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Abstract. The physical behavior of glass-forming liquids presents complex features of both dynamic and
thermodynamic nature. Some studies indicate the presence of thermodynamic anomalies and of crossovers
in the dynamic properties, but their origin and degree of universality is difficult to assess. Moreover,
conventional simulations are barely able to cover the range of temperatures at which these crossovers
usually occur. To address these issues, we simulate the Kob-Andersen Lennard-Jones mixture using effi-
cient protocols based on multi-CPU and multi-GPU parallel tempering. Our setup enables us to probe
the thermodynamics and dynamics of the liquid at equilibrium well below the critical temperature of the
mode-coupling theory, TMCT = 0.435. We find that below T = 0.4 the analysis is hampered by partial
crystallization of the metastable liquid, which nucleates extended regions populated by large particles ar-
ranged in an fcc structure. By filtering out crystalline samples, we reveal that the specific heat grows in a
regular manner down to T = 0.38. Possible thermodynamic anomalies suggested by previous studies can
thus occur only in a region of the phase diagram where the system is highly metastable. Using the equilib-
rium configurations obtained from the parallel tempering simulations, we perform molecular dynamics and
Monte Carlo simulations to probe the equilibrium dynamics down to T = 0.4. A temperature-derivative
analysis of the relaxation time and diffusion data allows us to assess different dynamic scenarios around
TMCT. Hints of a dynamic crossover come from analysis of the four-point dynamic susceptibility. Finally, we
discuss possible future numerical strategies to clarify the nature of crossover phenomena in glass-forming
liquids.

1 Introduction

If a liquid is cooled quickly enough, it will bypass crystal-
lization and form an amorphous solid called glass. Such a
glass transition is directly related to the rapid increase
of the structural relaxation time upon cooling, whose
temperature dependence is given by the Arrhenius law
for strong glass-formers and is super-Arrhenius for frag-
ile glass-formers [1]. Despite being purely kinetic in na-
ture, the glass transition is accompanied by a change in
the thermodynamic properties of the system at the glass
transition temperature Tg. For instance, the specific heat
shows a mild increase upon cooling and displays a drop
at Tg due to the freezing of the configurational degrees
of freedom. Although no phase transition occurs at Tg, it
has been suggested that the slowing-down of the dynam-
ics and the resulting glass formation might be driven by a
hidden phase transition [2,3].
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While most glass-forming liquids follow the trends out-
lined above, there are notable exceptions. This is the case
for instance of liquids with strong, directional interactions,
such as silica, silicon, and water. These systems display
a thermodynamic anomaly in the form of a local maxi-
mum of the specific heat at a temperature T ∗ > Tg [4],
a behavior which has also been observed in simulation
studies of silica [5,6], supercooled water [7], and other
simple models [8–11]. Concomitantly, also the dynamic
behavior of these liquids changes around T ∗, crossing
over from a super-Arrhenius to an Arrhenius tempera-
ture dependence (“fragile-to-strong” crossover). The ori-
gin of these thermodynamic and dynamic anomalies has
often been attributed to the presence, or proximity, of a
liquid-liquid transition or its Widom-line, located at tem-
peratures higher than Tg [4]. Interestingly, this fragile-to-
strong crossover is not limited to systems with directional
interactions [12]. Recent experimental [13,14] and sim-
ulational [15] studies have demonstrated that also sev-
eral metallic glass-formers exhibit a notable fragile-to-
strong crossover. Several interpretations have been pro-
posed to explain the crossover in these systems, including
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the presence of thermodynamic anomalies such as a liquid-
liquid transition [15–17], anomalous crystallization [18], or
the evolution of structural medium range order [14].

The dynamics of some molecular and polymeric liquids
show even a different kind of crossover at a temperature
TD, typically located about 15%–25% above Tg. This dy-
namic crossover thus occurs when the relaxation times
are around 10−8–10−6 s and is subtle, but it can be re-
vealed by temperature-derivative analysis of high-quality
dynamic measurements in molecular glass-formers [19–
21]. At TD the increase of relaxation times crosses over
from super-Arrhenius to a milder temperature dependence
and tend to become Arrhenius at very low temperature.
While some authors have considered systems with such
a crossover as marginal cases [22], an alternative point of
view suggests that this behavior may be fairly general [12],
even though the location of the crossover is highly system-
dependent [20,21].

The physical origin of this dynamic crossover is not
completely clear and there are diverging viewpoints on
this. Some authors have pointed out the closeness of TD

with the temperature at which a power law fit predicts
a divergence of the relaxation time data [23,24,12]. The
dynamic crossover should then be identified with the criti-
cal temperature of the mode-coupling theory (MCT) [25].
Others have attributed this crossover to an upper limit
of the activation energy [22,21], which may saturate at
an arbitrarily low temperature. While these two interpre-
tations are completely different in nature, they are dif-
ficult to disentangle in practice. We emphasize that the
dynamic crossover scenario is a priori unrelated from one
that accompanies liquid-liquid transitions, in that the for-
mer does not involve the thermodynamics and is purely
dynamic in origin.

Also computer simulations have been used to probe
the existence of anomalies in the dynamic and thermody-
namic properties of glass-forming liquids. The results of
these studies suggest that both the dynamic correlation
length scales [26] and the dynamic finite size effects [27]
may show a crossover compatible with several theoretical
predictions [28–30], although these results do not seem to
hold universally. On the other hand, the dynamic range
accessible in conventional numerical studies is limited to
only 4-5 decades in time. Thus, some of these results might
be affected by insufficient equilibration.

In the present study, we focus on a simple glass-former,
proposed by Kob and Andersen (KA) [31], that has so
far been fairly robust against crystallization and hence
has been used in many investigations of the glass tran-
sition. Previous studies of this system have given evi-
dence for the presence of a thermodynamic anomaly in
the form of a peak in the specific heat [32] and a possible
fragile-to-strong crossover [33,34], although these results
might have been affected by finite size and finite sam-
pling effects. In the present work we employ an optimized
simulation setup, which exploits the parallel tempering
method [35] and state-of-art molecular dynamics code run-
ning on graphics processing units (GPU), to extend the
temperature range in which thermodynamic and dynamic

measurements can be done at equilibrium. We find that,
in contrast to previous reports [32], the thermodynamics
of the liquid is regular. At low temperature, simulations
are hindered by crystallization, which involves structures
of fcc symmetry formed by large particles. Finally, we dis-
cuss possible ways and setups to detect numerically the
presence of dynamic anomalies in model glass-formers.

2 Model and methods

2.1 Model parameters

The system we consider is a binary mixture in which both
species have the same mass m. The particles interact via
a Lennard-Jones potential given by

uαβ(r) = 4εαβ

[(σαβ

r

)12

−
(σαβ

r

)6
]

, (1)

where α, β ∈ {A,B} are species indices. The value of the
parameters σαβ and εαβ are given in ref. [31]. The units
of length and energy are set by the parameters σAA = 1
and εAA = 1, respectively. The potentials are cut and
shifted at a distance 2.5σαβ . We simulate systems com-
posed by N particles in a cubic box of side L with pe-
riodic boundary conditions and a number density given
by ρ = N/V = 1.1998. Note that even small differences
in density can quantitatively affect the thermodynamic
and dynamic observables. For example, in the original pa-
per [31] a different density ρ = 1.204 was used, which leads
to slight differences in statics and dynamics when suffi-
ciently high-quality data are available. The system size
ranges from N = 300 to 3600 for parallel tempering sim-
ulations (see below). Additional dynamic data have been
obtained for a much bigger sample (N = 100000) using
the LAMMPS simulation package [36,37].

2.2 Simulation protocols

Our simulations implement the parallel tempering (PT)
algorithm [35,38], in which M replicas of the system of
interest perform independent simulations at temperatures
{Ti} with the potential energies {Ui}. At regular inter-
vals, exchanges are attempted between pairs of replicas at
neighboring states and the temperatures are exchanged
with probability

p = min {1, exp [(Ui − Uj) (βi − βj)]} , (2)

where βi = 1/kBTi (with kB = 1 in this study), to en-
sure detailed balance. Since our simulations extend to
a temperature range that remained so far largely unex-
plored, we used different simulation protocols and soft-
ware to check and validate our results. Namely, we used
two independent implementations of the PT algorithm,
each one relying on a different molecular dynamics code
to carry out the simulation. Note that, for a given system
size, we used the same sets of temperatures for all the PT
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protocols, namely 0.3730, 0.3810, 0.3901, 0.4003, 0.4115,
0.4238, 0.4374, 0.4525, 0.4692, 0.4877, 0.5082, 0.5307 for
N = 1200 and 0.4000, 0.4060, 0.4130, 0.4210, 0.4301,
0.4403, 0.4515, 0.4638, 0.4768, 0.4906 for N = 3600.

In the first implementation, named PT-1 protocol, we
perform multi-CPU parallel tempering simulations with
an in-house molecular dynamics code. The MD simu-
lations are performed in the NV T ensemble using the
Nose-Hoover thermostat [39] with a time step δt = 0.004
and a thermostat relaxation time 0.4 = 100δt. We used
M = 12–14 replicas depending on the system size. The
code is parallelized using MPI to handle communications
between replicas, which attempt to exchange their state,
i.e., the temperature of the associated thermostat, every
50000 MD steps.

The second implementation, named PT-2 protocol, re-
lies on a multi-GPU parallel tempering code [40] that uses
the RUMD package [41] as a simulation backend. This
multi-GPU code was implemented in python building on
the atooms framework [42]. Multiple replicas are simu-
lated on individual GPUs and communication between
GPUs are handled at high-level via the mpi4py pack-
age [43]. We ran the multi-GPU simulations on a dedicated
cluster of inexpensive gaming cards (GTX-980 and even
GTX-750Ti). The thermostat is again of the Nose-Hoover
type, the time step is δt = 0.004 and the thermostat relax-
ation time τT = 0.2 = 50δt. We used the same exchange
intervals and number of replicas as in PT-1. We checked
that increasing the interval between exchanges did not
change our results.

Finally, we performed additional PT simulations (PT-3
protocol) to extend our thermodynamic measurements to
even lower temperatures than the ones attained by proto-
cols PT-1 and PT-2. The PT-3 simulations are performed
using the multi-GPU code described above starting from
uncorrelated configurations obtained using the PT-2 pro-
tocol at a temperature T = 0.4. These efficient multi-GPU
simulations enabled us to carefully measure the waiting-
time dependence of the results so as to assess equilibration
issues, see sect. 3.1.

From these PT simulations, we evaluated the specific
heat per particle cV from the fluctuations of the potential
energy U ,

cV =
1

NT 2

(
〈U2〉 − 〈U〉2

)
+

3
2

, (3)

and from the temperature derivative of the average poten-
tial energy,

cV =
1
N

∂〈U〉
∂T

+
3
2

, (4)

where 〈(· · · )〉 is the thermal average. The two expressions
yield identical results provided the averages are carried out
over the equilibrium measure. In a simulation, the agree-
ment between the estimates of cV obtained through the
two methods is often taken as a test of equilibration. We
note that, in practice, only very accurate measurements
can reveal discrepancies between the two methods. The
distributions P (U/N) and the T -dependence of 〈U〉 ob-
tained from well-equilibrated simulations (PT-3 protocol)
are shown in fig. 1.
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Fig. 1. (a) Distribution of the potential energy per particle
P (U/N) for N = 1200 obtained from the parallel tempering
protocol PT-3. Runs with a substantial fraction of crystalline
configurations were discarded from the analysis. (b) Average
potential energies per particle for each of the studied temper-
atures.

Strictly speaking, parallel tempering simulations only
give access to thermodynamic and static properties. How-
ever, it is possible to perform extended dynamic measure-
ments by starting “regular” simulations from configura-
tions sampled during the PT simulations at a given tem-
perature. Here, again, we follow two distinct protocols to
corroborate our results.

In the MC protocol we performed normal Monte Carlo
simulations using an in-house code and starting from un-
correlated configurations obtained from protocol PT-1.
The MC simulations are carried out in the NV T ensemble
using simple displacement moves [44], in which we attempt
to displace a randomly selected particles over a cube of
side 0.15. We used 10–30 independent configurations de-
pending on temperature. The length of the simulations
at the lowest temperature (T = 0.4) is 109 Monte Carlo
steps. In the following, the time unit for the MC protocol
is given by one MC sweep, i.e., N attempted displacement
moves.

In the MD protocol we performed molecular dynam-
ics simulations using the RUMD package starting from
uncorrelated configurations obtained from protocol PT-
1 and PT-2. The MD simulations are carried out in the
NV T ensemble using the Nose-Hoover thermostat, the
time step is δt = 0.004 and the thermostat relaxation time
τT = 0.2 = 50δt. For the N = 1200 samples, we used 128
independent configurations down to T = 0.4 from proto-
col PT-2. For T = 0.39, we used only 30 configurations,
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namely the final configurations of the PT-2 runs. For the N 
= 3600 samples, we used 20 independent configura-tions 
from protocol PT-1. The duration t of each of the MD 
simulations ranged from 4.2 × 106 steps (at T = 0.51) to 2.1 
× 109 steps (at T = 0.39), thus each run was about 10–20 
times longer than the typical structural relaxation time τα 
(see below for its definition). In total, for each tem-
perature, our simulations cover over about 2500 structural 
relaxation times. This high-quality statistics enables us to 
perform a temperature-derivative analysis of the dynamic 
data, see sect. 3.2.

For both MC and MD protocols, we checked that the 
initial configurations were uncorrelated from one another 
by measuring their mutual self-overlaps [45]

Qs =
1
N

i

Θ
(
a −

∣
rα

i − rβ
i

∣)
, (5)

where α and β denote two configurations, and their mutual
collective overlaps

Qc =
1
N

i,j

Θ
(
a −

∣
rα

i − rβ
j

∣)
. (6)

A sensible choice of parameter a is a fraction of the typical
interparticle distance. We chose a = 0.3. We found that
both Qs and Qc are close to the values expected for un-
correlated pairs of configurations, i.e., O(1/N) and 4

3πa3ρ,
respectively.

From MD and MC simulations we extract the self-part
of the intermediate scattering functions

FA
s (k, t) = fA

s (k, t)
〉

=
1

NA j

e−ik·[rj(t)−rj(0)] ,

(7)
where the sum runs over the particles of type A. We choose
a wave vector k = 7.25, close to the first peak of the struc-
ture factor [31]. The corresponding structural relaxation
time τα is defined as usual as FA

s (k, τα) = 1/e. In fig. 2, we
show the dynamic data obtained from the MD protocol.

2.3 Crystalline order detection

The study of glass-forming liquids is often hampered by
crystallization and the very relation between glassy be-
havior and crystallization remains a matter of debate [46,
47]. The KA mixture, which is a simple model of a metal-
lic glass-former, has been extensively used as a model to
study the glass transition because of its stability against
crystallization. Until very recently, the note added in the
proofs of ref. [48] was, to the best of our knowledge, the
only report of crystallization of this model by direct sim-
ulation, achieved through runs of about 3.7 × 107 time
units (7.4 × 109 steps) at T = 0.40. At this temper-
ature, however, the nucleation time is still much larger
than the structural relaxation time τα (∼ 105 time units),
and therefore MD/MC simulations of the metastable liq-
uid can be carried out safely. In this work, however, we

Fig. 2. Self-part of the intermediate scattering functions
F A

s (k, t) obtained from the MD protocol for N = 1200 par-
ticles. Errors bars are one standard deviation on the mean,
calculated over 128 runs.

were able to equilibrate the mixture at even lower tem-
peratures. Below T = 0.4, crystallization events become
increasingly frequent, as also demonstrated by a very re-
cent simulation study [49]. Within the studied range of
system sizes, the smaller the system, the stronger the ten-
dency to crystallization.

As a first indicator of crystallization events in our
simulations, we monitored the evolution of the inherent
structure (IS) energy as a function of time [50]. However,
the IS energy may also display large but reversible fluc-
tuations, unrelated to crystal nucleation. We thus stud-
ied two additional order parameters that allow us to dis-
entangle “amorphous” and crystalline fluctuations. The
first one relies on the so-called common neighbor analysis
(CNA) [51]. In this approach, the bonds formed by neigh-
boring particles are classified according to the number of
shared neighbors. It has been shown that the fraction f142

of bonds of type 142, see, e.g., ref. [52], allows one to de-
tect crystallization in biased simulations of the KA mix-
ture. We found that this approach allows one to detect
crystallization in the bulk mixture as well. An example of
a crystallization event is depicted in fig. 3. Even though
the nature of the fluctuation is not always clear-cut, we
found that a threshold on f142 is an effective criterion
to filter out crystalline configurations. Note that since we
run several replicas at a time, only a few of them may
be affected by crystallization. When this occurs they typi-
cally remain “stuck” in the lowest portion of temperature
space. As in ref. [52], we used a threshold of 12% CNA-142
bonds. A large crystalline cluster detected in our simula-
tions is shown in fig. 3(d). The crystal nucleus is formed
by fcc pockets of A particles, which implies compositional
fluctuations that deplete B particles. To detect it, we in-
troduced an even simpler order parameter, namely the
concentration of cages formed by A particles only [52]. In
particular, we evaluated the connected component [53] of
clusters formed by pure-A cages. We found that in typical
crystalline samples, the size of these connected clusters is
about a few hundred particles. Finally, in fig. 3(c) we show

4



Fig. 3. Detection of crystalline configurations. (a) Crystalliza-
tion event during a PT-2 simulation for N = 1200 particles.
The fraction of CNA-142 bonds, f142, is shown as a function
of PT steps (1 PT step=50000 MD steps). (b) The probability
density calculated during the run shows a bimodal distribution
with a sharp minimum around f142 ≈ 12%. (c) Percentage of
crystalline configurations, detected using a 12% threshold on
f142, as a function of temperature. Below T = 0.4, both PT-2
and PT-3 protocols have a large fraction of crystalline configu-
rations. PT-2 data were not analyzed above T = 0.4. (d) Con-
nected component of a cluster formed by particles surrounded
by A particles only during a crystallization event.

the percentage of crystalline configurations in the simula-
tions of protocol PT-2 and PT-3 for N = 1200 particles.
We see that they increase markedly below T = 0.4. To deal
with data analysis in this delicate regime while retaining
the maximum possible amount of statistics, we filtered our
cV measurements by discarding individual configurations
whose CNA-142 concentration was higher than 0.12, see
sect. 3.1. On the other hand, above T = 0.4 the fraction of
samples above the crystalline threshold is negligible and
we rarely encountered problematic runs. These runs were
simply discarded all together.

3 Results

3.1 Thermodynamics

The specific heat cV is a sensitive, although not unam-
biguous, indicator of thermodynamic changes in dense liq-
uids. For instance, a sudden drop in cV as a function of
the control parameters may be due to a phase transition,
or more generally to a change in the topography of the

underlying energy landscape, but might as well indicate
incomplete equilibration, as is the case at the laboratory
glass transition observed upon cooling. Previous work on
the KA mixture showed the presence of a peak in cV at
some temperature close to the mode-coupling temperature
TMCT = 0.435 [31]. In this section, we show that the ther-
modynamics of the KA mixture is regular, i.e., it shows
no anomaly, at least down to T = 0.39 and that the peak
found in ref. [32] is due to partial equilibration. Below
T = 0.4, equilibration becomes hard on current simulation
time scales and analysis is further hampered by crystal-
lization events. Finally, we discuss the possible presence
of a thermodynamic anomaly in this highly metastable
portion of the phase diagram.

In fig. 4(a) we show specific heat measurements from
parallel tempering simulations using protocols PT-1 and
PT-2. We also include results from a previous study us-
ing PT simulations, which reported a peak in cV around
TMCT [32]. From our data, we conclude that no anomaly
is observed in the specific heat, which increases monoton-
ically down to T = 0.39. The length of our simulations
is typically one order of magnitude longer than those of
ref. [32]. In retrospect, our work warns that tests such
as histogram reweighting or the consistency of fluctuation
and derivative expressions of response functions, such as
cV , are not sufficient to ensure equilibration of supercooled
liquids, see ref. [54] for a more detailed discussion of this
issue. Also, our results imply that one needs at least ∼ 109

MD time steps to equilibrate the KA mixture below TMCT.
The empirical model of Rosenfeld-Tarazona [55] pro-

poses the following functional form for the potential en-
ergy U = aT 3/5 + b, which yields cV ∼ T−2/5. In
fig. 4(b) we draw the specific heat data from protocols PT-
1 and PT-2 as a function of T−2/5, which linearizes the
Rosenfeld-Tarazona law. A similar representation yields
an excellent data collapse for simple liquids in both nor-
mal and moderately supercooled regime [56]. We find that
this functional form provides a very good description of
the data but a slight upward bending is observed around
T = 0.4, suggesting the presence of additional fluctuations
not accounted for by this simple liquid-state model. This
is confirmed by the analysis of the third moment of the
potential energy distribution. We found that the skewness
remains constant at high temperature and starts to in-
crease slightly around T = 0.4 (not shown), even when
crystalline configurations are removed from the analysis.
This behavior may be thus attributed to crystallization
precursors or to enhanced fluctuations of the locally fa-
vored structure of the system [57,58].

We found that the measurements using PT-1 and PT-
2 start to deviate significantly from each other below
T = 0.39. Moreover, in this temperature regime, the liq-
uid has an increased tendency to crystallize, see sect. 2.
In fig. 4(c) we show measurements of cV from protocol
PT-3, in which crystalline samples are removed on a per-
configuration basis and equilibration is assessed directly,
i.e., by measuring the waiting-time dependence of cV .
Specifically, we start parallel tempering simulations from
previously equilibrated configurations at T = 0.4 and per-
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Fig. 4. (a) Specific heat from protocols PT-1 and PT-2 for N = 1200 particles in the regime T � 0.4 where crystallization is
negligible. Results from fluctuation and derivative expressions of the specific heat are shown as indicated in the legend. The
temperature of the data from ref. [32] (circles) is divided by the density scaling factor (1.204/1.2)γ , with γ = 5.0 to correct
for the small density mismatch. (b) Rosenfeld-Tarazona scaling of the same specific heat cV data as in panel (a). (c) Specific
heat from protocol PT-3 for different waiting times tw expressed in unit of PT steps. Results from fluctuation and derivative
expressions of the specific heat correspond to circles and squares, respectively. Configurations with f142 > 0.12 are discarded
from the calculations.

form averages over restricted portions of the trajectories
as follows:

〈A〉tw
=

1
tp − tx

∫ tw+tp

tw

dtA(t)W (t), (8)

where tw is the waiting time and W (t) = Θ(0.12 − f142)
is a windowing function that removes from the averages
samples identified as crystalline (see sect. 2) and tx =∫ tw+tp

tw
dt(1−W (t)). The production time tp was kept fixed

to 36000 PT steps, independently of waiting time.
In fig. 4(c) we show the results obtained by calculat-

ing the specific heat starting from time tw with increasing
values of tw. We emphasize that these specific heat mea-
surements cover a temperature regime that has never been
probed before at equilibrium. For temperatures higher
than 0.4, the results of the PT-3 protocol show a con-
sistent, i.e., tw-independent, growth of cV , thus corrobo-
rating our previous analysis. Below T = 0.4, the specific
heat measurements display a more marked waiting-time
dependence but fluctuation and derivative formulas con-
verge for sufficiently long waiting times and reveal a mono-
tonic increase of cV down to T = 0.38. Only at the lowest
temperature, the specific heat cV measured from energy
fluctuations shows a local maximum. The dependence of
this peak as a function of waiting time suggests that this
feature may be actually due to lack of equilibration.

Recent simulations based on trajectory path sam-
pling [58] suggest the existence of a liquid-liquid transi-
tion in the low temperature part of the phase diagram
of the KA mixture. Our data narrow down the tempera-
ture range over which this hypothetical transition may oc-
cur and rule out thermodynamic anomalies for T > 0.37.
These results do not exclude, however, the scenarios dis-
cussed in ref. [58]. Given the strong tendency to crystallize
below T = 0.4, however, our results show that a thermo-
dynamic anomaly, if present at all in the KA mixture, is

hidden in a highly metastable portion of the phase di-
agram. In practice, it will be very difficult to detect it
in large enough samples. Therefore, we think that future
work in this context should focus on more robust models
of glass-formers.

3.2 Dynamics

The parallel tempering algorithm allows one to acceler-
ate the sampling of static and thermodynamic observ-
ables, but it does not provide by itself useful informa-
tion on the dynamics. However, it is possible to carry out
dynamic measurements by using uncorrelated configura-
tions extracted from PT simulations as starting points of
conventional molecular dynamics or Monte Carlo simula-
tions. This approach can be parallelized in a trivial way
by performing independent simulations and allows one to
extend the accessible dynamic range by short-circuiting
equilibration issues. In this section, we implement these
ideas following using the MD and MC protocols described
in sect. 2 and test various dynamic crossover scenarios
below the MCT temperature.

Figure 5(a) shows an Arrhenius representation of the
relaxation times obtained using the MD and MC proto-
cols for 1200 and 3600 particles. We note that equilibrium
sampling is ensured by the fact that both MD and MC
simulations start from previously equilibrated configura-
tions down to T = 0.39. The time scale of Monte Carlo
simulations has been scaled to match the relaxation times
of MD at low temperature. We also include dynamic data
from ref. [57], which agree with the new set of simulations
over the common temperature range. Very similar behav-
ior is found also for B-type particles (not shown). Thanks
to the hybrid protocols employed in the present work, the
accessible dynamic range has increased by almost two or-
ders of magnitude compared to the conventional molecular
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Fig. 5. Temperature-derivative analysis of relaxation times. The relaxation times obtained from MC simulations have been
scaled by 5 × 102 MC steps. Error bars on MD data represent one standard deviation on the mean and are only shown when
larger than the symbol size. (a) Relaxation times τα as a function of 1/T for various protocols and system sizes. (b) Activation
energy E(T ) for the same set of data as panel (a). The dashed line indicates a linear fit to eq. (11) in the range T ≤ 0.52
with J = 2.7 and T0 = 0.72. (c) Derivative of E(T ) with respect to 1/T . The horizontal line corresponds to 2J2. The inset
shows a schematic representation of two possible scenarios for this derivative: the solid line depicts the behavior expected from
facilitation models, while the dashed line is the qualitative behavior described in ref. [21].

dynamics simulations of ref. [57] and we can comfortably
study the dynamics below TMCT. The data suggest that
the temperature dependence of the relaxation times gets
milder, i.e., more Arrhenius like, at the lowest temper-
atures. However, it is notoriously difficult to draw firm
conclusions based on analysis of the relaxation time alone,
which has led to a number of controversies [12].

Temperature-derivative analysis of the dynamic data
provides a most stringent test of analytic expressions for
τα(T ) and is particularly well-suited to reveal the pres-
ence of a dynamic crossover [19–21]. Even though this ap-
proach requires very accurate data, it has the advantage
of being parameter free and requires no data fitting. So
far, it has mostly been applied to high-quality dielectric
relaxation measurements. To the best of our knowledge,
the only numerical study to conduct this analysis across
the MCT temperature is ref. [59] for a mixtures of har-
monic spheres. Here, we push this kind of analysis even
further by combining the trivial parallelism of our MD and
MC protocols and the efficiency of the RUMD simulation
package on small system sizes [41].

The central quantity in our analysis is the apparent
activation energy

E(T ) =
d ln τα

d(1/T )
, (9)

which we compute by the centered difference method1. A
graph of E(T ) versus 1/T provides a simple way to test
the parabolic law proposed by Elmatald et al. [22] in the

1 Given a set {xi} of points and corresponding function val-
ues {fi}, with 0 ≤ i ≤ M , we compute the derivative at
(x[i+1]+x[i− 1])/2 as (f [i+1]− f [i− 1])/(x[i+1]−x[i− 1])
if 0 < i < M . We use (f [1] − f [0])/(x[1] − x[0]) and
(f [M ]−f [M −1])/(x[M ]−x[M −1]) for the first and last pairs
of points, respectively. The expression used at the boundaries
is more noisy than the one for 0 < i < M .

context of dynamic facilitation

τα = τ0 exp

[(
J

T0

)2 (
T0

T
− 1

)2
]

, (10)

where τ0, J , and T0 are material parameters. The activa-
tion energy is then a linear function of 1/T given by the
following expression:

Ep(T ) =
2J2

T0
(T0/T − 1) . (11)

It should be emphasized that eq. (10) is only expected
to hold below the onset temperature T0 and above an
additional reference temperature Tx. Outside this range
of temperatures, the dynamics is expected to be Arrhe-
nius [22].

A similar approach can be used to linearize the classic
VFT equation. Following Stickel et al. [19] we introduce
φ = E(T )−1/2. By computing the derivative of the VFT
expression

τα = τ0 exp
[

Tvft

K(T − Tvft)

]
, (12)

we obtain

φ(T ) =
√

K

Tvft

(
1 − Tvft

T

)
, (13)

where τ0, K, and Tvft are parameters. Thus, the VFT
equation appears linear in a graph where φ is shown as a
function of 1/T [19].

In fig. 5(b) we show E(T ) as a function of 1/T . Over-
all, the activation energy displays an approximately lin-
ear behavior at sufficiently low temperature, i.e., T < 0.5.
This behavior is well captured by eq. (11), although fit-
ting the relaxation times in this range requires a value
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Fig. 6. Critical assessment of the VFT and parabolic laws.
(a) Stickel plot φ(T ) versus 1/T . (b) Plot of E(T )/Ep(T ) as
a function of 1/T . The dashed lines are guides to the eye.
The arrow indicates the temperature T = 0.52 from which the
parabolic law begins to apply.

T0 ≈ 0.72, which is lower than the usual estimates 0.8–
1.0, see, e.g., ref. [60], but consistent with a very recent
analysis [61] based on eq. (11). We also note that the value
of J/T0 = 3.7 is larger than the one used in ref. [22]. The
fit parameters used in ref. [22] appear to strike a balance
between the high and low T portions of the data. For the
most accurate data set, i.e., MD with N = 1200, and at
the lowest temperatures, this representation also reveals a
slight inflection in E(T ). This slight saturation may sug-
gest a dynamic crossover similar to the one observed in
certain molecular glass-formers [62] and in the simulation
of harmonic spheres [59]. One comment on possible finite
size effects is in order. In a small sample, the activation
energy necessarily reaches an upper bound and a smooth
crossover to Arrhenius behavior is expected at a system-
size–dependent temperature [63]. Within the quality of
our data the temperature dependence for different system
sizes gives compatibles results. However, due to the larger
scatter in the N = 3600 samples, we cannot completely
rule out the possibility that the inflection of the N = 1200
is due to a finite size effect.

Pushing our analysis one step further, we compute the
derivative of E(T ) with respect to 1/T and show the re-
sults in fig. 5(c). This quantity should be constant and
equal to 2J2 in the dynamic facilitation scenario, whereas
other models [62] predict that it should peak around some
crossover temperature. The inset of the figure illustrates
schematically these two possible scenarios. Within the
noise of the data, and in particular of our most accurate
data set (MD with N = 1200), our measurements are
compatible with a decrease of dE(T )/d(1/T ) below some
temperature TD close to TMCT. Simulations at even lower
temperature and better statistics for larger system sizes
would be needed to fully confirm this behavior.

In fig. 6(a) we test the validity of the VFT law by com-
puting φ(T ) as a function of 1/T . We find that the VFT
law holds well at intermediate temperatures, but clear de-
viations are visible at low temperature. This confirms the

Fig. 7. Analysis of diffusive times τD. The diffusive times ob-
tained from MC simulations have been scaled by 5 × 102 MC
steps. (a) Arrhenius representation of the diffusive times τD.
(b) Activation energies from the diffusive time τD. The vertical
line indicates the crossover observed by Ashwin and Sastry in
ref. [33] for a system of 256 particles.

well-known observation [19] that, except in rare cases, the
VFT equation cannot describe the full T -dependence of
the dynamic data. In fig. 6(b) we show a plot E(T )/Ep(T )
versus 1/T . In this representation, the parabolic law
would correspond to a horizontal line. We see that the
data flatten out only below T = 0.52, thus the range over
which this law holds in the KA mixture is actually more
limited than previously thought [22].

We also computed the activation energy ED from the
diffusive time τD, defined as the time needed to reach a
mean square displacement of A particles equal to 1. These
diffusive times are shown in fig. 7(a) for several protocols
and system sizes. We then compute, as before, the acti-
vation energies ED associated to diffusive times τD. Fig-
ure 7(b) indicates that the growth of ED gets milder below
some crossover temperature TD � 0.45. Again, our N =
1200 MD data-set suggests an inflection of ED around this
temperature. This crossover temperature is remarkably
close to the one reported long ago by Ashwin and Sastry in
ref. [33] for a smaller system size (N = 256). However, in
small systems ED actually saturates at TD, while bigger
samples only cross over to a milder temperature depen-
dence. These results indicate that, even though the results
of ref. [33] were probably affected by finite size effects, the
diffusion mechanism might actually change in a tempera-
ture range close to the MCT transition temperature. This
is corroborated by the analysis of a much larger sample
(N = 100000) simulated using LAMMPS, which gives a
trend compatible with the ones observed for N = 1200 and
N = 3600 particles. These large-scale simulations were
performed in the NV T simulations using the Nose-Hoover
thermostat but without parallel tempering.

Finally, we compute the dynamic fluctuations associ-
ated to the time-dependent self-overlap function

Qs(t) = N−1

j

Θ(0.3 − |rj(t) − rj(0)|), (14)
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Fig. 8. Dynamic susceptibility χ4(t) from MD protcol (NV T
ensemble) for N = 1200 particles. The full lines are mea-
surements over the entire length of the runs, while the sym-
bols are measurements restricted to the first half of the runs.
The error bars are estimated from the difference between the
first and second halves of the runs. The crosses correspond to
χNV E

4 (t) + T 2(dQs
dT

(t))2/cV , see eq. (16), at T = 0.4877.

where the sum is taken over all particles. The dynamic
susceptibility is then defined as

χ4(t) = N
{[〈

Qs(t)2
〉]

− [〈Qs(t)〉]2
}

, (15)

where [. . .] indicates an average over statistically inde-
pendent initial samples and 〈. . .〉 a time average over a
given run. The dynamic susceptibilities, shown in fig. 8
for N = 1200, display a peak at a time τ4 proportional
to the structural relaxation time. The peak height χ∗

4 is
a standard proxy for the extent of dynamic heterogeneity
in supercooled liquids [3].

In figs. 9(a) and (b) we show χ∗
4 as a function of

1/T and as a function of τ∗
4 , respectively. The dynamic

fluctuations quantified by the susceptibility in the NV T
ensemble cross over around the MCT temperature to a
very mild dependence on both temperature and relaxation
time. Within the quality of our data, this effect cannot be
attributed to the finite size of the system. We point out,
however, that the MCT scaling expected in the NV T en-
semble [64], χ∗

4 ∼ τ
γ/2
α ∼ τ

γ/2
4 , where γ ≈ 2.4 is the expo-

nent of power law fit to the relaxation time, does not hold
well for this system. Therefore, the fact that the crossover
in the dynamic susceptibility occurs close to the mode-
coupling temperature may be coincidental. We also note
that similar results may not hold for the full dynamic sus-
ceptibility [3], which includes contributions from number
fluctuations and which we have neglected here. Our re-
sults resonate with those of Flenner and Szamel [65], who
showed that some contributions to the total susceptibility,
notably those associated to dynamic fluctuations in the
NV E ensemble, may be more sensitive to the presence
of a crossover than the full susceptibility. To address this
point quantitatively, we computed the dynamic suscepti-

Fig. 9. Peak height of the dynamic susceptibility χ∗
4 in the

NV T ensemble (full symbols) and in the NV E ensemble
(empty symbols) as a function of (a) 1/T and (b) the peak
time τ4. The vertical line in the two panels marks the MCT
temperature. The dotted lines in panel (b) indicate the pre-
dicted MCT scaling in the NV T (exponent 2/γ) and NV E
ensemble (exponent 1/γ). Squares in panel (a) are taken from
ref. [66]. Squares in panel (b) indicate results from additional,
high-temperature NV T simulations for N = 1200 particles.

bility in the NV E ensemble from the exact expression [67]

χNV E
4 (t) = χNV T

4 (t) − T 2

cV

(
dQs

dT
(t)

)2

. (16)

We checked that the above expression yields results con-
sistent with those obtained from simulations in the NV E
ensemble at T = 0.4877, at which the energy drift dur-
ing NV E simulations was not too severe, see fig. 8. The
temperature dependence of the peak height of χNV E

4 (t),
shown in fig. 9, provides clear hints of a dynamic crossover
around the MCT temperature and corroborates the find-
ings of ref. [65]. Royall et al. [68] have also noted that
the growth of χ∗

4 observed in simulations at above TMCT

is incompatible with the typical correlation lengths mea-
sured experimentally. From this point of view, our finding
of a crossover to a much milder rate of growth of dynamic
correlations is a welcome result, which may solve the ap-
parent conundrum evidenced in ref. [68].

4 Conclusions

In this work we have performed extensive computer
simulations to probe the existence of thermodynamic
and dynamic anomalies in the Kob-Andersen binary
Lennard-Jones mixture. Our simulations build on an ef-
ficient simulation setup, which combines algorithmic and
hardware optimizations. In particular, we exploit the par-
allel tempering algorithm and multi-GPU acceleration to
measure the specific heat at equilibrium down to un-
precedented temperatures. We also appreciably extend
the range of dynamic measurements by starting regular
MD and MC simulations from independent configurations
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previously equilibrated with parallel tempering. This ap-
proach is trivially parallel and enables us to perform a 
temperature-derivative analysis of the dynamic data.

Thanks to these advances, we could clarify some is-sues 
related to the thermodynamic and dynamic behavior of the 
mixture. In particular, we found that the specific heat 
increases monotonically down to at least T = 0.38, in 
contrast with previous findings [32], which suggested a 
maximum around T = 0.43 and which was proba-bly due 
to out-of-equilibrium effects. Although crystalliza-tion 
renders the analysis difficult at low temperature, our data 
indicate that thermodynamic anomalies, if present at all, 
must occur in a highly metastable, low-temperature 
portion of the phase diagram. Conversely, any possible 
crossover above T = 0.38 must be purely dynamic in ori-gin. 
By performing a temperature-derivative analysis of the 
dynamic data and by analyzing the dynamic suscep-
tibilities, we have assessed several scenarios that may in-
volve a dynamic crossover in this temperature regime. One 
possible scenario suggests the presence of a crossover [27, 
30] around the mode-coupling temperature TMCT. There 
are, however, alternative interpretations that attribute the 
dynamic crossover to a saturation of energy barriers, as is 
the case in elastic models [69,70], free-volume models [71] 
and even possibly in the dynamic facilitation scenario at 
sufficiently low temperature [72]. In these latter scenarios, 
the crossover need not be around TMCT.

Although our analysis is not entirely conclusive yet, we 
argue that state-of-the-art simulation methods com-bined 
with temperature-derivative analysis of simulation data 
may hold the key to fully disentangle these sce-narios in 
the near future. Judging from the quality of our 
temperature-derivative analysis and dynamic fluctua-tions 
measurements, we infer that simulations of the or-der of 
several thousands of structural relaxation times are needed 
to fully confirm or rule out the presence of dy-namic 
crossovers. Our results also suggest that contribu-tions to 
the dynamic susceptibility measured in ensembles where 
conserved quantities are not free to fluctuate may better 
probe the dynamic behavior than the full suscep-tibility 
[64]. For specific systems, specialized Monte Carlo moves, 
like particle swaps [73–77], may provide an ad-ditional and 
important efficiency improvement and facili-tate 
thermodynamic and dynamic studies below the mode-
coupling temperature.
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