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Abstract. The design of engineering components must take into account the manufacturing 

tolerances of production processes since they lead to uncertainties in the behaviour of the 

products. It is therefore of valuable practical interest to quantify such uncertainties, with 

particular reference to problems involving geometrical uncertainties of the boundaries. This 

task is carried out in the present work by coupling the Non-Intrusive Polynomial Chaos (PC) 

method, employed for the quantification of uncertainties, with a Radial Basis Function Finite 

Differences (RBF-FD) meshless method, employed for the numerical simulations. The PC 

method with the Non-Intrusive formulation allows the use of existing deterministic solvers for 

the accurate prediction of the sought random response, i.e., the statistic moments of the 

involved variables. The RBF-FD method is therefore employed as a black box solver for the 

required set of problems defined over deterministic domains. The main advantage of the RBF-

FD meshless method over traditional mesh-based methods is its capability of easily deal with 

practical problems defined over complex-shaped domains since no traditional mesh is required. 

The geometrical flexibility of the RBF-FD is even more advantageous in the context of 

geometric uncertainty quantification with the Non-Intrusive PC method since different 

solutions over different geometries are required. The applicability of the proposed approach to 

practical problems is then presented through the prediction of geometric uncertainty effects for 

a tube heat exchanger under natural convection where a 2D steady incompressible flow is 

considered. 

1. Introduction 

Tolerances and uncertainties in the manufacturing of generic products lead to an uncertain behaviour 

in their performances, which must be taken into account and accurately quantified when dealing with 

robust design. Therefore, it is of remarkable interest to develop efficient numerical approaches 

allowing the accurate quantification of such uncertainties in practical problems. In this work we deal 

with the propagation of geometric uncertainties on the boundaries in incompressible, laminar and 

steady-state fluid flows, focusing on the natural convection in a tube heat exchanger. The stochastic 

problem is solved by means of the Non-Intrusive Polynomial Chaos method [1-6]. The Non-Intrusive 

formulation [4,5] allows the use of existing solvers as black boxes without any modification since the 

calculation of the random response is based on a set of deterministic response evaluations. The use of 

the Polynomial Chaos formulation with particular orthogonal polynomials, e.g., Hermite polynomials, 
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allows the best representation of a given stochastic process, i.e., the number of required deterministic 

evaluations is minimum for any desired level of accuracy of the uncertainty [1,2]. The numerical 

solutions over the required deterministic geometries are obtained through a Radial Basis Function 

Finite Differences (RBF-FD) meshless method [6-12]. This choice is due to the geometric flexibility 

and the ability of RBF-FD meshless methods to easily deal with complex-shaped domains encountered 

in practical engineering problems: a traditional mesh/grid is no longer needed since a simple 

distribution of nodes over the domain is required. Futhermore, the employed Non-Intrusive 

formulation requires different numerical solutions over different geometries, which is a task that can 

be easily carried out by the RBF-FD method by means of a straightforward displacement of nodes [6]. 

The proposed approach is employed for the quantification of the statistical moments, i.e., expected 

value  and variance 
2
, of some flow variables and related quantities, i.e., velocity, pressure, 

temperature, mass flow rate and local/mean Nusselt numbers over each tube, in the case of a 2D 

steady-state incompressible flow in a tube heat exchanger under natural convection with a Rayleigh 

number RaD = 10
4
, based on the tubes diameter D. The horizontal (transverse) and vertical 

(longitudinal) tube pitches are described by two stochastic variables, while the validation of the 

deterministic RBF-FD solver is carried out on the same problem with RaD = 2·10
4
. 

2. Nomenclature 

The employed symbols are listed as follows: 

 

aj RBF expansion coefficient T temperature 

ci polynomial expansion coefficient u velocity vector 

D tubes diameter u
*
 tentative velocity vector 

gj RBF polynomial basis u horizontal velocity component 

GrD Grashof number v vertical velocity component 

h reference size of node distribution W tubes horizontal pitch 

H tubes vertical pitch x position vector 

Hin upstream domain extension xi i-th node 

Hout downstream domain extension �̅� mean position of supporting nodes 

m dimension of RBF polynomial basis t time step size 

�̇� nondimensional mass flow rate  multiquadric RBF shape factor 

M number of independent random variables i polynomial chaos basis functions 

n number of RBF supporting nodes  mean value 

N total number of nodes  multiquadric RBF 

𝑁𝑢̅̅ ̅̅
𝐷,𝑖 mean Nusselt number  physical domain 

p pressure  random process 

P polynomial basis degree i polynomial chaos expansion coefficients 

Pr Prandtl number  projection auxiliary variable 

q degree of Hermite polynomial  standard deviation 

Q dimension of polynomial chaos basis i random variables 

RaD Rayleigh number 
(i)

 zeros of Hermite polynomials 

s spacing function  random vector 

t time  azimuthal angle 

 

3. Governing equations 

Let us consider an incompressible fluid with density , kinematic viscosity , thermal diffusivity , 

thermal conductivity k and volumetric temperature expansion coefficient . The resulting conservation 

equations of mass, momentum and energy are 
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 ∇ ∙ 𝒖 = 0  (1) 

 
𝜕𝒖

𝜕𝑡
+ (𝒖 ∙ ∇)𝒖 = −∇𝑝 +

1

√𝐺𝑟𝐷
∇2𝒖 + 𝒋𝑇 (2) 

 
𝜕𝑇

𝜕𝑡
+ 𝒖 ∙ ∇𝑇 =

1

𝑃𝑟√𝐺𝑟𝐷
∇2𝑇  (3) 

where j is the vertical unit vector. In the above equations, length, velocity u = (u, v), time t, pressure p 

and temperature T are made nondimensional by taking D, 𝑈0 = √𝑔𝛽𝐷∆𝑇, D/U0, U0
2
and T as 

reference quantities, respectively, where g is the gravitational acceleration. GrD = gD
3
T/ is the 

Grashof number, Pr =  is the Prandtl number and RaD = GrD ·Pr is the Rayleigh number. 

4. Uncertainty quantification 

4.1. Tensorial-expanded Polynomial Chaos 

Given a vector of M independent random variables = (,…,)
T
, under certain conditions [2] a 

random process 𝜑(x,) with finite second-order moments, which describes most physical processes, 

can be expanded as 

 𝜑(𝐱, 𝜽) = ∑ 𝜑𝑖(𝐱)𝛾𝑖(𝜽)∞
𝑖=0  (4) 

where {i} is a suitable basis, i(x) are the corresponding expansion coefficients and x denotes the 

position. For each type of random variables distribution there exists the best representation, i.e., the 

best choice for the basis {i} in terms of convergence rate for the sought statistical moments of In 

this work random variables with gaussian distribution i ~ Nwill be considered only, therefore the 

corresponding best representation is given by Hermite polynomials (Hermite-Chaos) [1]. In fact, 1D 

Hermite polynomials are orthogonal with respect to the gaussian probability density function (PDF), 

therefore the M-dimensional tensorial-expanded Hermite polynomials are orthogonal with respect to 

the M-dimensional gaussian PDF w() [1]. 

The expansion (4), expressed in the Hermite-Chaos form and truncated to a finite number Q+1 of 

terms, can be expressed as 

 𝜑(𝐱, 𝜽) = ∑ ⋯ ∑ 𝜑𝑖1⋯𝑖𝑀
(𝐱)𝐻𝑖1

(𝜃1) ⋯ 𝐻𝑖𝑀
(𝜃𝑀)

𝑞𝑀
𝑖𝑀=0

𝑞1
𝑖1=0  (5) 

where Hj() is the Hermite polynomial of degree j (see [1] for further details). 

The statistical moments of can be computed from the approximation (5): the expected value  

(and the variance 

( are 

 

 𝜇(𝜑) = ∫ 𝜑(𝐱, 𝜽)𝑤(𝜽)𝑑𝜽
𝑅𝑀 = 𝜑0⋯0(𝐱) (6) 

 𝜎2(𝜑) = ∫ [𝜑(𝐱, 𝜽) − 𝜑0⋯0(𝐱)]2𝑤(𝜽)𝑑𝜽
𝑅𝑀 =  

 = −𝜑0⋯0
2 (𝐱) + ∑ ⋯ ∑ 𝜑𝑖1⋯𝑖𝑀

2 (𝐱)𝑖1! ⋯ 𝑖𝑀!
𝑞𝑀
𝑖𝑀=0

𝑞1
𝑖1=0  (7) 

4.2. Collocation 

In order to obtain the best approximation for ( and 

(, we note that Eqs. (6)-(7) are weighted 

integrals with a gaussian weight function w(). Therefore, the best choice for the Q+1 = 

(q1+1)···(qM+1) sample points 
(i)

, i.e., the points where (x,) has to be evaluated, are the roots of the 

Hermite polynomial of degree qk+1 along each of the M dimensions, i.e., Hqk+1(k
(i)

) = 0 for k = 1,…,M 

and i = 1,…,qk+1. The Hermite-Chaos expansion (6) is therefore made valid at the previous Q+1 roots 

by using a collocation technique in order to obtain the Q+1 unknown coefficients 𝜑𝑖1⋯𝑖𝑀
(𝐱). In other 
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words, the Hermite-Chaos expansion can be seen as an interpolant matching the random process  at 

the sample points 
(i)

. 

5. RBF-FD meshless method 

The evaluation of the random process  at the sample points 
(i) 

can be done with any suitable 

deterministic solver. Since the aim of this work is to analyze the effect of geometric uncertainties of 

the boundaries on the flow field, it is desirable to employ a solver which can easily and automatically 

address a specific fluid flow problem on different computational domains. In this perspective the RBF-

FD meshless method is proposed. 

5.1. RBF-FD discretization 

5.1.1. 2D node distributions. The 2D node distributions required by the RBF-FD meshless 

discretization have been obtained through the quadtree algorithm modified with a dithering correction, 

followed by repel refinement [13]. The resulting distribution is a set of N nodes xi which are 

isotropically displaced over the domain  and over its boundary = ∂according to a prescribed 

spacing function s(x). 

5.1.2. RBF interpolation. A generic field  is approximated near x by the following local RBF 

expansion 

 𝜑(𝐱) = ∑ 𝑎𝑖𝜔(||𝐱 − 𝐱𝑖′||)
𝑛
𝑖=1 + ∑ 𝑐𝑖𝑔𝑗(𝐱 − �̅�)𝑚

𝑗=1  (8) 

where i’ are the indices of the n supporting nodes 𝐱𝑖′ closest to 𝐱, �̅� is their mean position, (||·||) are 

Radial Basis Functions (RBF) and ai are the corresponding coefficients. The functions gj form a 

complete 2D polynomial basis of degree P with  𝑚 = (
𝑃 + 2

𝑃
) terms and cj are the corresponding 

coefficients. The chosen number of supporting nodes is n=2m as suggested in [14-15]. The 

multiquadric RBF 𝜔(𝑟) = √1 + (𝜀r)2 has been chosen, where the shape factor is chosen to be 

𝜀 = 0.4/𝑠(�̅�).

In order to express the coefficients ai  and cj as functions of the nodal values of the unknown field , 

the expansion (8) is required to match  at the supporting nodes which do not lie on the boundary, 

while boundary conditions are directly enforced at the supporting nodes lying on the boundary. 

5.1.3. RBF-FD collocation. Given a linear partial differential equation L() = f in the unknown field 

the RBF expansion (8) is made valid at each node xk which does not lie on the boundary, obtaining 

a square and sparse linear system in the unknown nodal values k = (xk). 

5.2. Solution procedure 

At each time step, the computation of velocity, pressure and temperature through Eqs. (1)-(3) is 

decoupled using a projection scheme with a three-level Gear scheme for the time discretization. A 

tentative velocity u* is computed from the linearized momentum equation expansion  

 
3𝒖∗−4𝒖𝑙+𝒖𝑙−1

∆𝑡
+ 𝒖𝑙 ∙ ∇𝒖∗ = −∇𝑝𝑙 +

1

√𝐺𝑟𝐷
∇2𝒖∗ + 𝒋𝑇𝑙 (9) 

where l is the time level and t = 0.5 is the chosen nondimensional time step size. u* is then forced to 

satisfy the continuity equation (1) by means of an irrotational correction u
l+1

 = u* - ∇ , leading to the 

Poisson equation ∇2 = ∇·u* in the auxiliary variable  

The pressure is then updated as p
l

 

+1 
= p

l
 +  / t and the temperature is computed from  

 
3𝑇𝑙+1−4𝑇𝑙+𝑇𝑙−1

∆𝑡
+ 𝒖𝑙+1 ∙ ∇𝑇𝑙+1 =

1

𝑃𝑟√𝐺𝑟𝐷
∇2𝑇𝑙+1 (10) 
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where l is the time level and t = 0.5 is the chosen nondimensional time step size. 

The previous equations are discretized with the same RBF-FD scheme presented in Section 4.1 

employing a 6
th
 order hyperviscosity stabilization [6]. A BiCGSTAB iterative solver [16], with an 

incomplete LU factorization as preconditioner [17], is employed for the solution of the transport Eqs. 

(9)-(10) using a relative tolerance tol = 10
-8

, while the Poisson equation is solved through a LU 

decomposition which can be performed once at the beginning of the simulation. The steady-state 

convergence is declared when the normalized RMS time derivative of each flow variable, i.e., u, v, p 

and T, is less than 10
-5

. The normalized RMS time derivative of a generic field is given by the RMS 

average of the numerical time derivative (
l+1


l
) / t, normalized by the amplitude A = max() - 

min(). 

6. Results 

6.1. Problem definition 

The geometry of the problem is depicted in Figure 1, where the computational domain is indicated by 

the red hatched rectangle and extends Hin = 2.5D below the lower tube (tube 1) and Hout = 15D above 

the upper tube (tube 5). W = 2D and H = √3𝐷 are the horizontal and vertical tube pitches, 

respectively. Zero static pressure and zero normal derivatives for the velocities are imposed on both 

Inlet and Outlet, while symmetry conditions for both velocities and temperature are imposed at the 

vertical sides of the computational domain. T = 0 is imposed at the inlet and T = 1 is imposed at the 

tubes, while zero normal derivative for the temperature is imposed at the Outlet. A particular of a node 

distribution with N = 84,167 nodes is also depicted in Figure (1): higher node density, i.e., number of 

nodes per unit area, is employed near the tube walls in order to accurately solve the wall gradients, 

especially for the temperature.  

6.2. Validation of the RBF-FD method 

The implementation of the RBF-FD solver for this problem is validated for RaD = 2·10
4
. The 

convergence curves in terms of normalized RMS errors are depicted in Figure 2 for each of the flow 

 

(a) (b) 

Figure 1. Geometry of the problem (a), particular of a generated node distribution with N = 84,167 

nodes (b). 
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variables and for three different polynomial degrees P = 2, 3, 4 for the RBF expansion, where the 

numerical solution for P = 4 and N = 630,017 nodes is taken as reference. The resulting order of 

accuracy is approximately 2.5, 3.5 and 5.0 for P = 2, 3, 4, respectively, which are obtained by taking 

the asymptotic linear regression curve using log-log scales. The last three simulations for P = 4 are 

disregarded in the calculation of the linear regression curve since they would cause an overestimation 

of the order of accuracy. The convergence of the nondimensional mass flow rate �̇� and mean Nusselt 

numbers 𝑁𝑢̅̅ ̅̅
𝐷,𝑖 over each tube is reported in Table 1, where it can be appreciated the accuracy up to 

the third digit for almost each quantity. 

 

Figure 2. Convergence curves for the flow variables in the deterministic case at RaD = 2·10
4
. 
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6.3. Uncertainty quantification 

The uncertainty is introduced on the horizontal and vertical tube pitches. The horizontal pitch is 

chosen to be W = 2D(1 + 0.05) and the vertical pitch is chosen to be H = √3𝐷 (1 + 0.05), i.e., 

pitches with gaussian uncertainty characterized by 5% standard deviation. The uncertain space is 

therefore defined by M = 2 uncertain variables with normal distribution. Equal polynomial degrees q1 

= q2 = q are employed for the Hermite-Chaos expansion, requiring Q+1= (q1 + 1)(q2 + 1) = (q+1)
2
 

deterministic RBF-FD solutions over the corresponding geometries. A lower Rayleigh number RaD = 

10
4 

is chosen in order to avoid flow instabilities originating from the recirculation zone above the 

upper tube for some of the required geometrical configurations. N ≈ 80,000 nodes are employed for 

the deterministic solutions over the required geometries. 

The convergence of mean and standard deviation of the nondimensional mass flow rate �̇� and mean 

Nusselt numbers 𝑁𝑢̅̅ ̅̅
𝐷,𝑖 over each tube is reported in Table 3, where four different polynomial degrees 

q = 1, 2, 3, 4 for the Hermite-Chaos expansion are employed. A very fast convergence is achieved for 

the mean values and the standard deviation values are also apparently converging, although slightly 

more slowly. The zeros of the Hermite polynomials are listed in Table 2 for the employed values of q. 

The normalized RMS errors for mean and standard deviation of the flow variables u, v, p and T are 

reported in Table 4, again for four different polynomial degrees q = 1, 2, 3, 4  for the Hermite-Chaos  

 

Table 1. Convergence of some flow quantities in the deterministic case at RaD = 2·10
4
.

 

Table 2. Zeros 
i)

 of the Hermite polynomial Hq+1 of degree q+1. 
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expansion. From this table it can be observed that the errors for the standard deviation values are 

strictly converging to the reference solution, which is obtained for q = 4, while the errors for the mean 

values are not strictly decreasing. In particular the errors of the mean values do not decrease when 

increasing the polynomial degree from q = 2 to q = 3. This is due to the fact that the reference solution 

for q = 4 is not the exact solution and the error due to the truncated Hermite-Chaos expansion is still 

present. Therefore, when the employed polynomial q approaches the reference value q = 4, the relative 

difference is not fully reliable as an indicator of the real convergence. Nonetheless, from a practical 

point of view the absolute values of the normalized RMS errors for both mean and standard deviations 

are very small, confirming the high accuracy and efficiency of the Polynomial-Chaos collocation 

method.  

The mean value and the standard deviation of the local Nusselt number over each tube are depicted in 

Figure 3, where it can be appreciated how the uncertainty on the pitches of the tubes has a stronger 

Table 3. Convergence of mean and standard deviation of some flow quantities in the stochastic case 

at RaD = 10
4
. 

 

 

  

 

(a) (b) 

Figure 3. Mean (a) and standard deviation (b) of the local Nusselt number for each tube at  RaD = 10
4
. 
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influence on the local Nusselt number at low angles 𝜗 only for tubes 3, 4 and 5, while tubes 1 and 2 

show a lower standard deviation at all angles, as confirmed by Table 3. 

The mean value and the standard deviation of the flow variables are depicted in Figures 4 and 5 in the 

case q = 4, where the streamlines are also shown. The streamlines reveal recirculation zones above 

each tube, where the standard deviation of the flow variables is low. As expected, zones with high 

standard deviation values for the velocities are encountered in between the tubes where the flow 

exhibits large gradients and large magnitudes in the velocities at the same time. The highest values of 

the standard deviation for the temperature is encountered in between tube 1 (lower tube) and tube 2, 

while zones with high standard deviation are also encountered in between the successive tubes, 

although with decreasing magnitude. On the contrary, the highest values for the pressure standard 

deviations are encountered along the vertical sides of the computational domain, halfway between the  

Table 4. Normalized RMS errors for mean and standard deviation of flow variables in the 

stochastic case at RaD = 10
4
. 

 

 

  

 

Figure 4. Mean value of the flow variables for RaD = 10
4
 (q = 4). 
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tubes lying on the same side, which are the zones where the magnitude of the velocity is highest 

because of the reduced flow section. 

 

 

7. Conclusions 
In this work a Non-Intrusive Polynomial Chaos method is coupled to a RBF-FD meshless method for 

the accurate quantification of the uncertainties arising in laminar, incompressible and steady flows due 

to geometric uncertainties on the boundaries. The statistical moments of the sought flow quantities are 

evaluated with high accuracy by using the minimum number of deterministic fluid-flow solutions by 

means of the tensorial-expanded Polynomial-Chaos formulation in the case of a tube heat exchanger 

under natural convection. The main advantage of the presented meshless approach over standard 

mesh-based approaches is its capability to easily deal with complex geometries, which turns out to be 

an additional advantage when coupling the RBF-FD method to the employed Non-Intrusive 

Polynomial Chaos method since multiple deterministic solutions over different geometries are 

required. Furthermore, in addition to its geometrical flexibility, the RBF-FD method is a very 

promising choice since it is shown to be also very accurate and efficient, i.e., high orders of accuracy 

can be easily obtained. 

Future work will deal with the extension of the presented methodologies to the deterministic and 

stochastic analysis of general heat transfer problems defined over 3D complex-shaped domains. 

 

 

Figure 5. Standard deviation of the flow variables for RaD = 10
4
 (q = 4). 
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