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Abstract: An environmentally and economically sustainable air traffic management system must
rely on fast models to assess and compare various alternatives and decisions at the different flight
planning levels. Due to the numerous interactions between flights, mathematical models to manage
the traffic can be computationally time-consuming when considering a large number of flights to
be optimised at the same time. Focusing on demand–capacity imbalances, this paper proposes an
approach that permits to quickly obtain an approximate but acceptable solution of this problem.
The approach consists in partitioning flights into subgroups that influence each other only weakly,
solving the problem independently in each subgroup, and then aggregating the solutions. The core
of the approach is a method to build a network representing the interactions among flights, and
several options for the definition of an interaction are tested. The network is then partitioned with
existing community detection algorithms. The results show that applying a strategic flight planning
optimisation algorithm on each subgroup independently reduces significantly the computational
time with respect to its application on the entire European air traffic network, at the cost of few and
small violations of sector capacity constraints, much smaller than those actually observed on the day
of operations.

Keywords: strategic flight planning; community detection algorithms; air traffic management (ATM)

1. Introduction

The air transport system is formed of many highly interconnected components. In such
a complex system, delays and inefficiencies arise for many different reasons, such as tight
aircraft and crew rotations or imbalances between demand and capacity of the airspace.
The constant growth in air traffic in recent years has exacerbated the situation, making the
efficient management of air traffic a necessary and challenging endeavour. Although the
COVID-19 pandemic has dramatically interrupted this growth (at the time of writing, in
Europe, the traffic level is reduced by −65% with respect to 2019), a recovery is expected
(+3% in 2024 with respect to 2019, according to some optimistic scenarios [1]). Therefore,
the inefficiencies and problems of the past will certainly recur if not adequately addressed.
In Europe, the most relevant cause of delay are the imbalances between capacity and
demand [2], with an average cost ofe105 per minute in 2019 [3]. These imbalances, on top of
causing delays and consequent costs for air transportation stakeholders, are also associated
with overall network inefficiency. The latter is a relevant issue for the sustainability of
the aviation system, as it generates unnecessary fuel burn and emissions due to longer
trajectories travelled by flights. For example, it is well known that in case of congestion in
the airspace, one of the very few options currently available to airlines is to have the aircraft
make a detour around the congested area, travelling a longer distance. As a measure of
the size of these issues, in 2017 there was an additional 5.8% gate-to-gate CO2 emissions
at the European level due to the difference between the actual trajectories of flights and
their unimpeded trajectories [4]. Increasing the efficiency of air transport management is
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therefore one of the directions to take to improve the sustainability of aviation. Longer-than-
necessary routes are also chosen to minimise route costs, by avoiding to overfly countries
with high charges per unit distance (unit rate) [5], for instance Sweden [6]. For this reason,
pricing mechanisms should not only be designed to alleviate congestion [7], but also take
into account environmental impacts [8].

Over the last few decades, various mathematical models have been proposed to
improve the efficiency of air traffic management and mitigate the effects of congestion.
Ideally, these models should be applied to one entire day of air traffic. In fact, different
days are roughly independent from each other, because all delays and congestion issues
are buffered by the night hours, when a small number of flights are operated. Nevertheless,
the air traffic network of an entire day contains a large number of elements with many
interactions of various types. Before the pandemic, more than 35,000 flights could be flown
in Europe in one day. For instances of this size, the models become very computationally
demanding to solve. Consequently, previous studies have typically considered problems
restricted to one or a few countries and to a short period of time, e.g., a few hours.

Focusing on some of the most influential and recent papers concerning the man-
agement of demand-capacity balance, we observe that computational experiments have
always been carried out on instances that range from 1000 to a maximum of 6500 flights,
see, e.g., Bertsimas et al. [9], Sherali et al. [10], Castelli et al. [11], Agustín et al. [12],
Barnhart et al. [13], Bertsimas and Gupta [14], Xu et al. [15], Xu et al. [16]. All these studies
consider the tactical phase of flight planning, where many details must be taken into consid-
eration, such as the entry time in a sector and its capacity, or the aircraft speed. For instance,
Bertsimas et al. [9] present a model that “covers all the phases of each flight—i.e., takeoff, en
route cruising, and landing—and solves for an optimal combination of flow management
actions, including ground-holding, rerouting, speed control, and airborne holding on a
flight-by-flight basis”. Not surprisingly, the mathematical model that tries to solve these
problems is indeed computationally demanding.

A similar situation occurs in some of the few models that address the flight planning
at a strategic level as in Bolić et al. [7], Ivanov et al. [17], and Starita et al. [18]. Also in
these cases, the complexity of the mathematical formulations requires that the dimensions
of the problem instances be limited. As an example, the pricing mechanism introduced
in Bolić et al. [7] could only be tested on 2400 flights crossing the French airspace in a
four-hour interval.

All these previous applications of models to a subset of the flights of one day have
the inherent weakness of establishing arbitrarily the subset to consider. No preliminary
analysis of the level of interactions between the analysed sub-network with the rest of
the network is performed. Restricting a model to a subset of flights leads unavoidably to
approximations or simplifications, such as the need to exclude from the analysis flights
whose operations start before or end after the interval considered. It follows, for example,
that demand or residual airspace capacity values may be under or overestimated. Due to
these approximations, the solution of the model on the restricted subset is different from
the solution that would be found for the flights of the subset by solving the model on the
entire day. Additionally, there is no control on how different these solutions are, and no
element to assess if the approximation is acceptable.

This work proposes an approach to overcome these issues. First, it identifies a criterion
to divide the set of flights of a day into subsets such that the approximations made when
solving the model independently on one subset are reduced to a minimum. This criterion
provides a rationale according to which it is appropriate to apply the aforementioned
models to a subset of flights rather than to another. Additionally, it goes a step further, as
it proposes and analyses a strategy to reduce the resolution time of large instances of a
model, at the price of obtaining an approximate solution. This study aims to show that this
solution is acceptable, when compared to the exact one, and, therefore, that the strategy is
viable. A way to reduce the resolution time that also preserves the quality of the solution is
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necessary to make mathematical models for flight planning a tool that can actually be used
in practice.

Figure 1 summarises our approach. The proposed strategy to solve models on a large
set of flights (Figure 1A) is to partition them into smaller subsets, or clusters (Figure 1C),
and solve the model independently on each one. In this way, the resolution time is reduced
both because the solving time of these models increases faster than linearly with the
number of flights to optimise simultaneously, and because the solution of the model can
be parallelised (Figure 1D). This approach, however, can yield an acceptable solution
only if flights belonging to different subsets have a weak influence on each other for the
optimisation process. Otherwise, when the solutions found on the different subsets are
aggregated, violations of some constraints may arise (Figure 1D). The trajectories of two
flights do not overlap if they do not cross the same sector of the airspace, or they cross it at
different times (Figure 1B). Flights with non overlapping trajectories do not influence each
other directly in the optimisation, as their solutions affect the occupation of different sectors.
We can say that two such flights do not “interact”. However, the network of interactions
between flights is quite complex, and there is no obvious or immediate way to partition the
flights in weakly interacting sets. Therefore, we propose to resort to community detection
algorithms to determine weakly interacting clusters of flights. The use of complex network
methods in air traffic management has been used in several contexts [19–24]. For example,
community detection algorithms have been applied to the networks of airports, sectors, or
navigation points to investigate their structure [22,23].

A All flights of one day
in the European airspace

= sh1 sh2 sh3, , , ...

Sectors-hour crossed

Flight trajectory

B

= sh1 sh2 sh3, , , ...

= sh4 sh2 sh5, , , ...

DFlights with overlapping 
trajectories

C
Cluster 1

Cluster 2

Exact
global

solution

Computationally 
heavy optimisation

Smaller parallelised 
optimisations

Cluster
solution

Cluster
solution

Global 
solution

with small
violations of 
constraints

Figure 1. Outline of the proposed approach. (A) We consider the flights of a whole day in the
European airspace. The trajectory of a flight is given by the list of sectors-hour it crosses. A sector-hour
is a sector of the airspace associated to a time window of 1 h; (B) The trajectories of two flight overlap
if they have sectors-hour in common; (C) A network of flights can be built, where two flights are
linked if they are likely to influence each other in an optimisation process. A link is established
using a criterion based on the overlapping of their trajectories. The network is then partitioned in
weakly interacting clusters relying on popular community detection algorithms; (D) Optimising the
whole network provides an exact solution, while satisfying all constraints on sector capacities, but it
is computationally demanding. In the partitioned network, clusters can be optimised in parallel,
saving computational time. A global solution is obtained by aggregating the solution of each cluster.
The global solution can violate some constraints, however, if the clusters are weakly interacting the
violations are expected to be small.

As a test case, we consider the whole European air traffic volume of a single day and
test the benefits of partitioning flights against the results of an integer programming model,
named SAIPE [25]. SAIPE balances demand and capacity through a strategic redistribution
of flights that respects nominal sector capacities. The model solves large-scale instances that
include around 30,000 flights in approximately 300 s on standard software and hardware
equipment (64 bit Intel® Xeon® W-2145 CPU @ 3.70 GHz 16 core CPU computer, with 32 GB
of RAM memory and Ubuntu 18.04 operating system). To the best of our knowledge, SAIPE



Sustainability 2021, 13, 8924 4 of 16

is the only model that is computationally able to address demand–capacity imbalances for
an entire day of the European airspace. For this reason, we use it as a benchmark.

In order to obtain the desired flight partition, we build a network where the nodes
represent flights and a link is present between two nodes if the corresponding flights
are likely to influence each other in the flight planning optimisation. This depends on
whether two flights’ possible trajectories overlap and to what extent. We test different
choices of conditions on the overlap necessary to have a link, yielding different networks
(see Materials & Methods Section). We apply existing community detection algorithms
to the obtained networks, showing that they find clusters of flights that are differentiated
spatially and/or temporally (see Results). Finally, we run the SAIPE model on each cluster
and compare the aggregate solution with the exact one in terms of resolution time and
constraints’ violations.

In summary, the main contributions of this paper are as follows:

- we propose and compare different ways of defining flight interactions, which lead to
different networks representing one day of flights across Europe;

- we show that it is possible to divide the set of all European flights of one entire day
into components that are temporally and/or spatially distinct, such that different
components interact weakly;

- we verify, for a relevant problem of strategic flight planning optimisation, that solv-
ing the problem on smaller components and then aggregating the solutions can be
significantly faster than solving the whole network, at the only expense of a slight
deterioration of the optimal solution.

2. Materials and Methods
2.1. Data

We consider the flights scheduled on 1 September 2017 in the European airspace,
obtained from EUROCONTROL’s Demand Data Repository 2 (DDR2). We included all
flights departing from or landing to an airport of an EUROCONTROL member state, or in
Morocco, Egypt, or Belarus. Flights overflying Europe are excluded because they operate at
an altitude such that they do not influence the strategic planning of the European airspace.
For the same reason, military flights, helicopters, and flights departing and arriving at
the same airport are also excluded. The final dataset consists of 29,917 flights. For each
flight, we have the following information: departure airport, destination airport, requested
departure time, all possible routes, and the route used on 1 September 2017. The possible
routes are all the routes that have been used for that departure–destination pair by the
same type of aircraft between February and September 2017. We are aware that besides
the aircraft type, other reasons may influence the route choice by an airline. However, we
do not have the information that allows us to extrapolate this choice and the literature is
not yet unanimous in indicating the factors that determine it [5]. Therefore, in this study
we assume that any route used for a specific O/D pair by a particular type of aircraft can
be considered a valid alternative for any flight that operates between the same O/D pair
with the same type of aircraft. We call “route” the 3D trajectory of the flight, i.e., the list of
sectors crossed, for each of which we know how many minutes after departure they are
entered. With “trajectory”, instead, we indicate the 4D trajectory, i.e., the combination of
the route and the time at which each sector is entered. Additionally, we make use of the
notion of sector-hour, that is, a sector in a time-window of one hour. A trajectory is therefore
specified by a list of sectors-hour. Each sector-hour has a known nominal capacity.

2.2. Network of Flights

We consider a network where nodes represent the flights in our dataset. We want to
join two flights with an (undirected) link when they might influence each other in the flight
planning optimisation. This happens when there is an overlap between the sectors-hour
they might use, as they are competing for the utilisation of the same capacity resource.
Suppose, for example, that the requested trajectories of two flights are such that both flights
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cross a certain sector-hour. If this sector-hour exceeds its nominal capacity according to
the current plan, one of these two flights might be assigned a different route or departure
time. In such a situation, we say the two flights influence each other. The criterion for
choosing which flight must change plan and how depends on the particular model used
for mitigating the imbalance between demand and capacity. In our case, the SAIPE model
(see Section 2.5) redistributes the air traffic in order to minimise the total schedule shift
of flights, i.e., the difference between the assigned and requested departure and arrival
times. Additionally, even two flights which do not share any sector-hour according to
their requested trajectories could influence each other if after the optimisation the new
trajectories overlap. Considering that the strategic flight planning optimisation aims at
producing a plan as close as possible to the requests, this interaction is less probable than
the one based on the requested trajectories. Summarising, there are three elements to
consider: the requested trajectories, all the possible trajectories that can be assigned to each
flight, and the capacity utilisation of sectors-hour. We test four different criteria to establish
a link:

1. For each flight, the sectors-hour that it would cross are determined based on the
requested route and requested departure time. Since the requested routes (represented
in the DRR2 repository as so6 m0 format, first filed flight plan) are rarely available,
here we use DDR2 so6 m1 routes (last filed flight plan) as a proxy. Two flights are
linked if they share at least one of these sectors-hour.

2. Similar to criterion 1, but now we consider two flights as linked only if they share at
least one congested sector-hour. A sector-hour is congested if its capacity utilisation
(number of flights accessing it divided by the nominal capacity) exceeds 80%. We
determine the number of flights accessing each sector-hour based on the requested
trajectories. According to this definition, 4462 sectors-hour are congested on a total
of 24,008 (i.e., 18.6%). This network represents a less conservative approach than
in 1., as it accounts for the fact that two flights sharing a non-congested sector-hour
are not really competing for the sector-hour capacity as there is ample availability of
this resource.

3. For each flight, we determine the potentially crossed sectors-hour by considering all
the possible trajectories that can be assigned to that flight. Two flights are linked if
they share at least one of these sectors-hour. The possible trajectories include all the
possible routes for that flight (see Section 2.1) and a departure time that can vary
within ±30 min with respect to the requested one. Since the SAIPE model used as a
benchmark in this study addresses the strategic planning phase, which comes before
the publication of the flight schedules, departure and arrival times earlier or later than
the requested ones may be assigned.

4. Similar to criterion 3, but links are now weighted according to how many sectors-
hour are shared and how congested they are. The weight of a link is the sum of
the capacity utilisation of the sectors-hour in common between the two flights. We
compute the capacity utilisation in a way that accounts for all the possible trajectories,
by estimating the number of flights accessing a sector-hour as follows: if a flight has
n possible trajectories, of which n1 pass from a certain sector-hour, the latter will be
accessed with probability n1/n by that flight (assuming that all trajectories are equally
probable). We compute the expected number of flights accessing a sector-hour as the
sum of its probability to be accessed by each flight. Finally, we divide this number by
the nominal capacity to obtain the capacity load.

Criteria 1 and 2 consider only the interactions based on the requested trajectories,
which can be thought as the most probable interactions. Criterion 2 is more stringent
than criterion 1, as it adds the constraint on capacity utilisation, resulting in a smaller
link density of the network (0.3%, while criterion 1 yields 0.6%). Considering only the
requested trajectories could overlook some relevant interactions. For this reason, we also
considered criteria 3 and 4, which use all the available information on possible trajectories.
The network obtained with these two criteria have all the links included in the network
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obtained with criterion 1, plus many additional ones. The two networks have the same,
relatively high, link density (2.9%). Criterion 4 additionally acknowledges that some links
are more important than others, as they are based on sharing more congested sectors.

The four criteria that we listed above represent some combinations over the possible
choices to establish a link. Other criteria are of course possible, resulting in different
networks. For example, one could require that more than one sector or congested sector is
shared in order to have a link or consider a different threshold of capacity utilisation to
define congestion. Moreover, in criterion 2, one could use the capacity utilisation computed
as in criterion 4, instead of those based on the requested trajectories only. We chose these
four criteria as four possibilities that are all meaningful while differing in relevant elements.
This allows us to explore the effect of these different choices on the resulting networks.

We implemented the networks using the NetworkX Python package.

2.3. Community Detection Algorithms

Community detection algorithms aim at partitioning the network into clusters of
nodes, also called communities, that are more densely connected among themselves than
with nodes of other clusters. We consider two community detection algorithms: the
Louvain algorithm [26] and the Infomap algorithm [27].

The Louvain algorithm is a heuristic algorithm that maximises the modularity of
the network. The modularity Q of a network partition P measures the fraction of links
between nodes of the same community with respect to the fraction of such links in a null
model where each node has the same degree (or strength) but links are wired randomly.
Therefore, a partition has high modularity if nodes tend to be linked with nodes of the
same community. Modularity is defined as

Q =
1

2m ∑
i,j
(Aij −

kik j

2m
)δ(ci, cj) (1)

where A is the (weighted) adjacency matrix, ki is the degree of node i (or strength if the
network is weighted), ci is the community to which node i belongs to according to P, m is
the total number of links (or the total strength), and δ(ci, cj) is the Kronecker delta. The
Louvain algorithm proceeds by aggregation. Nodes are initially all in different communities.
Then, the algorithm considers one node at a time and evaluates the modularity increase
obtained by aggregating it to each one of the communities that have at least one link to
that node. The node is aggregated to the community yielding the highest modularity
increase. When all nodes have been considered and potentially moved, the process is
repeated until there are no moves that increase the modularity. This closes the first round
of the algorithm. In the following round, the same procedure is performed, but instead
of single nodes, whole communities are now moved, until no further increase of the
modularity is possible. The algorithm proceeds until it reaches a configuration where there
are no moves that increase the modularity. This final configuration is taken as the network
partition maximising modularity. We used the algorithm available in the “Community”
Python package.

The Infomap algorithm uses a similar heuristic algorithm to minimise a different
objective function, the minimal length of a bit-string needed to represent a random walk
on the network. A random walker on a network moves between nodes choosing links
randomly (or according to weights on a weighted network). For a network partitioned in
communities, the walk can be represented as a sequence that contains the labels of each
node that is crossed, and of each community that is entered or exited. By appropriately
assigning binary labels to nodes and communities, each walk is represented by a unique bit-
string. Given an optimal labelling, the length of the bit-string needed to describe a random
walk depends on the partition, and a “good” partition will yield a short string. In fact, if we
have a partition such that there are few links between different communities, the random
walk will tend to stay within communities. To describe this walk we will have to record the
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entry and exit labels of communities only rarely, yielding a shorter string. This aspect would
favour large communities, but on the other hand, if the communities are small the optimal
labelling of nodes will have shorter labels, yielding a shorter string. The assumption of the
algorithm is that the trade-off between these two aspects is realised by the optimal partition.
We used the algorithm available on Infomap Online (www.mapequation.org/infomap,
accessed on 6 August 2021).

We apply each of the two community detection algorithms to each of the 4 networks,
and we refer to the pair algorithm–network as a scenario. Each of the eight scenarios is
run 30 times to verify the robustness of the results. Each run has the same seed across
scenarios, allowing across-scenario comparison of results. For the analysis of the results,
flights that were not assigned to any clusters and flights in clusters with less than 300 flights
are gathered into a single cluster. These flights typically represent around 1% of the total.

2.4. Comparing Different Partitions

Partitions of the network obtained from the community detection algorithms dif-
fer between runs and between scenarios. To compare two partitions, P1 and P2, we use
two indexes.

• The Rand Index (RI) [28] counts the fraction of node pairs that are either in the same
set in both partitions or in different sets in both partitions, i.e., the probability that the
two partitions agree on a random pair.

• The Mutual Information (MI) [29] of two partitions is defined as

MI(P1, P2) = ∑
C1∈P1

∑
C2∈P2

p(C1, C2)log
(

p(C1, C2)

p(C1)p(C2)

)
(2)

where C1 and C2 are the communities in the two partitions, p(Ci) is the probabil-
ity that a node belongs to community Ci in partition Pi and p(C1, C2) is the joint
probability that a node belongs to community C1 in P1 and to community C2 in P2.
The MI quantifies the amount of information on one partition that we obtain by ob-
serving the other partition. If the two partitions are completely independent, i.e.,
p(C1, C2) = p(C1)p(C2) for all communities, they have MI = 0.

When partitioning a finite number of elements, any two partitions have some similarity,
even if they are picked at random, independently. To correct for this effect, we use the
adjusted version of the two indexes [30,31]. The adjusted index is obtained by subtracting
to the index value the expected value of that index according to a Permutation Model,
where the number and size of clusters are kept constant but the elements are shuffled
randomly. The values are then normalised by the maximum possible value of the index, so
that they are bounded above by 1.

2.5. The SAIPE Model

The SAIPE model [25] is an integer programming formulation that distributes at
the strategic flight planning level (i.e., months or weeks before actual operations) the air
traffic of an entire day across Europe. It assigns a departure time and a route to each
flight such that capacity constraints of airports and sectors are respected, while minimising
the differences between the assigned and requested departure and arrival times. The
authors of [25] also show that this early traffic assignment leads to a reduction of delays
and associated costs on the day of operations with respect to the case when no capacity
constraints are enforced.

Since running SAIPE on the dataset used in this work takes only 5 min (see Section 1),
we can test the feasibility of our approach by performing several computational experi-
ments in relatively little time. In fact, to validate the community detection approach, we
first run the SAIPE on the entire network to obtain the exact global solution. This solution
consists of a strategic flight plan that respects all the constraints on sector capacities. Then,
we run the SAIPE on the partitioned network for each of the 8 scenarios. For each scenario,

www.mapequation.org/infomap
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we consider partitions obtained with 30 different runs of the community detection algo-
rithms, to account for the variability of their outcome. For each of these partitions, we run
the SAIPE independently on every cluster, obtaining a solution for the flights of the cluster.
Then, we aggregate the solutions of the clusters to obtain the (approximate) global solution.
Finally, we compare the exact solution with the approximate ones, obtained in the different
scenarios, in terms of number of violated capacity constraints and resolution time.

2.6. Comparing Constraint Violations

When the SAIPE model is applied on the entire network there are no violations of
capacity constraints, as their respect is enforced. Instead, when SAIPE is independently
applied to each detected community after the results aggregation, some capacity viola-
tions arise. We refer to these violations as strategic capacity violations in the following.
In order to evaluate the magnitude of these violations, it would be unfair to compare
them directly with the violations realised on 1 September 2017. In fact, from the day the
strategic plan is prepared to the actual day of operations, unexpected events (e.g., adverse
weather conditions or union actions) may jeopardise the plan leading to additional (tacti-
cal) violations and ATFM delays. In order to perform a fair comparison, we estimate the
tactical violations as follows. We randomly assign ATFM delays to flights according to
the empirical distribution of ATFM delays as they actually happened on 1 September 2017
(see Supplementary Figure S1). Of all flights, 86%, drawn randomly, have no delay, while
the remaining ones are assigned a delay according to this empirical distribution. Tactical
violations are computed from the resulting schedule. The random delay assignment is
repeated 3000 times for each outcome of the SAIPE, and results are averaged.

3. Results and Discussion

The application of each scenario, consisting of a method to build the network and
an algorithm to cluster it, yields the partition of a network in a set of clusters. The first
two sections of the results are devoted to analysing the results of this procedure. In
Section 3.1, we compare the results of the application of different scenarios in terms of
two important aspects: the run time needed to perform the clustering, and the number
of clusters obtained. We also check if the clusters obtained are similar across different
runs of the same scenario, and across different scenarios. In Section 3.2, we analyse the
clusters obtained, to understand what characterises these groups of weakly interacting
flights. Then, applying the SAIPE optimisation to each partitioned network yields an
optimised strategic plan. Sections 3.3 and 3.4 analyse the output of the optimisation in
terms of resolution time and quality of the solution.

3.1. Comparison of Results of Community Detection in Different Scenarios

The Infomap algorithm has smaller run times with respect to the Louvain algorithm
(see Figure 2A, the scale is logarithmic). Both algorithms are significantly faster on networks
1 and 2 than on networks 3 and 4, due to the smaller number of links. The combination
of Infomap on network 2 yields the shortest run time, 8.4 s on average over 30 runs. Run
times are consistent, in terms of order of magnitude, across runs. This can be seen from the
limited height of the boxes in Figure 2A.

The number of clusters detected in each scenario is also quite consistent across repeti-
tions (see Figure 2B). An exception is Infomap on Network 4, where around a third of the
runs yield only 3 clusters, while the others yield 14–18 clusters.

The number of clusters depends both on the algorithm and on the underlying net-
work. Infomap on networks 1 and 2 finds a smaller number of clusters (typically 3 and
4, respectively) if compared to the same algorithm on the denser networks, while for the
Louvain algorithm the converse is true. Therefore, we cannot draw a general conclusion on
the relationship between the network-building method and the number of clusters found.
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Figure 2. Results of the two community detection algorithms on the four considered networks.
(A) Run time; (B) Number of clusters identified. Circles are outliers, crosses represent the data used
to make the boxes.

Both clustering algorithms typically produce consistent results when they are run on a
given network several times. In fact, the similarity of the network partitions obtained across
different runs of the same scenario is high for most scenarios, as measured both by the Rand
Index and the Mutual Information (Figure 3A). The most consistent scenario is Infomap
on network 2. At the other extreme, Infomap on network 4 produces very variable results.
This is consistent with what is observed in Figure 2B, i.e., that different runs of Infomap on
network 4 produce partitions with a different number of clusters. Partitions obtained with
different runs of the same scenario are more similar to each other than those obtained with
different scenarios (Figure 3B). The outlier in panel B (blue circle) is, again, Infomap on
network 4, with low similarity across runs. The greater similarity of clustering results across
runs with respect to those across scenarios suggests that each scenario produces a partition
that is, to a certain extent, characteristic of that scenario. In other words, each scenario
partitions the network differently. Nevertheless, there are some similarities among the
partitions obtained with different scenarios, according to both indexes. Namely, the results
on networks 3 and 4 with different methods are similar (Figure 3C), and the Louvain
algorithm finds similar results on networks 1 and 2 (Figure 3D).
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Figure 3. Similarity of partitions, measured by Rand Index (red) and Mutual Information (blue).
(A) Similarity of partitions across different runs of the same scenario. (B) Comparison of the similarity
of partitions obtained with different runs of the same scenario and with different scenarios. Crosses
represent the data used to make the boxes, circles are outliers. (C) Similarity of partitions obtained
with different clustering methods on the same network. (D) Similarity of partitions obtained on two
different networks with the same clustering method (above Infomap, below Louvain). For example,
1-2 refers to the comparison between results obtained on networks 1 and 2.

3.2. Temporal and Spatial Analysis of Clusters

To characterise the results of the partitioning algorithm, we looked at the temporal
and spatial properties of the obtained clusters. Specifically, we looked at the distribution
of departure times and at the spatial arrangement of the routes of flights contained in
each cluster. We found that the clusters have a clear temporal or spatial characterisation.
For example, in Figure 4A, we observe that the Infomap algorithm on network 1 finds two
clusters with well-separated departure times. The two clusters are spatially overlapping
(panel B). The Louvain algorithm on network 3, instead, finds clusters that have some
temporal overlap (panel C). However, clusters that overlap temporally are spatially distinct.
In fact, in panel D we see that the two clusters that both contain flights departing around
10 a.m. (yellow and dark violet) have different geographical positions. Similarly, the cluster
that is temporally distributed along the entire afternoon and overlaps with two other
clusters, is very specific geographically, being localised in the Scandinavian area. Results
for other algorithms are in Supplementary Figures S2 and S3.

Therefore, we conclude that both community detection algorithms succeed in finding
clusters of flights that have in common the time of the day, the geographical position,
or both. The fineness of this separation depends on the algorithms and on the network.
For example, the temporal division performed by the Infomap algorithm on network 1
(panel A) is rougher than the one performed by the Louvain algorithm on network 3
(panel C). The latter isolates four different time periods: early morning, late morning, early
afternoon, and late afternoon.
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Figure 4. Temporal and spatial characterisation of clusters. (A) Histograms of departure times for
clusters found by the Infomap algorithm on network 1. (B) Spatial distribution of clusters found
by the Infomap algorithm on network 1. (C) Histograms of departure times for clusters found by
the Louvain algorithm on network 3. (D) Spatial distribution of clusters found by the Louvain
algorithm on network 3. In panels B and D, each segment represents a flight, and for each cluster,
only 300 flights picked at random are represented, for clarity.

3.3. A Trade-Off between the Number of Capacity Violations and the Resolution Time

We apply the SAIPE optimisation to each partitioned network obtained with the
different scenarios. The optimisation is run in parallel on the clusters. For each run, we
obtain an optimised strategic plan for each cluster, and by aggregating over clusters we
obtain the global strategic plan for all flights.

The advantage that we expected in optimising independently the clusters was to have
a reduced resolution time. Indeed, we find that the resolution time of the SAIPE decreases
with the number of clusters (Figure 5A). This is expected because solving in parallel more,
but smaller, clusters is faster than solving a smaller number of larger clusters. For any
number of clusters, the resolution time is shorter than the time needed to find the global
exact solution on the unpartitioned network, which is roughly 260 s.

The advantage of a reduced resolution time must be evaluated in parallel to the
disadvantage of obtaining an approximate global solution. To quantify the quality of this
global solution, we measure the number and size of the violations of capacity constraints.
Given a global solution, i.e., a strategic flight plan, we compare the sectors-hour occupation
with the nominal capacities, to assess constraint violations. We call the violations computed
according to the strategic flight plan strategic violations.

First, we look at the number of capacity violations, i.e., the number of sectors where the
nominal capacity is exceeded. The number of violations tends to increase with the numbers
of clusters (Figure 5B). This pattern means that when the network is partitioned in more
clusters, it happens more often that two interacting flights are in two distinct clusters, and
are therefore optimised independently.

There is therefore a trade-off between the number of violations, lower when there
are few clusters, and the resolution time, lower when there are many clusters. Figure 5C
shows that in the present case, a good trade-off is represented by Infomap on network 1.
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This scenario in fact reduces the resolution time by roughly one-third with respect to time
needed to run the SAIPE on the entire network (baseline), at the cost of a small number of
violations. Further reducing the resolution time comes at a higher relative cost in terms
of violations.

3 4 5 6 7 8 9 10 11
# Clusters

60

80

100

120

140

160

180

200

R
es

ol
ut

io
n 

Ti
m

e 
(s

)

3 4 5 6 7 8 9 10 11
# Clusters

0

200

400

600

800

1000

1200

# 
V

io
la

tio
ns

80 100 120 140 160 180 200 220 240 260 280
Resolution time (s)

0

200

400

600

800

1000

# 
vi

ol
at

io
ns

A

B

C
Baseline
Infomap
Louvain

Network 3

Network 1
Network 2

Network 4

Figure 5. Results of application of SAIPE to outputs of community detection, for each of the
8 scenarios (30 runs of the community detection algorithm for each scenario). (A) Box plot of
resolution time of SAIPE for each scenario, plotted against the average number of cluster obtained
with that scenario. (B) Box plot of number of violations produced by SAIPE for each scenario, plotted
against the average number of cluster obtained with that scenario. Circles are outliers, crosses repre-
sent the data used to make the boxes. (C) Average number of violations against average resolution
time for each scenario and for the non-partitioned case (baseline). Error bars are standard deviations.

The particular community detection method yielding the best solution might be
specific to the problem. However, we can draw the general conclusion that partitioning
flights in small number of clusters (3–5) represents a good compromise between reducing
the resolution time and keeping the number of violations low.

We also compute the size of the violations, i.e., the number of flights exceeding the
capacity, in absolute and in percentage. The mean and variance of the violation size do
not show a dependence on the number of clusters and are similar for all scenarios (see
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Figure 6, blue bars). Infomap on network 2 shows the lowest mean violation size, both
absolute and percentage.
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Figure 6. Number of violations, mean and variance of absolute and percentage size of violations for each scenario and from the
empirical data. Blue bars represent strategic violations, values are averaged over 30 repetitions of the community detection algorithm
(on whose results the SAIPE is applied). Red bars represent tactical violations, averaged over 30 repetitions of the community detection
algorithms and over 3000 random delay assignments for each repetition. The dotted lines represent the number and size of violations
occurred on 1 September 2017, respectively.

3.4. Comparison with Actual Capacity Violations

To understand if the violations found in the approximate solutions produced by our
approach are acceptable, we compare them with the violations that actually occurred on
1 September 2017. We find that the strategic violations are in all cases smaller in number
and size with respect to the capacity violations that actually occurred on 1 September 2017
(represented as dotted lines in Figure 6). As explained in the Methods section (Section 2.6),
a fairer comparison is that with the tactical violations that we estimate would arise from
each strategic plan due to ATFM delays. These estimated tactical violations are more,
in number, with respect to the strategic ones, but smaller on average (both in absolute value
and in percentage) (see Figure 6, red bars). Importantly, they remain in all cases smaller in
number and size with respect to the occurred violations. We can therefore conclude that,
for all tested scenarios, the capacity violations produced by our approach are not a cause
for concern.

4. Conclusions

The need for an air traffic system that is sustainable both from an environmental and
an economic point of view requires the availability of mathematical and/or simulation
models that allow to solve traffic management problems in a reasonable amount of time.

A classic approach to solving problems associated with complex systems consists of
finding decompositions of the system in smaller subsystems that interact weakly with each
other. In this work, we apply this approach to the set of flights, aiming to identify subsets
of flights that interact as little as possible with other subgroups, where interactions are
defined within the context of the specific problem at hand. Such decomposition allows to
solve the problem independently on each of the subsystems. The resolution can thus be
parallelised, with obvious computational advantages.

We partition the set of flights by applying community detection algorithms. To this
end, the system must be appropriately formalised as a network, whose links represent
the interactions that should be minimised between subsystems. We propose a method to
build this network, with four possible variations, specifically for the problem of mitigating
imbalances between capacity and demand. The methods use information available at
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the time of strategic flight planning on flights routes and departure times to identify
which pairs of flights might interact during the resolution of the problem. The exact
result of this partitioning depends on the method chosen to build the network and the
clustering algorithm. However, analysing the clusters of flights that we obtained applying
community detection algorithms to each of the networks, we found out that these clusters
are temporally and/or spatially differentiated. This indicates that the minimisation of
between-clusters interaction sought by the algorithms is consistently realised by gathering
flights by temporal or spatial position.

We test four alternative methods to build the network and two clustering algorithms,
which produce different results in terms of quality of the solution and computational time.
We can use these differences to identify the most suited methodological choices. In the
context of the present application, Infomap on network 1 offers the best combination of
characteristics: low run time to perform the clustering and good trade-off between resolu-
tion time of the strategic flight planning model and number of capacity violations, their
size also being significantly smaller than the realised ones. While this specific conclusion
might not directly generalise to all datasets and problems, we can draw some general
indications. First, in terms of capacity violations, all solutions for the problem of strategic
flight planning obtained with any method and clustering algorithm are acceptable. In fact,
all choices yield violations that are, in number and size, considerably smaller than the
actual ones. Therefore, the quality of the solution should not be a strong concern in the
choice of the method. Second, the shorter run time of the Infomap algorithm to perform the
clustering make it preferable with respect to the Louvain algorithm. Third, if a good guess
of the most likely trajectory is available (e.g., from historical data), it seems preferable to
use methods 1 or 2 to build the network. In fact, these two methods require a shorter run
time for the clustering (due to the smaller number of links) and yield either a better (in the
case of Infomap) or comparable (in the case of Louvain) trade-off between violations and
resolution time.

The results of this work also offer significant developments that might go beyond the
simple reduction of computational resolution times. In fact, the possibility of identifying
groups of flights that only weakly interact with each other allows, for example, to isolate the
downstream effects that can be caused by a flight’s delay (reactionary delay) and also the
consequences that it can have on passenger connectivity (missed connections). To perform
this type of analysis, however, the definition of interaction between flights (used to establish
links in the network) should be expanded. It should include not only interactions in the
airspace, but also at airports, a study which is currently under development.

With the inclusion of interactions at airports, our approach could also lead to sig-
nificant enhancements of models that optimise the allocation of airport slots. Currently,
these slots are allocated according to the IATA World Schedule Guidelines (WSG) on an
airport-by-airport basis. The allocation does not take place for a single day, but for a series
of slots. A series is composed of at least five slots allocated for the same or approximately
same time on the same day-of-the-week, distributed regularly in the season [32]. Since
airports are clearly interconnected, the current single airport allocation is likely to produce
allocations at two different airports that may not be compatible with the flight time between
them. For this reason, twice a year, a Slot Coordination conference takes place principally
to resolve conflicts stemming from the timing of slots allocated across multiple airports [33].
The current contributions that address the allocation of airport slots at the network level
are based on very strong simplifications that severely limit their applicability—only for
single days and not in series [34], with computer-generated instances under a number
of severely simplifying assumptions [35], or considering a network composed of only
3 airports in southern China [36]. An appropriate decomposition of the network, as pro-
posed in this work, could foster the development of optimisation models that limit the
use of face-to-face and manually conducted negotiations, as is the case today in the Slot
Coordination conference.
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