reynolds num-
ber R and on the ratio h/δs. From these dependences, it might
be expected that the existence of the log-layer is only governed
by R. However, this claim appears to be refuted by Fig. 12,
in which the presence of the logarithmic layer is displayed as a
function of R and ωt. At ωt = π/3, no log-layer is detected for
R < 180, while a log-layer was already detected at this value of
the Reynolds number in a plane-channel flow (Kim et al., 1987).
In the region where the log-layer is present due to the local tur-
bulence properties and not due to a history effect (i.e. from the
start of the existence interval up to ωt < 5π/12), a threshold
of about R = 400 seems appropriate. However, for ωt = 2π/3
a log-layer is detected for R < 180. These results suggest that
once the log-layer enters the late deceleration phases, the thresh-
old R = 400 is not valid any more. In addition, at ωt = π/3 and
ωt = 7π/12, the log-layer is sometimes detected for lower val-
ues of R than the values of R for which the log-layer is not
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Figure 11 Velocity profiles every 
ωt = π/12 starting at ωt = −5π/12 (most left profile) ending at ωt = π/2 (most right profile) for R = 3460.
The thickness of the wall-dominated layer d, defined as the height above the bottom at which the velocity profile has its first maximum is depicted
by the black dotted line. A distinction is made between the deep water solution (a) and the shallow water solution (b)

Figure 12 Link between the log-layer existence and the plane and
phase averaged value of R. The threshold for which the log-layer
has been identified in the plane channel flow of Kim et al. (1987), i.e.
R = 180, is also displayed

detected. These findings imply that it is not possible to reduce
the number of parameters on which the presence of the log-layer
depends, using R. As result, the log-layer in a turbulent oscil-
lating flow cannot be analysed in a similar way as the log-layer
in a steady turbulent flow, despite the similarities between the
flows. To our current knowledge, the three parameters R, h/δs

and ωt are necessary for this analysis.

4 Discussion and conclusions

The present study confirms that a logarithmic region in the
velocity profiles is present for oscillating flows, with a phase
interval and a spatial extent that increases with the Reynolds
number. A new identification method, the map of points of coor-
dinates (ln(y+vs); 〈u(y+vs〉/U0)), where y+vs is the thickness of the
viscous viscosity dominated layer, demonstrates that the points
of logarithmic velocity profiles collapse onto a single curve.
This collapse makes the coordinates (ln(y+vs); 〈u(y+vs)〉/U0) a dis-
tinct signature of the logarithmic layer and can help to identify
its presence.

This study also shows that the logarithmic layer is never
present throughout the whole cycle at the values of the Reynolds
number simulated in this investigation, in agreement with pre-
vious studies (Jensen et al., 1989; Salon et al., 2007). Neverthe-
less, the simulation results show that with increasing value of the
Reynolds number, the log-layer appears earlier in the oscillation
cycle and grows in spatial extent. Furthermore, the values of the

von Kármán constant κ and the intercept B are found to be phase
and Reynolds number dependent and to deviate by an order of
10% with respect to the classical values of κ = 0.41 and B = 5.5.
This is particularly remarkable because previous studies (Akha-
van et al., 1991; Pedocchi, Cantero, & García, 2011; Scandura
et al., 2016; Tuzi & Blondeaux, 2008) reported a value of the
von Kármán constant much closer to the classical value. How-
ever, these studies were carried out in pipe flows, and a study
by Marusic et al. (2010) stated that the universality of the von
Kármán constant depends on the type of flow (pressure driven
flow, plane channel flow or pipe flow). Nevertheless, deviation
of order 10% for κ and a decrease of B towards the end of the
cycle was also reported by Salon et al. (2007). They attributed
the decreasing value of B at the end of the deceleration phase, in
the presence of an adverse pressure gradient, to a low-Reynolds
number effect, but we believe that the presence of the log-layer
at the end of the deceleration phase is just due to a history effect.
Additionally, two other sources of discrepancies between dif-
ferent values of the log-layer constants might be considered.
First, the mechanism of turbulence generation is not exclusively
similar to that of steady wall-bounded flows, for low Reynolds
number values: during the acceleration phase small disturbances
are damped (Vittori & Verzicco, 1998) while turbulence at the
end of the deceleration phase is generated by the collapse of the
wall shear stress, due to the adverse pressure gradient, and not
by the rigid wall itself (Jensen et al., 1989). This is only true for
lower values of the Reynolds numbers. For high Reynolds num-
ber values, turbulence appears already during the acceleration
phase (Jensen et al., 1989). Second, the method with which the
von Kármán constant was determined (i.e. by taking the local
minimum of the log-layer diagnostic function �) might lead
to a slight overestimation when compared to fitting a log-layer
through the velocity profile (Jiménez & Moser, 2007; Pirozzoli
et al., 2014). In fact, the present investigation demonstrates that
when the fitting procedure was applied, the obtained values of κ

and B could be much closer to the values reported in literature.
However, the new values are then dependent on the size of the
fitting interval. Therefore, the main result is that the values for
κ and B strongly depend on three distinct parameters: R, h/δs

and the phase ωt. To our current understanding, it is not possible
to reduce the number of parameters on which the properties of
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the logarithmic layer depend, like a Reynolds number based on
the friction velocity uτ .

Finally, the reduction of the ratio h/δs is found (i) to increase
the phase interval for which intermittent turbulence is observed
and (ii) to shift the existence interval of the log-layer to earlier
phases. For these simulations characterized by intermittency, the
presence of the logarithmic layer also depends on the oscillation
cycle. Nevertheless, the values of the Reynolds numbers for the
simulations presented here are relatively low for some applica-
tions. In tidal flows for example, Reynolds number values might
be one order of magnitude higher (Kaptein et al., 2019), and we
would expect the logarithmic layer to be present for a longer
phase interval and the properties of the log-layer to be more
constant.

Overall, we believe that the logarithmic assumption in wall
models as formulated by Piomelli and Balaras (2002) is (i) a
good approximation for oscillating flows at very high Reynolds
number and (ii) an acceptable approximation at moderate
Reynolds numbers. Nevertheless, if more accurate results need
to be obtained, or for oscillating flows characterized by a strong
reduction in turbulence activity or intermittent turbulence dur-
ing (at least part of) the oscillation cycle, more sophisticated
wall models are needed. These models should take into account
the phase and Reynolds number dependence of (i) the existence
of the log-layer and (ii) the values of the von Kármán constant
and the intercept. Also, if a wall model is used the height above
the bottom in wall units of the first computational point is cru-
cial. Depending on the phase within the oscillation cycle it can
either be in the viscous sub-layer or in the logarithmic region.
Therefore, an accurate wall model would have to incorporate
the entire law of the wall, i.e. u+ = y+ in the viscous sub-layer,
u+ = 1/κ ln(y+) + B in the log-layer, as well as an adequate
parametrization of the buffer layer.
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Appendix. Log-layer diagnostic function in normal scaling

Figure A1 Reproduction of the profiles of Fig. 4. (a) logarithmic
layer and (b) their associated log-layer diagnostic � function in normal
scaling for R = 990, h/δs = 10 and ωt = π/2

Notation

B = logarithmic layer intercept (–)
d = dynamic boundary layer thickness (m)
E = relative error between the velocity profile and the log-

law (–)
h = water depth (m)
Lx = domain length in the x (steamwise) direction (m)
Lz = domain length in the z (spanwise) direction (m)
nx = number of cells in the x (steamwise) direction (–)
ny = number of cells in the y (vertical) direction (–)
nz = number of cells in the z (spanwise) direction (–)
P = pressure (Pa)
p̄∗ = non-dimensional, filtered pressure (–)
P∗ = large-scale, non-dimensional pressure (–)
R = pipe radius (m)
R = Reynolds number based on the Stokes boundary layer

thickness (–)
R = Reynolds number based on the friction velocity (–)
t = time (s)
t∗ = non-dimensional time (–)
U0 = amplitude of the free-stream velocity (m s−1 )
u+ = non-dimensional, streamwise velocity (–)
ū∗

i = non-dimensional, filtered velocity in the x∗
i direction

(–)
ū∗ = non-dimensional, filtered streamwise velocity (–)
〈u〉 = ensemble averaged, streamwise velocity (m s−1)
uτ = friction velocity (m s−1)
u∞ = laminar infinite-depth solution (m)
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v̄∗ = non-dimensional, filtered vertical velocity (–)
w̄∗ = non-dimensional, filtered spanwise velocity (–)
x = space variable in the streamwise direction (m)
x∗ = non-dimensional space variable in the streamwise

direction (–)
x∗

i = non-dimensional space variable in the i-direction (–)
y = space variable in the vertical direction (m)
y∗ = non-dimensional space variable in the vertical direc-

tion (–)
y+ = wall unit (–)
y+vs = thickness of the viscous sub-layer in wall units (–)
y+min = smallest possible height in wall units at which the log-

layer can exist (–)
y+max = largest possible height in wall units at which the log-

layer can exist (–)
y+c = centre of the log-layer (–)
z∗ = non-dimensional space variable in the spanwise direc-

tion (–)
δs = Stokes boundary layer thickness (m)
δi1 = Kronecker delta (m)

ωt = phase interval (–)
ε = maximum value of the error (–)
κ = von Kármán constant (–)
ν = kimematic viscosity (m2 s−1)
� = log-layer diagnostic function (–)
ρ = density (kg m−3)
τw = wall shear stress (Pa)
τ ∗

ij = non-dimensional subgrid scale stresses (–)
ω = angular frequency (s−1)
ωt = phase of the free-stream velocity (rad)
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