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Abstract: Background: Diagnosis of endometriosis and evaluation of incidence data are complex
tasks because the disease is identified laparoscopically and confirmed histologically. Incidence
estimates reported in literature are widely inconsistent, presumably reflecting geographical vari-
ability of risk and the difficulty of obtaining reliable data. Methods: We retrieved incident cases of
endometriosis in women aged 15–50 years using hospital discharge records and pathology databases
of the Friuli Venezia Giulia region in the calendar period 2004–2017. We studied the spatial pat-
tern of endometriosis incidence applying Bayesian approaches to Disease Mapping, and profiled
municipalities at higher risk controlling for multiple comparisons using both q-values and a fully
Bayesian approach. Results: 4125 new cases of endometriosis were identified in the age range 15
to 50 years in the period 2004–2017. The incidence rate (×100 000) is 111 (95% CI 110–112), with
a maximum of 160 in the age group 31–35 years. The geographical distribution of endometriosis
incidence showed a very strong north-south spatial gradient. We consistently identified a group
of five neighboring municipalities at higher risk (RR 1.31 95% CI 1.13; 1.52), even accounting for
ascertainment bias. Conclusions: The cluster of 5 municipalities in the industrialized and polluted
south-east part of the region is suggestive. However, due to the ecologic nature of the present study,
information on the patients’ characteristics and exposure histories are limited. Individual studies,
including biomonitoring, and life-course studies are necessary to better evaluate our findings.

Keywords: endometriosis; incidence; epidemiological surveillance; disease mapping; hierarchical
Bayesian models; High Risk Areas Profiling

1. Introduction

Endometriosis is an estrogen-dependent female chronic inflammatory disease in which
endometrial tissue develops outside the uterus. [1–3] The symptoms of endometriosis are
chronic pelvic pain, fatigue, dysmenorrhea, dyspareunia, abnormal/irregular uterine
bleeding and infertility or subfertility, as response of endometrial tissue to hormonal
stimulation [4,5].

Endometriosis causes high social and healthcare system costs, worsening quality of
life and work productivity. The average time from onset of symptoms to diagnosis ranges
from 6 to 12 years, delaying appropriate therapy [6,7].

Diagnosing endometriosis also depends on the gynecologist and the assessment
method used. Identifying cases in the general population from endometriosis registers is
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difficult because laparoscopic visualizations and histologic confirmation can only obtain a
definitive diagnosis of the disease according to the ESHRE (European Society of Human
Reproduction and Embryology) guidelines [8]. Laparoscopy is an invasive surgical proce-
dure that is indicated in women with clear symptoms [9,10]. However, many women are
asymptomatic, or there may be an overlap of symptoms with other conditions and lesions
that might heal spontaneously or following hormonal treatment without a previously made
diagnosis [11,12].

The estimated incidence of endometriosis reported in the literature shows considerable
variability. It is difficult to interpret, reflecting geographical variability of risk or simply
due to the difficulty mentioned above of obtaining reliable data [4,11,13–17].

In a previous paper [18], we estimated the incidence and prevalence of endometriosis
in women between 15–50 years, in the Friuli Venezia Giulia (FVG) region, in the period
2011–2013. We found an endometriosis incidence rate of 0.11% and a prevalence of 1.82%.

When risk factors for disease are unknown, maps may help highlight spatial trends in
the distribution of relative risk and generate etiological hypotheses.

However, when the inferential goal is to identify municipalities with risk diverging
from the local or national reference, the problem must be addressed with a multiple test
approach, testing hypothesis departure from the reference null for each municipality.

In public health implications of disease mapping, several different decision rules are
discussed [19]. However, in practice, despite some criticism, p-values are still used to
scrutinize long lists of relative risks.

In functional Genomics data analysis and other high-throughput biological areas of
application, control of the False Discovery Rate (FDR) has become popular for multiple
comparisons adjustment [20,21]. To date, limited research has been conducted on FDR in
disease mapping [22].

In the Bayesian context, posterior probabilities of RR greater than the null obtained
from hierarchical Bayesian models failed to address the multiple comparison problem [23–
25]. As an alternative, classification probabilities obtained from Bayesian mixture models
have been adjusted for multiple comparisons [26] and proposed in the context of disease
mapping [27].

The goals of our study were to update the results reported in our previous paper [18].
We also sought to describe the spatial pattern of the incidence of endometriosis in FVG in the
period 2004–2017 using the two most common Bayesian approaches of Disease Mapping.
We also aimed to identify municipalities at different risk of endometriosis, controlling for
multiple comparisons using both “frequentist” FDR and a fully Bayesian approach.

2. Materials
2.1. Incidence of Endometriosis

Data were extracted from the FVG Regional Repository of MicroData (RRMD) by
record linkage using a unique anonymous identifier. RRMD is a centralized record system
automatically pooling health care data from the national health service. The FVG Regional
Health Authority granted access to the data, so no approval was required from the insti-
tutional review board of our Institute. FVG is a region located in the northeast of Italy.
It covers 7855 Km2 and has a population of approximately 1.22 million people, of which
630 thousand are women.

All endometriosis cases were extracted from hospital discharge and anatomic pathol-
ogy databases for the years 2004–2017. We used the International Classification of Diseases,
Ninth Revision ICD-9, codes 617.0–617.9, to identify at least one hospitalization with the
diagnosis of endometriosis in the hospital discharge database. In contrast, we used the Sys-
tematized Nomenclature of Medicine, SNOMED (codes M-89311, D7-72000, D7-72010, D7-
72020, D7-72100, D7-72106, D7-72110, D7-72114, D7-72120, D7-72122, D7-72124, D7-72126,
D7-72130, D7-72132, D7-72134, D7-72140, D7-72142, D7-72144, D7-72146, D7-72160, D7-
72170, D7-72180, D7-72190), to identify endometriosis in the anatomic pathology database.

We selected women 15–50 years of age residing in the FVG region.
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We considered as case a woman with:

1. At least one hospitalization with a diagnosis of endometriosis associated with the
identification of endometriosis from the anatomic pathology database. The association
was via a unique anonymous identifier of women and temporal proximity.

2. At least one hospitalization with a diagnosis of endometriosis confirmed by la-
paroscopy or a surgical procedure allowing direct visualization.

3. Identification of endometriosis from anatomic pathology database, without hospital-
ization with a diagnosis of endometriosis.

Patients with diagnoses supported by imaging procedures alone (i.e., ultrasound,
magnetic resonance, computerized axial tomography) were excluded.

To identify incident cases, we included only patients without a diagnosis of en-
dometriosis, based on the criteria described above, in the previous 10 years.

We calculated for each calendar year incidence rates with the number of endometriosis
cases in the age range 15 to 50 as the numerator and the number of women aged 15 to 50 resid-
ing in FVG, derived from the Italian National Institute of Statistics, [28] as the population-time
denominator. We then stratified the incidence rates by age classes, classifying cases based on
their age at diagnosis in 15–20, 21–25, 26–30, 31–35, 36–40, 41–45, 46–50.

The analyses were performed using SAS software, Version 9.4 (SAS Institute Inc., Cary,
NC, USA).

2.2. Standardized Incidence Ratios

Following internal indirect standardization and classification of the population in
7 age classes (15–20, 21–25, 26–30, 31–35, 36–40, 41–45, 46–50), a set of reference rates (Friuli
Venezia Giulia region, 2004–2017) were used to compute the expected number of cases for
each municipality.

For each i-th municipality (i = 1, . . . , 216), we calculated the standardized incidence
ratio (SIR = observed/expected number of cases) as an estimate of the relative risk (RR), i.e.,
the disease risk in each area compared to the adopted standard. In this way, we implicitly
specified the same null hypothesis H0: RRi = 1, testing the procedure for each area through
indirect standardization [29].

3. Methods
3.1. Models for Disease Mapping

We used the two most common Bayesian hierarchical models for Disease Mapping:
the Poisson-Gamma model [30] and the Besag-York-Mollié (hereafter known as BYM)
model [31]. The objective of these models is to account for overdispersion and stabilize
relative risk estimates.

In detail, let’s assume that the observed number of incident cases of endometriosis
in the i-th municipality Yi (i = 1, . . . , 216) follows a Poisson distribution with mean Ei x
θi, where Ei is the expected number of cases under indirect standardization and θi, is the
relative risk. The maximum likelihood estimator of θi is called the standardized incidence
ratio (SIR: ϑ̂i = Yi/Ei).

Bayesian inference requires the specification of appropriate prior distributions on
model parameters.

Clayton and Kaldor [30] assumed a Gamma (k,ν) prior distribution for θi. The hy-
perparameters k and ν are assumed to be exponentially distributed. Poisson random
variability is filtered out in this model, and relative risk estimates are shrunken toward the
general mean.

Besag et al. [31] specified a random effect log-linear model for the relative risk log(θi)
= ui + vi. The heterogeneity random term ui represents an unstructured spatial variability
component assumed a priori distributed as Normal (0, λu).

The clustering random term vi represents the structured spatial variability component
assumed to follow a priori an intrinsic conditional autoregressive (ICAR) model. In other
words, denoting Si as the set of the areas adjacent to the i-th one, vi|vj∈Si is assumed
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distributed as Normal(vi, λv ni) where vi is the mean of the terms of areas adjacent to the
i-th one [32] and λv ni is the precision which is dependent on ni, the number of areas in Si.
The hyperprior distributions of the precision parameters λv, λu are assumed to be Gamma
(0.5,0.0005) [33].

The BYM model shrinks the relative risk estimates both toward the local and the
general mean through these two random terms.

3.2. Profiling Municipalities at High Risk

Identifying the municipalities at high risk leads us in a multiple comparison frame-
work since we have m test of hypothesis (m = 216, number of municipalities in the region).
We control for uncertainty due to multiplicity.

3.2.1. Simple Approaches Based on p-Values

The commonly controlled quantity to account for multiple testing is the Family Wise
Error Rate (FWER), and the most common method is the Bonferroni approach. Benjamini e
Hochberg [34] proposed a procedure to control the proportion of false rejections among
the total number of rejections. They called this quantity the False Discovery Rate (FDR),
which is more appropriate in our context since we are performing m identical tests with m
different implications if the null hypothesis would be rejected [22]. Storey [20] proposed
an exploratory use of the positive FDR (pFDR), i.e., the FDR conditional to having at least
one rejection. The pFDR can be interpreted as a posterior Bayesian probability and can
be used to define the q-value, Prob (H0 | T ≥ Tobs), T being a test statistic, and Tobs the
observed value, for a generic i-th test. The q-value is the minimum pFDR in which we
can incur in the rejection of the null hypothesis based on the observed or more extreme
values of the test statistics. The q-value is a measure that takes multiple testing into account.
The “frequentist” calculation of q-values is based on ordered p-values and is reported in
Reference [20]. In [20], an empirical Bayesian procedure is proposed. When profiling is the
study’s goal, as in our case, it can be useful to screen each area using the q-values instead
of simply classifying them as “significant/non-significant” according to the assumed level
of FDR that is being controlled [35].

For a single hypothesis test, Goodman [36] proposed using the minimum Bayes factor
to evaluate how far the observed data moves us from an initial null state. Briefly, if we
consider two hypotheses H0 and H1, and the data Y, the Bayes theorem implies

P(H0|Y)
P(H1|Y) =

P(Y|H0)
P(Y|H1)

P(H0)
P(H1)

where P(H0)
P(H1) is the prior Odds, P(Y|H0)

P(Y|H1) is the Bayes Factor (BF) and P(H0|Y)
P(H1|Y) is the posterior

Odds. The BF quantifies the evidence of data Y for H0 vs. H1.
The minimum Bayes factor is the smallest possible Bayes factor for the point null

hypothesis against the alternative within the specified class of alternatives.
Edwards et al. [37] show that if H0: µ = µ0, Y~Normal (µ,σ2) then BF = P(Y|H0)

P(Y|H1) ≥
exp

(
−0.5 t2) where t = (y − µ0)/σ is the number of standard errors from the null value.

Sellke et al. [38] proposed an approach that works directly with p values.
For our analysis, we used two previously described approaches based on the transfor-

mation of p-values into Bayesian posterior probabilities of the null. The q-values, when
considering the whole set of observations accounting for multiple comparisons, and the
posterior probabilities obtained from the minimum Bayes factor under three null prior
probabilities (optimistic with odds 1:3, neutral 1:1, pessimistic 3:1).

The analyses were performed using STATA software version 14 (StataCorp, College
Station, TX, USA).
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3.2.2. Hierarchical Bayesian Mixture Model

When selective inference, aiming to identify divergent areas, is the goal, the Bayesian
models used for Disease mapping (Section 3.1) are further complicated by introducing a
third level into the hierarchy, assuming a mixture model for the unknown relative risks
θi [27].

The likelihood for Yi is still Poisson (Eiθi), where Ei is the expected number of cases
and θi the relative risk in the i-th municipality. We then assume that log(θi) = ri µ0i +
(1−ri) µ1i where, i.e., the logarithm of the relative risk θi is modeled as the mixture of
two components: µ0i, the value of the log relative risk under the null hypothesis H0,
and µ1i the corresponding value under the alternative H1. The ri indicator denotes the
group membership.

Under the null H0 we assume that all the probability mass is concentrated at one
point, i.e., µ0i = 0, leaving only a Poisson random variability. Under the alternative H1 extra
Poisson variability, reflecting the heterogeneity of relative risk among areas is modeled
according to the Poisson Gamma or the BYM models.

The prior distribution for the indicator of the unknown true status, ri, is assumed
to be Bernoulli distributed with parameter πi, which, in turn, is modeled as Beta (α1,
α2) distribution.

The quantity of interest for each i-th area is some appropriate summary measure over
the posterior distribution of πi–i.e., the posterior classification probability to belong to the
null hypothesis set. The term “classification probabilities” underlines the connection to
classification theory and clearly distinguishes it from Prob (θi > 1|Y), denoted as posterior
probabilities [39,40].

The a priori distribution for πi is assumed to be an exchangeable informative Beta (α1,
α2). Changing the value of the Beta parameters α1, α2, we a priori introduced in the model
our prior belief on the percentage of divergent areas, consistent with the non-Bayesian
simple approaches presented in Section 3.2.1.

All the Bayesian analyses were performed using the WinBugs1.4 software [41].
We ran two independent chains for each model, and the convergence of the algorithm

was performed following Reference [42]. We discarded the first 100,000 iterations (burn-in)
and stored for estimation 50,000 iterations.

3.3. Sensitivity Analysis

To compare areas at higher and lower risk within the region for explanatory variables, we
planned to use the Chi-square test for categorical variables and the non-parametric Wilcoxon–
Mann–Whitney test for continuous variables (data shown in Supplementary File S1: Table S1).

We used capture-recapture methods to evaluate the coverage of the different registries
(hospital discharges and anatomic pathology) and the presence of possible ascertainment
bias [43].

4. Results

For the period 2004–2017, 4125 new cases of endometriosis were identified in the age
range 15 to 50 (Table 1). The crude incidence rate (×100,000) of endometriosis in women
aged 15–50 years for the period 2004–2017 was 111, if we consider all diagnoses, with and
without histological confirmation (Table 1). The age-specific incidence rate of endometriosis
was highest in the age group 31–35 (160 × 100,000).

Of the 4125 cases, 1471 (35.7%) were hospitalizations with a diagnosis of endometriosis
associated with the identification of endometriosis from the anatomic pathology database.
Of this, 1846 (44.8%) were hospitalizations with a diagnosis of endometriosis confirmed
by laparoscopy or other surgical procedure allowing direct visualization, and 808 (19.6%)
were identified only from the anatomic pathology database.
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Table 1. Age-specific incidence of endometriosis in women residing in FVG in the years 2004–2017.

Age Women Residing in the
Region *

Endometriosis
n (Rates × 105)

15–20 402,526 48 (12)
21–25 365,815 228 (62)
26–30 442,259 631 (143)
31–35 541,962 869 (160)
36–40 633,878 846 (133)
41–45 681,123 833 (122)
46–50 654,892 670 (102)

total 15–50 3,722,455 4125 (111)
* Numbers represent the sum of women residing in the region in the fourteen years considered.

4.1. Disease Mapping

The SIRs in the period 2004–2017 range between 0 and 3.5 (Figure 1A). The geographi-
cal distribution is heterogeneous (Figure 1B) with high/low risk areas. The spatial pattern
was more evident if we considered the smoothed map of SIR under the two Bayesian
models (Poisson-Gamma and BYM) (Figure 2A,B). The shrinking effect of the Bayesian
estimators was evident when comparing it to the SIR map (Figure 1B). Relative risks (RR)
of areas with few expected counts and extreme SIR were regressed to the mean. Since we
used indirect standardization with FVG reference rates, the observed mean was close to
the null RR of one. In the BYM model, the relative importance of the clustering component
compared to the heterogeneity component, i.e., the ratio of variances of the two random
terms is 4:1. Overall, the geographical pattern of the incidence of endometriosis showed a
very strong spatial structure, with southern areas at higher risk.

4.2. Profiling Municipalities at High Risk

In Figure 3A, we report the funnel plot [44], a graph of the effect measure (SIR in our
case) against its precision (the precision of the SIR is proportional to Ei since the asymptotic
variance (SIR) = 1/Ei). This plot shows that the precision in estimating the risk will increase
as the population dimension of the area increases. SIR from small areas will spread widely
in the diagram, while the variability will be narrower for more populated areas. If the
null hypothesis is true for all areas, the plot would be a symmetric funnel centered on the
reference line at an ordinate null value of one.
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Prata di Pordenone 42 1.350 0.0249 0.3253 0.3047 0.1275 0.0464 

Barcis 2 3.203 0.0256 0.3253 0.3096 0.1300 0.0475 
Polcenigo 17 1.557 0.0303 0.3528 0.3401 0.1466 0.0542 

Cordenons 78 1.233 0.0310 0.3528 0.3448 0.1492 0.0552 
Fiume Veneto 53 1.276 0.0359 0.3865 0.3726 0.1652 0.0619 

Figure 3. Funnel plot of SIRs: label 1 indicates areas with one-sided p-value < 0.05 (A); Histogram of empirical one-sided
p-values * (B); Quantile–Quantile plot of complementary log empirical p-values versus theoretical exponential (1) (C). FVG,
2004–2017. * For each area out of m, the one-sided p-value Prob (Y ≥ Yobs|H0) under the null hypothesis H0: θ = 1 against
the alternative H1: RR > 1 is obtained from the exact Poisson distribution.

Figure 3A plotted the municipalities with one-sided p-values < 0.05, identified with
label 1. Figure 3B shows the empirical distribution of the one-sided p-values. If no areas
diverged, the p-value distribution would be uniform. There is evidence of departure from
the null because the relative frequency of small p-values is greater than expected under the
uniform distribution.

Figure 3C shows the quantile-quantile plot of the complementary log transformation
of empirical p-values against the null theoretical exponential (1) distribution. The plot was
useful for identifying the outlying observations responsible for the departure from the
uniform distribution shown in panel 3B.

To screen these divergent areas according to a multiple testing correction, we report in
Table 2 the municipalities with one-sided p-values < 0.05 and the corresponding q-values.
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Table 2. Municipalities with one-sided p-value < 0.05, number of cases, SIR, p-value, FDR (q-value), calibrated Goodman
p-values under 3 alternative prior odds between the null and alternative hypothesis (3:1; 1:1; 1:3). FVG 2004–2017.

Decrease in Probability of the Null Hypothesis

Municipality Number of Cases SIR a p-Value q-Value From 75% to
No Less than

From 50% to
No Less than

From 25% to
No Less than

San Canzian d’Isonzo 38 1.759 0.0005 0.0522 0.0127 0.0043 0.0014

Staranzano 41 1.720 0.0005 0.0522 0.0128 0.0043 0.0014

Ronchi dei Legionari 62 1.498 0.0011 0.0640 0.0260 0.0088 0.0030

Monfalcone 114 1.339 0.0012 0.0640 0.0287 0.0098 0.0033

Grado 41 1.595 0.0019 0.0836 0.0442 0.0152 0.0051

Lusevera 6 2.986 0.0046 0.1672 0.0924 0.0328 0.0112

San Lorenzo Isontino 11 2.073 0.0085 0.2619 0.1480 0.0547 0.0189

Fiumicello 26 1.565 0.0117 0.2858 0.1864 0.0709 0.0248

Codroipo 72 1.307 0.0119 0.2858 0.1892 0.0722 0.0253

Mariano del Friuli 10 1.998 0.0138 0.2982 0.2096 0.0812 0.0286

Morsano al Tagliamento 15 1.697 0.0190 0.3253 0.2587 0.1042 0.0373

Latisana 64 1.295 0.0191 0.3253 0.2593 0.1045 0.0374

Gradisca d’Isonzo 31 1.438 0.0209 0.3253 0.2743 0.1119 0.0403

Capriva del Friuli 11 1.798 0.0229 0.3253 0.2900 0.1198 0.0434

Turriaco 16 1.624 0.0239 0.3253 0.2977 0.1238 0.0450

Prata di Pordenone 42 1.350 0.0249 0.3253 0.3047 0.1275 0.0464

Barcis 2 3.203 0.0256 0.3253 0.3096 0.1300 0.0475

Polcenigo 17 1.557 0.0303 0.3528 0.3401 0.1466 0.0542

Cordenons 78 1.233 0.0310 0.3528 0.3448 0.1492 0.0552

Fiume Veneto 53 1.276 0.0359 0.3865 0.3726 0.1652 0.0619

Arba 8 1.801 0.0376 0.3865 0.3811 0.1703 0.0640

Dolegna del Collio 3 2.378 0.0394 0.3865 0.3901 0.1758 0.0664

Mossa 9 1.689 0.0454 0.4263 0.4179 0.1931 0.0739
a SIR = Standardized Incidence Ratio.

Of the 216 areas examined, 23 have p-values < 0.05. Applying Bonferroni’s correction
(with a probability of type I error set at 5%), no areas would be divergent from the null.
Using Storey’s q-value, 6, 4, and 2 areas were selected when the threshold was set at 20%,
10%, and 5%, respectively.

The last three columns of Table 2 report the calibrated Goodman p-values under three
different prior odds P(H0)

P(H1) 3:1; 1:1; 1:3. This analysis is appropriate if we assume the point
of view of each area separately, considering any multiple comparisons adjustment not
pertinent. Even with a high probability of the null compared to the alternative, the posterior
probability of the null was less than 5% for five municipalities.

In Figure 4, we report the posterior probabilities Prob (θi > 1|Y) obtained from the
Poisson Gamma (A) and the BYM (B) models. The maps are coherent with the distribution
of the RR, with areas at high posterior probabilities located in the southwest part of
the region. However, considering that such Posterior probabilities are not adjusted for
multiplicity, they are useful to describe the overall spatial risk pattern.
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The complex Bayesian tri-level modeling embeds the previous points of view in
a unified perspective. In Figure 5, we map posterior inclusion probabilities (i.e., the
complement to the posterior classification probabilities Prob (ri = 0 | Y > Yi; Y) = 1 – Prob
(ri = 1 | Y = Yi; Y) [42] under the mixture Bayesian Poisson-Gamma (A, C) and BYM models
(B, D). In the first row, inclusion probabilities were obtained specifying a Beta (2.5,7.5) as
a priori for πi, that is a Beta with an expected value of 25%, that are sensible for a prior
belief of a percentage of divergent areas around 75%. In the second row, we specified a Beta
(7.5,2.5) for πi, which is a Beta with an expected value of 75%, meaning a prior belief of a
percentage of divergent areas around 25%. The results were sensitive to prior choices for πi
with the Poisson Gamma model. Under the BYM specification, the results were consistent
with those obtained by the simpler approaches, and five areas were consistently identified
as divergent.
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Table S2 (see Supplementary File S2) presents, as an appendix to Table 2, the distribu-
tion of endometriosis cases and population by age classes.

4.3. Sensitivity Analysis

Table S1 (Supplementary File S1–Part 1) shows a comparison between the case of
endometriosis identified in the five high-risk municipalities and municipalities identified
in the other areas of the region, based on the type of identification source and the limited
number of demographic variables available from the data sources used. Overall, women in
the five municipalities had a higher frequency of histological diagnosis of endometriosis
(73.6% vs. 53.8%, p < 0.0001) and higher age at diagnosis. No difference was seen concerning
the place of birth.

Comparisons with the regional average showed a negative association between
anatomic pathology diagnosis and hospital discharge in the five high-risk municipali-
ties. This suggests an ascertainment bias. Either the reporting was more careful than in
the rest of the region, or many more pathology reports with a diagnosis of endometriosis
were issued without accompanying hospital discharge records. Compared to the regional
average, the relative risk observed in the five high-risk areas was 1.50. Fixing a coverage
probability equal to that of the five high-risk areas for the rest of the region, we had to
increment the number of cases for the rest of the region, and the relative risk of the five
high-risk areas would change from 1.50 to 1.31 (95% CI 1.13; 1.52), (See Supplementary File
S1–Part 2 for details in methods and results).

5. Discussion

Our study shows an estimated incidence of endometriosis consistent with those re-
ported in similar registry-based studies, even if comparisons between studies are subject to
limitations due to differences in settings and methodologies applied for case identification
and definition. Concerning sampling surveys on endometriosis, in our study and in other
similar registry-based ones, the operational definition of the incident case could lead to
underestimating the number of disease cases [4,11,12,14,45,46].



Int. J. Environ. Res. Public Health 2021, 18, 7175 11 of 14

The present study’s strength relies on having performed a record-linkage among
in/outpatients clinical and pathological databases and having conducted a follow-back to
retrieve the date of incidence.

Geographical analysis showed a very strong spatial pattern with high-risk areas in
the region’s southeast part. When mapping disease risk, the aim is to estimate the risk
distribution on a fine geographical resolution. The problem in meeting this goal is small
areas are extremely heterogeneous in population denominators, resulting in difficulties in
properly controlling for random variability. In spatial statistical literature, the term Disease
Mapping refers to a collection of methods proposed to overcome such difficulties and
“stabilize” or “smooth” the risk map. All these approaches rely on shrinkage estimators,
and, among these, Bayesian estimators appear to be the most interesting [47].

Bayesian approaches to smoothing relative risk estimates may be misinterpreted as a
solution to the problem of selective inference and multiple comparisons in Disease Map-
ping. However, estimation is a different task from testing. Multiple testing corrections
based on p-values can be used to select high-risk areas. In a full Bayesian perspective
classification, probabilities obtained from full Bayesian mixture models are adjusted for
multiple comparisons and have the advantage of an easy way to perform sensitivity analy-
sis on model assumptions. Both “frequentist” and full Bayesian analysis confirm a cluster
of 5 adjacent municipalities in the FVG region, for a total of 296 cases of endometriosis
(SIR 1.5; 90% CI = 1.36; 1.65) and 98 attributable cases (90% CI = 71; 128).

An ascertainment bias cannot be excluded and could be geographically structured,
contributing to explain the observed cluster of endometriosis incident cases. Indeed, a
higher frequency of histological diagnosis was recorded in the five high-risk municipalities.
This finding lends itself to two opposite interpretations. On the one hand, a more serious
disease requiring increased diagnostic and surgical invasiveness. On the other hand,
heightened attention to the ascertainment of endometriosis by gynecologists or pathologists
working in the five areas is required. We used capture-recapture methods to evaluate for
the presence of potential ascertainment bias. While our analyses suggest that there is some
evidence of ascertainment bias, this is not enough to explain the observed cluster of cases in
the five high-risk areas. We can thus conclude that the five areas are indeed at higher risk.
Unfortunately, the very limited information available from the data sources used to identify
women with endometriosis does not allow for a more detailed description of patients’
exposure and characteristics. The literature identifies several risk factors for endometriosis,
including individual factors (i.e., shorter menstrual cycle length, low body mass index,
lower parity, skin sensitivity and other somatic characteristics, Asian origin, autoimmune
diseases, familiarity, genetics), behavioral factors (i.e., diet, physical activity, alcohol use,
caffeine intake), and environmental pollution (i.e., dioxin, PCB, metals, phthalates) [48].

The most important Italian shipyard in the identified high-risk area is part of the largest
shipbuilder in Europe. The company builds both commercial and military vessels. The
area also comprises an oil and coal-powered energy plant ranking in the highest quartile of
Italian energy plants and currently undergoing a heavily contested authorization renewal
procedure (See Supplementary File S3–supplemental material, for further information on
high-risk area).

In order to adequately address the role of the above-mentioned risk factors, an ad
hoc study should be conducted that includes biomonitoring, evaluation of the individual
and behavioral characteristics of the population, and life-course analysis of the exposures.
Future studies will address these issues to explain the excess cases in these particularly
environmentally stressed municipalities of FVG.

6. Conclusions

Our study is based on aggregated data at the municipality level. The main limitation
of the study is that we cannot exclude a potential ecological bias. The statistical analysis by
Bayesian spatially structured random effects should partially control for spatial confound-
ing. The second limitation is that we cannot exclude a residual differential ascertainment
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bias among geographical units. We conducted a sensitivity analysis depicting a pessimistic
scenario in which more attention is given to detecting endometriosis in the high-risk areas
identified. Despite adopting these mitigation measures, we should be cautious in inter-
preting results from any geographical analysis, particularly when we lack information on
spatially structured causal factors.

Generally, geographical variability in the occurrence of endometriosis is considered
difficult to interpret because of lack of comparability in diagnosis, selection bias, and
heterogeneity in study design across studies [49–51]. The use of geographic characteristics
in the analysis was restricted to factors or characteristics not immediately interpretable as
geographic–such as rural/urban areas, exposure to POPs, and so on [52,53]. When per-
formed spatial analysis, results provide limited information due to potential ascertainment
bias [13,54]. In our study, geographic analysis was the primary goal. We were especially
careful to minimize differential ascertainment bias across geographical units and adopted
sophisticated statistical methods to deal with multiple comparisons and selective inference.
Spatial analysis and profiling of high-risk areas are useful tools to address environmental
hypotheses in registry-based epidemiological studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18137175/s1. Supplementary File S1, Title: Sensitivity analysis, Supplementary File S1
has two parts: Part 1: Comparing areas at higher/lower risk analysis (Table S1: Comparison between
endometriosis cases identified in the five high-risk municipalities and those identified in the other
areas of the region) and Part.2: Capture-recapture analysis; Supplementary File S2, Title: Appendix to
Table 2 (Table S2: Distribution of endometriosis cases and population by age classes); Supplementary
File S3, Title: Brief description of the high risk area.
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