
Learning a Formula of Interpretability
to Learn Interpretable Formulas

Marco Virgolin1, Andrea De Lorenzo2, Eric Medvet2, and Francesca Randone3

1 Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
2 Department of Engineering and Architecture, University of Trieste, Trieste, Italy

3 IMT School for Advanced Studies Lucca, Lucca, Italy

Abstract. Many risk-sensitive applications require Machine Learning
(ML) models to be interpretable. Attempts to obtain interpretable mod-
els typically rely on tuning, by trial-and-error, hyper-parameters of model
complexity that are only loosely related to interpretability. We show that
it is instead possible to take a meta-learning approach: an ML model
of non-trivial Proxies of Human Interpretability (PHIs) can be learned
from human feedback, then this model can be incorporated within an ML
training process to directly optimize for interpretability. We show this for
evolutionary symbolic regression. We first design and distribute a survey
finalized at finding a link between features of mathematical formulas and
two established PHIs, simulatability and decomposability. Next, we use
the resulting dataset to learn an ML model of interpretability. Lastly, we
query this model to estimate the interpretability of evolving solutions
within bi-objective genetic programming. We perform experiments on
five synthetic and eight real-world symbolic regression problems, com-
paring to the traditional use of solution size minimization. The results
show that the use of our model leads to formulas that are, for a same
level of accuracy-interpretability trade-off, either significantly more or
equally accurate. Moreover, the formulas are also arguably more inter-
pretable. Given the very positive results, we believe that our approach
represents an important stepping stone for the design of next-generation
interpretable (evolutionary) ML algorithms.

Keywords: explainable artificial intelligence · interpretable machine learn-
ing · symbolic regression · genetic programming · multi-objective

1 Introduction

Artificial Intelligence (AI), especially when intended as Machine Learning (ML),
is increasingly pervading society. Although ML brings numerous advantages, it
is far from being fault-prone, hence its use comes with risks [1,16,24,36]. In many
cases, failures with serious consequences could have been foreseen and prevented,
if the ML models had not been unintelligible, i.e., black-boxes. Nowadays, espe-
cially for high-stakes applications, practitioners, researchers, and policy makers
increasingly ask for ML to be used responsibly, fairly, and ethically [8,15]. There-
fore, decisions taken by ML models need to be explainable [1,2].

2 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

The field of eXplainable AI (XAI) studies techniques to provide explanations
for the decisions taken by black-box models (or, more generally, AI systems),
metrics that can be used as Proxies of Human Interpretability (PHIs), as well
as ML algorithms meant for the synthesis of models that are immediately inter-
pretable [1,36]. In this paper, we consider the latter case.

Several ML algorithms and techniques exist that are considered capable of
synthesizing interpretable models. Among these, fitting linear models (e.g., by
ordinary least squares or elastic net [53]), building decision trees [4], and evo-
lutionary program synthesis [30] are often listed in surveys on XAI (see, e.g.,
[1,16]). Unfortunately, in general, it cannot be guaranteed that the model ob-
tained by an ML algorithm will turn out to be interpretable. For example, when
a decision tree is built, the more the tree grows deep, the less the chances of
the tree being interpretable. Therefore, what is normally done is to repeat the
ML training process (decision tree construction) with different hyper-parameter
settings (tree depth) in a trial-and-error fashion, until a satisfactory model is ob-
tained. Trial-and-error, of course, comes with time costs. Next to this, another
important issue is the fact that hyper-parameters are mostly meant to control
the bias-variance interplay [3], and are but loosely related to interpretability.

Multi-Objective Genetic Programming (MOGP) is a very interesting ap-
proach because, by its very nature, it mitigates the need for trial-and-error [30,52].
By evolving a population of solutions that encode ML models, MOGP can syn-
thesize, in a single run, a plethora of models with trade-offs between accuracy
and a chosen PHI. Obtaining multiple models at once enhances the chance that
a model with a satisfying trade-off between accuracy and interpretability will be
found quickly. Nonetheless, the problem of finding a suitable PHI remains. So
far, the PHI that have been used were quite simplistic. For example, a common
approach is to simply minimize the total number of model components (see Sec-
tion 2 for more). In this paper, we propose a way to improve upon the use of
simplistic PHIs, and we focus on the case of MOGP for symbolic regression, i.e.,
where models are sought that can be written as mathematical formulas.

Our proposal is composed of three main parts. We begin by showing how
it is possible to learn a model of non-trivial PHIs. This can be seen as a con-
cretization of an idea that was sketched in [11]: a data-driven approach can be
taken to discover what features make ML models more or less interpretable. In
detail, (1) we design a survey about mathematical formulas, to gather human
feedback on formula interpretability according to two established PHIs: simu-
latability and decomposability [24] (see Section 3.1); (2) we process the survey
answers and condense them into to a regression dataset that enables us to dis-
cover a non-trivial model of interpretability; (3) we incorporate the so-found
model within an MOGP algorithm, to act as an estimator for the second objec-
tive (the first being the mean squared error): in particular, the model takes as
input the features of a formula, and outputs an estimate of interpretability.

All of our code, including the data obtained from the survey, is available at:
https://github.com/MaLeLabTs/GPFormulasInterpretability.

https://github.com/MaLeLabTs/GPFormulasInterpretability

Learning a Formula of Interpretability to Learn Interpretable Formulas 3

2 Related work

In this paper, we focus on using ML to obtain interpretable ML models, partic-
ularly in the form of formulas and by means of (MO)GP. We do not delve into
XAI works where explanations are sought for the decisions made by a black-box
model (see, e.g., [34,48]), nor where the black-box model needs to be approxi-
mated by an interpretable surrogate (e.g., a recent GP-based work on this is [14]).
We refer to [1,16] as excellent surveys on various aspects of XAI. We describe
the PHIs we adopt, and briefly mention works adopting them, in Section 3.1.

Regarding GP for the synthesis of ML models, a large amount of litera-
ture is focused on controlling complexity, but not primarily as a means to en-
able interpretability. Rather, the focus is on overfitting prevention, oftentimes
(but not exclusively) by limiting bloat, i.e., the excessive growth of solution
size [7,31,33,37,38,42,51]. Among these works, [13,46,39] share with us the use
MOGP, but are different in that they use hand-crafted complexity metrics in-
stead of taking a data-driven approach (respectively solution size, order of non-
linearity, and a modification of solution size), and again these metrics are de-
signed to control bloat and overfitting instead of enable interpretability ([46]
does however discuss some effects on interpretability).

Among the works that use GP and focus on interpretability, [6] considers the
evolution of rule-based classifiers, and evaluates them using a PHI that consists
of dividing the number of conditions in the classifier by the number of classes.
In [18], GP is used to evolve reinforcement learning policies as symbolic expres-
sions, and complexity in interpretation is measured by accounting for variables,
constants, and operations, with different ad-hoc weights. The authors of [43]
study whether modern model-based GP can be useful when particularly com-
pact symbolic regression solutions are sought, to allow interpretability. A very
different take to enable or improve interpretability is taken in [22,41,45], where
interpretability is sought by means of feature construction and dimensionality
reduction. In [22] in particular, MOGP is used, with solution size as a simple
PHI. Importantly, none of these works takes attempts to learn a PHI from data.

Perhaps the most similar work to ours is [27]. Like we do, the authors train
an ML model (a deep residual network [17]) from pre-collected human-feedback
to drive an evolutionary process, but for a very different aim, i.e., automatic art
synthesis (the human-feedback is aesthetic rankings for images).

3 The survey

We prepared an online survey (http://mathquiz.inginf.units.it) to assess the sim-
ulatability and decomposability of mathematical formulas (we referred to [5] for
survey-preparation guidelines). We begin by describing the two PHIs, and pro-
ceed with an overview of the content of the survey and the generation process.
We provide full details on online supplementary material at: https://github.com/

MaLeLabTs/GPFormulasInterpretability.

http://mathquiz.inginf.units.it
https://github.com/MaLeLabTs/GPFormulasInterpretability
https://github.com/MaLeLabTs/GPFormulasInterpretability

4 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

Given the formula
5x1+1

cos(x2−3.14)
and the

input value(s) [x1 = 8.0, x2 = 6.28], which

option is closest to the output?

(a) −410.0

(b) −41.0

(c) 410.0

(d) −20.5

Consider the formula 5 sin0.5(x− 3.14) .

Which option best describes the behavior

of the function as x varies in [−1.0, 1.0]?

(a) The function is bounded but not always defined

(b) The function is not bounded nor always defined

(c) The function is not bounded but always defined

(d) The function is bounded and always defined

Fig. 1. Examples of questions on simulatability (left) and decomposability (right).

3.1 Simulatability and decomposability

Simulatability and decomposability are two established PHIs, introduced in a
seminal work on XAI [24]. Simulatability represents a measurable proxy for the
capability of a person to contemplate an entire ML model, and is measured by
assessing whether a human, given some input data, can reproduce the model’s
output within a reasonable error margin and time [24]. No specific protocol exists
to perform the measurement. In [32], this PHI was measured as the absolute
deviation between the human estimate for the output of a (linear) model and
the actual output, given a set of inputs. With our survey, we measured the rate
of correct answers to multiple choices questions on the output of a formula.

Decomposability represents the possibility that a model can be interpreted
by parts: inputs, parameters, and (partial) calculations of a model need to ad-
mit an intuitive explanation [24]. For example, the coefficients of a linear model
can be interpreted as the strengths of association between features and output.
Decomposability is similar to the concept of intelligibility of [25]. As for simu-
latability, there exists no prescription on how to measure decomposability. We
considered variables as important components to represent this PHI, and gath-
ered answers (correct/wrong) on properties of the behavior of a formula when
one of its variables varies within an interval.

3.2 Overview on the survey and results

We implemented the survey as a webpage, consisting of an introductory sec-
tion to assess the respondents’ level of familiarity with formulas, followed by
eight questions, four about simulatability, and four about decomposability. The
eight questions are randomly selected when the webpage is loaded, from a pre-
generated database that contains 1000 simulatability and 1000 decomposability
questions, each linked to one of 1000 automatically generated formulas. Figure 1
shows examples of these questions. Each and every question presents four possi-
ble answers, out of which only one is correct. Alongside each question, the user
is asked to state how confident (s)he is about the answer, on a scale from 1 to 4.

The 1000 formulas were encoded with trees, and randomly generated with a
half-and-half initialization of GP [30] (max depth 4). The set of leaf nodes for
the trees included 4 different variables, and constants that were either integers
(from 0 to 10) or multiples of π (3.14 or 6.28). The possible operations were +,

Learning a Formula of Interpretability to Learn Interpretable Formulas 5

<weekly

weekly

daily

How frequently do you deal with mathematical
expressions in your work or study?

<month
<year

1–3 years
>3 years

How long have you been working and/or
studying ina math related field?

0.2 0.3 0.4 0.5

fairly complex

moderately complex

simple

What is the complexity of
the formulas you usually deal with?

0.1 0.2 0.3 0.4

bad w/ any

bad w/ complex

good w/ any
How well do you deal with complex formulas?

Fig. 2. Distribution of answers about user expertise.

−, ×, ÷, ∧,
√
·, sin, and cos. We performed rejection sampling and automatic

simplifications to avoid presenting fundamentally uninteresting functions (e.g.,
constant ones), or functions with exploding output (e.g., due to ∧).

For simulatability questions, the user was either asked to pick the correct
2D graph representing the behavior of the (one variable) formula, or to choose
the best estimate of the output of the (multi-variable) formula, given values for
the variables. Decomposability questions asked whether the formula was (not)
bounded, (not) always defined, (not) null in some points, (not) negative in some
points, for one variable changing in a given interval and the others being fixed.

We distributed the survey by emailing research groups and departments
within the institutes of the authors, targeting both students and faculty mem-
bers. We further shared the survey on Reddit (subreddit CasualMath) and Twit-
ter. We obtained 334 responses in ≈ 35 days, corresponding to 2672 answers.
Figure 2 shows the distribution of answers to the introductory part of the survey.

4 Learning a formula of interpretability

We now describe how we condense the survey answers into a regression dataset,
and use this dataset to learn an ML model (as a formula) of interpretability.

We begin with replacing each question with a set of feature values that rep-
resents the formula contained in the question (explained in detail below). We
obtain multiple identical sets of feature values with different outcomes in terms
of correctness and confidence. We merge equal sets of feature values into a single
sample, taking the ratio of correct answers and the mean confidence. In doing so,
we do not distinguish between answers belonging to simulatability or decompos-
ability, assuming they are equally good PHIs. We also remark that we did not
make expertise-based partitions because of the limited number of respondents
and the skew in expertise distribution (Figure 2).

As label to regress, we take the product between correctness ratio and confi-
dence (the latter normalized to have values 0

3 , 1
3 , 2

3 , 3
3). We choose to weight by

confidence because, arguably, the less a user is confident about the answer, the
less (s)he feels (s)he interprets the formula correctly. Essentially, this is a new
PHI synthesized out of simulatability and decomposability, that takes confidence
into account. From now on, we refer to this PHI as φ.

6 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

The choice of what formula features are considered is of crucial importance
as it determines the way the answers are merged. We ultimately consider the
following features: the size ` of the formula (counting variables, constants, and
operations), the number no of operations, the number nnao of non-arithmetic
operations, the number nnaoc of consecutive compositions of non-arithmetic op-
erations. Note that the number of variables or constants is `−no, and the number
of arithmetic operations is no − nnao.

By merging answers sharing the same values for the aforementioned four
features, and excluding merged samples composed by less than 10 answers for
robustness, we obtain a small regression dataset with 73 samples.

4.1 Learning the model

Figure 3a shows the distribution of φ. Since this distribution is not uniform,
similarly to what is done for classification with imbalanced class frequency, we
weight samples by the inverse frequency of the bin they belong to.

To obtain a readable ML model and due to the small number of samples, we
choose to fit a elastic net linear model [53] of the four features with stochastic
gradient descent, and validate it with leave-one-out cross-validation. We refer
the reader interested in the details of this process (which includes, e.g., hyper-
parameter tuning) to https://github.com/MaLeLabTs/GPFormulasInterpretability.
The leave-one-out cross-validation scores a (weighted) training R2 = 0.506, and
(weighted) test R2 = 0.545 (mean weighted absolute error of 26 %). The distri-
bution of the model coefficients optimized across the folds is shown in Figure 3b.

We take the average coefficients found during the cross-validation to obtain
the final model of φ (from now on, considered as a percentage):

Mφ(`, no, nnao, nnaoc) =79.1− 0.2`− 0.5no − 3.4nnao − 4.5nnaoc. (1)

By observing Mφ, it can be seen that each feature plays a role in lowering
interpretability, yet by different magnitudes; nnaoc is the most important factor.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

%
o
f

sa
m

p
le

s

(a) Histogram of φ values.

−6 −4 −2 0

`

no

nnao

nnaoc

(b) Boxplots of learned coefficients.

Fig. 3. Salient information about the learning data and the linear model.

https://github.com/MaLeLabTs/GPFormulasInterpretability

Learning a Formula of Interpretability to Learn Interpretable Formulas 7

5 Exploiting the model of interpretability in MOGP

The experimental setup adopted for the use of the modelMφ within an MOGP
algorithm for symbolic regression is presented next. We describe the algorithm
we use, its objectives, the datasets we consider, and the evaluation process.

MOGP by NSGA-II. We use a GP version of NSGA-II [9], the most popular
multi-objective evolutionary algorithm, and refer to it as NSGP (the same name
has been used in different works, e.g., [23,47,49]). We use traditional settings (all
described in [30]): tree-based encoding; ramped half-and-half initialization (min
and max depth of 1 and 6 respectively); and tournament selection (size 2, default
in NSGA-II). The crossover operator is subtree crossover (probability of 0.9,
default in NSGA-II). The mutation operator is one-point mutation (probability
of 1/` for each tree node, with ` the number of nodes).

We set the population size to 1000 and perform 100 generations across all
experiments. The possible tree leaves are the problem variables and an ephemeral
random constant [30], with random values from U(−5,+5). The operations are
+, −, ×, ÷p, sin, cos, exp, and logp. Protection of division by zero is implemented

by ÷p(i1, i2) := sign(i2) i1
|i2|+ε . Similarly, the logarithm is protected by taking as

argument the absolute value of the input plus ε. We use ε = 10−6. Trees are not
allowed to grow past 100 nodes, as they would definitely be not interpretable.

Our (Python 3) implementation of NSGP (including an interface to scikit-
learn [29]) is available at: https://github.com/marcovirgolin/pyNSGP.

Objectives. We consider two competing objectives: error vs. interpretability.
For the first objective, we consider the Mean Squared Error (MSE) with linear

scaling [20,21], i.e., MSElin.scal.(y, ŷ) = 1
N

∑N
i=1 (yi − a− bŷi)2

. The use of the
optimal (on training data) affine transformation coefficients a, b corresponds to
computing an absolute correlation. From now on, we simply refer to this as MSE.

For the second objective, we consider two possibilities. The first one is realized
by using our model Mφ: we extract the features from the tree to be evaluated,
feed them toMφ, and take the resulting estimate of φ. To conform with objective
minimization, we actually seek to minimize the opposite of this estimate (we also
ignore the intercept term of Equation (1)). We call NSGPφ the version of NSGP
using this second objective.

The second possibility is to solely minimize the number of nodes `. This
approach, despite its simplicity, is very popular (see Section 2). Here we use it
as a baseline for comparison. We refer to NSGP using ` minimization as NSGP`.

The objectives based on ` and φ are in a comparable scale (considering φ as
a percentage). To bring the first objetive to a similar scale (since scale impacts
the crowding distance [9]), during the evolution we multiply the MSE by 100

σ2(y)

(i.e., predicting the mean µ(y) achieves an error of 100).
NSGP measures the quality of solutions according to the same criteria of [9]

(domination ranking and crowding distance). We will report results relative to

https://github.com/marcovirgolin/pyNSGP

8 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

the front of non-dominated solutions F obtained at the end of the run. Recall
that a solution is non-dominated if there exists no other solution that is better
in at least one objective and not worse in all others. In other words, F contains
the solutions with best trade-offs between the objectives.

Datasets and evaluation. We consider 13 regression datasets in total, see
Table 1. The first 5 datasets are synthetic (S-) and are recommended in [50].
The other 8 regard real-world data (R-) and are (mostly) taken from the UCI
machine learning repository [12] and used in recent literature (e.g., [35,44]).

We treat all datasets the same. We apply standardization, i.e., all features are
set to have zero mean and unit standard deviation. Before each run, we partition
the dataset in exam at random, splitting it into 80 % samples for training, 10 %
for validation, and 10 % for testing. The training set is used by NSGP to evolve
the solutions. The other sets are used to assess generalization, as is good practice
in ML [3]. In particular, using the final population, we re-compute the MSE of
the solutions w.r.t. the validation set, and compute the front of non-dominated
solutions F based on this. The MSE of the solutions in this front is finally
re-evaluated on the test set (test MSE).

Because dataset partitioning as well as NSGP are stochastic, we perform 50
runs per dataset. To evaluate whether differences in results between NSGPφ and
NSGP` are significant, we use the Wilcoxon signed-rank test [10] to the 95 %
confidence level, including Holm-Bonferroni correction [19].

Table 1. Datasets used in this work. For the synthetic datasets, N is chosen by
considering the largest between the training set and test set proposed in [50].

Dataset Abbr. N D µ(y) σ(y)

Keijzer 6 S-Ke6 121 1 4.38 0.98
Korns 12 S-K12 10 000 5 2.00 1.06
Nguyen 7 S-Ng7 20 1 0.79 0.48
Pagie 1 S-Pa1 625 2 1.56 0.49
Vladislav. 4 S-Vl4 5000 5 0.49 0.19

Dataset Abbr. N D µ(y) σ(y)

Airfoil R-Air 1503 5 124.8 6.9
Boston housing R-Bos 506 13 22.5 9.2
Dow chemical R-Dow 1066 57 3.0 0.4
Diabetes R-Dia 442 10 152.1 77.0
Energy cooling R-EnC 768 8 24.6 9.5
Energy heating R-EnH 768 8 22.3 10.1
Tower R-Tow 4999 25 342.1 87.8
Yacht R-Yac 308 6 10.5 15.1

6 Results

Fitting and generalization error. We begin by reporting quantitative results
of the models in terms of training and test MSE. Although the test MSE is what
ultimately matters in practical applications (i.e., a good formula is one that
generalizes to unseen data), we also show the training MSE because it reflects
the capability of an algorithm to optimize as much as possible. We present results
for different trade-off levels τ . Specifically, τ is the percentile rank of the solutions

Learning a Formula of Interpretability to Learn Interpretable Formulas 9

in the non-dominated front F ordered by increasing MSE: τ = 1 considers the
solution with best MSE and worst PHI; τ = 100 considers the solution with
worst MSE and best PHI (see Figure 4). Table 2 shows the MSE obtained by
NSGPφ and NSGP` at training and test times, alongside the values of φ and `,
for the MSE-specialized part of the fronts (τ = 5, 25, 50).

For a same τ , solutions found by NSGPφ have typically larger ` than those
found by NSGP`. The vice versa also holds, as can be expected. Notable examples
appear for τ = 25 in S-Pa1 and R-EnC/H: NSGPφ achieves approximately
double ` compared to the NSGP`, while the latter achieves approximately double
φ compared to the former.

Regarding the training MSE, the use of φ leads to the best optimization. This
is particularly evident for τ = 5 where all results are significantly better when
using NSGPφ, except for S-Vl4. Using φ instead of ` has a smaller detrimental
impact on finding well-fitting formulas. A plausible explanation is that NSGPφ

explores the search space better than NSGP`. This hypothesis is also supported
by considering the sizes of the non-dominated fronts |F|: although the fronts are
generally small for both φ and ` (reasonable because both depend on discrete
properties of the solutions [39]), they are consistently larger when φ is used.

Less differences between NSGPφ and NSGP` are significant when consider-
ing the test MSE (also due to Holm-Bonferroni correction). This is a normal
consequence of assessing generalization as gains in training errors are lost due to
(some) overfitting. What is important tough is that NSGPφ remains preferable.
For τ = 5 (τ = 25), this is the case for 9 (7) out of 12 datasets.

Qualitative results. We delve deeper into the results to assess the behavior of
NSGP using φ and `, from a qualitative perspective. We consider three datasets:
S-Vl4 where no version of NSGP is superior to the other; R-Bos where NSGPφ

is only better at training time; and R-EnH, where NSGPφ is favorable also at
test time. Figure 4 shows all validation fronts obtained from the 50 runs, re-
evaluated in terms of test MSE for both versions of NSGP, and plotted w.r.t. φ
(left plots) and ` (right plots). We also show, for τ ∈ {1, 50, 100}, the solutions
obtained by considering always the first run (seed 1 in the results on our online
code repository at https://github.com/MaLeLabTs/GPFormulasInterpretability).

The scatter plots show that, in general, NSGPφ obtains more points with
small test MSE. This is most evident for R-EnH, where the results are found to
be statistically significant. Note how, instead, this is not the case for τ = 100 in
S-Vl4, where in fact the use of φ is no better than the use of ` (see Table 2).

By visually inspecting the formulas, we find results that are in line with what
found in Table 2. Formulas found by NSGPφ with small MSE (τ = 1, 50) can
often be (slightly) longer than their counterpart found by NSGP` (except for S-
Vl4), however, they typically contain less non-arithmetic operations, and less of
their compositions. Even for very small formulas, those found NSGP` rely more
on non-arithmetic operations, meaning these operations help achieving small
MSE, at least up to the validation stage. All in all, the most complex formulas

https://github.com/MaLeLabTs/GPFormulasInterpretability

10 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

Table 2. Median performance from 50 runs of the solutions found by NSGPφ and
NSGP` at different trade-off levels τ (τ = 1 for best MSE, τ = 100 for best PHI).
Median front sizes (|F|) are computed w.r.t. the validation set. MSE values in bold for
one version of NSGP are significantly lower than the corresponding ones for the other
version of NSGP at the 95 % confidence level after Holm-Bonferroni correction.

NSGPφ NSGP`

Train Test Train Test Train Test
Dataset τ MSE MSE φ ` |F| MSE MSE φ ` |F| p-value p-value

S-Ke6
5 0.000 0.001 11.4 11

7
0.007 0.006 14.5 8

5
0.000 0.000

25 0.001 0.002 9.4 8 0.013 0.007 13.5 6 0.000 0.000
50 0.005 0.007 3.8 7 0.023 0.023 7.4 4 0.000 0.000

S-K12
5 0.997 0.998 2.9 7

3
0.998 0.997 7.4 4

2
0.000 0.924

25 0.998 0.998 2.9 7 0.998 0.997 7.4 4 0.000 0.941
50 0.998 0.997 2.0 5 0.998 0.997 7.4 3 0.000 0.454

S-Ng7
5 0.000 0.000 4.7 9

4
0.004 0.003 12.6 4

2
0.000 0.000

25 0.001 0.001 2.9 7 0.005 0.003 12.6 4 0.000 0.000
50 0.001 0.001 2.0 5 0.005 0.003 12.6 3 0.000 0.000

S-Pa1
5 0.174 0.190 15.9 16

10
0.216 0.221 22.8 7

6
0.000 0.001

25 0.221 0.231 14.1 12 0.257 0.269 19.7 6 0.038 0.004
50 0.396 0.392 10.5 8 0.338 0.387 13.5 5 0.029 0.950

S-Vl4
5 0.509 0.536 13.9 9

6
0.580 0.563 18.1 8

5
0.194 0.241

25 0.616 0.621 11.4 8 0.632 0.611 18.1 6 0.398 0.579
50 0.770 0.719 10.5 6 0.656 0.684 12.0 5 0.000 0.004

R-Air
5 0.501 0.519 5.5 13

6
0.566 0.586 2.3 5

3
0.000 0.000

25 0.534 0.538 4.7 10 0.566 0.586 2.3 5 0.000 0.000
50 0.565 0.586 2.0 5 0.596 0.624 1.3 3 0.000 0.000

R-Bos
5 0.245 0.287 4.7 9

5
0.281 0.338 7.4 4

3
0.000 0.057

25 0.254 0.290 3.8 9 0.282 0.338 7.4 4 0.000 0.021
50 0.283 0.332 2.0 5 0.347 0.355 1.3 3 0.000 0.054

R-Dia
5 0.510 0.546 2.9 7

4
0.531 0.578 1.3 3

2
0.000 0.051

25 0.515 0.546 2.9 7 0.533 0.577 1.3 3 0.000 0.046
50 0.525 0.551 2.0 5 0.538 0.571 1.3 3 0.000 0.482

R-Dow
5 0.336 0.357 3.8 9

4
0.449 0.445 2.3 3

2
0.000 0.000

25 0.369 0.372 3.8 9 0.449 0.451 2.3 3 0.000 0.000
50 0.395 0.418 2.0 5 0.469 0.466 1.3 3 0.000 0.000

R-EnC
5 0.099 0.108 7.3 15

6
0.149 0.145 14.5 7

4
0.000 0.000

25 0.104 0.113 5.5 12 0.157 0.155 13.8 7 0.000 0.000
50 0.117 0.127 3.8 9 0.175 0.176 13.5 5 0.000 0.000

R-EnH
5 0.082 0.085 6.0 13

5
0.130 0.132 14.5 8

5
0.000 0.000

25 0.085 0.087 4.7 11 0.142 0.141 13.5 7 0.000 0.000
50 0.089 0.098 2.9 7 0.164 0.162 8.4 5 0.000 0.000

R-Tow
5 0.290 0.288 3.8 9

4
0.373 0.381 8.4 6

4
0.000 0.000

25 0.298 0.302 2.9 7 0.379 0.389 3.3 5 0.000 0.000
50 0.371 0.370 2.0 5 0.449 0.457 7.4 4 0.000 0.000

R-Yac
5 0.011 0.014 11.4 13

9
0.013 0.017 7.4 4

2
0.000 0.000

25 0.012 0.016 5.5 11 0.013 0.017 7.4 4 0.000 0.037
50 0.015 0.024 3.8 9 0.013 0.018 7.4 4 0.006 0.000

Learning a Formula of Interpretability to Learn Interpretable Formulas 11

0.4

0.6

0.8

1
T

es
t

M
S
E

(S
-V

l4
)

φ
NSGPφ NSGP` `

0.2

0.4

0.6

0.8

T
es

t
M

S
E

(R
-B

o
s)

0 20 40

0.1

0.2

0.3

T
es

t
M

S
E

(R
-E

n
H

)

0 10 20 30

sin(x13)

x6 − x13

cos(x6) + x13

x13 − x6

x6 − x13

(cos(x6) + x13)

−(x6 − cos(x6))

sin(x5)

exp(exp(sin(x4)))− x7

exp(exp(sin(x5)))

−((sin(cos(x4)) + x1)

−x7)

0.017÷p x5

((−3.235× x5)− x7)− x3

0.017× ((x1 × x3) + ((x3 + x7)

+(1.89÷p (x5 ÷p 1.617))))

cos(x3)

cos(x1) + cos(x3)

(exp(logp(sin(x5)))

−(exp(cos(x2)) + cos(x1)))

− cos(x3)

x3 × x3

x3 × (−0.004− x3)

logp(((x2 × (x3 × x4))× x1))

Fig. 4. Scatter plots of validation fronts as re-evaluated on the test set for all 50 runs,
in terms of φ (left column) and ` (right column). Formulas in the middle are picked
from the front of run 1, using τ = 1 (bottom), 50 (middle), 100 (top). Note that x13−x6
and x6 − x13 (R-Bos) are equivalent due to linear scaling.

found by NSGPφ are either more easily or similarly interpretable than those
found by NSGP`.

7 Discussion

To realize our data-driven approach, we relied on a survey aimed at measuring
human-interpretability of mathematical formulas. While we did our best to de-
sign a survey that could gather useful human feedback, a clear limitation of our
work is the relatively small number of survey respondents (334), which in turn
led to obtaining a relatively small dataset (73 samples, 4 formula features). Fit-
ting of a high-bias (linear) model resulted in a decent test R2 of 0.5, while having
the model be interpretable itself. Still, the model need not be interpretable. With
more data available in the future, we will investigate the use of a larger num-
ber of more sophisticated features [26], and the use of more complex (possibly
even black-box) models. Moreover, our approach can also be investigated for ML
models other than formulas (e.g., decision trees).

12 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

In terms of results with NSGP, we found that φ allows the discovery of good
solutions w.r.t. the competing objective, i.e., the MSE, better than `. We also
found that using φ leads to the discovery of larger fronts. There is no reason to
expect this outcome beforehand, as φ was not designed to achieve this. We be-
lieve these findings boil down to one fundamental reason: diversity preservation.
Because the estimation of φ relies on more features compared to the measure-
ment of `, more solutions can co-exist that do not dominate each other. Hence,
the use of φ fares better against premature convergence [40].

Regarding the examples of formulas we obtained, one may think that φ leads
to arguably more interpretable formulas than ` simply because it accounts for
non-arithmetic operations (and their composition). In fact, we agree that ` is
simplistic. However, we believe that minimizing ` represents one of the first
baselines to compare against (and it was the only one we found being used
to specifically promote interpretability [22]), and that designing a competitive
baseline is non-trivial. We will investigate this further in future work.

What about formula simplification? We did not present results regarding
formulas after a simplification step. We attempted to use the sympy library [28]
to assess the effect of formula simplification during the evolution, but to no avail
as runtimes exploded. Moreover, we looked at what happens if we simplify (with
sympy) the formulas in the final front, and re-compute their φ and `. Results
were mixed. For example, regarding the three datasets of Figure 4, re-measuring
φ and ` after simplification led to a mean improvement ratio of 1.08 (1.17) and
1.00 (1.00) respectively, when all (only the most complex) formulas from the
fronts were considered. Hence, the use of φ seems more promising than ` w.r.t.
simplification. Yet, as improvements were small (also in visual assessments),
further investigation will be needed.

8 Conclusion

We presented a data-driven approach to learn, from responses to a survey on
mathematical formulas we designed, a model of interpretability. This model is it-
self an interpretable (linear) formula, with reasonable properties. We plugged-in
this model within multi-objective genetic programming to promote formula inter-
pretability in symbolic regression, and obtained significantly better results when
comparing with traditional formula size minimization. As such, our approach
represents an important step towards better interpretable machine learning, es-
pecially by means of multi-objective evolution. Furthermore, the model we found
can be used as a proxy of formula interpretability in future studies.

Acknowledgments and author contributions

We thank the Maurits en Anna de Kock Foundation for financing a high-performance
computing system that was used in this work. Author contributions, in order of
importance, follow. Conceptualization: M.V.; methodology: M.V., E.M.; soft-
ware: M.V., A.D.L., F.R.; writing: M.V., E.M., A.D.L., F.R.

Learning a Formula of Interpretability to Learn Interpretable Formulas 13

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Arrieta, A.B., Dı́az-Rodŕıguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garćıa, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable Artifi-
cial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Information Fusion 58, 82–115 (2020)

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth (1984)

5. Burgess, T.F.: Guide to the design of questionnaires. A general introduction to the
design of questionnaires for survey research. University of Leeds, 2001 (2001)

6. Cano, A., Zafra, A., Ventura, S.: An interpretable classification rule mining algo-
rithm. Information Sciences 240, 1–20 (2013)

7. Chen, Q., Zhang, M., Xue, B.: Structural risk minimization-driven genetic pro-
gramming for enhancing generalization in symbolic regression. IEEE Transactions
on Evolutionary Computation 23(4), 703–717 (2018)

8. Chouldechova, A.: Fair prediction with disparate impact: A study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

9. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6(2), 182–197 (2002)

10. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7(Jan), 1–30 (2006)

11. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

12. Dua, D., Graff, C.: UCI machine learning repository (2017), archive.ics.uci.edu/ml

13. Ekárt, A., Nemeth, S.Z.: Selection based on the Pareto nondomination criterion
for controlling code growth in genetic programming. Genetic Programming and
Evolvable Machines 2(1), 61–73 (2001)

14. Evans, B.P., Xue, B., Zhang, M.: What’s inside the black-box? A genetic program-
ming method for interpreting complex machine learning models. In: Proceedings
of the Genetic and Evolutionary Computation Conference. pp. 1012–1020 (2019)

15. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. AI Magazine 38(3), 50–57 (2017)

16. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Computing Surveys
51(5) (2018)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

18. Hein, D., Udluft, S., Runkler, T.A.: Interpretable policies for reinforcement learning
by genetic programming. Engineering Applications of Artificial Intelligence 76,
158–169 (2018)

19. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics pp. 65–70 (1979)

20. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scal-
ing. In: European Conference on Genetic Programming. pp. 70–82. Springer (2003)

archive.ics.uci.edu/ml

14 Marco Virgolin, Andrea De Lorenzo, Eric Medvet, and Francesca Randone

21. Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable Ma-
chines 5(3), 259–269 (2004)

22. Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving a front of
interpretable models for data visualization. IEEE Transactions on Cybernetics pp.
1–15 (2020)

23. Liang, Y., Zhang, M., Browne, W.N.: Multi-objective genetic programming for
figure-ground image segmentation. In: Australasian Conference on Artificial Life
and Computational Intelligence. pp. 134–146. Springer (2016)

24. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)
25. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regres-

sion. In: Proceedings of the 18th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. pp. 150–158. ACM (2012)

26. Maruyama, M., Pallier, C., Jobert, A., Sigman, M., Dehaene, S.: The cortical
representation of simple mathematical expressions. Neuroimage 61(4), 1444–1460
(2012)

27. McCormack, J., Lomas, A.: Understanding aesthetic evaluation using deep learn-
ing. In: Artificial Intelligence in Music, Sound, Art and Design: 9th International
Conference, EvoMUSART 2020. pp. 118–133. Springer (2020)

28. Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., Kirpichev, S.B., Rocklin, M.,
Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger,
B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F.,
Curry, M.J., Terrel, A.R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman,
R., Scopatz, A.: SymPy: Symbolic computing in Python. PeerJ Computer Science
3, e103 (2017)

29. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

30. Poli, R., Langdon, W.B., McPhee, N.F., Koza, J.R.: A field guide to genetic pro-
gramming. Lulu.com (2008)

31. Poli, R., McPhee, N.F.: Parsimony pressure made easy: Solving the problem of
bloat in GP. In: Theory and Principled Methods for the Design of Metaheuristics,
pp. 181–204. Springer (2014)

32. Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Vaughan, J.W., Wal-
lach, H.: Manipulating and measuring model interpretability. arXiv preprint
arXiv:1802.07810 (2018)

33. Raymond, C., Chen, Q., Xue, B., Zhang, M.: Genetic programming with
Rademacher complexity for symbolic regression. In: IEEE Congress on Evolution-
ary Computation (CEC). pp. 2657–2664 (2019)

34. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 1135–1144 (2016)

35. Ruberto, S., Terragni, V., Moore, J.H.: SGP-DT: Semantic genetic programming
based on dynamic targets. In: Genetic Programming: 23rd European Conference,
EuroGP 2020. pp. 167–183. Springer (2020)

36. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence 1(5),
206–215 (2019)

37. Sambo, A.S., Azad, R.M.A., Kovalchuk, Y., Indramohan, V.P., Shah, H.: Time
control or size control? Reducing complexity and improving accuracy of genetic

Learning a Formula of Interpretability to Learn Interpretable Formulas 15

programming models. In: Hu, T., Lourenço, N., Medvet, E., Divina, F. (eds.) Ge-
netic Programming. pp. 195–210. Springer International Publishing (2020)

38. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13(2), 197–238 (2012)

39. Smits, G.F., Kotanchek, M.: Pareto-front exploitation in symbolic regression. In:
Genetic Programming Theory and Practice II, pp. 283–299. Springer (2005)

40. Squillero, G., Tonda, A.: Divergence of character and premature convergence: A
survey of methodologies for promoting diversity in evolutionary optimization. In-
formation Sciences 329, 782–799 (2016)

41. Tran, B., Xue, B., Zhang, M.: Genetic programming for multiple-feature construc-
tion on high-dimensional classification. Pattern Recognition 93, 404–417 (2019)

42. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional
complexity in genetic programming. In: Proceedings of the Genetic and Evolution-
ary Computation Conference. pp. 877–884 (2010)

43. Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.N.: Improving model-
based genetic programming for symbolic regression of small expressions. Accepted
in Evolutionary Computation. ArXiv preprint arXiv:1904.02050 (2019)

44. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Linear scaling with and within
semantic backpropagation-based genetic programming for symbolic regression.
In: Proceedings of the Genetic and Evolutionary Computation Conference. p.
1084–1092. GECCO ’19, Association for Computing Machinery (2019)

45. Virgolin, M., Alderliesten, T., Bosman, P.A.N.: On explaining machine learning
models by evolving crucial and compact features. Swarm and Evolutionary Com-
putation 53, 100640 (2020)

46. Vladislavleva, E.J., Smits, G.F., Den Hertog, D.: Order of nonlinearity as a com-
plexity measure for models generated by symbolic regression via Pareto genetic
programming. IEEE Transactions on Evolutionary Computation 13(2), 333–349
(2008)

47. Wang, P., Tang, K., Weise, T., Tsang, E., Yao, X.: Multiobjective genetic program-
ming for maximizing ROC performance. Neurocomputing 125, 102–118 (2014)

48. Wang, W., Shen, J.: Deep visual attention prediction. IEEE Transactions on Image
Processing 27(5), 2368–2378 (2017)

49. Watchareeruetai, U., Matsumoto, T., Takeuchi, Y., Kudo, H., Ohnishi, N.: Con-
struction of image feature extractors based on multi-objective genetic programming
with redundancy regulations. In: IEEE International Conference on Systems, Man
and Cybernetics. pp. 1328–1333. IEEE (2009)

50. White, D.R., Mcdermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kron-
berger, G., Jaśkowski, W., O’Reilly, U.M., Luke, S.: Better GP benchmarks: Com-
munity survey results and proposals. Genetic Programming and Evolvable Ma-
chines 14(1), 3–29 (2013)

51. Zhang, B.T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic pro-
gramming. Evolutionary Computation 3(1), 17–38 (1995)

52. Zhao, H.: A multi-objective genetic programming approach to developing Pareto
optimal decision trees. Decision Support Systems 43(3), 809–826 (2007)

53. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 67(2), 301–
320 (2005)

	Learning a Formula of Interpretabilityto Learn Interpretable Formulas

