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Abstract. Detecting P300 slow-cortical ERPs poses a considerable challenge in
signal processing due to the complex and non-stationary characteristics of a
single-trial  EEG  signal.  EEG-based  neurofeedback  training  is  a  possible
strategy to  improve the social  abilities  in  Autism-Spectrum Disorder  (ASD)
subjects.  This paper presents a BCI P300 ERPs based protocol optimization
used  for  the  enhancement  of  joint-attention skills  in  ASD subjects,  using a
robust logistic regression with Automatic Relevance Determination based on
full  Variational  Bayesian  inference  (VB-ARD).  The  performance  of  the
proposed  approach  was  investigated  utilizing  the  IFMBE  2019  Scientific
Challenge  Competition  dataset,  which  consisted  of  15  ASD  subjects  who
underwent a total of 7 BCI sessions spread over 4 months. The results showed
that  the  proposed  VB-ARD  approach  eliminates  irrelevant  channels  and
features  effectively,  producing  a  robust  sparse  model  with  81.5  ±  0.12  %
accuracy in relatively short modeling computational time 19.3 ± 1.4 sec, and it
outperforms the standard regularized logistic regression in terms of accuracy
and  speed  needed  to  produce  the  BCI  model.  This  paper  demonstrated  the
effectiveness  of  the  probabilistic  approach  using  Bayesian  inference  for  the
production of a robust BCI model. Considering the good classification accuracy
over sessions and fast modeling time the proposed method could be a useful
tool  used for  the BCI based protocol for  the improvement  of joint-attention
ability in ASD subjects.
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1 Introduction

Autism  Spectrum  Disorder  (ASD)  is  a  set  of  pervasive  and  sustained

neurodevelopmental  conditions  characterized  by  persistent  deficits  in  social

interaction, alongside restricted, repetitive patterns of behavior, interests, or activities

[1]. Several studies found that using EEG-based neurofeedback training is a possible

way to improve the social skills in ASD subjects [2]. Electroencephalography (EEG)

based  brain-computer  interface  (BCI)  is  a  system that  acquires  brain  signals  and

provides feedback according to the performance of the participant, and it has been

used,  not  only  for  the  attention  improvement  [3],  but  also  for  motor

neurorehabilitation  [4–8].  In  addition,  the  employment  of  Virtual  Reality  (VR)

improves the effectiveness of BCI in general, and also the applicability of these skills

in real life [9–11].

A novel social attention training paradigm (VR P300-based BCI paradigm) based

on P300 ERPs for the enhancement of joint-attention skills was proposed in the paper

[12, 13]. A P300 is a huge positive voltage with a peak latency around 300 ms after

the appearance of a cognitive attended rare stimulus, and it can be used to monitor the

attentional performance of ASD subjects.

In the paper [12, 13] the P300-ERP based paradigm was used to acquire the data,

in  the  VR immersive  environment  where  the  subjects  had to  follow a  non-verbal

social agent cue performed by an avatar. The avatar moved its head toward a target

object signaling to the participants where to focus on a so-called joint attention task

[14].  Then  the  participants  received  feedback  based  on  the  P300  acquired  signal

allowing them to adjust and improve this social attentional ability. Therefore, the BCI

system allows  to detect the target object toward which the participants were focusing

their attention with the highest possible accuracy. Different machine learning methods

can be applied to produce a model which adequately provide an output that indicates

the  subject's  mental  state.  However,  without  pre-processing,  a  high  number  of

channels and features can lead to overfitting.  To overcome this challenge, a technique

that eliminates irrelevant channels and features is preferable. 

Consequently,  in  this  paper,  we  investigated  a  technique  based  on  variational

Bayes  automatic  relevance  determination  that  is  able  to  prune  irrelevant  inputs,
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together with a logistic regression approach with a standard regularization method to

create an accurate and robust BCI model based on P300 ERPs.

2 MATERIALS AND METHODS

2.1 The EEG dataset

The  proposed  approach  was  evaluated  utilizing  the  IFMBE  2019  Scientific

Challenge Competition dataset [12, 13], which was acquired from 15 subjects who

underwent a total of 7 sessions spread over 4 months: four in the first week and then

once a month. This dataset represents the complete EEG recordings of a feasibility

clinical trial (clinical-trial ID: NCT02445625 — clinicaltrials.gov). The recording was

performed  using amplifier  g.Nautilus  (gTEC,  Austria)  coupled  with  a  VR system

(Oculus  Rift  Development  Kit  2  headset);  the  data  were  acquired  from  8  dry

electrodes positioned on the standard locations - C3, Cz, C4, CPz, P3, Pz, P4, POz,

with the reference placed on the right ear and the ground electrode placed at AFz at

250Hz sampling rate.  The participants  were  immersed in a  virtual  environment,  a

bedroom  with  a  series  of  objects  that  were  used  as  targets.  The  paradigm  was

subdivided into two parts: (1) calibration phase, where the object target was explicit;

(2) online phase, where the participants had to participate in the joint attention task

after which they received the feedback according to their performance.

For each session, the training data consisted of 20 blocks (with 10 runs each) while

the online phase of 50 blocks (with a variable number of runs each) was used as a test

set. In each run, 8 objects flashing in random order were presented in the virtual scene

(1. a wooden plane hanging from the ceiling; 2. a printer on a shelf; 3. a corkboard on

the wall; 4. a laptop on a table; 5. a ball on the ground; 6. a radio on top of a dresser;

7. a picture on the wall; 8. books on a shelf). In both phases, the participants had to

mentally count how many times the target object flashed creating an EEG response

later used for BCI.

On the basis of the training dataset, it is possible to build a BCI model capable to

identify, with the highest possible accuracy, which target object the participant was

focusing on during the online phase.
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2.2 Data processing and BCI modeling

The  data  has  been  analyzed  using  Matlab  (Mathworks  version  R2018b)  and

BCILAB framework [15]. The dataset had been already pre-filtered from 2 to 30Hz,

therefore no additional frequency filter is applied by our approach at this stage. The

window means approach [16],  that has been widely applied to event-related slow-

changing  brain  dynamics,  such  as,  the  perception  of  self-induced  errors  [17],

machine-induced errors and/or surprisal [18, 19], prediction of movement intent [20],

or  (c)overt  attention  [21],  was  used.  The  paradigm consisted  of  computing  50ms

windows without overlap on the segment from 100ms to 1000ms from stimulus onset,

producing 18 features per channel used in the following machine learning stage. Since

the dimensionality of the feature space was high (number of channels * number of

windows),  the robust  classifiers  with advance  irrelevant  feature  pruning had to be

applied. At the same time, it is important that the BCI model using sparse features can

be produced in a reasonable time (i.e. at most within 20min after a training session),

so preferable approach would be one without a priori unknown parameters obtainable

using  time-consuming  repetitive  cross-validation  based  optimization  procedures.

Consequently,  in this work we investigated the use of Sparse variational Bayesian

logistic  regression  with  automatic  relevance  determination  (VB-ARD)  [22],  to

classify ERPs in ASD subjects and compared it to the logistic regression approach

that utilizes standard L1-norm regularization strategy by multiple cross-validations.

Briefly, Automatic relevance determination (ARD) consists of assigning an individual

hyper-prior to each regression coefficient separately and determines the relevance of

each of them throughout the optimization of the feature-related weights in order to

effectively eliminate irrelevant ones.  This approach conversely to [23–25] does not

tune hyper-parameters  by maximizing the  marginal  likelihood but  applies  the full

Bayesian  treatment,  and  finds  the  ARD  hyper-posteriors  by  variational  Bayesian

inference [22]. Therefore, functions associated with these weights play no role in the

predictions made by the model and are effectively pruned out, resulting in a feature

sparse model. Furthermore, the fact that the approach does not compute only a point

estimate  of  the  weights,  but  a  full  posterior  distribution,  enables  us  to  use  more
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advanced post-processing of the model and outputs. The Bayesian framework enables

optimal sparsity and enables  the number of  features  and channels  to be estimated

automatically  from  the  training  set  without  requiring  time-consuming  cross-

validation. The VB-ARD model was compared with an L1-norm logistic regression

(L1-LOG) model regularized by chronological 5-fold cross-validation techniques with

5 indices safety margin.

2.3 Postprocessing and Classification

The  resulting  regression  binary  output  with  corresponding  class  belonging

probabilities  provides  information  for  the existence  or  non-existence  of  the  target

ERPs in each run. Finally, the mean probability of all runs in the block had been

calculated for each label, and the label with the highest probability has been chosen as

the output. In that way, the result averaging has been performed in the post-processing

stage.

2.4 Performance measure and Statistical analysis

The performance of two approaches was measured in terms of model accuracy on

each subject and in all 7 sessions and computation time on desktop PC with Intel Core

i7 CPU @ 2.67 GHz with 16 GB RAM and Windows 10 OS was measured. A paired

t-test  approach  was  used  to  assess  the  differences  in  model  accuracy  and  model

computation time between VB-ARD and L1-LOG methods.

3 Results

Mean ± 1SD model accuracy and model computation time for each subject for VB-

ARD and L1-LOG approaches are reported in Table 1. In general, both approaches

showed high  accuracy,  however,  VB-ARD produced  model  presented  statistically

higher accuracy compared to L1-LOG (81.5 ± 0.12 vs 79.0 ± 0.14 %; p=0.0014) and

extremely lower model computation time (19.3 ± 1.4 vs 643.3 ± 83.0 sec; p<0.0001).
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The scatter plot for each subject for the accuracy of both approaches was reported in

Figure 1. The topoplot of BCI models calculated with two approaches on the single

subject  are  reported  in  Figure  2.  It  can  be  observed  that  VB-ARD  approach

conversely to the L1-LOG for   different time windows produced a sparse model by

assigning weights close to zero to less relevant channels and emphasizing the relevant

ones.

Table 1. Mean ± 1SD values of model accuracy and model computation time for each subject

for VB-ARD and L1-LOG approaches.

Subject VB-ARD L1-LOG

Accuracy Mean

± SD (%)

Comp. time Mean

± SD (sec)

Accuracy Mean

± SD (%)

Comp. Time Mean ±

SD (sec)

1 71 ± 15 19.44 ± 1.87 58 ± 24 730.62 ± 131.04

2 89 ± 7 19.94 ± 0.86 91 ± 6 633.1 ± 93.26

3 77 ± 17 18.2 ± 1.55 77 ± 16 632.29 ± 82.35

4 89 ± 8 20.02 ± 0.75 87 ± 6 679.38 ± 100.91

5 86 ± 12 19.58 ± 0.51 83 ± 14 661 ± 72.41

6 82 ± 6 18.95 ± 1.58 79 ± 8 584.59 ± 18.4

7 77 ± 7 19.68 ± 0.97 75 ± 4 673.84 ± 41.44

8 87 ± 14 19.39 ± 0.9 85 ± 14 617.24 ± 47.56

9 78 ± 9 17.31 ± 0.7 72 ± 13 572.8 ± 32.27

10 86 ± 8 20.05 ± 1.12 84 ± 8 604.5 ± 61.67

11 85 ± 8 20.46 ± 1.23 85 ± 9 609.31 ± 52.03

12 82 ± 13 18.09 ± 1.4 81 ± 17 600.5 ± 59.64

13 74 ± 17 20.05 ± 0.85 71 ± 19 703.2 ± 92.13

14 73 ± 12 18.24 ± 1.43 73 ± 13 652.99 ± 87.72

15 87 ± 6 19.91 ± 1.61 87 ± 7 694.73 ± 66.3

https://doi.org/10.1007/978-3-030-31635-8_225


This is a post-peer-review, pre-copyedit version of an article published in IFMBE Proceedings book series (IFMBE, 
volume 76). The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-31635-8_225

Fig. 1.   Plot of accuracy for each subject and each session (points). Points are layed over a 1.96

SEM (95% confidence interval) in red and a 1 SD in blue. Upper panel - VB-ARD model

results; Lower panel - L1-LOG model results.
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Fig. 2. BCI models on one subject. Left panel - Space feature model produced with VB-ARD

approach. Right panel - Model produced with L1-LOG method.

4 Discussion 

In order to perform a P300 BCI protocol for the improvement of joint-attention

skills in Autism-Spectrum Disorder (ASD) subjects, an appropriate approach for the

BCI classification is needed. Detecting P300 slow-cortical ERPs poses a considerable

challenge to signal to process due to the complex and non-stationary characteristics of

a single-trial EEG signal.

The  main  finding  of  this  study  is  the  high  performance  of  a  BCI  protocol

optimization using a robust logistic regression with automatic relevance determination

based on full variational Bayesian inference. Our results showed that the proposed

VB-ARD approach eliminates irrelevant channels and features effectively, producing

a  robust  sparse  model  with 81.5  ± 0.12  % accuracy  in  relatively  short  modeling

computational time 19.3 ± 1.4 sec, and it outperforms the standard regularized logistic

regression in terms of accuracy and speed needed to produce the BCI model. 

Comparison of two BCI models estimated with two different methods revealed that

as expected VB-ARD in comparison to L1-LOG approach selects only the relevant

time  windows  and  channels  that  can  be  also  used  to  study  and  evaluate  the

neurophysiological plausibility of produced model. Considering the parsimony of the

calculated model we can expect that it represents rather generalized solution resulting

in higher robustness, that have to be evaluated in the future studies. 

In conclusion, we have presented a BCI computational method based on Bayesian

variational inference for P300 ERP detection, which is able to extract and effectively

individualize the informative features for binary regression/classification problem of

target and non-target objects in the joint attention experiment in ASD subjects. As the

approach provides a full posterior distribution it is expected that more advanced post-

processing  may further  improve  the  performance.  Finally,  our  approach  does  not

average waveforms of every single trial in the pre-processing step but directly extract

https://doi.org/10.1007/978-3-030-31635-8_225


This is a post-peer-review, pre-copyedit version of an article published in IFMBE Proceedings book series (IFMBE, 
volume 76). The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-31635-8_225

features  with  their  corresponding  class  belonging  probabilities,  so  the  number  of

needed  runs  in  the  online  phase  can  be  adjusted  based  on  so-far  estimated

discriminatory properties.
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