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Abstract: Near fault seismic records may contain impulsive motions in velocity-time history. The
seismic records can be identified as impulsive and non-impulsive depending on the features that their
waveforms have. These motions can be an indicator of directivity or fling step effect, and they may
cause dangerous effects on structures; for this reason, there is increasing attention on this subject in
the last years. In this study, we collect the major earthquakes in Italy, with a magnitude large or equal
to Mw 5.0, and identify the impulsive motions recorded by seismic stations. We correlate impulsive
motions with directivity and fling step effects. We find that most earthquakes produced impulsive
signals due to the directivity effect, though those at close stations to the 30 October 2016 Amatrice
earthquake might be generated by the fling step effect. Starting from the analyzed impulses, we
discuss on the potential influence of site effects on impulsive signals and suggest a characterization
based on the main displacement directions of the impulsive horizontal displacements. Finally, we
discuss on the damage of three churches in Emilia, which were subject to impulsive ground motion,
underlying in a qualitative way, how the characteristics of the pulses may have had influences the
structural response of the façades.

Keywords: near-fault ground motion; impulsive signal; ground motion-damage relation

1. Introduction

Impulsive ground motions occur, usually near neighboring regions of the ruptured
fault. Due to their proximity to the fault plane, instead of a point source approach to
the earthquake, a planar source is implemented in order to understand the evolution
of the rupture linked with the impulsive signal. When the rupture front propagates
towards a site of interest and the slip direction is facing the site, the forward directivity
effect is observed at the site of interest. It happens due to the cumulative effect of the
seismic motions. When the rupture propagates to the direction of the site-of-interest with a
propagation velocity close to the shear wave velocity of the medium, rupture front contains
all seismic energy [1]. Another driving force of the production of an impulsive motion is
the permanent displacement of the ground, also known as the fling step effect [2]. When
one of these phenomenons is present, large amplitude and long period waveforms are
recorded at sites in velocity-time history. Fling step effect can be visible on displacement-
time history. It can be seen in strike parallel and strike normal components for strike slip
and dip-slip earthquakes, respectively [3]. In an ideal environment, forward directivity
would create velocity pulses with half-cycle(s) (due to Gaussian-like displacement of the
ground), whereas fling step effect create Gaussian-like velocity pulse (due to the permanent
shift of the ground), and these effects can be seen in both strike normal and strike parallel
components [4].

Impulsive signals can increase the damage of structures and infrastructure located
in near fault regions; this has been evidenced after many earthquakes and analyzed in
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various studies [5–15]. Research on the effects of impulsive ground motion on engineered
structures is quite well developed; a short, non-exhaustive review, that can be used as a
starting point for further research studies, points out works concerning different structural
typologies, namely: seismically base-isolated structures [16–20], bridges [21–25], reinforce
concrete or steel moment designed structures [5,26–29], and low- and mid-rise masonry
buildings [30]. In Italy, extensive damage occurred mainly where the structures were
old and built without engineering design; such situations occur commonly in historical
centers and heritage buildings, such as churches and bell towers; anyhow, the damage was
also recognized in buildings with engineering design. Concerning L’Aquila earthquake
in 2009, the above mentioned issues are the subject of many research papers, which can
be classified according to structural typologies, namely: masonry and reinforce concrete
buildings [31–36], industrial facilities and lifelines [36], and churches [37,38]. Then,
for the Emilia 2012 earthquake, the next review summarizes the research on damage
in different typologies of structures, namely: ordinary buildings [33,39], churches and
bell towers [40–42], and industrial facilities [43–45]. Moreover, the Emilia earthquakes
highlighted the importance of studying also the effects of the seismic sequence on the
cumulative damage [46]. Finally, a review on research concerning the effects on the
built environment of the Central Italy earthquake in 2016 is summarized in the papers of
Sorrentino et al. [47], Jain et al. [48], Masi et al. [49], and Iervolino et al. [15].

To detect the impulsive signals, various algorithms have been developed. For instance
Mavroeidis and Papageorgiou [3] used Gabor wavelets and tuned the variables of the
algorithm manually. Baker [50] used a 4th order Daubechies wavelet by using decision-
making parameters of pulse identifier (PI). Shahi and Baker [51] updated the algorithm
by using a new dataset and a new decision-making procedure. Chang et al. [52] used the
energy ratio in the area where PGV is measured in the waveform. Ertuncay and Costa [53]
used a mixed decision-making algorithm by using the energy ration in both time and
frequency domain. Baker [50] and Shahi and Baker [51] analyzed only the horizontal
motions, whereas Chang et al. [52] and Ertuncay and Costa [53] also analyzed the vertical
motion. The latter is important since it could create large demand on some typologies of
buildings [11], and it was identified in many stations in the Amatrice earthquakes (see
Results section).

Statistical methods are also applied to impulsive signals to investigate their features.
Direct relation between moment magnitude and period of the impulsive signals (Tp)
is analyzed [50,54–59]. Fayjaloun et al. [60] defined the relation between the Tp, rise
time, and rupture velocity of the event, shear wave velocity of the ground, and distance
parameters between the hypocenter and the site of interest. The probability of observing
impulsive signals are also calculated by using various distances and angles, depending on
the fault types [51,61,62].

In this article, we first describe the dataset in Section 2. In Section 3, we describe
the algorithms that we used for data processing and impulsive signals detection. Results
of the study are presented in Section 4, together with their interpretation. We use the
results as a starting point for the discussion in the section, where we discuss the potential
influence of site effects on impulsive signals, and we propose a characterization of pulses
according to their shape in the horizontal displacement. Finally, we show how impulses
signals potentially affected the seismic behavior of three churches during the Emilia 2012
earthquake sequence.

2. Data

This study uses earthquake catalog and waveforms retrieved from ITACA v3.1 [63,64].
Moreover, macroseismic intensity measures are used to investigate if there is evidence
of a correlation between impulsive signals and damage. Italian Parametric Catalogue
information is used in this study [65]. The database provides damage information from
more than 4800 earthquakes that occurred between 1000 and 2019. We collect the epicentral
intensity (Io) values while eliminating the non-numerical codes.
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To analyze the strong ground motions in Italy, earthquakes with magnitudes larger
than Mw 5.0 are chosen. In total, 93 earthquakes (see Supplementary Materials) are selected
in the period 1976 and 2019 (Figure 1).

Figure 1. Earthquakes (black stars) and stations (triangles) used in the study.

Signals from ITACA are stored as SAC [66] format. Our dataset contains 15,093
waveforms from 940 stations of 26 networks (Figure 1).

Station records consist of three components of acceleration time histories, recorded
along East-West, North-South and vertical directions. However, impulsive signals are easier
to detect in fault normal and fault parallel components of horizontal ground motions [4,67].
To analyze these motions, we rotated the horizontal channels to the recommended di-
rections. In most of the earthquakes, both auxiliary plane and fault plane information
are provided. In earthquake sequences, we selected the closest fault plane to the main
shock strike, dip, and rake information. In other cases, we rotated the signals to radial and
transverse components. We also used the vertical component to identify vertical impulses.
Retrieved signals are preprocessed with the method explained by Paolucci et al. [68].

3. Method
Determination of Impulsive Signals

To determine the impulsive signals, we used the algorithms of Shahi and Baker [51],
Chang et al. [52], Ertuncay and Costa [53]. These methods are selected due to their
unique capabilities to capture impulsive signals by using different approaches and their
effectiveness in capturing the impulsive signals on different parts of the waveforms.

The first algorithm is Shahi and Baker [51], which is the improved version of Baker [50].
The classification algorithm uses wavelet-based signal processing on both horizontal
channels to determine the impulsive signals. Continuous wavelet transform coefficients
are calculated for the given horizontal signals, and then the signals are combined linearly
after rotating them to the angle where the maximum energy is centered. The combined
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waveform then used for further wavelet analysis. The final decision is made in two steps.
First, it calculates PC as in Equation (1).

PC = 0.63 × (PGV ratio) + 0.777 × (energy ratio). (1)

“PGV ratio” indicates the ratio of the PGV value of the residual signal and the PGV
value of the original signal, where the residual signal is calculated by subtracting the
original signal from that produced by the 4th order Daubechies wavelet signal. “energy
ratio” is the ratio calculated by dividing the power of the residual signal by the power of
the original signal. In the second stage, PI is calculated as Equation (2).

PI = 9.384 × (0.76 − PC − 0.00616 × PGV)× (PC + 6.914 × 10−4 × PGV − 1.072)− 6.179. (2)

If PI is larger than 0, the given signals are considered impulsive signals, and then the
4th order Daubechies wavelet is fitted to the entire waveforms. Even though Shahi and
Baker [51] is a powerful tool to determine impulsive signals, it is not able to detect vertical
pulses due to its two component data requirement. The algorithm can differentiate early
and late arrival pulses by analyzing the arrival of PGV. Early arrivals of PGV generally
indicate a directivity effect [51].

The second algorithm is Chang et al. [52], which is the improved version of Zhai et al. [69].
It is an energy-based classification algorithm. The algorithm determines a region around the
PGV and the energy ratio between the pulse region and the total energy of the signal by
taking the squared values on both signals. The region around PGV is calculated using a
least-square fitting for various pulse periods, and then the one with the smallest residual is
used for the pulse region. The energy ratio is then calculated as Equation (3).

E =

∫ te
ts

v2(τ)dτ∫ ∞
0 v2(τ)dτ

. (3)

If the ratio between the pulse region energy, the numerator of Equation (3), and the
total energy, the denominator of Equation (3), exceeds 0.34, the signal is considered as
a pulse-shaped signal. ts and te represent the starting and ending points of the impulse
part in the time axis and v represents the velocity-time history of the signal. According to
Chang et al. [52], if PGV is less than 30 cm/s, it is considered a non-hazardous signal for
the built environment regardless of the outcome of Equation (3). Chang et al. [52] treats the
waveforms individually. Hence, it is able to detect vertical impulsive signals.

The third, and the last, algorithm is Ertuncay and Costa [53]. The algorithm uses
both velocity-time history (v) and frequency domain data to analyze signals. The period
of the maximum value of the wavelet power spectrum (WPS) determines the impulsive
part of the waveform by identifying an area called the PGV area. The position of PGV is
the middle point of the area, and its limits are determined by the period of the maximum
value of WPS by going backwards and forwards in time with the length of half of the
period. Ertuncay and Costa [53] uses the 30 cm/s threshold similar to Chang et al. [52].
If the given velocity waveform exceeds the threshold and the average of the energy ratio of
the waveform in time and frequency domains is larger than 0.3, the signal is identified as
impulsive (Equation (4)). ( ∫ te

ts v2(τ)dτ∫ ∞
0 v2(τ)dτ

+

∫ te
ts WPS(τ)dτ∫ ∞
0 WPS(τ)dτ

)
2

≥ 0.30. (4)

If the impulsive part is located outside of the PGV area, several extra constraints
are applied to the decision-making algorithm. The energy of the region must be 10% or
higher than the energy of the PGV area both in time and frequency domain, and the maxi-
mum amplitude of the region must be larger than 25 cm/s (see Ertuncay and Costa [53]
for further information on the definition of the threshold values). If the region exceeds
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these constraints and satisfies the Equation (4), then the signal is considered impulsive.
The algorithm has similarity with Chang et al. [52] in terms of using an energy threshold for
decision-making. Ertuncay and Costa [53], unlike Chang et al. [52], can detect impulsive
signals that are occurring outside of the PGV area.

4. Results

In this section, we provide the impulsive signals determined by the algorithms explained
in the Method Section, where 15093 waveforms with fault normal, fault parallel, and vertical
orientation are analyzed in terms of their impulsiveness. Shahi and Baker [51] algorithm,
unlike the others, used only the horizontal components to detect impulsive signals. Shahi and
Baker [51], Chang et al. [52], Ertuncay and Costa [53] identified 29, 57, and 51 impulsive
signals from 13 earthquakes, respectively. Chang et al. [52] and Ertuncay and Costa [53]
identified 9 and 8 vertical impulsive signals from two earthquakes (Table 1), respectively.
Faulting mechanisms of earthquakes that produced impulsive motions are normal and
reverse faults.

Table 1. Number of impulsive signals detected by Shahi and Baker [51], Chang et al. [52], and Ertun-
cay and Costa [53].

ITACA_ID Shahi and Baker [51] Chang et al. [52] Ertuncay and Costa [53]
Horizontal Vertical Horizontal Vertical

IT-1976-0025 2 1 0 1 0
IT-1976-0027 1 1 0 1 0
IT-1976-0030 1 1 0 1 0
IT-1980-0012 2 3 0 3 0
IT-2009-0009 4 6 0 6 0
IT-2012-0008 1 2 0 2 0
IT-2012-0010 1 2 0 2 0
IT-2012-0011 6 9 0 9 0
IT-2012-0012 2 1 0 1 0
EMSC-20160824_0000006 2 2 1 1 1
EMSC-20161026_0000077 1 1 0 1 0
EMSC-20161026_0000095 1 2 0 2 0
EMSC-20161030_0000029 5 17 8 14 7

Impulsive signals detected by the algorithm of Shahi and Baker [51] have PGV varying
between 8.2 cm/s to 72.1 cm/s. We calculated the distance from a seismic station to the
surface projection of the rupture surface of the earthquake (Rjb) of the stations. Rjb dis-
tance requires rupture plane and focal mechanisms, unlike epicentral distance, which only
requires the epicenter of the earthquake. In Shahi and Baker [51], 13 out of 29 impulsive sig-
nals occurred at stations that are located on top of the rupture surface (Rjb = 0 km), and the
maximum Rjb distance is 14.6 km (GUI station of 11 September 1976 Friuli earthquake).
Tp of the impulsive signals are between 0.52 s (CMI station of 26 October 2016 Amatrice
earthquake) and 3.29 s (STR station of 23rd of November 1980 Irpinia earthquake).

PGVs of Chang et al. [52] vary between 30.2 cm/s and 85 cm/s (MZ24 station of
30 October 2016 Amatrice earthquake). In vertical impulsive signals, maximum vertical
PGV (68.6 cm/s) is measured in CLO station on 30 October 2016 Amatrice earthquake.
18 impulsive signals were recorded on top of the surface rupture, whereas 39 signals were
recorded outside of the rupture area with the farthest distance of 12.2 km (GMN station
of 11 September 1976 Friuli earthquake). Pulse periods are between 0.4 s (various signals
from Amatrice earthquake sequence) and 3.8 s (STR station of 23 November 1980 Irpinia
earthquake).

PGVs of impulsive signals detected by Ertuncay and Costa [53] are between 30.2 cm/s
and 85 cm/s (MZ24 station of 30 October 2016 Amatrice earthquake). The maximum PGVs
in the vertical impulsive signal are 68.6 cm/s (CLO station on 30 October 2016 Amatrice
earthquake). Twenty-one of the signals were recorded on top of the rupture surface, and 3
of them were recorded in vertical components of the 30 October 2016 Amatrice earthquake.
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The farthest impulsive signal from the rupture surface has Rjb distance of 12.2 km (GMN
station of 11 September 1976 Friuli earthquake). Pulse periods are between 0.5 s (MZ51
station of 30 October 2016 Amatrice earthquake) and 7.2 s (T1214 station of 30 October 2016
Amatrice earthquake).

We analyze earthquakes that created impulsive signals individually in the following
subsections. We investigate the physics of the earthquakes and the local soil conditions
to understand the driving forces of the signals. We created station distribution maps for
these earthquakes for three different impulsive signal detection algorithms. We present
these maps in Supplementary Materials. In the following section, we chose one of the three
algorithms to show the spatial distribution of the signal. This decision is made to visually
inspect the maps more easily and to keep paper simple.

4.1. Friuli Earthquakes (IT-1976-0025, IT-1976-0027, IT-1976-0030) and Aftershocks

Friuli earthquake sequence provides the earliest impulsive signals records in our
database. There are 8 earthquakes with reverse fault mechanism recorded by 61 station
records and 4 impulsive signals in three earthquakes. Due to the lack of station coverage
inside the Rjb zone and its surroundings, it is hard to determine the extent of impulsive sig-
nals, depending on the azimuth angle and the distance. Impulsive signals are recorded on
GMN station in three earthquakes: Figure 2 illustrates both impulsive and non-impulsive
signals, together with the macroseismic intensity measurements (from Rovida et al. [65])
assessed for the represented seismic events; however, it must be underlined that most of
the damage was caused by the shock of the 6 May 1976. GMN station (that always recorded
during the Friuli earthquakes) is only 3 km south of Venzone which was one of the most
severely destroyed towns by the Friuli earthquakes. After the earthquake of the 6 May
1976, the city of Gemona del Friuli (where GMN station is located) sustained a XI degree
MCS macroseismic intensity [65]. The town is located on an alluvial fan, which increased
the local site effects [70], and could have contributed to the amplification of impulsive
signals in the ground motion. The town of Gemona del Friuli suffered from the earthquake
intensively, and the GMN station recorded impulsive signals at 3 of the 8 earthquakes in
our database.

4.2. Irpinia Earthquake (IT-1980-0012) and Aftershocks

Irpinia earthquake and 4 of its aftershocks occurred on a normal fault, and in total 40
stations recorded the seismic waves. Irpinia earthquake has a large rupture area (Figure 3)
and created 2 impulsive signals, one of which has the largest Tp (between 3.3 s and 3.8 s,
depending on the algorithm) in the STR station. BGI station is also identified as impulsive
by all the algorithms. Macroseismic intensity shows that Rjb region took high damage by
the earthquake; however, there was no installed station when the mainshock occurred.
Thus, we are not able to make any further interpretation about the effect of impulsive
motions for the earthquake.
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Figure 2. Spatial distribution of impulsive (red triangle) and non-impulsive (blue triangle) signals
determined by the algorithm of (a) Shahi and Baker [51], (b) Chang et al. [52], and (c) Ertuncay and
Costa [53] for 11 September 1976 (16:35) Friuli (Mw = 5.6), 15 September 1976 (03:15) Friuli (Mw = 5.9),
and 11 September 1976 (09:21) Friuli earthquakes (Mw = 6.0), respectively. Rupture surface of
earthquakes are retrieved from Group et al. [71], and macroseismic intensity (Int) measurements are
taken from Rovida et al. [65]. Red star indicates the epicenter of the event. This map and following
maps are created by using PyGMT package of python [72], unless specified by other sources.
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Figure 3. Spatial distribution of impulsive (red triangle) and non-impulsive (blue triangle) signals
determined by the algorithm of Shahi and Baker [51] for 23 November 1980 (18:34) Irpinia earthquake
(Mw = 6.9). Rupture surface is retrieved from Ameri et al. [73] and macroseismic intensity (Int)
measurements are taken from Rovida et al. [65]. Red star indicates the epicenter of the event.

4.3. L’Aquila Earthquake (IT-2009-0009) and Aftershocks

L’Aquila earthquake sequence is represented by 8 earthquakes (all of them have nor-
mal fault mechanism), but only the main event produced impulsive signals. The number
of recorded signals is almost 10 times higher than the Irpinia earthquake, and the station
coverage is increased significantly, which allows us to better understand the impulsive sig-
nals and their nature in Italian territory starting from this earthquake. L’Aquila earthquake
produced multiple impulsive signals, which have been recorded by stations located on
top of the ruptured fault (on the hanging wall) (Figure 4). Pulse periods calculated in this
study are in the range between 0.9 s and 1.7 s for AQK and AQV stations. These impulsive
motions are linked to the site amplification at around 0.6 Hz [74–76]. Impulsive signals
have both similar PGVs (between 34.8 cm/s and 44.7 cm/s) and pulse periods, and this
is reasonable since these stations are located close to each other, and they are all B sites
according to EC8 [76,77]. Pulses occurred both in fault normal and fault parallel compo-
nents. The directivity effect can also play a role in these impulsive signals [78]. The slip
distribution of the earthquake does not follow the position of the impulsive signals [79].
Ameri et al. [79] shows that a large slip has occurred on the south-east part of the rupture,
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whereas impulsive signals are located at the north-west side. However, the city of L’Aquila
suffered from the widespread damage after the earthquake [31,34,38]. It is important to
keep in mind that there is a lack of station coverage where the maximum slip has occurred.
Moreover, the south-west part of the Rjb zone also suffered a large destruction [33,38].

Figure 4. Spatial distribution of impulsive (red triangle) and non-impulsive (blue triangle) signals
determined by the algorithm of Chang et al. [52] for 6 April 2009 (01:32) L’Aquila earthquake
(Mw = 6.1). Rupture surface is retrieved from Ameri et al. [79]. Red star indicates the epicenter of
the event.

4.4. Emilia-Romagna Earthquakes (IT-2012-0008, IT-2012-0010, IT-2012-0011) and Aftershocks

Emilia-Romagna earthquake sequence is characterized by 10 events (all of them
have reverse fault mechanism) that satisfy our magnitude threshold. More than 1500
station records are investigated, and 9 stations recorded impulsive motions (Figure 5). All
impulsive signals are on the hanging wall, which is the moving plate on the sequence.
In the 20 May 2012 (10:55) Emilia-Romagna earthquake, MRN station is the only station
that produced impulsive motions. It is the closest station to the ruptured fault (upper
row of Figure 5) with Rjb distance of 4.55 km. The station is located on the hanging wall
of the fault plane; therefore, MRN location was on the moving plate of the earthquake.
The maximum slip of the earthquake is modeled around 1 m (Figure 5a).
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Figure 5. Spatial distribution of impulsive (red triangle) and non-impulsive (blue triangle) signals
determined by the algorithm of Ertuncay and Costa [53] for Emilia-Romagna earthquakes of (a) 20
May 2012 (Mw = 6.1), (b) 29 May 2012 (07:00) (Mw = 6.0), and (c) 29 May 2012 (10:55) (Mw = 5.5).
Rupture surface of earthquakes are retrieved from Pezzo et al. [80], Paolucci et al. [81], Kaklamanos
et al. [82], respectively. Slip distribution of 20 May 2012 is modified from Figure S7 of Electronic
Supplement of Pezzo et al. [80]. Slip distribution of the 29 May 2012 (07:00) Emilia-Romagna
earthquake modeled by Paolucci et al. [81] and can be seen in Figure 8 of the mentioned study. Red
star indicates the epicenter of each event.

MRN station has PGV values of 42.2 cm/s and 34.2 cm/s on fault-normal and fault-
parallel components, respectively, whereas the vertical motion of the station is much lower
(5.0 cm/s). Fault normal and fault parallel components of the MRN station are identified
by all pulse detection algorithms used in this study. Impulsive feature of the station is also
noticed by previous studies [83].

On the 29 May 2012 (07:00) Emilia-Romagna earthquake, MRN station is also one of
the many impulsive signals (Figure 5). All the stations (except MIR08) were located on the
hanging wall of the fault plane, which can explain the impulsive behavior of these stations
since they are, as in the aforementioned earthquake, located on top of the moving plate.
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Many of the impulsive signals are measured by a temporary network installed by INGV,
which are named MIR and a dedicated number. All of these stations are aligned along
fault normal direction. Some particle motion of the impulsive signal produced sites can
be seen in Figure 6. Large horizontal displacements, especially in fault normal direction,
can be noticed. In fact, both fault normal and fault parallel channels of MIR01 and MIR02
are identified as impulsive by all the algorithms. Furthermore, in 29 May 2012 (07:00)
earthquake, impulsive signals can be connect to the updip directivity effect [81]. Pulse
periods that are calculated by the 3 different algorithms that we use vary between 0.6 s
to 3.1 s. The largest period is calculated by Shahi and Baker [51] for MIR02 station in the
29 May 2012 (07:00) earthquake. Fault normal and fault parallel stations are separately
investigated by Chang et al. [52], Ertuncay and Costa [53], and both studies identify all
horizontal components as impulsive. This earthquake also created widespread damage
inside the Rjb area and its surroundings [39].

Figure 6. Ground motions of orthogonal components and velocity waveform of (a) MIR01, and (b)
MIR02 stations recorded during 29 May 2012 (07:00) Emilia-Romagna earthquake.
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We analyze the aftershocks of the Emilia-Romagna event with Ml ≥ 4.0 and
Mw ≤ 5.0 magnitude range to find more impulsive signals. In total, 738 signals from 22
earthquakes are collected. All those signals are preprocessed with the same steps that are
explained in Section 3. None of these signals is identified as impulsive by 3 algorithms that
we use. However, if we reduce the PGV threshold to 10.0 cm/s, we would identify several
impulsive signals with similar wave patterns with the signals recorded during the bigger
magnitude earthquakes of the sequence.

4.5. Amatrice Earthquakes (EMSC-20160824_0000006, EMSC-20161026_0000077,
EMSC-20161026_0000095, EMSC-20161030_0000029) and Aftershocks

Amatrice earthquake sequence has 9 earthquakes with a normal fault mechanism.
In total, 1838 stations recorded the earthquake signals during the sequence, and a large
amount of impulsive signals are detected by the pulse classification algorithms. Unlike
Emilia-Romagna earthquakes, the Amatrice earthquake sequence is also created a large
amount of vertically impulsive motions (Table 1). Amatrice earthquake sequence es-
tablished a perfect environment for creating impulsive signals by high rupture velocity,
directivity, and fling step effect. The directivity effect is the main source of impulsive
signals. However, those at close stations to the 30th October 2016 earthquake might be
due to the fling step effect because this effect can appear if a station is located close to a
shallow earthquake [84]. This earthquake provides 33% to 50% of the total number of
impulsive signals in our study, depending on the classification algorithm. We also analyze
the aftershocks with smaller magnitudes (Mw ≤ 5.0) to detect more impulsive signals.
Due to the same reason that we come across Emilia-Romagna earthquakes, none of them
is labeled as impulsive. During the 24 August 2016 Amatrice earthquake, AMT station
recorded impulsive motions by all algorithms, whereas Shahi and Baker [51] also identified
NOR station as impulsive (Figure 7). AMT station is located along fault parallel direction,
and impulsive motion is recorded by fault parallel component. Gallovič et al. [85] linked
the large amplitudes in AMT with the large slip patch that propagated towards the station.
Furthermore, study of Spagnuolo et al. [86] found that there is a patch of region in the
east of the rupture area (towards AMT) where rupture velocity is close to the shear wave
velocity of the medium which can also linked to the directivity effect .

The 30 October 2016 Amatrice earthquake, also called Norcia earthquake and Norcia
mainshock of the Amatrice-Norcia-Visso seismic sequence, is the largest earthquake of
Amatrice earthquake sequence with Mw = 6.5. It ruptured more than 25 km along strike and
14 km along dip with a maximum slip of 2.5 m (Figure 7d). Unlike other pulse produced
earthquakes, the Norcia earthquake produced large amounts of vertical impulsive signals
(last row of Figure 7).

Pulse periods calculated by the 3 different algorithms vary between 0.45 s to 7.2 s.
Largest period is calculated by Ertuncay and Costa [53] for T1214 station. Fault normal
and fault parallel stations are separately investigated along with the vertical components
by Chang et al. [52], Ertuncay and Costa [53]. Both of these studies find a large number
of impulsive motions in vertical channels. Two of these stations that recorded vertical
impulses can be seen in Figure 8. MZ04 recorded impulsive motions in fault normal (by
Chang et al. [52]) and vertical components (by Chang et al. [52], Ertuncay and Costa [53]),
whereas horizontal motions of T1214 is labeled as impulsive by all algorithms and vertical
component is labeled as impulsive only by Ertuncay and Costa [53]. Impulsive signals
are located on the Southern side of the ruptured area. This region has been suffered from
the fling step effect [87], and we believe that vertical impulsive motions can be another
indicator of the effect.
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Figure 7. Spatial distribution of horizontal impulsive (red triangle), vertical impulsive (purple trian-
gle), both horizontal and vertical impulsive (black triangle), and non-impulsive signals determined
by the algorithm of (a,b) Shahi and Baker [51], and (c,d) Ertuncay and Costa [53] for (a) 24 August
2016 (01:36) Amatrice (Mw = 6.0), b) 26 October 2016 (17:10) Amatrice (Mw = 5.4), (c) 26 October
2016 (19:18) Amatrice (Mw = 5.9), and (d) 30 October 2016 (06:40) Amatrice earthquakes (Mw = 6.5).
Rupture surface of EMSC-20160824_0000006 and EMSC-20161026_0000077 are retrieved from Tinti
et al. [88] and Kaklamanos et al. [82]. EMSC-20161026_0000095 and EMSC-20161030_0000029 are
retrieved from Chiaraluce et al. [89]. Slip distribution of 24 August 2016 (01:36) Amatrice earthquake
modeled by Tinti et al. [88] and can be seen in Figure 8 of the study. Slip distribution of the 30 October
2016 (06:40) Amatrice earthquake was modeled by Chiaraluce et al. [89] and can be seen in Figure 4c
of the mentioned study. Red star indicates the epicenter of the event.
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Figure 8. Ground motions of orthogonal components and velocity waveform of (a) MZ04 and (b)
T1214 stations in 30 October 2016 (06:40) Amatrice earthquake, respectively.

5. Discussion

Recorded impulsive signals in Italian territory are increased in years thanks to the
improvement of the seismic networks. Starting from the L’Aquila earthquake, it is possible
to make further investigation about the features of the impulsive signals. The analysis of
impulsive signals of Italian earthquakes leads to some points of discussion. As mentioned
in Section 4.3, it has been observed that local soil conditions may affect the periods of the
impulsive signals. The potential correlation between local site effects and seismic impulses
has been studied by Bray and Rodriguez-Marek [55], Cork et al. [58], Rodriguez-Marek
and Bray [90]. They investigated the effect of soil conditions on pulses, showing that soft
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soils tend to amplify the PGV and increase the period of the pulse for moderate-magnitude
near-fault ground motion, thus facilitating the occurrence of pulse-like velocity waveforms
of longer periods at soil sites than at rock sites.

It is known that impulsive signals mainly depends on the directivity and on the fling
step effects of the earthquake that generated the waveforms. Anyhow, Authors believe that
the impulsive ground motion can be further modified by site effects, and this aspect seems
to be confirmed by empirical evidence.

Figure 9 shows the horizontal particle displacements recorded during the 29 May
2012 (07:00) Emilia-Romagna earthquake. It is possible to observe that almost all stations
in the area of Mirandola show a very similar pattern of the horizontal ground motion,
with the presence of a principal direction for the displacement, approximately in the
direction North-North East. The motions of the stations that are positioned from North
to South (MIR08, MIR02, MIRH, MRN, and MIR01) are in perpendicular alignment with
the maximum slip of the earthquake (Figure 5). Motions of the stations are dominated by
the North-South movement, which is similar to the slip distribution and the rake angle of
90 degrees. Conversely, if we consider the L’Aquila (Figure 10) and Amatrice (Figure 11)
earthquakes, it is possible to observe that the horizontal representation of the impulsive
displacement changes significantly in the various sites also with a relatively small distance.

Figure 9. Particle motions of stations with impulsive signals in the 29 May 2012 (07:00) Emilia-
Romagna earthquake. Stations MRN and MIRE are very close each other, and they have a very
similar plot of the horizontal displacement.
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Figure 10. Particle motions of stations of AQG, AQK, AQU, and AQV that are labeled as impulsive
in 2009 L’Aquila earthquake.

At the same time, the analysis of the horizontal displacements of the impulsive signals
shows that impulsive signals could be differentiated considering their horizontal displacement
plots. An empirical observation of the horizontal displacements of impulsive signals suggests
to distinguish two principal characteristics of impulsive signals, which could have different
effects on structures. This observation shows that most impulsive signals in the 29 May 2012
(07:00) Emilia-Romagna earthquake are characterized by a “forward-back-like displacement”
(FBD) (Figure 12b–f), while the earthquake of the 20 May 2012 generated impulses charac-
terized by “spinning-like displacement” (SPD) (Figure 12a). Here, the two displacement
characteristics are differentiated considering the shape of the horizontal displacement
plot, where FBD refers to impulsive displacements occurring mainly along one directions,
while SPD impulsive signals refer to displacements which are more similar to a spinning
motion. As a first attempt to identify an automated method for calculating SPD and FBD
characteristics, it was used the minimum volume enclosing ellipsoid method [91,92]. This
method is applied to calculate the minimum ellipse around a 2D set of points, allowing
for some tolerance in the data fit. Then, SPD and FBD are assigned considering the ratio
between the major and minor axes of the ellipse (aspect ratio, a). Indicatively and through
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an empirical evaluation, we identified the following threshold to distinguish between FBD
and SPD:

• a ≤ 2 indicates that the signal can be described as SPD;
• 2 < a < 2.5 can refer both to SPD and FBD;
• a ≥ 2.5 indicates that the signal can be described as FBD.

Using the above rules, it is possible to observe that during the 30 October 2016
Central Italy earthquake, seismic stations recorded both FBD and SPD impulses, and it
is probable that this aspect is connected to local site characteristics. The Authors believe
that the dependence of the impulsive signals on site effects should be further investigated,
considering also if the site has some effects in facilitating FBD or SPD impulsive signals.

Figure 11. Particle motions of stations of ACC,MZ04, MZ11, MZ24, MZ29, MZ30, MZ50, AMT, T1201,
and MZ102 that are labeled as impulsive in Norcia earthquake. Stations AMT and MZ08 are very
closed each other and have almost the same plot. The plot of MZ51 station is very similar to the plot
of stations AMT and MZ08, and it has been not displayed.
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Figure 12. Plot of the horizontal displacements for the pulses recorded during the Emilia 2012
earthquake sequence. The dashed green line shows the minimum enclosing ellipse calculated for
each displacement plot, using a tolerance value of 0.01. The a value is reported for each plot, together
with the values of horizontal maximum velocity (red circle) and maximum acceleration (red star). (a)
“spinning-like displacement” (a ≤ 2.0); (b–f) “forward-back-like displacements” (a ≥ 2.5).

In the following, we illustrate some cases that we consider representative in order to
show how the different impulsive characteristics could cause diverse typologies of damage
to buildings. In masonry wall structural elements (such as an unconnected façade of a
church), the effects of seismic solicitations change if the solicitation direction is mainly
parallel to the wall principal direction (in plane solicitation) or orthogonal (out of plane
solicitation). For this reason, the direction of the ground motion displacement is used as an
indicator of the potential presence or absence of in plane effects (which provide a better
response of the structural element with respect to the out of plane). In the case of SPD,
both in-plane and out of plane effects are possible, while, for FBD, it is possible that the
solicitation affects mainly one direction of the structural element. In the following example,
we will illustrate the case of FBD pulses with main direction almost parallel to the main
direction of church façades. In particular, we discuss qualitatively how the typology of
horizontal displacement of the impulsive signal affected three churches damaged in the
Emilia-Romagna earthquakes by analyzing the pictures of structural damage acquired
after the earthquakes. The three churches are located (Figure 13): two in Mirandola (Santa
Maria Maggiore and San Francesco) and one in Camurana (San Luca), a small village in
the municipality of Medolla. The two churches in the center of Mirandola are quite similar,
concerning dimensions and structural typology. They are both directed along the West-East
direction, with a slightly different rotation (Figure 13). After the 20 May, both churches were
damaged, and in both cases the façade was detached from the lateral walls of the church
(Figure 14a–b). The impulsive signal recorded in the MRN station (about one km away) can
be characterized as a SPD horizontal impulsive signal (Figure 12). Maximum horizontal
acceleration (334 cm/s2) is represented by the red star in the displacement plot, while the
red circle represents the maximum velocity (46 cm/s). In addition, the church of Camurana
showed severe damage linked to the detachment of the façade (Figure 14c). The 29 May
2012 (07:00) earthquake hit the already damaged churches, and the impulsive horizontal
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ground motion could be characterized as FBD, with the main direction approximately
along the North-North East direction (Figure 12). This direction is almost parallel to the
façade of the churches in Mirandola and orthogonal to that of Camurana. Due to the
observed characteristics of the ground motion in correspondence of the seismic stations,
we suppose that the seismic ground motion at the base of the churches is similar to that
recorded by the stations (this assumption could not be made in the Amatrice earthquake,
where the characteristics of the impulsive ground motion changed even in few hundreds
of meters).

The second earthquake severely increased the damage of the analyzed churches.
In this paper, we focus, for the three analyzed churches, on the effects on the façades, which
are extremely vulnerable also because the first earthquake detached them from the lateral
walls. The façades of Santa Maria Maggiore and of San Francesco did not collapse after
the earthquake (Figure 14d–e), very probably because the main displacement direction of
the FBD impulsive ground motion occurred along the longitudinal direction of the façade,
allowing an “in-plane” response of the structural element. Conversely, the façade of the
church in Camurana was almost orthogonal to the FBD, and this façade collapsed out-of-
plane (Figure 14f). As mentioned above, these cases should be studied more in-depth, also
considering the effect of cumulative damage as underlined by Grimaz and Malisan [46];
however, it seems reasonable to associate the FBD impulsive signals (and its direction) to
the above-defined effects on the structures. It is worth noting that the above considerations
are only qualitative and require further larger and quantitative investigation, and that there
is the need to refine and improve the algorithm for the automated assignment of FBD and
SPD characteristics.

Figure 13. Map of the churches analyzed in the discussion, and relative position with respect to the
closest seismic stations which recorded the 29 May earthquake. The map is created by using QGIS
software [93].
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Finally, it is also important to recognize the importance of the vertical ground motion
on the damage of buildings; this is particularly true when considering the effects on friction-
based structural typologies, such as pre-cast or stone masonry buildings. Specific studies
should be developed also considering the effect of vertical impulsive ground motion on
these structures, both for the design of new ones and for the retrofitting of existent ones.

Figure 14. Photos showing the damage of: (a,d) church of San Francesco in Mirandola after the
Emilia-Romagna earthquakes of 20 May 2012 (a) and 29 May 2012 (d); (b,e) church of Santa Maria
Maggiore in Mirandola after the earthquakes of 20 May 2012 (b) and 29 May 2012 (e); (c,f) church of
San Luca in Camurana after the earthquakes of 20 May 2012 (c) and 29 May 2012 (f). The pictures
derive from the database of CNVVF-NCP [94], with exception from picture (a) from https://www.
italianostramodena.org (accessed on 13 April 2021).

6. Conclusions

In this study, we investigate the major earthquakes (Mw ≥ 5.0) to identify impulsive
signals by using 3 different classification algorithms. In total, more than 15,000 station
records are collected from 93 earthquakes, and 13 earthquakes produced at least 1 impulsive
signal. All the impulsive signals are produced by normal and reverse fault systems.
Number of impulsive signals and their orientations vary, depending on the classification
algorithms (Table 1). Due to the unique features, e.g., fling step and directivity effects,
of the earthquakes and dense seismic coverage in recent years, many impulsive signals are
recorded in near-field areas. We present some preliminary evidence-based considerations
about the potential influence of site effects on impulsive signals, focusing mainly on
the horizontal component, although there is the need to study in depth also the vertical
component of the impulsive motions. We highlight that the horizontal displacement
of the impulsive signals could be differentiated considering if the horizontal impulse is
characterized by a forward-back-like or a spinning-like displacement. Then, we show
how it is possible to develop an a posteriori analysis of the structural damage considering
these two typologies of impulsive signals could affect buildings, looking at the damage
of three churches hit by the Emilia-Romagna earthquakes in 2012. This study highlights
the importance of developing further studies on the impulsive effects in the near field
areas, and for this purpose, it is essential to record near fault motions, which will permit to
improve the understanding of the damaging effects of earthquakes in near fault regions
where the dense population may live.

https://www.italianostramodena.org
https://www.italianostramodena.org
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