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Abstract. We give short survey on the question of asymptotic stability of

ground states of nonlinear Schrödinger equations, focusing primarily on the so
called nonlinear Fermi Golden Rule.

1. Introduction. In 2004 one of us authored a survey [26] on the asymptotic
stability of ground states of the nonlinear Schrödinger equation (NLS). Since then
there has been considerable progress on this topic, so that it is worthwhile to write
a review with some updates.

For d ≥ 1, we consider the NLS

i∂tu = −∆u+ β(|u|2)u, u|t=0 = u0 ∈ H1(Rd,C), (1)

where β ∈ C∞(R,R) satisfies, for d∗ =∞ for d = 1, 2 and d∗ = d+2
d−2 for d ≥ 3,

|∂nt (β(t2)t)| ≤ Cntp−n for t ≥ 1, n ≥ 0 and for a p < d∗. (2)

This guarantees that the Cauchy problem (1) is locally well posed, see Cazenave
[20].

We are concerned with a spatially localized solution called soliton. In particular,
we assume there exists an open interval O ⊂ (0,∞) such that

∆u− ωu− β(|u|2)u = 0 for x ∈ Rd, (3)

admits a C∞-family of ground states O 3 ω 7→ φω ∈ H1
rad(Rd) with φω(x) > 0

everywhere. In fact, under these hypotheses, we have φω ∈ C∞(Rd) and

|∂αxφω(x)| ≤ Cα,ω(1 + |x|)−
d−1
2 e−

√
ω|x| for all multiindexes α. (4)

Then ei( 1
2 v·x−

1
4 |v|

2t+tω+ϑ)φω(x − vt −D), for any choice of (ω, ϑ, v,D) ∈ O × R ×
Rd×Rd, are solitonic solutions of the NLS. An important question is whether these
ground state solutions are stable. A first notion of stability is the following.
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Definition 1.1 (Orbital stability). A ground state φω of (10) is orbitally stable if

∀ ε > 0, ∃ δ > 0 s.t. ‖φω − u0‖H1 < δ ⇒ sup
t>0

inf
(ϑ,D)∈R×Rd

‖eiϑφω(·+D)−u(t)‖H1 < ε,

where u is the solution of the NLS with u(0) = u0.

The literature on this is large, see the survey papers [47, 124] and the references
therein.

Theorem 1.2. If for ω ∈ O both the two conditions (H1), (H2) listed below are
satisfied, then the corresponding ground state is orbitally stable:

(H1) kerL+,ω ∩ H1
rad(Rd) = {0} for the operator L+,ω := −∆ + ω + β(φ2

ω) +
2β′(φ2

ω)φ2
ω;

(H2) we have the Vakhitov–Kolokolov condition q′(ω) > 0, where q(ω) := Q(φω).

The study of equilibria and of solitons of NLS’s or of more complex models and
their orbital stability is not the topic of this paper. The notion of orbital stability
applies also to other functions. For example, if B(t) ≥ 0 for t ≥ 0, where B(t) is an
antiderivative of β(t), then energy and mass conservation and Gagliardo–Nirenberg
inequalities imply in an elementary fashion the orbital stability of the 0 solution.
Less elementary is the following fact. If 0 is stable and

d ≥ 2 and for d = 1 furthermore β′(0) = 0, (5)

then there is an ε0 > 0 s.t.

‖u0‖H1(Rd) < ε0 =⇒ ∃ u+ ∈ H1(Rd) s.t. ‖u(t)− eit∆u+‖H1
t→+∞−−−−→ 0. (6)

The theme of the present paper is an analogue of (6) in the case of solitons of the
NLS. Specifically, we will give an outline of some of the most basic ideas behind
the following analogous rough statement, which we call the asymptotic stability of
solitons.

Theorem 1.3. Let d ≥ 3. Let ω1 ∈ O satisfy the two conditions listed in Theorem
1.2. Then, under further hypotheses, which the authors of this review believe to hold
generically, there exists ε1 > 0 s.t. for any u0 ∈ BH1(φω1

, ε1) := {v ∈ H1 | ‖v −
φω1
‖ < ε1} there exist ω+ ∈ O, v+ ∈ Rd and (ϑ,D) ∈ C0([0,+∞),R× Rd) s.t. the

solution of the NLS with u(0) = u0 satisfies

‖u(t)− eiϑ(t)+ i
2 v+·xφω+(· −D(t))− eit∆h+‖H1(Rd)

t→+∞−−−−→ 0. (7)

Remark 1.4. For dimensions 1 and 2 the same theorem is known to be true only
under conditions that break translation, as when u0 is an even function or there
is an additional translation breaking inhomogeneity in (10), like a linear potential.
The proof in the case with translation is an open problem.

Remark 1.5. In dimension 1, well known is the case when β(|u|2)u = −|u|2u, where
it is possible to apply methods from the theory of integrable systems [12, 117], which
require u0 s.t. 〈x〉s u0 ∈ L2(R) for s > 1/2, see [41].

Remark 1.6. The additional hypotheses required are (H3) (see Theorem 2.2),
(H4)–(H7) in Sect. 4 and (H8) under (61). The most delicate condition in (H8)
requires that the terms in (61) be non zero. This happens when the Fourier trans-
form of certain functions has nonzero restriction on certain spheres of phase space.
When β is real analytic, then the dependence of the coefficients on ω is analytic.
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The generic condition has not been proved rigorously, except in very special
situations, see [86, 16, 1]. Even the question of checking numerically the generic
condition seems to have attracted very little interest.

Theorem 1.3 has a long history. The theory was initiated by Soffer and Weinstein
[120, 121] for small solitons bifurcating from linear potential, see also [115], followed
by the important paper by Buslaev and Perelman [17] which proved the asymptotic
stability for the case d = 1. Both of [120, 121] and [17] considers the case where
the linearized operator have no non-zero eigenvalues (a recent paper involving this
situation is [99]). The basic idea of these works is to divide the solution into a
soliton part and a remainder part by modulation argument and then prove the
decay of the remainder part by the dispersive properties of the linearized operator.
The remainder is small and satisfies a complicated equation that looks like a NLS.
The linear part of the equation of the remainder, has continuous spectrum and
eigenvalues.

Very early the literature provided a theory of the dispersive properties of the
continuous part of the linearized operator. In dimension d = 1 this is in [17], which
can be supplemented with Krieger and Schlag [90], see also [56]. ¡the case d ≥ 3 is in
[29], which has to be supplemented with [42], and d = 2 in [44]. More effective use of
dispersion, of Strichartz estimates and especially of the endpoint Strichartz estimate
in d ≥ 3, see Keel and Tao [76], is in Gustafson, Nakanishi and Tsai [61]. Smoothing
estimates as a surrogate of the endpoint Strichartz estimate when d = 1, 2 are
in Mizumachi [103, 104]. A substantial simplification of Mizumachi’s smoothing
estimates is in [45]. Other early contributions are [79, 81]. Obviously, dispersion is
a hard problem in the presence of strong nonlinearities, where one cannot hope to
prove dispersive properties of the remainder just by Strichartz estimates, and here
the literature is not as rich. Remarkable nonetheless are [87, 88] as well as the very
recent [89].

While, to some extent, linear dispersion of the continuous mode was understood
quite early, it took some time to understand how to treat the nonzero eigenvalues
of the linearized operator. The starting point seems to be Sigal [119] which, for
a different problem, showed the existence of a nonlinear damping mechanism by
which the discrete modes lose energy which, by nonlinear interaction, spills in the
continuous part of the equation and then scatters by essentially linear mechanisms.
Sigal called this damping mechanism “nonlinear Fermi Golden Rule” (FGR). The
first successful implementation of this idea in our context was obtained by Buslaev
and Perelman [18]. For almost 15 years there was no major improvement on this
part of the proof in [18]. Here we recall that [18] treats the case where there is
just a single e(ω) ∈ (0, ω) of multeplicity 1 of the linearization operator Hω, with
2e(ω) > ω. Later Soffer and Weinstein [122] developed a similar idea in the context
of the NLKG equation. See also [110]. Various papers where written in the early
’00 [19, 128, 129, 130, 127, 30, 123, 57, 58] articulating the idea. A novelty was in
Gang Zhou and Sigal [55] , with still just one eigenvalue but with 2 replaced by
N + 1 for N ∈ N, see also [40]. However, all these rather restrictive conditions on
the spectrum of the linearized operator Hω, where finally lifted only with [6, 27]
around 2010. These papers introduced a more natural framework for a problem
that, approached from a different viewpoint, could look impossibly complex, as
can be seen, for example, by tracing the argument in [54]. It should be remarked,
that quite independently from the theory we are discussing here, Perelman [114]
and Merle and Raphael [100] exploited a form of FGR in their masterly analysis
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of the ‖∇u(t)‖L2(Rd) ∼
√

log | log t|
t blow up in the NLS with β(|u|2)u = −|u| 4du.

The connections between the two theories have not been explored yet, although
[39] exploits ideas originating from the work of Merle and Raphael to simplify
considerably the proof of the result in [32].

The paper [27] considers equations without translation. Translation was later
and independently introduced in [28] and [5]. However, there are aspects of the
proof, which is rather long and with many detains, that have been finalized in later
papers, such as [31]. See also [7] for some more on [5].

In this paper we will just focus on the FGR. The generic conditions in Theorem
1.3 pertain to the FGR. As we mentioned, there is very little numerical work on
them. The fact that a certain quadratic form is non–negative, is explained later.
Strict positivity is unproven, theoretically as well as numerically. Numerical sim-
ulations are certainly not simplified by the fact that the crucial quadratic form is
obtained after a rather complex sequence of coordinate changes. The coordinate
changes are not discussed in this paper.

The aim of this survey is to give some basic intuition of the main ideas of the
proof of Theorem 1.3, skipping completely on the most technical parts of the proof.

2. Theorem 1.3 in the absence of nonzero eigenvalues. We embed C ↪→ C2

using the natural identification

C 3 u 7→ ũ :=

(
u
ū

)
∈ C̃ :=

{(
z
z̄

)
∈ C2 : z ∈ C

}
⊂ C2. (8)

Here we set 〈U, V 〉C2 := 2−1(u1v1 + u2v2) for U = t(u1 u2) and V = t(v1 v2) in C2.
By this definition, 〈ũ, σ1ṽ〉C2 = Reuv̄, and in particular 〈ũ, σ1ũ〉C2 = |u|2, where

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (9)

Armed with this, we can equivalently write the NLS as

iσ3∂tũ = −∆ũ+ β(〈ũ, σ1ũ〉C2)ũ, ũ|t=0 = ũ0 ∈ H1(Rd, C̃). (10)

With the above definition of 〈·, ·〉C2 , we define

〈U, V 〉 :=

∫
R3

〈U(x), V (x)〉C2 dx for U, V ∈ L2(R3,C2) (11)

(we emphasize, that here there is no complex conjugation). In L2(Rd, C̃) we consider
the symplectic form Ω, defined by

Ω(X,Y ) = i〈X,σ3σ1Y 〉 for all X,Y ∈ L2(Rd, C̃). (12)

Given a function F ∈ C1(U,R), with U an open subset of H1(Rd, C̃), we denote by
dF (u) the Frechét derivative of F , and by ∇F (ũ) its gradient, defined by dF (ũ) =
〈σ1∇F (ũ), ·〉. The Hamiltonian vector–field XF of F associated to Ω is defined by
Ω(XF , ·) = dF , that is XF = −iσ3∇F .

If we consider, for B(0) = 0 the primitive B′ = β, the energy

E(ũ) :=
1

2
〈(−∆)ũ, σ1ũ〉+

1

2

∫
R3

B(〈ũ, σ1ũ〉C2) dx, (13)

then ∇E(ũ) = −∆ũ+ β(〈ũ, σ1ũ〉C2)ũ and (10) can be interpreted as ∂tũ = XE(ũ).
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Notice that E ∈ C2
(
H1(Rd, C̃),R

)
with

∇2E(ũ)X̃ :=
d

dt
∇E(ũ+ tX̃)|t=0

=−∆X̃ + β(〈ũ, σ1ũ〉C2)X̃ + 2β′(〈ũ, σ1ũ〉C2)
〈
ũ, σ1X̃

〉
C2
ũ (14)

=−∆X̃ + β(〈ũ, σ1ũ〉C2)X̃ + β′(〈ũ, σ1ũ〉C2)|u|2X̃ + β′(〈ũ, σ1ũ〉C2)

(
0 u2

u2 0

)
X̃.

We define also quadratic forms Pj(u) := 2−1 〈♦j ũ, σ1ũ〉 for j = 0, 1, ..., d, which are
invariant by gauge and translation symmetries, with

Q(u) = P0(u) for ♦0 := 1 the mass and Pa(u) for ♦a := −σ3i∂a, a = 1, ..., d, (15)

the linear momenta.
Here we extend the hypotheses in Theorem 1.2, and assume that q′(ω) > 0 for all

ω ∈ O, which can be assumed, if necessary, restricting O. Under such assumption,

the map (ω, v) → p = Π(eσ3
i
2 v·xφω) is a diffeomorphism into an open subset P

of Rd. This uses also Πa(eσ3
i
2 v·xu) = Πa(u) + 2−1vaQ(u) for a = 1, ..., d. For

p = p(ω, v) ∈ P set Φp = eσ3
i
2 v·xφ̃ω. The Φp are constrained critical points of E

with associated Lagrange multipliers λ(p) ∈ Rd+1 so that

∇E(eiσ3τ ·♦Φp) = λ(p) · ♦eiσ3τ ·♦Φp, (16)

where we have

λ0(p) = −ω(p)− 4−1v2(p) , λa(p) := va(p) for a = 1, ..., d. (17)

We now introduce the linearization, for (ω, v) = (ω(p), v(p)),

Hp := σ3(∇2E(Φp)− λ(p) · ♦) = σ3(−∆ + ω + 4−1v2 + iv · ∇) + Vp (18)

where Vp := σ3

[
β(φ2

ω(p)) + β′(φ2
ω(p))φ

2
ω(p)

]
+ iσ2β

′(φ2
ω(p))φ

2
ω(p)e

−σ3
i
2v(p)·x,

which can be computed from (14). By an abuse of notation, we set

Hω := Hp when v(p) = 0 and ω(p) = ω. (19)

It is easy that Hp = eσ3
i
2v(p)·xHω(p)e

−σ3
i
2 v(p)·x, so that the spectrum of Hp depends

only on ω(p).
Hypothesis (H2) of Theorem 1.2 guarantee that the map p→ λ(p) is a local dif-

feomorphism and, in particular, it is invertible. In [134] it is shown that Hypothesis
(H1) of Theorem 1.2 implies the following:

kerHp = Span{σ3♦jΦp : j = 0, ..., d} and (20)

Ng(Hp) = Span{σ3♦jΦp, ∂λjΦp : j = 0, ..., d}, (21)

where Ng(L) := ∪∞j=1 ker(Lj). Notice that the ⊇ in (20) follows immediately dif-
ferentiating in τ the identity (16) while the opposite inclusion is a much harder
proposition, which rests on kerL+ ∩H1

rad(Rd) = {0}. Setting τ = 0 in (16) and dif-
ferentiating in λj , we obtain the ⊇ in (21). The ⊆ in (21) follows from (20), the fact
that the correspondence p ←→ λ is a diffeomorphism (this, in turn a consequence
of q′(ω) > 0 for all ω ∈ O), from Fredholm alternative and from

δjk = ∂pkpj = 2−1∂pk 〈♦jΦp,Φp〉 = 〈♦jΦp, ∂pkΦp〉 . (22)



1698 SCIPIO CUCCAGNA AND MASAYA MAEDA

We have the decomposition

L2(Rd,C2) = Ng(Hp)⊕N⊥g (H∗p) , (23)

Ng(H∗p) = Span{♦jΦp, σ3∂λjΦp : j = 0, ..., d}. (24)

Set PNg (p) = PNg(Hp) for the projection on Ng(Hp) and P (p) := 1−PNg (p). Notice
that

PNg (p)X =

d∑
j=0

(
σ3♦jΦp 〈σ1X,σ3∂pjΦp〉+ ∂pjΦp 〈σ1X,♦jΦp〉

)
. (25)

Then we have the following Modulation Lemma, which originates with Soffer and
Weinstein [120].

Lemma 2.1 (Modulation). Fix p1 ∈ P. Then there exists a neighborhood U of Φp1
in H1(Rd,C) and functions p ∈ C∞(U ,P) and τ ∈ C∞(U ,Rd+1) s.t. p(Φp1) = p1

and τ(Φp1) = 0 and s.t. ∀u ∈ U

u = eiσ3τ ·♦(Φp +R) and R ∈ N⊥g (L∗p). (26)

We write (10) as i ˙̃u = ∇E(ũ). Using (26), ∇E(Φp) = λ(p) · ♦Φp , the definition
of Hp and for O(R2) is non–linear in R, we obtain

− (τ̇ − λ(p)) · σ3♦Φp + i ṗ · ∂pΦp − (τ̇ − λ(p)) · σ3♦R+ iṘ = HpR+O(R2). (27)

Applying PNg (p) to (27), summing on repeated indexes, we obtain the Modulation
Equations

τ̇k − λk + (τ̇ − λ) · 〈♦R, ∂pkΦp〉 − ṗ · 〈iσ1R, σ3∂pk∂pΦp〉 =
〈
O(R2), ∂pkΦp

〉
ṗk − (τ̇ − λ) · 〈iσ3σ1♦R,♦kΦp〉 − ṗ · 〈R,♦k∂pΦp〉 =

〈
O(R2),♦kΦp

〉
, (28)

which need to be coupled with the following equation on R, obtained applying P (p)
to (27),

iṘ−HpR = (τ̇ − λ(p)) · P (p)σ3♦R+ iṗ P (p)∂pP (p)R+O(R2). (29)

Equation (29) resembles a vectorial–like NLS. Soffer and Weinstein in [120, 121],
for a somewhat simpler system, had the idea to use the dispersive properties of the
linearized equation iṘ −HpR = 0. Instrumental where advances in the dispersion
theory of Schrödinger due to Journé, Soffer and Sogge [74]. Buslaev and Perelman
in [17] for dimension 1 extended these results to the operatorHp (the analysis in [17]
can be supplemented by material in [90]) introduced the idea of proving dispersion
to 0 of R by exploiting the dispersive properties of the group eitHp . Specifically,
Buslaev and Perelman in [17] prove the following result.

Theorem 2.2 (Main Theorem in [17]). In the d = 1 dimension, suppose, in addition
to the hypotheses in Theorem 1.2 that for ω ∈ O both the two conditions listed below
are satisfied:

(1) 0 is the only eigenvalue of Hω;
(H3) the points ±ω are not resonances of for Hω.

Then for any ω0 ∈ O there exists ε0 > 0 and C0 > 0 s.t. for

‖ 〈x〉2 (u0 − φω0
)‖L2 + ‖∂x(u0 − φω0

)‖L2 < ε0
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we have

‖R(t)‖L∞ < C0(1 + |t|)−1/2ε0 ,

|τ̇(t)− λ(p(t))|+ |ṗ(t)| < C0(1 + |t|)−3 ε20 .

In [29] there is a version of the above result for dimension d ≥ 3, here quoted as is
stated in [29].

Theorem 2.3. For d ≥ 3, assume the hypotheses of Theorem 2.2. Then for any
ω0 ∈ O there exist ε0 > 0 and C0 > 0 s.t., for

‖ 〈x〉 (u0 − φω0
)‖H2d+2[d/2]+2 < ε0 (30)

‖u0 − φω0
‖H2d+2[d/2]+3∩Wd+2[d/2]+2,1 < ε0, (31)

we have

‖R(t)‖Wd+[d/2]+1,∞ < C0(1 + |t|)−d/2ε0 , (32)

|τ̇(t)− λ(p(t))|+ |ṗ(t)| < C0(1 + |t|)−d ε20 . (33)

Like in [120, 121, 18], crucial to [29] is information on the dispersion of the
associated linearized evolution eitHω . In fact, [29] contains the following theorem
for d ≥ 3, based on work by Yajima [135, 136, 3], see also Weder, [132, 133], which
was inspired by Journé, Soffer and Sogge [74]. The case d = 2 is in [44].

Theorem 2.4. For d ≥ 2, for any ω ∈ O if, under the hypotheses (1) and (2) of
Theorem 2.2, we set Lq(ω) = Lq(Rd,C) ∩N⊥g (L∗ω), then strong limits

W (ω) := s− lim
t→+∞

eitHωeitσ3(∆−ω) and Z(ω) := s− lim
t→+∞

eitσ3(−∆+ω)e−itHω (34)

define isomorphisms Lq(Rd,C)
W (ω)−−−→ Lq(ω) and Lq(ω)

Z(ω)−−−→ Lq(Rd,C) for any
q ∈ [1,∞] and yield isomorphisms also between to Sobolev spaces W s,q(Rd,C) and
W s,q(Rd,C)∩N⊥g (H∗ω) for any s ∈ R. Furthermore, the norms of the operators are
upper semicontinuous in ω.

Remark 2.5. Unfortunately, in [29] the proof of the case q = 2, specifically [29,
Corollary 3.2], is wrong. However, the correct proof is a rather direct consequence
of classical arguments by Kato [75], and is in [42].

The proof of Theorem 2.3 involves applying Hjp to (29) and then applying to it〈
·, σ1σ3HpHjpR

〉
to get

2−1∂t

m∑
j=0

〈
HjpR, σ1σ3HpHjpR

〉
=

m∑
j=0

〈
Hjp r.h.s. of (29), σ1σ3HpHjpR

〉
,

for a sufficiently large m. The summation in the l.h.s. is equivalent to ‖R‖2H2m+1 .

This is proved by induction from 〈R, σ1σ3R〉 ∼ ‖R‖2H1 for R ∈ N⊥g (L∗p), which is
true under the hypotheses of Theorem 2.3, see [134, 42]. By standard argument

‖R(t)‖2H2m+1 ≤ C‖R(0)‖2H2m+1e
∫ t
0 (|τ̇(t′)−λ(p(t′))|+|ṗ(t′)|+‖R(t′)‖Wm,∞)dt′ . (35)

This needs to be used in conjunction with estimates of the terms in the exponential.
To this effect, we need to use Theorem 2.4. Quite problematic is the term (τ̇ − λ(p))·
P (p)σ3♦R in (29), as we will see also in Sect. 4.1. Here we sketch the discussion
in [29], which comes from [17]. In an interval [0, T ], we consider τ̇1 = λ(p(T )) with
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τ1(0) = τ(0) and define R1 by R1 = eiσ3(τ−τ1)·♦R. Then, elementary computations
yield

P (p(T ))R1(t) = eitHp(T )P (p(T ))R1(0) (36)

− i

∫ t

0

P (p(T ))ei(t−t′)Hp(T ) (τ̇ − λ(p))
(
eiσ3(τ−τ1)·♦P (p)e−iσ3(τ−τ1)·♦ − 1

)
· σ3♦Rdt

′

− i

∫ t

0

P (p(T ))ei(t−t′)Hp(T )

(
eiσ3(τ−τ1)·♦Vpe

−iσ3(τ−τ1)·♦ − Vp(T ))
)
R1dt

′ + ...

Notice that, assuming (33),

|τ − τ1| ≤
∫ t

0

|λ(p)− λ(p(T ))|dt′ .
∫ t

0

dt′
∫ T

t′
|ṗ|ds . ε20

∫ t

0

dt′
∫ T

t′
〈s〉−2d

ds . ε20.

This implies, by

P (p(T ))R1(t)−R1 =
[
P (p(T )), eiσ3(τ−τ1)·♦

]
R+ eiσ3(τ−τ1)·♦ (P (p(T ))− P (p))R,

that, assuming (32), then the r.h.s. in the last equation is small, and so P (p(T ))R1(t)
∼ R1(t). In turn, by (2.4), which implies

‖eitHp(T )P (p(T ))R1(0)‖L∞ . 〈t〉−
d
2 ‖R1(0)‖L1∩L2 where 〈t〉 :=

√
1 + |t|2

we get, also from ‖R1(0)‖L1∩L2 . ε0 and from 〈t〉−
d
2 ∗ 〈t〉−

d
2 . 〈t〉−

d
2 ,

‖P (p(T ))R1(t)‖L∞ . 〈t〉−
d
2 ε0 + 〈t〉−

d
2 ε20.

This because the terms in the last two lines of (36), being nonlinear, are smaller
than the 1st term in the r.h.s. of (36). Taking derivatives, one gets back (32).
Inserting this in the modulation equations (28), one proves (33). This of course is
just a caricature, but the rigorous argument is similar, assuming the (32)–(33) with
some large constant C0 and then proving, by taking ε0 sufficiently small, that the
constant can be taken to be similar to

sup
ω∈O, t≥0

‖ 〈t〉d/2 eitHωP (p(ω, 0))‖L1
x∩L2

x→L∞x <∞.

Notice that (30) is unnecessary (and is due to a non optimal choice in [17, 29] of
the modulation).

Theorems 2.2 and 2.3 are based in a significant way on the fact that 0 is the only
eigenvalue of Hω.

Lemma 2.6. If we drop the hypothesis (1) in Theorems 2.2 and 2.3, then the
conclusions of these theorems are false.

Proof (sketch). Buslaev and Perelman showed, in [18], see also [19], that the
continuous spectrum component of R(t) decays slowly if Hω has exactly one ei-
genvalue e(ω) ∈ (0, ω). We give a sketch of this, assuming for simplicity that
u ∈ C0(R, H1

rad(Rd)), thus excluding translations. Let us suppose that Nλ(ω) <
ω < (N + 1)e(ω), for an N ∈ N, and let ker(Hω − e(ω)) be generated by an ap-
propriately normalized ξω. Then, using the symmetry of σ(Hω) with respect to the
coordinate axes and the fact that σ(Hω) = σ(H∗ω),

r(t) = z(t)ξω(t) + z(t)σ1ξω(t) + f(t) with (37)

f(t) ∈
(
Ng(Hω(t))⊕ ker(H∗ω(t) − e(ω(t)))⊕ ker(H∗ω(t) + e(ω(t)))

)⊥
.
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Then, in [18] for the case N = 1 and in [55] for generic N , it is shown that after a
normal forms argument, for P (|z|2) real valued we have

iż − ez = P (|z|2)z + zN 〈f, σ1G(ω)〉L2
x

+ · · ·

iḟ −Hωf = zN+1M(ω) + · · ·
(38)

If, in the equation for z, we substitute f with −zN+1 lim
ε→0+

RHω ((N + 1)e(ω) + iε)

M , where the latter exists, see Proposition 3.12 later, and use formula

lim
ε→0+

R+
Hω (κ+ iε) = P.V.

1

Hω − κ
− iπδ (Hω − κ) for κ ∈ R, (39)

which can be understood of the theory of distorted plane waves, but which we will
not discuss in any detail, then the equation of z becomes

iż − e(ω)z = P (|z|2)z − |z|2Nz〈P.V. 1

Hω − (N + 1)e(ω)
M,σ1G〉L2

x

−i|z|2Nzπ〈δ(Hω − (N + 1)e(ω))M,σ1G〉.

Multiplying by z and taking imaginary part, it can be shown that

⇒ d

dt
|z|2 = −|z|2N+2Γ(ω) where Γ(ω) := 2π〈δ(Hω − (N + 1) e(ω))M,σ1G〉.

Notice that, using an appropriate distorted Fourier transform associated to Hω, we
have

Γ(ω) ∼
∫
|ξ|=
√

(N+1)e(ω)−ω

〈
M̂(ξ), σ1Ĝ(ξ)

〉
C2
dS. (40)

In the case N = 1, Buslaev and Perelman [18] are able to show that the integral
is nonnegative. Zhou and Sigal [55] develop rigorously the argument and assume
that Γ(ω) > 0 to prove their own version of Theorem 1.3 for N > 1 in the case of a
single e(ω). In [40] it is shown that Γ(ω) < 0 is incompatible with orbital stability.
This means that, if there is a single e(ω), if hypothesis (H1) and (H2) hold (they
imply orbital stability), then, in the presumably generic case Γ(ω) 6= 0, we need to
have Γ(ω) > 0. Notice that, if we assume Γ(ω) = Γ constant, then

|z(t)| = |z(0)|
(
1 +NΓ|z(0)|2N t

)− 1
2N . (41)

The above discussion is purely heuristic, but indicative of the arguments in [18, 122,

128, 129, 130, 19, 30, 123, 55, 40]. Notice that by (41), eventually |z(t)| ∼ t− 1
2N as

t → +∞. In fact, since |z(0)| is small, |z(t)| remains almost constant in the time
interval [0, |z(0)|−2N ]. Because of the forcing term zN+1M in (38), also f cannot
be counted to disperse for a long time. These arguments show that the decay of
R(t) = P (p(t)r(t) in Theorem 2.3, in general cannot be expected to be true.

The discussion in Lemma 2.6 indicates the relevance of the eigenvalues of Hω in
the analysis of the problem. In principle, eigenvalues of Hω could lead to invariant
tori near the solitons, which would prevent the result in Theorem 1.3. In fact we will
discuss the fact that there are no invariant tori, and this thanks to the a mechanism
related to the fact that Γ(ω) > 0 in (40). The reader might wonder why we should
have Γ(ω) ≥ 0. Heuristically this should be related to the fact that our NLS is
Hamiltonian. If the coordinates (z, f) in (38) were normal, we could expect (38) to
be of the form

iż = ∂zE , iḟ = ∇fE. (42)
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Then by the Schwartz lemma, at z = 0 and f = 0 we would get (N + 1)!M =

∂N+1
z ∇fE = ∂Nz ∇f∂zE = N !σ1G. But M ∼ σ1G would imply M̂ ∼ σ1Ĝ, yielding

the Γ(ω) ≥ 0.

3. The case when Hω has positive eigenvalues. We will assume that Π(ũ0) =

Π(φ̃ω1) = p1. This can be obtained using appropriate boosts. We need some
information on the spectrum of Hω1 . The following is elementary.

Lemma 3.1. For any ω ∈ O following facts hold.

(1) The spectrum σ(Hω) is symmetric with respect to the coordinates axes. We
have σ(Hω) = σ(H∗ω).

(2) Since φω is a ground state, all the eigenvalues of Hω, except possibly for a
pair ±ie with e > 0, are in R.

(3) If ie ∈ σp(Hω) with e > 0 then Ng(Hω − ie), the corresponding generalized
eigenspace, has dimension 1.

(4) If z 6= 0 is an eigenvalue, then we have Ng(Hω − z) = ker(Hω − z).

We assume that Hω1 has no embedded solitons inside the essential spectrum.

(H4) There are no eigenvalues in Hω1 in R\(−ω1, ω1).

Remark 3.2. It is expected, but unproved yet, that, since φω is a ground state,
always there are no eigenvalues inHω in σe(Hω) = R\[−ω, ω], that is, no eigenvalues
embedded in the “interior” of the continuous spectrum. Obviously, to our knowledge
no embedded eigenvalues have been detected numerically in the case of ground
states. For more general solitary waves which are not ground states, we expect
that embedded eigenvalues could exist, but that they cannot have positive Krein
signature. The signature of the eigenvalues of Hω in R\{0} is always positive, in
the case of ground states.

Remark 3.3. Even in the case they exist, the embedded eigenvalues are unstable,
in the sense that, perturbing the equation, the Hω of the new equation will in
general not have these eigenvalues. Results of this type go back to Grillakis [60],
are also in Tsai and Yau [130] and, as explained [42], can better be viewed in the
classical framework of Howland [69, 70]

We allow Hω1 to have a certain number of eigenvalues in the gap (−ω1, ω1).

(H5) There is an m s.t. Hω1 has m positive eigenvalues e1 ≤ e2 ≤ ... ≤ em,
where we repeat an eigenvalue a number of times equal to its multiplicity. We
assume there are fixed integers m0 = 0 < m1 < ... < ml0 = m such that
ej = ei exactly for i and j both in (ml,ml+1] for some l ≤ l0. In this case
dim ker(Hω1 − ej) = ml+1 − ml. We assume there exist Nj ∈ N such that
0 < Njej < ω1 < (Nj + 1)ej with Nj ≥ 1. We set N = N1.

Remark 3.4. The literature considered for more than a decade only the case when
m = 1, except for [127], where however Nj = 1 for all j. These are very restrictive
conditions. Only [6, 27] started to consider fairly general situations.

Remark 3.5. Hence we allow the eigenvalues to have finite multiplicity. The
number (Nj + 1) ∈ N is the smallest such that the corresponding multiple of of ej
is in σc(Hω1).

Remark 3.6. We give here a partial list of papers which have explored the spectrum
of operators such asHω1 . Chang, Gustafson, Nakanish and Tsai [21] explore in great
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detail and mostly numerically the spectrum of Hω1 in the case of β(|u|2) = −|u|p−1.
Their computations in dimensions d = 1, 2, 3 show the presence of many eigenvalues
for p→ 1+ and of just two real nonzero eigenvalues for p→ (1 + 4/d)

−
which reach

0 at p = 1 + 4/d and bifurcate into two imaginary eigenvalues for p > 1 + 4/d.

Remark 3.7. Buslaev and Grikurov [15] and Marzuola, Raynor, and Simpson [94]
study numerically situations when q(ω), the function in (H2) Theorem 1.2, has a
minimum ω∗. Then Hω has two imaginary eigenvalues for ω < ω∗ which converge
to 0 as ω → ω−∗ and bifurcate into two positive eigenvalues for ω > ω∗. This
is explained analytically in Comech and Pelinovsky [24]. Interesting oscillating
patterns are described numerically in [15, 94], with interesting conjectures, which
are discussed analytically, but inconclusively, in [36], where the problem is shown
to be similar to that of a soliton constrained in a potential.

Remark 3.8. The spectrum of Hω1 for the equations with β(|u|2) = −|u|p−1 and
p > 1+4/d, in particular the case d = 3 and p = 3 have been studied in considerable
detail. The case β(|u|2) = −|u|2, d = 3, is considered in Schlag [118], where it is
shown that Hω1 has no eigenvalues other than 0 in [−ω1, ω1] if the operator L+ω1

in Theorem 1.2 and the operator L−ω1 := −∆−ω1 +β(φ2
ω1) don’t have eigenvalues

in (0, ω1]. This information on L±ω1 is verified numerically for the cubic NLS with
d = 3 in Demanet and Schlag [49] and proved rigorously in Costin, Huang and
Schlag [25]. In Marzuola and Simpson [95], for the cubic NLS with d = 3 it is
proved numerically absence of nonzero real eigenvalues. Further cases of computer
assisted proofs of absence of nonzero real eigenvalues for mass supercritical NLS
with β(|u|2) = −|u|p−1 are considered in Asad and Simpson [4].

We assume that the eigenvalues in (H5) satisfy the following non resonance con-
dition.

(H6) If ej1 < ... < ejk are k distinct e’s, and µ ∈ Zk satisfies |µ| := |µ1|+...+|µm| ≤
2N1 + 3, then we have

µ1ej1 + · · ·+ µkejk = 0 ⇐⇒ µ = 0 .

Remark 3.9. A more restrictive formulation would be to say that the eigenvalues
are linearly independent in Z. That would be a more stringent condition than
necessary.

Another hypothesis it the following.

(H7) There is no multi index µ ∈ Zm with |µ| ≤ 2N1 + 3 such that µ · −→e = ω1

(where −→e := (e1, ..., em)).

Remark 3.10. Notice that in [27] and in some of the subsequent papers, the
hypotheses are more restrictive, because it is assumed that the multiplicities of the
eigenvalues are constant, and the hypotheses (H4)–(H7) are assumed for all ω. The
hypotheses stated here, which require (H4)–(H7) just for ω1, come from [23].

We need to record the following version of Theorem 2.4, which has essentially
the same proof, see [42] on how to deal with the eigenvalues.

Theorem 3.11. Let

Xc(ω
1) :=

{
Ng(H∗ω1)⊕

(
⊕e∈σp\{0} ker(H∗ω1 − e)

)}⊥
, (43)

where we can take Xc(ω
1) ⊂ S ′(Rd,C2), in the space of tempered distributions.

Then the statement of Theorem 2.4 continues to be true for Lq(ω) := Lq(Rd,C2) ∩
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Xc(ω
1). In particular the wave operators yield isomorphisms also between to Sobolev

spaces W s,q(Rd,C2) and W s,q(Rd,C2) ∩Xc(ω
1) for any s ∈ R.

Notice that

N⊥g (H∗ω1) =
(
⊕e∈σp\{0} ker(Hω1 − e)

)
⊕ (L2(Rd,C2) ∩Xc(ω

1)) (44)

and so the spectral decomposition

L2(Rd,C2) = Ng(Hω1)⊕
(
⊕e∈σp\{0} ker(Hω1 − e)

)
⊕ (L2(Rd,C2) ∩Xc(ω

1)).
(45)

We have the following useful result which, among other things, insures that Hω1

satisfies the limiting absorption principle.

Proposition 3.12. There exists τd > 0 s.t. for τ ≥ τd the following hold.
(1) There exists C = C(τ, ω), upper semicontinuous in ω such that for any ε 6= 0,

‖RHω (λ+ iε)Pc(Hω)u‖L2
λL

2,−τ
x
≤ C‖u‖L2 .

where

L2,τ
x = L2,−τ (Rd,C2) = {f ∈ S ′(Rd,C2) : ‖(1 + |x|2)−

τ
2 f‖L2 <∞}.

(2) For any u ∈ L2,τ
x the following limits exist:

lim
ε↘0

RHω (λ± iε)u = R±Hω (λ)u in C0(σe(Hω), L2,−τ
x ).

(3) There exists C = C(τ, ω), upper semicontinuous in ω such that

‖R±Hω (λ)Pc(Hω)‖B(L2,τ
x ,L2,−τ

x ) < C〈λ〉− 1
2 .

(4) Given any u ∈ L2,τ
x for the projection on the L2(Rd,C2) ∩Xc(ω

1) term in (45)
we have

Pc(Hω)u =
1

2πi

∫
σe(Hω)

(R+
Hω (λ)−R−Hω (λ))u dλ.

4. Idea of the proof of Theorem 1.3. In this section, we will proceed to show
heuristically how to prove Theorem 1.3.

First of all, by some small boosts we reduce to the case when Πa(u0) = 0 for all
a = 1, ..., d. We notice that the we can write R = P (p)r with r ∈ N⊥g (H∗ω1

). Now
we have

ṗ = {p,E} , τ̇ = {τ, E} , ṙ = {r, E}. (46)

We can substitute the coordinates p with the coordinates Π. In the new coordinates,
the system becomes

Π̇j = 0 , τ̇ = {τ, E} ,
ṙ = {r, E}. (47)

Notice that in the coordinates (Π, τ, r), as well as in the system of coordinates
(p, τ, r), we have ∂τE = 0. Then we have a reduction of the system to ṙ = {r, E}.

We also choose p0 ∈ P so that

Π(u0) = p0 . (48)

Notice that if we consider the equations Π = p0, they define a submanifold in

H1(Rd, C̃) in a neighborhood of {eiτ ·♦Φp1 : τ ∈ Rd+1} This set is parametrized by

(τ, r). Taking the quotient by the group eiτ ·♦, we obtain a manifold, parametrized
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by r. This manifold inherits in a natural way a symplectic structure, which is
inherited from the Ω defined in (12).

Now we split according to (44)

r(x) =
∑

l=1,...,n

zlξl(x) +
∑

l=1,...,n

zlσ1ξl(x) + f(x), f ∈ Xc with f = f , (49)

We will assume that it is possible to change the (z, f) coordinate so that the sym-
plectic form is given by

Ω = i
∑

l=1,...,n

dzl ∧ dzl + i〈σ3df, σ1df〉. (50)

The correct version is just slightly more complex, see [23, formula (7.11)], and
contains some additional higher order terms that we skip in the following heuristic
discussion.

It is critical, to consider an expansion of the energy in terms of these coordinates.
It is important to expand

E = E(Φp) + 〈∇E(Φp), σ1Ppr〉+ 2−1
〈
∇2E(Φp)Ppr, Ppr

〉
+ ...

= E(Φp) + 2−1
〈
∇2E(Φp)Ppr, Ppr

〉
+ ...

where we exploit 〈∇E(Φp), σ1Ppr〉 = λ · 〈♦Φp, σ1Ppr〉 = 0. Adding and subtracting
λ(p) ·Π(Ppr) in the r.h.s., we obtain

E = E(Φp) + λ(p) ·Π(Ppr) + 2−1
〈(
∇2E(Φp)− λ · ♦

)
Ppr, Ppr

〉
+ ...

Substituting Π = p+ Π(Ppr), subtracting on both sides E(φω0) , we get

E − E(φω0) = E(Φp)− λ · p−
(
E(φω0)− λ0 · p0

)
+ (λ− λ0) · p0

+ 2−1
〈(
∇2E(Φp)− λ · ♦

)
Ppr, Ppr

〉
+ ...

= d(ω)− d(ω0) + (ω − ω0)q(ω0) + 2−1v2q(ω0) + 2−1 〈σ3Hω1r, r〉+ ...

Let us now substitute r with the expansion in (49). Then, for d(ω) := E(φω)−ωq(ω),

E − E(φω0) = E(Φp)− λ · p−
(
E(φω0)− λ0 · p0

)
+ (λ− λ0) · p0

+ 2−1
〈(
∇2E(Φp)− λ · ♦

)
Ppr, Ppr

〉
+ ...

= d(ω)− d(ω0) + (ω − ω0)q(ω0) + 2−1v2q(ω0) + 2−1 〈σ3Hω1r, r〉+ ...

Then we obtain an expression of the form

E = ψ(Π(f)) + Ediscr + 2−1 〈σ3Hω1f, σ1f〉

+
∑

zµzνaµν(Π(f)) +
∑

zµzν 〈σ3Aµν(Π(f)), σ1f〉+ ...

where Ediscr :=
∑
j ej |zj |2 and where we sum over finitely many multi–indexes. We

remark that aµν = aµν and Aµν = −σ1Aνµ, by the fact that E is real valued.
Non resonant terms of the form zµzνaµν for (µ−ν) ·−→e 6= 0 can be eliminated by

considering appropriate canonical transformations given by φt|t=1, using the flow of
the Hamiltonian vector–field associated to functions of the form χ = zµzνbµν , with
the coefficient unknown. Indeed, concisely,

E ◦ φt|t=1 = E + {Ediscr + 2−1 〈σ3Hω1f, σ1f〉 , zµzν}bµν + ...

= E + {Ediscr}bµν + .. = E +−→e · (µ− ν)zµzνbµν + ...
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can be used to eliminate the non resonant zµzνaµν term, just by solving aµν +−→e ·
(µ− ν)bµν = 0.

Similarly, terms of the form zµzν 〈σ3Aµν , σ1f〉 with |−→e · (µ − ν)| < ω1 are non
resonant, and can be eliminated similarly using χ = zµzν 〈σ3Bµν , σ1f〉. Indeed,
concisely,

E ◦ φt|t=1

=E + {Ediscr, z
µzν} 〈σ3Bµν , σ1f〉+ zµzν{2−1 〈σ3Hω1f, σ1f〉 , 〈σ3Bµν , σ1f〉}+ ...

=E + zµzν
〈
σ3

(−→e · (µ− ν) +Hω1

)
Bµν , σ1f

〉
+ ...

so that the non resonant term can be canceled solving
(−→e · (µ− ν) +Hω1

)
Bµν =

Aµν . Here, the fact that the coefficients aµν and Aµν , and so also bµν and Bµν ,
depend on Π(f) and are not constant, is not an obstacle for a rigorous implemen-
tation of the above ideas, because Π(f) remain constant, up to an error which is
higher order and does not affect the computations.

Eventually we find a a system of coordinates, where the significant terms are

E =ψ(Π(f)) + Ediscr + 2−1 〈σ3Hω1f, σ1f〉+ Z0 + Z1 + ... , where

Z0 =
∑

(µ−ν)·−→e =0

zµzνaµν(Π(f))

Z1 :=
∑

−→e ·µ>ω1

zµ 〈σ3Aµ0, σ1f〉+
∑
−→e ·ν>ω1

zν 〈σ3A0ν , σ1f〉 .

Here E real valued, we have f = σ1f , and as a consequence

Aµν = −σ1Aνµ.

The system reads

iḟ = Hω1f + σ3∇Π(f)E · ♦f +
∑

e·α>ω1

zαAα0 +
∑

e·β>ω1

zβA0β + ... (51)

iżj = ∂zjE = ejzj + ∂zjZ0 +
∑
−→e ·ν>ω1

νj
zν

zj
〈A0ν , σ3σ1f〉+ ... (52)

We remark that the very recent notion of Refined Profiles, introduced in [39], should
allow to avoid completely the above normal forms arguments: in [39] this is proved
at small energies. Continuing with the argument, the crux of the proof consists in
proving the following.

Proposition 4.1. There is a fixed C0 > 0 such that for ε0 > 0 sufficiently small,
for ε ∈ (0, ε0) and for |z(0)| + ‖f(0)‖H1 < ε, then the following inequalities, for
some T > 0

‖f‖Lrt ([0,T ],W 1,p
x ) ≤ 2C0ε for all admissible pairs (r, p) (53)

‖zµ‖L2
t (0,T ) ≤ 2C0ε for all multi indexes µ with −→e · µ > ω0 (54)

‖zj‖W 1,∞
t (0,T ) ≤ 2C0ε for all j ∈ {1, . . . ,m} (55)

imply improved inequalities obtained replacing 2C0 with C0.
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4.1. Analysis of the equation of f . If we had σ3∇Π(f)E ·♦f=0, then we would
have

‖f‖Lrt ([0,T ],W 1,p
x ) ≤ c0‖f(0)‖H1 +

∑
−→e ·µ>ω1

‖zµ‖L2
t (0,T ) + C(C0)ε2, (56)

implying that the key estimates are those on ‖zµ‖L2
t (0,T ) for −→e · µ > ω1.

This in fact is true, but nonetheless

σ3∇Π(f)E · ♦f = $0σ3f + iσ3
−→$ · ∇f (57)

is nonzero. It helps that the hypotheses of Proposition 4.1 imply ‖($0,
−→$)‖L∞(0,T ) ≤

C(C0)ε. However the terms in 57 are not in L2([0, T ],W 1, 2d
d+2 ) + L1([0, T ], H1), so

that they cannot be incorporated with the terms on their right in (52) . Nor they
can be eliminated easily by some integrating factor, this because σ3 and iσ3∂a for
a = 1, ..., d do not commute with Hω1 .

Nonetheless, a form of integrating factor has been proved by Beceanu [9], but only
in dimensions d ≥ 3. An alternative argument, attributed to Perelman, is presented
in Bambusi [5, Appendix B], but that too, based on Proposition 1.1 [113], depends
on dimensions d ≥ 3. A different argument, due to Buslaev and Perelman [18]
is known in dimensions d = 1, 2, but only when −→$ = 0 in (57), that is, when
there is no translation in the problem. This accounts for the fact that Theorem
1.3 has not been proved in dimensions 1 and 2, as we already mentioned, except
under hypotheses (like extra symmetries, or in the presence of a potential) that
break the translation invariance. Notice that the gauge change argument sketched
near (36) depends on the hypothesis (1) stated in Theorem 2.2 (absence of nonzero
eigenvalues).

Remark 4.2. What is crucial, for the integrating factor argument, is that

‖ 〈x〉−M(d)
eit∆ 〈x〉−M(d) ‖L2→L2 ≤ Cd 〈t〉−

d
2

for a sufficiently large M(d), with d
2 > 1 for d ≥ 3. In the cases d = 1, 2 the lack of

integrability is an obstruction for the argument. The case d = 1 in particular, can
be phrased by stating that −∆ is in R a non–generic Schrödinger operator, because
of the fact that the point 0 is a resonance.

It is probably not coincidental that the proof of asymptotic stability of kinks for
the φ4 model by Kowalczyk, Martel and Muñoz [87] is valid only in the case of odd
solutions, that is, by imposing a symmetry which allows to exclude translation, and
that the main difficulty at removing the symmetry is the resonance at the threshold
of the continuous spectrum of the linearization, see [87, Remark 1.2].

4.2. Analysis of the equation of z. Recall that we defined Ediscr :=
∑
j ej |zj |2.

The idea of the proof consists, schematically, in showing that

Ėdiscr = {Ediscr, E} ∼ {Ediscr, Z1} . −
∑

−→e ·µ>ω1

|zµ|2 (58)

This will imply ∑
j

ej |zj(t)|2 +
∑

e·µ>ω1

∫ t

0

|zµ|2 .
∑
j

ej |zj(0)|2,
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yielding the crucial bound that, in turn and thanks to (56), yields Proposition 4.1.
We sketch a heuristic argument for (58) The starting point consists in considering

f = −
∑

zαR+
Hω1

(−→e · α)Aα0 −
∑

zβR+
Hω1

(−−→e · β)A0β + g. (59)

The effect of this change of variables is to show that g satisfies an equation where
the terms zαAα0 and zαA0α have been canceled out. While g(t) 6∈ H1, nonetheless,
using (53)–(55) it is possible to prove

‖ 〈x〉−N(d)
g‖L2

t ([0,T ],H1
x) . ‖f(0)‖H1 + |z(0)|+ ε2 ≤ C0ε

for an appropriate N(d) > 0. Here c0 ∼ 1 is c0 � C0 and consequently in the sequel
we ignore the term g.

Substituting (58) in (52), ignoring the terms in g, which are smaller, by elemen-
tary arguments we get to

iżj = ejzj −
∑
−→e ·ν>ω1

−→e ·α>ω1

νj
zαzν

zj
〈A0ν , σ3σ1R

+
Hω1

(−→e · α)Aα0〉+ ...

Generically, when all the eigenvalues of Hω1
in (0, ω1) have multiplicity 1, and

recalling A0α = −σ1Aα0, this simplifies further

iżj = ejzj −
∑

−→e ·α>ω1

αj
|zα|2

zj
〈Aα0, σ3R

+
Hω1

(−→e · α)Aα0〉+ .... (60)

Recalling now Theorem 2.4, for Aα0 = W (ω1)A
(1)
α0 , we have the following steps,

already discussed in the old survey [26],

〈Aα0, σ3R
+
Hω1

(−→e · α)Aα0〉 = lim
ε→0+

〈Aα0, σ3RHω1 (−→e · α+ iε)Aα0〉

= lim
ε→0+

〈W (ω1)A
(1)
α0 , σ3W (ω1)Rσ3(−∆+ω1)(

−→e · α+ iε)A
(1)
α0 〉

= lim
ε→0+

〈A(1)
α0 ,W (ω1)∗σ3W (ω1)Rσ3(−∆+ω1)(

−→e · α+ iε)A
(1)
α0 〉.

Using the identity W (ω1)∗σ3W (ω1) = σ3Z(ω1)W (ω1) = σ3, we conclude that

〈Aα0, σ3R
+
Hω1

(−→e · α)Aα0〉 = 〈A(1)
α0 , σ3R

+
σ3(−∆+ω1)(

−→e · α)A
(1)
α0 〉

= 〈A(1)
α0 , σ3P.V.

1

σ3(−∆ + ω1)−−→e · α
A

(1)
α0 〉

+ πi〈A(1)
α0 , σ3δ

(
σ3(−∆ + ω1)−−→e · α

)
A

(1)
α0 〉.

In the last line, the first term is real valued and the last is imaginary. Hence, when
we multiply (60) by ejzj , sum up on j and take the imaginary part, we obtain

2−1∂t
∑
j

ej |zj |2 = −π
∑

−→e ·α>ω1

|zα|2〈A(1)
α0 , σ3δ

(
σ3(−∆ + ω1)−−→e · α

)
A

(1)
α0 〉

= −π
∑

−→e ·α>ω1

|zα|2
〈(A

(1)
α0 )

1

(A
(1)
α0 )

2

 ,

δ(−∆ + ω1 −−→e · α) 0

0 − δ(∆− ω1 −−→e · α)︸ ︷︷ ︸
0

((A
(1)
α0 )

1

(A
(1)
α0 )

2

)〉

= −π
∑

−→e ·α>ω1

|zα|2
〈

(A
(1)
α0 )

1
, δ(−∆ + ω1 −−→e · α)(A

(1)
α0 )

1

〉
,



STABILITY OF GROUND STATES OF NONLINEAR SCHRÖDINGER EQUATIONS 1709

where tA
(1)
α0 =

(
(A

(1)
α0 )1, (A

(1)
α0 )2

)
and where〈

(A
(1)
α0 )1, δ(−∆ + ω1 −−→e · α)(A

(1)
α0 )1

〉
=

1

2(−→e · α− ω1)

∫
|ξ|=−→e ·α−ω1

∣∣∣∣(̂A(1)
α0 )1(ξ)

∣∣∣∣2 dS ≥ 0. (61)

The following is an hypothesis.

(H8) We assume the last inequality to be strict, for appropriate choice of multi–
indexes α.

Then the argument closes up.

Remark 4.3. The coefficients in (61) are obtained after the NLS undergoes a
significant number of coordinate changes. As a consequence, it is not easy to write
concretely and check numerically (H8). Notice though that in [39] the argument is
much simplified, there is no normal forms argument and the coefficients of the FGR
are much simpler.

5. Further remarks and references. We add some further remarks.

Remark 5.1. The problem of the eventual behavior of a soliton of (10) in a confin-
ing well obtained adding to (10) a potential, is mostly open. For a non complete list
of references see [7, 11, 52, 53, 67, 68, 46, 71], and see therein for further references.
These papers treat long time behavior, but not asymptotic behavior. This problem
is very similar to the oscillations discussed in Remark 3.7.

Remark 5.2. The effect of a potential on an escaping soliton is easier to track,
because, while it is deviated, the soliton is preserved. There are various papers
on the asymptotic behavior of escaping potentials like [31, 33, 50, 109]. A very
suggestive analysis of a soliton of the cubic integrable NLS in dimension 1 hitting
a defocusing delta potential is in Holmer, Marzuola and Zworski [65, 66]. But the
discussion, which uses also the integrable structure, involves finite times only: it
is not clear how to show that certain terms, that in [66] are remainder, do not
develop in significant ones over larger intervals of time. Very little, beyond Deift
and Zhou [48], is known about the use of the inverse scattering transform and the
nonlinear steepest descent method in the context of non–integrable systems, with
the problem in [66, 98] looking like natural for such a theory. For example, it would
be natural to use the nonlinear steepest descent method to show that all solutions
of a defocusing NLS in dimension 1 with a repulsive Dirac potential and with initial
datum in H1(R)∩〈x〉−1

L2(R) decay like t−1/2 and have the asymptotic profile that
in Masaki, Murphi and Segata [98] is proved only for small initial data.

An asymptotic analysis over all times for a problem similar to [66] is in Perelman
[112], which however discusses a very flat soliton. In [111] there is a finite time
analysis of interaction of two solitons.
Substantial modifications of a moving soliton in the presence of a NLS with a slowly
varying coefficient in front of the nonlinearity are in [105, 106].

Remark 5.3. There are deep connections between the Fermi Golden Rule discussed

here and the problem of the ‖∇u(t)‖L2(Rd) ∼
√

log | log t|
t blow up in the NLS with

β(|u|2)u = −|u| 4du. The key in the proof is the extension in [114, 100] of the solitons
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in a larger class of functions, which are only approximately solutions of the NLS
and resemble the part of the solution here given by

uapprox = eiσ3τ ·♦

Φp + P (p)

 ∑
l=1,...,n

zlξl +
∑

l=1,...,n

zlσ1ξl

 ,

obtained omitting the contribution of the continuous coordinate f . In [100] there is
the discussion of a Lyapunov function that takes the role of Ediscr :=

∑
j ej |zj |2. In

[100] the discussion is rather delicate because the coupling responsible for the Fermi
Golden Rule is exponentially small, rather than polynomially small like in Sect. 4.2.
In [114, 100] the choice of profiles (that is a generic solution is represented as a sum
of a profile plus a remainder, where the profile is similar to a ground state) does not
require an algorithmic procedure (normal forms) and is related to the framework
introduced by previous authors and discussed by Sulem and Sulem [125, Chapter
7]. Obviously, the step by step normal forms argument glimpsed in Sect. 4, which
eliminates resonant terms one at a time from the Taylor expansion of the energy E,
would never yield the exponentially small resonant terms in [100]. It is interesting
that in the first paper of their series [102], Merle and Raphael in Sect. 4.3 perform
an argument similar to normal forms which yields the non sharp upper bound on
blow up of [102]. Presumably further changes of variables would yield algebraic
improvements, which nonetheless are not sharp. In any case, from [101] (the second
paper in the series) on, they settle in the optimal coordinates obtaining the sharp
upper bound on blow up. Notice that in [39], in analogy to [114, 100], there is a
choice of profile that allows to avoid a normal forms argument.

Very delicate, especially because it is very difficult to estimate in a sharp way
various remainders, is the proof of the sharp lower bound on blow up in [100], where
a Lyapunov function is defined starting from the local virial identity (the latter is
stated in Proposition 2 [100], see also the earlier [102, 101]) and then by various
adjustments. The discussion is different from the one in the present survey, where
the Ediscr is defined using the the discrete coordinates, which lose energy leaking in
the background. Work needs to be done to compare the Lyapunov function in [100]
with the Ediscr of the present paper. It would be interesting to compare and unify
the methods, considering problems mixing the frameworks in [114, 100] and in here.
One such problem might be the one discussed in [36] and, by analogy, probably
also problems involving solitons trapped in wells, and in general, problems where
the linearizations have eigenvalues close to 0. Other similar problems are the ones
involving the complicated patterns in [96, 59] near the bifurcating standing waves
of [77, 78, 80].

Remark 5.4. Another topic which is not well studied is the relation between
Fermi Golden Rule and the small “wings” of nanopteron/micropterons [14]. Here,
a nanopteron/micropterons are infinite energy solutions which look like solitons
locally but have a small nondecaying (or slow decaying) tail near spatial infinity.
For mathematical results on the existence of such solutions for various equations see
[8, 64, 73, 91, 92, 126]. When the tail is exponentially small w.r.t. a small parameter
it is called nanopteron and, if it is polynomially small, it is called micropteron. Since
the asymptotic stability result reviewed in this paper claims that there are no finite
energy quasi-periodic solutions near solitons even though the linearized equation
posses quasi-periodic solutions due to the internal modes, it is natural to ask if
there exist infinite energy quasi-periodic solutions near solitons, which should be
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micropterons if they exist. Moreover, it is natural to guess that the “wing” of such
micropteron are related to the Fermi Golden Rule, in particular the first two terms of
the r.h.s. of (59). In connection of Merle-Raphael’s result on the blow up of critical
NLS [101, 100], it was shown by Johnson and Pan [72] that there exist infinite
energy solutions which blow up without the log log correction. From the above
point of view, it is natural to ask the relation between Merle and Raphael’s optimal
choice of the coordinate and Johnson-Pan’s solution. Moreover the exponentially
small Fermi Golden Rule and the asymptotic behavior of Johnson-Pan’s solution at
spatial infinity are of interest. However, these topics are completely open as far as
the authors know.

Remark 5.5. Many of the papers on asymptotic stability of standing waves, focus
on small standing waves which bifurcate from eigenvalues of a Schrödinger operator,
see [120, 121, 115], [128]– [131], [127, 61, 55, 54, 57, 58, 108, 97, 37]. In these papers
the spectrum of the Schrödinger operator is rather simple. More general situations
are cosidered in [32], whose proof is much simplified in [39], which however treats
only the case when the eigenvalues have multiplicity 1. Higher multiplicities, but
under restrictive conditions on the spectrum, are considered in [62]. Analogues of
[32] are for the NLKG in [38] and for Dirac in [43]. Notice that in [122, 6, 2], which
treat NLKG, there are no standing waves because only real valued solutions are
considered. In [38], since complex valued solutions of the NLKG are considered,
the dynamics of small energy solutions of the NLKG are more complicated than in
[122, 6].

Remark 5.6. The radiation damping also plays a role in the instability of excited
states which are linearly stable. This mechanism was called “radiation induced
instability” in [63] following the name “dissipation induced instability” [10]. See
also, [34].

Remark 5.7. Global asymptotic results have been proved for equations where the
nonlinearity is concentrated in a point, or in finitely many points, that is β(|u|2)u
is replaced by δ(x − x0)β(|u|2)u, or by a linear combination of such terms. See
[82]–[85], [22] and therein.

Another model with very remarkable results is the energy critical focusing wave
equation in 3 D, especially in the radial case, see [51], where the proof is based
on the channel of energy inequality, which is specific to wave equations, and on
nonlinear profile decompositions. In the context of the NLS, the nonlinear profile
decompositions are rather complicated, see [107], and the presence, in the termi-
nology of [110], of internal modes of the solitons might render difficult proving the
soliton decoupling, see also [35].

Remark 5.8. Little seems to be known about the nonlinear Klein Gordon Equa-
tions (NLKG). We do not know of any result analogous to Theorems 1.3, 2.2 or 2.3
for solitary waves of the NLKG. Notice that an analogue of Theorem 1.3 is known
for solutions with appropriate symmetries of nonlinear Dirac Equations, see [13].
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[72] R. Johnson and X. B. Pan, On an elliptic equation related to the blow-up phenomenon in the
nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 763–782.

[73] M. A. Johnson and J. D. Wright, Generalized solitary waves in the gravity–capillary

Whitham equation, Stud. Appl. Math., 144 (2020), 102–130.
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[88] M. Kowalczyk, Y. Martel and C. Muñoz, Soliton dynamics for the 1D NLKG equation with

symmetry and in the absence of internal modes, Jour. of the Europ. Math. Soc., to appear.
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