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Abstract: Low Density Parity Check (LDPC) codes are currently being deeply analyzed through
algorithms that require the capability of addressing their iterative decoding convergence performance.
Since it has been observed that the probability distribution function of the decoder’s log-likelihood
ratio messages is roughly Gaussian, a multiplicity of moderate entanglement strategies to this analysis
has been suggested. The first of them was proposed in Chung et al.’s 2001 paper, where the recurrent
sequence, characterizing the passage of messages between variable and check nodes, concerns the
function φ(x), therein specified, and its inverse. In this paper, we review this old approximation to the
function φ(x), one variant on it obtained in the same period (proposed in Ha et al.’s 2004 paper), and
some new ones, recently published in two 2019 papers by Vatta et al. The objective of this review is to
analyze the differences among them and their characteristics in terms of accuracy and computational
complexity. In particular, the explicitly invertible, not piecewise defined approximation of the function
φ(x), published in the second of the two abovementioned 2019 papers, is shown to have less relative
error in any x than most of the other approximations. Moreover, its use conducts to an important
complexity reduction, and allows better Gaussian approximated thresholds to be obtained.

Keywords: LDPC codes; threshold; Gaussian approximation; φ(x) of Gaussian approximation;
density evolution; sum-product algorithm; piecewise defined approximation; Mathematica R©; Lambert
W-function

1. Introduction

The investigation of Low Density Parity Check (LDPC) codes decoding, carried
out by means of the belief propagation algorithm, usually takes place by analyzing the
evolution of the probability densities of the messages exchanged between check and
variable nodes of the bipartite (Tanner) graph describing a code belonging to this family [1].
However, this is a rather complicated job due to the continuous nature of the messages
themselves, which makes them difficult to analyze. To avoid the difficulty of this task,
Chung et al. presented, in [2], a Gaussian approximation (GA) (Despite its limits (see,
e.g., [3,4]), the use of the GA is very convenient when a powerful and effortless approach is
required. See its recent adoption, e.g., to obtain “bounds on LDPC decoding thresholds [5],
rate-compatible puncturing patterns for LDPC codes [6,7], analytical bit-error rate (BER)
expressions [8], and unequal error protection (UEP) LDPC codes [9].”) for the message
probability distribution, simplifying the evolution of the infinite dimensional density space
to the evolution of a single parameter. They mathematically described the passage of
messages between variable and check nodes of the Tanner graph by means of a recurring
succession of the mean values of the check nodes’ output messages, having shown that
regular LDPC codes present message densities that are roughly Gaussian, whereas irregular
ones present message densities that are Gaussian combinations [10]. In this way, instead
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of describing the variable and check node output message as a function of the incoming
messages from their respective neighbors, a recursive sequence is obtained by expressing a
check node output message mean value at the l-th iteration as a function of the same mean
value at the (l− 1)-th iteration [4]. The belief-propagation decoding thresholds, also known
as density evolution thresholds—addressing LDPC codes iterative decoding convergence
performance and defined as the maximum channel noise level such that the probability
of error of the belief-propagation decoding algorithm tends to zero as the number of its
iterations tends to infinity [2]—may be approximated by evaluating the last value of the
channel noise variance σ2

n such that this recurrent sequence converges, or, equivalently,
as the first σ2

n value such that the sequence diverges, obtaining the so-called GA thresholds.
The recurrent sequence in [2] is expressed through the function φ(x), defined in the

aforementioned paper. Its study has been performed in [3], to obtain tighter upper and
lower bounds on it for x > 0. Chung et al.’s lower and upper bounds (1− 3/x)ψ(x) and
(1 + 1/7x)ψ(x) with ψ(x) =

√
π/x exp(−x/4), holding for the function φ(x) involved in

the GA, have been both analytically proved in [3] to be improved by replacing 3 with π2/4
and 1/7x with 0, respectively. It was shown in [3] that the tighter upper bound therein
obtained is explicitly invertible through the Lambert W-function (also called omega function
or product logarithm), whereas the one obtained in [2] is not explicitly invertible. Moreover,
on the basis of the two tighter bounds on φ(x) found, a piecewise defined approximation of
φ(x) has been obtained in [3]. This is analogous but improved with respect to the one in [2],
in the sense that it allows to obtain GA thresholds closer to the ones obtained applying
density evolution than the GA thresholds given in [2]. In [10], a new approximation of the
function φ(x) was given, which, unlike the other approximations found in the literature
(see [2,3,6]),

1. is not piecewise defined in the definition interval [0,+∞[ i.e., it is defined through a
unique mathematical expression,

2. is explicitly invertible,
3. remains between the two above said tighter bounds of [3] in the domain of interest,
4. and has less relative error for any value of x than most of the other approximations,

when the error is evaluated by computing φ(x) numerically through a Mathematica R©

statement published in [11].

As noted in [10], the fact that this new approximation has always an univocal ana-
lytical expression (i.e., it is not piecewise defined) implies its easy mathematical handling,
in contrast to formerly defined piecewise functions, defined by distinct analytical expressions
being dependent on the range of values taken by the argument x. Moreover, its explicit
invertibility implies that no interpolated functions approximating it by points (xk, φ(xk))
and its inverse by points (φ(xk), xk) are required. These properties conduct to an impor-
tant complexity reduction of the algebraic handling and utilization of the approximation
itself. Moreover, its use allows better GA thresholds to be obtained, in the sense that they
approximate the thresholds obtained with density evolution better than the GA thresholds
obtained in [2].

In this paper, a review of the abovementioned old approximations (published in [2,6])
and new approximations (published in [3,10]) to the function φ(x) is performed, so that to
analyze the differences among them and their characteristics in terms of accuracy and com-
putational complexity. The paper is organized as follows. In the next section, we review the
GA for irregular LDPC code density evolution. Section 3 is dedicated to the valuable merits
an approximation should have: among them, there is the explicit invertibility, addressed
in Section 6. Section 4 recalls the definitions of absolute and relative errors as means to
evaluate the accuracy of an approximation. Section 5 recalls the function φ(x) specified
in [2] and the literature where its principal approximations were presented. Section 6
addresses the approximation of the inverse φ−1(y). Section 7 compares the numerical
results-in terms of calculated GA thresholds-obtained applying the approximations to φ(x)
reviewed in the paper, and, finally, Section 8 recapitulates the conclusions.
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2. Gaussian Approximation for Irregular LDPC Codes

We treat irregular LDPC codes as it has been shown that they behave better than
regular ones [12]. Furthermore, it was shown in [2] and recalled in [10] that message
densities are roughly Gaussians for regular LDPC codes or Gaussian mixtures for irregular
ones, and hence regular LDPC codes can be considered as a special case of irregular ones.

Irregular LDPC codes [12] are defined by means of the distribution of the node degrees
in their Tanner graphs [1], specified through the polynomials λ(x) and ρ(x) [13]:

λ(x) =
dl

∑
i=2

λixi−1, (1)

ρ(x) =
dr

∑
j=2

ρjxj−1. (2)

The (dl−1)-tuple {λi} and (dr−1)-tuple {ρj} both add up to 1 [14], and λi (respec-
tively, ρj) specifies the fraction of total edges in the Tanner graph insisting on a degree-i
variable node (respectively, on a degree-j check node).

Express with v the output message of a variable node and with u the output message
of a check node (In soft-decision belief-propagation decoding, the messages are the log-
likelihood ratios (LLRs) of received bits). The first is expressed as

v = log
(P{y|x = +1}

P{y|x = −1}

)
,

where x is the node bit value, and y is all the information at this node’s disposal up to
the current iteration. The edge bringing the information related to v is not considered.
Likewise, u is expressed as

u = log
(P{y′|x′ = +1}

P{y′|x′ = −1}

)
,

where x′ is the variable node bit value, and y′ is the information at this check node’s
disposal up to the current iteration, ignoring the edge bearing u [7].

Following the analysis in [2], where a one-dimensional quantity, i.e., the mean of
Gaussian densities, was demonstrated to perform as a reliable replacement for the message
densities themselves, we hypothesize, as in [10], that we can approximate as Gaussian
the LDPC message distributions for additive white Gaussian noise (AWGN) channels and
denote with m(l)

u and m(l)
v the means of u and v at the l-th iteration, respectively. Moreover,

we assume the log-likelihood ratio (LLR) message u0 from the channel to be Gaussian with
mean mu0 = 2/σ2

n and variance 4/σ2
n , being σ2

n the variance of the channel noise. For a
degree-i variable node at the lth iteration, the mean of the output yields

m(l)
v,i = mu0 + (i− 1)m(l−1)

u ,

where m(l−1)
u is the mean of u at the (l − 1)-th iteration. Assuming that the codeword

length tends to infinity, and consequently adducing a cycle-free Tanner graph argument,
for a check node at the lth iteration, the mean of the output yields

m(l)
u =

dr

∑
j=2

ρjφ
−1
(

1−
[
1−

dl

∑
i=2

λiφ
(
mu0 + (i− 1)m(l−1)

u
)]j−1)

(3)

being the fundamental function φ(x) of [2] defined as:

φ(x) =

{
1− 1√

4πx

∫
IR tanh u

2 e−
(u−x)2

4x du if x > 0
1 if x = 0.

(4)
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Assuming s := mu0 and tl := m(l)
u , and defining, as in [5],

gs(t) =
dr

∑
j=2

ρjgs,j(t), (5)

where

gs,j(t) = φ−1(1− [1− dl

∑
i=2

λiφ(s + (i− 1)t)
]j−1), (6)

the sequence (3) may be rewritten as

tl = gs(tl−1). (7)

Using the algorithmic method presented in [15], instead of looking for, as done in the
original paper [2], the minimum value of the parameter s guaranteeing the convergence
of the sequence (7), as in [10] we make use of a standard software to solve a problem of
quadratic degeneracy [16]. Namely, when the second derivative g′′s (t) 6= 0, the problem of
quadratic degeneracy is the solution of the system of equations{

gs(t) = t
g′s(t) = 1.

(8)

To explain the mathematical meaning of (8), a graphical representation of it has been

shown in Figure 1 of [15]. The solution of (8), (t∗, s∗), gives an approximation σ∗ :=
√

2
s∗

of the belief-propagation decoding threshold obtained applying density evolution, i.e., the
so-called GA threshold.

3. Valuable Merits of an Approximation

It is our opinion that the valuable merits of an approximation are (see also [10,17],
the latter concerning the approximation for the Gaussian probability integral Q(x)):

• to be defined by a single expression, i.e., not piecewise defined;
• its simplicity;
• to be expressed in closed form, without integrals and series and continuous fractions

(and limits) by means of:

– elementary functions with standard names used in mathematics;
– the abovementioned elementary functions and the Lambert W-function (Notice

that the principal branch of the real Lambert W-function (which is the inverse
of x ex for x > −1 [10]), at least for x ≥ 0, is very classic, with a standard
name used in mathematics, has well known and published series expansions, is
explicitly invertible by means of elementary functions with standard names used
in mathematics, but is not an elementary function;)

• to be appreciable on a wide domain: the better would be R, subordinately x ≥ 0, then
[0, b] with b > 0, and, finally, [a, b] with a > 0;

• to present a low absolute error (on some domain);
• to present a low relative error in absolute value (on some domain);
• to be explicitly invertible (see Section 6).

Moreover, as far as the approximation a(x) of the function φ(x)-reported in (4)-is
specifically concerned, the search for it is based on these two fundamental points [10]:

1. To avoid an infinite relative error, a(x) has to present a finite value in x = 0, otherwise
it diverges in 0.

2. To avoid an infinite absolute relative error εr(1) (defined in (9)), the inverse a−1(y)
of the approximation a(x) has to be such that a−1(1) = φ−1(1) exactly, because
φ−1(1) = 0.
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4. Notes on Absolute and Relative Errors

Let’s denote, for a function f (·) and an approximation a(·) of the same argument, by

ε( f ,a)(·) := |a(·)− f (·)|, or simply ε( f )(·), or even ε(·)

the absolute error, intended as a function with the same domain of f , and by

ε( f ,a) := max |a(·)− f (·)|, or simply ε( f ,a), or even ε

the maximum absolute error, intended as a number, summarizing the distance of the
approximation from the function.

Analogously, for relative errors, denote with

ε
( f ,a)
r (·) :=

∣∣∣∣ a(·)− f (·)
f (·)

∣∣∣∣, or simply εr(·) (9)

the absolute relative error, intended as a function with the same domain of f if 6= 0, and by

ε
( f ,a)
r := max

∣∣∣∣ a(·)− f (·)
f (·)

∣∣∣∣, or simply εr (10)

the maximum absolute relative error, intended as a number, summarizing the distance
of the approximation from the function, normalized with respect to the function f itself,
if 6= 0.

Generally, it may be observed that, when classifying two approximations of a function
by means of their closeness to that function, the use of the relative error as a means of mea-
suring this closeness is more suitable if that function has a zero limit (In fact, for example,
it is not very important to notice that an approximated value of about, let us say, 10−5,
has an absolute error less than, let us say, 10−4). Thus, for the fundamental function φ(x)
defined in (4), with a zero limit for x → ∞ (see Figure 3 in [11], showing its graph), the use
of relative errors is more significant and widely used in the literature: see [2,3,6,10], con-
cerning the approximations for the fundamental function φ(x), but also works concerning
other functions having a zero limit, such as the already cited Gaussian probability integral
Q(x) (see [18–22] where the approximations for Q(x) were all found, minimizing the abso-
lute relative error). Here, the relative error has been evaluated by applying (9) and (10),
and computing φ(x) numerically through the following Mathematica R© statement [11]:

phi[x_]:=1−(1/Sqrt[4 Pi x])NIntegrate[Tanh[u/2] Exp[−(u−x)∧2/(4 x)],

{u,−200,200}, WorkingPrecision −>24]

The first line simply rewrites the first line of (4) to perform a numerical integration with
the instruction NIntegrate. The second line specifies the integration interval and, through
the instruction WorkingPrecision, how many digits of precision should be maintained in
the computation. For the computations of this paper, the second line has been refined to

{u,−320,320}, WorkingPrecision −>40]

5. The Function φ(x): Review of Its Principal Approximations

For the function φ(x) defined in (4), these upper and lower bounds have been proved
in [2]: (

1− 3
x

)√π

x
e−x/4 < φ(x) <

(
1 +

1
7x

)√π

x
e−x/4 for x 6= 0 (11)

and these others, tighter, have been proved recently in [3]:

(
1− π2

4
1
x

)√π

x
e−x/4 < φ(x) <

√
π

x
e−x/4 for x 6= 0. (12)
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Moreover, the following three approximations, all piecewise defined, have been pub-
lished in [2,3,6], respectively (The approximations, throughout the paper, have been named
with a subscript reporting the name of the first author of the publication):

aChung(x) =

{
e−0.4527 x0.86+0.0218 if 0 ≤ x ≤ 10 (a)√

π
x e−x/4

(
1− 10

7 x

)
if x > 10 (b)

(13)

aVatta(x) =

{
e−0.4527 x0.864+0.0218 if 0 ≤ x ≤ 10 (a)√

π
x e−x/4

(
1− π2

8 x

)
if x > 10 (b)

(14)

aHa(x) =


e0.0564 x2−0.48560 x if 0 ≤ x < 0.867861 (a)
e−0.4527 x0.86+0.0218 if 0.867861 ≤ x ≤ 10 (b)√

π
x e−x/4

(
1− 10

7 x

)
if x > 10 (c).

(15)

As remarked in [10], (8) can be solved making use of an explicitly invertible approxima-
tion of φ(x), since gs(t) is defined through φ and φ−1.

The piecewise defined approximation found in [2], and recalled in (13), is made of two
parts: the first, holding for 0 ≤ x ≤ 10, is the ad hoc approximation by elementary functions
(13a), explicitly invertible, the second, holding for x > 10, is the approximation (13b), instead
not explicitly invertible, and therefore, not usable directly in (8). Thus, to solve (8), in [15]
Babich et al. have used the approximation (13a) only, which behaves very badly, as shown
in Figure 1 of [10], for x > 10. In this case, the more the argument of φ(x) gets greater
than 10 in the sequence defined by (7), the more uncertain are the GA thresholds evaluated
solving (8), with respect to the exact ones σexact evaluated through density evolution,
e.g., in [12].

The piecewise defined approximation found in [3], and recalled in (14), also contains,
for 0 ≤ x ≤ 10, an explicitly invertible ad hoc approximation (14a), obtained through
elementary functions [10]. The approximation (14b) of [3] for x > 10, is instead not
explicitly invertible again, like the one in [2], and thus again not usable directly in (8) to find
its solution. Thus, to find the numerical results published in [2,3], their authors had to
resort (even not explicitly stated in [2,3]) to an interpolated function approximating (13b)
and (14b) by points to determine its inverse, needed to solve (8) (since it is defined through
(5) and (6)).

To avoid the abovementioned problems, a new, explicitly invertible, approximation
of φ(x) was given in [10]. This was not defined by multiple functions, but by a unique
expression (the subscript “np” stands for “not piecewise” (defined)):

aVatta−np(x) = ψ(ν(µ(x))) ≈ φ(x) (16)

being

ψ(z) :=
√

π

z
e−z/4

z = ν(y) := y +
a

b + y
y = µ(x) := x + cedx

with
a = (b + c)

(
2 W

(π

2

)
− c
)

b = 6.45

c = −0.062 d = −1.87,

where W(x) is the Lambert W-function, and aVatta−np(x) is the new approximation of φ(x),
defined by a single expression for any x ≥ 0. To build an approximation a(x) of φ(x),
having the two fundamental characteristics mentioned at the end of Section 3, the function
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ψ(z) :=
√

π

z
e−z/4

was taken as a fundamental function, since, as remarked in the Appendix of [5], it is a good
explicitly invertible asymptotical approximation of φ(x), but-as observed in [10]—it diverges
in x = 0, giving an infinite maximum absolute relative error εr (see Table 1 in [10]), and its
inverse presents an infinite maximum absolute relative error εr, too, since ψ−1(1) ≈ 1.5
(i.e., 6= 0).

In [10], some suitable functions ν(y), µ(x), and parameters a, b, c, and d have been ex-
plored to detect the most appropriate approximation. The fitting parameter a was selected
so that aVatta−np(0) = 1 precisely and, therefore, a−1

Vatta−np(1) = 0 (see the function ψ−1(y)
derived in the Appendix of [5]), thus fulfilling the two fundamental points mentioned at
the end of Section 3. The functions ν(y), µ(x), and the parameters b, c, and d have been
searched with the goal of minimizing the absolute relative error (9), while maintaining the
explicit invertibility.

In Figure 2 of [10], it was shown that the relative error of aVatta−np(x) is <0.14% in
[0, 80], which is the interval of main interest, where the approximation (16) remains between
the two tighter bounds (12) defined in [3] as shown in Figure 1. Furthermore, as shown in
Table 1, it has a lower maximum absolute relative error εr (10)—reported in bold—than
any other approximation, except (15a) (In [6], the authors had to add the ad hoc explicitly
invertible approximation (15a), since they had to compute φ(x) around x = 0, where the
approximation (13a) is not good enough (see Figure 1 of [10])).

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1.2

Figure 1. Graphs in [0, 10] of the function aVatta−np(x) (approximating φ(x)) (16) (bold) and the
tighter lower and upper bounds (12).

Table 1. Maximum absolute relative errors εr (10) of the different approximations of the function
φ(x) and of its inverse, when it exists.

Eq. First Author (Year) [Ref.] Parts Domain εr εr for the Inverse

(13a) Chung (2001) [2] 1 0 ≤ x ≤ 10 2.3% +∞
(14a) Vatta (2019) [3] 1 0 ≤ x ≤ 10 3.0% +∞
(15a) Ha (2004) [6] 1 0 ≤ x < 0.867861 0.1% 3%
(13b) Chung (2001) [2] 1 x > 10 3.1% 0.9%
(14b) Vatta (2019) [3] 1 x > 10 4.9% 1.7%
(13) Chung (2001) [2] 2 x > 0 3.1% 6 ∃
(14) Vatta (2019) [3] 2 x > 0 4.9% 6 ∃
(15) Ha (2004) [6] 3 x ≥ 0 3.1% 6 ∃
(16) Vatta (2019) [10] 1 x ≥ 0 0.14% 1.1%
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6. Approximating the Function φ−1(y) through an Explicitly Invertible Approximation

The explicit invertibility of an approximation a(x) avoids the necessity of making use
of an interpolated function to approximate it by points (xk, a(xk)) and its inverse by points
(a(xk), xk) [10]. In other words, we assume that a function is explicitly invertible if we are
able to find an inverse whose expression involves elementary functions and the Lambert
W-function. Here, this property will be explained through an example, showing how to
find an inverse with these characteristics.

6.1. Example of Explicit Invertibility

Given the function

y(x) :=
a e−b (x+d)c

((x + d)c + s)t ,

the procedure to obtain the explicit inverse goes through the following steps:

1. substitute u := x + d or x = u− d thus obtaining

y =
a e−b uc

(uc + s)t ;

2. substitute w := uc or u = w1/c getting

y =
a e−b w

(w + s)t ;

3. substitute z := w + s or w = z− s thus giving

y =
a e−b (z−s)

zt ;

4. expand

y =
a e−b z+b s

zt = (a eb s)
e−b z

zt ;

5. define the constant k := a eb s obtaining

y = k
e−b z

zt ;

6. and rewrite the last, yielding the following:

b
t

(y
k

)−1/t
=

bz
t

e
bz
t .

7. Finally, recalling that W(xex) ≡ x for x > 0 (see, e.g., [5]) invert the last obtaining this
function (of the variable y)

z =
t
b

W

(
b
( y

k
)−1/t

t

)
,

8. and then make the aforementioned substitutions:

k = a eb s ⇒ z =
t
b

W

 b
(

y
a eb s

)−1/t

t
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z = w + s⇒ w + s =
t
b

W

 b
(

y
a eb s

)−1/t

t



w = uc ⇒ uc + s =
t
b

W

 b
(

y
a eb s

)−1/t

t



u = x + d⇒ (x + d)c + s =
t
b

W

 b
(

y
a eb s

)−1/t

t


9. yielding

(x + d)c =
t
b

W

 b
(

y
a eb s

)−1/t

t

− s

and

(x + d) =

 t
b

W

 b
(

y
a eb s

)−1/t

t

− s


1/c

10. Thus, the explicit inverse of the starting function y(x) can be expressed as

x =

 t
b

W

 b
(

y
a eb s

)−1/t

t

− s


1/c

− d

6.2. Explicit Inverse of the Approximation a Vatta−np(x)

Since the approximation aVatta−np(x) (16) is made of the three explicitly invertible
functions ψ, ν and µ, it is explicitly invertible by the Lambert W-function [10]:

ψ(ν(µ(x))) = y

ν(µ(x)) = ψ−1(y) µ(x) = ν−1(ψ−1(y))

x = µ−1(ν−1(ψ−1(y))) = a−1
Vatta−np(y) ≈ φ−1(y)

with
ψ−1(y) = 2 W

( π

2 y2

)
ν−1(y) =

1
2

(√
−4 a + b2 + 2 b y + y2 − b + y

)

µ−1(y) =
d y−W

(
c d ed y

)
d

.

The inverse a−1
Vatta−np(y) of the approximation aVatta−np(x), considered as an approxi-

mation of the inverse φ−1(y) of φ(x), has a maximum absolute relative error εr (10) of 1.1%
in its domain [ψ(80), 1], which is the interval of main interest, being ψ(80) ≈ 0, as shown in
Figure 2. This is less than the maximum absolute relative error of any other approximation
inverse, when it exists, except (13b) (In [2], for x > 10 the authors suggest to use the
approximation (13b), average of the upper and lower bound (11) which, like (14b), the
average of the upper and lower bound (12), is not explicitly invertible), as shown in Table 1
(in bold).
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Figure 2. Relative error (in absolute value) εr(y) (9) of a−1
Vatta−np(y).

As mentioned at the end of Section 3, the approximation of the inverse in y = 1 must
match φ−1(1) exactly, otherwise it gives rise to an infinite maximum absolute relative
error for the inverse (last column of Table 1) in 1, since φ−1(1) = 0. This happens to the
approximation (13a), for which a−1

Chung(1) ≈ ( 0.0218
0.4527 )

1/0.86 6= 0 (see [15], where the inverse
of (13a) has been derived in (6)), and to the approximation (14a), whose inverse may be
expressed as follows:

a−1
Vatta(y) =

( log y− β

α

)1/γ
, (17)

with α = −0.4527, β = 0.0218, and γ = 0.864. In this case, a−1
Vatta(1) ≈ ( 0.0218

0.4527 )
1/0.864 6= 0

yields an infinite maximum absolute relative error for the inverse.

7. Numeric Results Concerning the Computation of the GA Thresholds
and Discussion

Generalizing Luby et al.’s results reported in [23], Richardson and Urbanke have
proved a concentration principle in [24] . In particular, they have shown that the average
behaviour of the individual instances of a code tends to concentrate around its expected
behaviour, obtained when its length is supposed to grow. In other words, they showed
that this average behaviour converges to the behaviour of the cycle-free case, which can
be derived from the corresponding cycle-free Tanner graph. They defined the threshold,
as explained in the Introduction, for a random ensemble of irregular LDPC codes, specified
by their degree distributions (1) and (2). Moreover, they presented an algorithm, denoted as
the density evolution algorithm, for the determination of the thresholds through iteratively
calculated message densities.

In this section, we present a comparison (see Table 2) between the GA thresholds, cal-
culated by applying the procedure described throughout this paper, and the thresholds
calculated through the density evolution algorithm. These thresholds have been shown in [24]
to be approached more closely as the codeword lengths increase (see Figures 5 and 6 in [24],
where the bit error rate performance curves are shown to move closer to the density evolution
thresholds, denoted by σ∗, as the block lengths increase from 1000 to 100,000). This corre-
sponds to making a comparison between the GA thresholds and those obtained by applying
a message passing algorithm to the iterative decoding of a long deterministic LDPC code.

Table 2. GA thresholds calculated by applying different approximations of the function φ(x) and of
its inverse.

Eq. First Author (Year) [Ref.] Domain GA Threshold

(13) Chung (2001) [2] x > 0 σGAChung = 0.9473
σGA0.05 = 0.9519

(14) Vatta (2019) [3] x > 0 σGA0.1 = 0.9538
σGA0.5 = 0.9533

(16) Vatta (2019) [10] x ≥ 0 σGAVatta−np = 0.9526
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For the irregular rate-1/2 LDPC code given in [2], with dl = 20 and dr = 9, with de-
gree distributions

λ(x) = 0.23403x + 0.21242x2 + 0.14690x5 + 0.10284x6

+0.30381x19

ρ(x) = 0.71875x7 + 0.28125x8
(18)

in [3], applying the software of [15] and the piecewise defined approximation (14), a GA
threshold was calculated σGAVatta = 0.9538, which was closer to the density evolution one
σexact = 0.9669 (reported in [2]) than the GA threshold σGAChung = 0.9473 computed in [2]
using the piecewise defined approximation (13). As said in Section 5, to find the numerical
results published in [2,3], their authors had to resort (even not explicitly stated) to an
interpolated function approximating (13b) and (14b) by points (xk, a(xk)) to determine
its inverse by points (a(xk), xk), needed to solve (8). As far as the function interpolation
(14b) is concerned, we found that the GA threshold computed through it depends on
the interpolation step ∆x considered. Taking, e.g., an interpolation step ∆x = 0.5, we
computed a GA threshold σGA0.5 = 0.9533, with ∆x = 0.1 a GA threshold σGA0.1 = 0.9538
(the one reported in [3]), and with ∆x = 0.05, a GA threshold σGA0.05 = 0.9519. By instead
applying the new, not piecewise defined, approximation (16), we obtain σGAVatta−np = 0.9526,
which is closer to the density evolution threshold σexact = 0.9669 than σGA0.05 = 0.9519
and σGAChung = 0.9473, but is slightly looser than σGA0.5 = 0.9533 and σGA0.1 = 0.9538.
However, using (16), the solution of (8) is greatly simplified since, as noticed in [10],
this approximation is given in [0,+∞[ by a single expression. This implies that, in any
argument x, it presents a unique analytical expression permitting its straightforward
algebraic manipulation. On the other hand, the so-called piecewise defined functions
present different analytical expressions determined by the value taken by the argument x.
Moreover, by using it, the solution of (8) does not depend on any discretization step.

8. Conclusions

In this paper, a review of old and new approximations to the function φ(x), charac-
terizing the passage of messages between variable and check nodes of the bipartite graph
describing an LDPC code [1], has been performed. In particular, two old (published in 2001
and 2004, respectively) and two new approximations, recently published, to the function
φ(x), were reviewed to analyze the differences among them and their characteristics in
terms of accuracy and computational complexity. The second of the two new approxima-
tions, unlike the other three (two old and one new) is defined by a single expression (i.e.,
it is not piecewise defined), it is explicitly invertible by means of the Lambert W-function, it
remains between the two tighter bounds (12) recently defined in [3], and it has a lower
relative error in any x than most of the other approximations (With the only exception of
the explicitly invertible approximation (15a), valid only for 0 ≤ x < 0.867861) when the error
is evaluated using a numerical computation of φ(x). As remarked in [10], the fact that it is
defined by a single expression and it is explicitly invertible yield an important complexity
reduction of the algebraic handling of the approximation itself. Moreover, its use allows
better GA thresholds to be obtained, in the sense that they approximate the thresholds
obtained with density evolution better than the GA thresholds obtained in [2].
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