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Abstract
We prove the uniqueness for backward parabolic equations whose coefficients are Osgood 
continuous in time for t > 0 but not at t = 0.
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1  Introduction

Let us consider the following backward parabolic operator

where all the coefficients are assumed to be defined in [0,T] ×ℝ
n , measurable and 

bounded; (aj,k(t, x))j,k is a real symmetric matrix for all (t, x) ∈ [0,T] ×ℝ
n and there exists 

�0 ∈ (0, 1] such that

for all (t, x) ∈ [0,T] ×ℝ
n and � ∈ ℝ

n.
Given a functional space H , we say that the operator L has the H–uniqueness property 

if, whenever u ∈ H , Lu = 0 in [0,T] ×ℝ
n and u(0, x) = 0 in ℝn , then u = 0 in [0,T] ×ℝ

n.
In the present paper, we are interested in the H–uniqueness property for the operator L 

defined in (1), when

(1)L = �t +

n∑
j,k=1

�xj

(
aj,k(t, x)�xk

)
+

n∑
j=1

bj(t, x)�xj + c(t, x),

(2)
n∑

j,k=1

aj,k(t, x)�j�k ≥ �0|�|2,

(3)H = H1
(
(0, T), L2(ℝn)

)
∩ L2

(
(0, T),H2(ℝn)

)
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(let us remark that this choice for H is, in some sense, natural, since, from elliptic regular-
ity results, the domain of the operator −

∑n

j,k=1
�xj

�
aj,k(t, x)�xk

�
 in L2(ℝn) is H2(ℝn) , for all 

t ∈ [0, T]).
It is well known that, in dealing with the uniqueness property for partial differential 

operators, one of the main issues is the regularity of the coefficients. For example, in the 
case of elliptic operators, the uniqueness property in the case of Lipschitz continuous 
coefficients was proved by Hörmander in [14] (see [17] for a more refined result), while a 
famous non-uniqueness counterexample, for an elliptic operator having Hölder continuous 
coefficients, is due to Pliś (see [16]).

In [9, 10], we investigated the problem of finding the minimal regularity assumptions on 
the coefficients aj,k ensuring the H–uniqueness property to (1). Namely, we proved the H
–uniqueness property for (1) when the coefficients aj,k are Lipschitz continuous in x and the 
regularity in t is given in terms of a modulus of continuity � , i.e., 

where � satisfies the so-called Osgood condition

A counterexample in [9], similar to that one of Pliś quoted here above, shows that, con-
sidering the regularity with respect to t for the aj,k , the Osgood condition is sharp: given 
any non-Osgood modulus of continuity � , it is possible to construct a backward parabolic 
operator like (1), whose coefficients are C∞ in x and �-continuous in t, for which the H
–uniqueness property does not hold.

It is interesting to remark that, in the recalled counterexample, the coefficients are in fact 
C∞ in t for t ≠ 0 , and the Osgood continuity fails only at t = 0.

The loss of regularity for the coefficients at a single point is widely considered, e.g., in 
the case of well-posedness in the Cauchy problem for second-order hyperbolic operators of 
the type

under the condition (2). For such class of operators, we have the well-posedness in Sobolev 
spaces when the coefficients are log-Lipschitz continuous with respect to t, there exist 
counterexamples to this property when the Lipschitz continuity fails only at t = 0 , and, 
finally, the well-posedness in Sobolev spaces can be recovered adding a control on the Lip-
schitz constant of the aj,k’s, for t going to 0 (the literature on such kind of problems is huge, 
see, e.g., [4–8, 13, 18])

In this paper, we show that if the loss of the Osgood continuity is properly controlled as 
t goes to 0, then the H–uniqueness property for (1) remains valid. Our hypothesis reads as 
follows: given a modulus of continuity � satisfying the Osgood condition, we assume that 
the coefficients aj,k are Hölder continuous with respect to t on [0, T], and for all t ∈ (0, T]

sup

s1, s2 ∈ [0, T],

x ∈ ℝ
n

|aj,k(s1, x) − aj,k(s2, x)|
�(|s1 − s2|) ≤ C,

∫
1

0

1

�(s)
ds = +∞.

P = �2
t
−

n∑
j,k=1

�xj (aj,k(t, x)�xk ) +

n∑
j=1

bj(t, x)�xj + c(t, x),
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where 0 < 𝛽 < 1 . The coefficients aj,k are assumed to be globally Lipschitz continuous in 
x. Under such hypothesis, we prove that the H–uniqueness property holds for (1). As in [9, 
10], the uniqueness result is consequence of a Carleman estimate with a weight function 
shaped on the modulus of continuity � . The weight function is obtained as solution of a 
specific second-order ordinary differential equation. In the previous results cited above, the 
corresponding o.d.e. is autonomous. Here, on the contrary, the time-dependent control (4) 
yields to a non-autonomous o.d.e. Also, the “Osgood singularity” of aj,k at t = 0 introduces 
a number of new technical difficulties which are not present in the fully Osgood-regular 
situation considered before.

The result is sharp in the following sense: we exhibit a counterexample in which the 
coefficients aj,k are Hölder continuous with respect to t on [0, T], for all t ∈ (0, T] and for 
all 𝜖 > 0

and the operator (1) does not have the H–uniqueness property. The borderline case � = 0 in 
(5) is considered in paper [11]. In such a situation, only a very particular uniqueness result 
holds and the problem remains essentially open.

2 � Main result

We start with the definition of modulus of continuity.

Definition 1  A function � ∶ [0, 1] → [0, 1] is a modulus of continuity if it is continuous, 
concave, strictly increasing and �(0) = 0 , �(1) = 1.

Remark 1  Let � be a modulus of continuity. Then

•	 for all s ∈ [0, 1] , �(s) ≥ s;
•	 on (0, 1] , the function s ↦ �(s)

s
 is decreasing;

•	 the limit lims→0+
�(s)

s
 exists;

•	 on [1, +∞) , the function � ↦ ��(
1

�
) is increasing;

•	 on [1, +∞) , the function � ↦
1

�2�(
1

�
)
 is decreasing.

Definition 2  Let � be a modulus of continuity and let � ∶ I → B , where I is an interval in 
ℝ and B is a Banach space. � is a function in C�(I,B) if � ∈ L∞(I,B) and

(4)
sup

s1, s2 ∈ [t, T],

x ∈ ℝ
n

|aj,k(s1, x) − aj,k(s2, x)|
�(|s1 − s2|) ≤ Ct−� ,

(5)
sup

s1, s2 ∈ [t,T],

x ∈ ℝ
n

|aj,k(s1, x) − aj,k(s2, x)|
|s1 − s2| ≤ Ct−(1+�),

‖𝜑‖C𝜇(I,B) = ‖𝜑‖L∞(I,B) + sup

t, s ∈ I

0 < �t − s� < 1

‖𝜑(t) − 𝜑(s)‖B
𝜇(�t − s�) < +∞.
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Remark 2  Let � ∈ (0, 1) and �(s) = s� . Then, C�(I,B) is C0,�(I,B) , the space of Hölder-
continuous functions. Let �(s) = s . Then, C�(I,B) is Lip(I, B), the space of bounded Lip-
schitz-continuous functions.

We introduce the notion of Osgood modulus of continuity.

Definition 3  Let � be a modulus of continuity. � satisfies the Osgood condition if

Remark 3  Examples of moduli of continuity satisfying the Osgood condition are �(s) = s 
and �(s) = s log(e +

1

s
− 1).

We state our main result.

Theorem 1  Let L be the operator

where all the coefficients are supposed to be complex valued, defined in [0, T] ×ℝ
n , meas-

urable and bounded. Let (aj,k(t, x))j,k be a real symmetric matrix and suppose there exists 
�0 ∈ (0, 1] such that

for all (t, x) ∈ [0, T] ×ℝ
n and for all � ∈ ℝ

n . Under this condition, L is a backward para-
bolic operator. Let H be the space of functions such that

Let � be a modulus of continuity satisfying the Osgood condition. Suppose that there exist 
� ∈ (0, 1) and C > 0 such that, 

i)	 for all j, k = 1,… , n , 

ii)	 for all j, k = 1,… , n and for all t ∈ (0, T] , 

Then L has the H-uniqueness property, i.e., if u ∈ H , Lu = 0 in [0,T] ×ℝ
n and 

u(0, x) = 0 in ℝn , then u = 0 in [0,T] ×ℝ
n.

(6)∫
1

0

1

�(s)
ds = +∞.

(7)L = �t +

n∑
j,k=1

�xj

(
aj,k(t, x)�xk

)
+

n∑
j=1

bj(t, x)�xj + c(t, x),

(8)
n∑

j,k=1

aj,k(t, x)�j�k ≥ �0|�|2,

(9)H = H1
(
(0, T), L2(ℝn)

)
∩ L2

(
(0, T),H2(ℝn)

)
.

(10)aj,k ∈ C0,�([0, T], L∞(ℝn)) ∩ L∞([0, T], Lip(ℝn));

(11)
sup

s1, s2 ∈ [t, T],

x ∈ ℝ
n

|aj,k(s1, x) − aj,k(s2, x)|
�(|s1 − s2|) ≤ Ct�−1.
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Remark 4  The hypothesis (10), in particular the Hölder regularity with respect to t, is due 
to technical requirement for obtaining the Carleman estimate from which the main result is 
deduced. It does not seem easy to substitute it with different or weaker conditions.

3 � Weight function and Carleman estimate

Defining

the function � is a strictly increasing C1 function on [1,+∞) , with values in [0,+∞) , and, 
by the Osgood condition, it is bijective. Moreover, for all t ∈ [1,+∞),

We remark that ��(1) = 1 and �′ is decreasing in [1,+∞) , so that � is a concave function. 
Moreover, we notice also that �−1 ∶ [0,+∞) → [1,+∞) and, for all s ∈ [0,+∞),

We define

where � ∈ [0, �T].

and

Then

i. e. �� is a solution to the differential equation

Finally we set, for � ∈ [0, �T],

(12)�(t) = ∫
1

1

t

1

�(s)
ds,

��(t) =
1

t2�
(

1

t

) .

�−1(s) ≥ 1 + s.

(13)�� (�) = �−1

(
� ∫

�

�

0

(T − s)�−1 ds

)
,

�(�� (�)) = � ∫
�

�

0

(T − s)�−1 ds

��(�� (�))�
�
�
(�) =

(
T −

�

�

)�−1

.

� �
�
(�) =

(
T −

�

�

)�−1

⋅ (�� (�))
2�

(
1

�� (�)

)
,

u�(�) =

(
T −

�

�

)�−1

u2(�)�

(
1

u(�)

)
.
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Remark that, with this definition, Φ�(�) = �� (�) and

In particular, for t ∈ [0,
T

2
],

since Φ�
�
(�(T − t)) = �� (�(T − t)) ≥ 1 and �(s)

s
≥ 1 for all s ∈ (0, 1].

We can now state the Carleman estimate.

Theorem 2  In the previous hypotheses, there exist 𝛾0 > 0 , C > 0 such that

for all 𝛾 > 𝛾0 and for all u ∈ C∞
0

(
ℝ

n+1
)
 such that Supp u ⊆

[
0,

T

2

]
×ℝ

n.

The way of obtaining the H-uniqueness from the inequality (17) is a standard procedure, 
the details of which can be found in [9, Par. 3.4].

4 � Proof of the Carleman estimate

4.1 � Littlewood–Paley decomposition

We will use the so-called Littlewood–Paley theory. We refer to [2, 3, 15] and [1] for the 
details. Let � ∈ C∞([0,+∞),ℝ) such that � is non-increasing and

We set, for � ∈ ℝ
n,

Given a tempered distribution u, the dyadic blocks are defined by

(14)Φ� (�) = ∫
�

0

�� (�) d�.

(15)Φ��
�
(�) =

(
T −

�

�

)�−1

(Φ�
�
(�))2 �

(
1

Φ�
�
(�)

)
.

(16)Φ��
�
(�(T − t)) = t�−1 Φ�

�
(�(T − t))

�

(
1

Φ�
�
(�(T−t))

)

1

Φ�
�
(�(T−t))

≥ t�−1 ≥ (
T

2

)�−1

,

(17)
�

T

2

0

e
2

�
Φ� (�(T−t))‖�tu +

n�
j,k=1

�xj

�
aj,k(t, x)�xku

�‖2
L2
dt

≥ C�
1

2 �
T

2

0

e
2

�
Φ� (�(T−t))

�
‖∇xu‖2L2 + �

1

2 ‖u‖2
L2

�
dt

�(t) = 1 for 0 ≤ t ≤ 11

10
, �(t) = 0 for t ≥ 19

10
.

(18)�(�) = �(|�|), �(�) = �(�) − �(2�).

u0 =Δ0u = 𝜒(D)u = F
−1(𝜒(𝜉)û(𝜉)),

uj =Δju = 𝜑(2−jD)u = F
−1(𝜑(2−j𝜉)û(𝜉)) if j ≥ 1,
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where we have denoted by F−1 the inverse of the Fourier transform. We introduce also the 
operator

We recall some well-known facts on Littlewood–Paley deposition.

Proposition 1  ([8, Prop. 3.1]) Let s ∈ ℝ . A temperate distribution u is in Hs if and only if, 
for all j ∈ ℕ , Δju ∈ L2 and

Moreover, there exists C > 1 , depending only on n and s, such that, for all u ∈ Hs,

Proposition 2  ([12, Lemma 3.2]). A bounded function a is a Lipschitz-continuous function 
if and only if

Moreover, there exists C > 0 , depending only on n, such that, for all a ∈ Lip and for all 
k ∈ ℕ,

where ‖a‖Lip = ‖a‖L∞ + ‖∇a‖L∞.

4.2 � Modified Bony’s paraproduct

Definition 4  Let m ∈ ℕ ⧵ {0} , a ∈ L∞ and s ∈ ℝ . For all u ∈ Hs , we define

We recall some known facts on modified Bony’s paraproduct.

Proposition 3  ([15, Prop. 5.2.1 and Th. 5.2.8]). Let m ∈ ℕ ⧵ {0} , a ∈ L∞ and s ∈ ℝ.

Then Tm
a

 maps Hs into Hs and there exists C > 0 depending only on n, m and s, such 
that, for all u ∈ Hs,

Let m ∈ ℕ ⧵ {0} and let a ∈ Lip.

Sku =

k∑
j=0

Δju = F
−1
(
𝜒
(
2−k𝜉

)
û(𝜉)

)
.

+∞�
j=0

22js‖Δju‖2L2 < +∞.

(19)
1

C

+∞�
j=0

22js‖Δju‖2L2 ≤ ‖u‖2
Hs ≤ C

+∞�
j=0

22js‖Δju‖2L2 .

sup
k∈ℕ

‖∇(Ska)‖L∞ < +∞.

(20)‖Δka‖L∞ ≤ C 2−k ‖a‖Lip and ‖∇(Ska)‖L∞ ≤ C ‖a‖Lip,

Tm
a
u = Sm−1aSm+1u +

+∞∑
k=m−1

SkaΔk+3u.

(21)‖Tm
a
u‖Hs ≤ C‖a‖L∞ ‖u‖Hs .
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Then a − Tm
a

 maps L2 into H1 and there exists C′ > 0 depending only on n, m, such that, 
for all u ∈ L2,

Proposition 4  ([8, Cor. 3.12]) Let m ∈ ℕ ⧵ {0} and a ∈ Lip . Suppose that, for all x ∈ ℝ
n , 

a(x) ≥ 𝜆0 > 0.

Then, there exists m depending on �0 and ‖a‖Lip such that for all u ∈ L2,

A similar result remains valid when u is a vector valued function and a is replaced by a 
positive definite matrix (aj,k)j,k.

Proposition 5  ([8, Prop. 3.8 and Prop. 3.11] and [10, Prop. 3.8]) Let m ∈ ℕ ⧵ {0} and 
a ∈ Lip . Let (Tm

a
)∗ be the adjoint operator of Tm

a
.

Then, there exists C > 0 depending only on n and m such that for all u ∈ L2,

We end this subsection with a property which will needed in the proof of the Carleman 
estimate.

Proposition 6  ([10, Prop. 3.8]) Let m ∈ ℕ ⧵ {0} and let a ∈ Lip . Denote by 
[
Δk, T

m
a

]
 the 

commutator between Δk and Tm
a

.

Then, there exists C > 0 depending only on n and m such that for all u ∈ H1,

4.3 � Approximated Carleman estimate

Setting

the Carleman estimate (17) becomes: there exist 𝛾0 > 0 , C > 0 such that

for all 𝛾 > 𝛾0 and for all v ∈ C∞
0

(
ℝ

n+1
)
 such that Supp u ⊆

[
0,

T

2

]
×ℝ

n
x
.

(22)‖au − Tm
a
u‖H1 ≤ C�‖a‖Lip ‖u‖L2 .

(23)Re
�
Tm
a
u, u

�
L2,L2

≥ �0

2
‖u‖L2 .

(24)‖(Tm
a
− (Tm

a
)∗)�xju‖L2 ≤ C‖a‖Lip‖u‖L2 .

(25)
�

+∞�
h=0

‖�xj
��
Δk, T

m
a

�
�xku

�‖2
L2

� 1

2

≤ C‖a‖Lip‖u‖H1 .

v(t, x) = e
1

�
Φ� (�(T−t))u(t, x),

(26)
�

T

2

0

‖�tv +
n�

j,k=1

�xj (aj,k(t, x)�xk v) + Φ�
�
(�(T − t))v‖2

L2
dt

≥ C�
1

2 �
T

2

0

�
‖∇xv‖2L2 + �

1

2 ‖u‖2
L2

�
dt,
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First of all, using Proposition 4, we fix a value for m in such a way that

for all v ∈ C∞
0

(
ℝ

n+1
)
 such that Supp u ⊆

[
0,

T

2

]
×ℝ

n . Next we use Proposition 3 and in 
particular from (22) we deduce that (26) will be a consequence of

since the difference between (26) and (28) is absorbed by the right side part of (28) with 
possibly a different value of C and �0 . With a similar argument, using (19) and (25), (28) 
will be deduced from

where we have denoted by vh the dyadic block Δhv.
We fix our attention on each of the terms

We have

Let consider the last term in (30). We define, for � ∈ [0,
T

2
],

and

(27)Re
�
j,k

�
Tm
aj,k
�xk v, �xj v

�
L2,L2

≥ �0

2
‖∇xv‖L2 ,

(28)
�

T

2

0

‖�tv +
n�

j,k=1

�xj (T
m
aj,k
�xk v) + Φ�

�
(�(T − t))v‖2

L2
dt

≥ C�
1

2 �
T

2

0

(‖∇xv‖2L2 + �
1

2 ‖u‖2
L2
) dt,

(29)
�

T

2

0

+∞�
h=0

‖�tvh +
n�

j,k=1

�xj

�
Tm
aj,k
�xk vh

�
+ Φ�

�
(�(T − t))vh‖2L2 dt

≥ C�
1

2 �
T

2

0

+∞�
h=0

�
‖∇xvh‖2L2 + �

1

2 ‖vh‖2L2
�
dt,

∫
T

2

0

‖�tvh +
n�

j,k=1

�xj

�
Tm
aj,k
�xk vh

�
+ Φ�

�
(�(T − t))vh‖2L2 dt.

(30)

∫
T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

= ∫
T

2

0

�
‖�tvh‖2L2 + ‖

n�
j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2

+�Φ��
�

�
�(T − t))‖vh‖2L2 + 2Re ⟨�tvh,

n�
j,k=1

�xj (T
m
aj,k
�xk vh)⟩L2,L2

�
dt

ãj,k,𝜀(t, x) =

⎧⎪⎨⎪⎩

aj,k(T , x), if t ≥ T and x ∈ ℝ
n,

aj,k(t, x), if 𝜀 ≤ t ≤ T and x ∈ ℝ
n,

aj,k(𝜀, x), if t < 𝜀 and x ∈ ℝ
n,
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where � ∈ C∞
0
(ℝ) with Supp 𝜌 ⊆ [−1, 1] , ∫

ℝ
�(s)ds = 1 , �(s) ≥ 0 and ��(s) =

1

�
�(

s

�
) . With a 

straightforward computation, from (10) and (11), we obtain

and

for all j, k = 1 … , n and for all (t, x) ∈
[
0,

T

2

]
×ℝ

n . We deduce

Now, Tm
aj,k

− Tm
aj,k,�

= Tm
aj,k−aj,k,�

 and, from (21) and (31),

Moreover ‖�xj vh‖L2 ≤ 2h+1‖vh‖L2 and ‖�xj�tvh‖L2 ≤ 2h+1‖�tvh‖L2 , so that

where C depends only on n, m and ‖aj,k‖L∞ and N > 0 can be chosen arbitrarily.
Similarly

aj,k,𝜀(t, x) = ∫
𝜀

−𝜀

𝜌𝜀(s)ãj,k,𝜀(t − s, x) ds,

(31)|aj,k(t, x) − aj,k,�(t, x)| ≤ C min
{
�� , t�−1 �(�)

}
,

(32)|�taj,k,�(t, x)| ≤ Cmin

{
��−1, t�−1

�(�)

�

}
,

�
T

2

0

2 Re

�
�tvh,

n�
j,k=1

�xj (T
m
aj,k
�xk vh)

�

L2,L2

dt

= −2Re �
T

2

0

n�
j,k=1

�
�xj�tvh, T

m
aj,k
�xk vh

�
L2,L2

dt

= −2Re �
T

2

0

n�
j,k=1

�
�xj�tvh, (T

m
aj,k

− Tm
aj,k,�

)�xk vh

�
L2,L2

dt

−2Re ∫ T

2

0

∑n

j,k=1

�
�xj�tvh, T

m
aj,k,�

�xk vh

�
L2,L2

dt.

‖
�
Tm
aj,k

− Tm
aj,k,�

�
�xk vh‖L2 = ‖Tm

aj,k−aj,k,�
�xk vh‖L2≤ C min{�� , t�−1�(�)}‖�xk vh‖L2 .

���2Re �
T

2

0

n�
j,k=1

�
�xj�tvh,

�
Tm
aj,k

− Tm
aj,k,�

�
�xk vh

�
L2,L2

dt
���

≤ 2C �
T

2

0

min
�
�� , t�−1�(�)

� n�
j,k=1

‖�xj�tvh‖L2‖�xk vh‖L2 dt

≤ C

N �
T

2

0

‖�tvh‖2L2 dt + CN 24(h+1) �
T

2

0

min
�
�� , t�−1�(�)

�‖vh‖2L2 dt,
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From (21) and (32), we have

and, from (24),

where C depends only on n, m and ‖aj,k‖Lip and N > 0 can be chosen arbitrarily.
As a conclusion, from (30), we finally obtain

4.4 � End of the proof

We start considering (33) for h = 0 . We fix � =
1

2
 . Recalling (16) we have

−2Re ∫
T

2

0

n∑
j,k=1

⟨
�xj�tvh, T

m
aj,k,�

�xk vh
⟩
L2,L2

dt

= ∫
T

2

0

n∑
j,k=1

⟨
�xj vh, T

m
�taj,k,�

�xk vh
⟩
L2,L2

dt

+∫
T

2

0

n∑
j,k=1

⟨
�xj vh,

(
Tm
aj,k,�

−

(
Tm
aj,k,�

)∗)
�xk�tvh

⟩
L2,L2

dt.

����
T

2

0

n�
j,k=1

�
�xj vh, T

m
�taj,k,�

�xk vh
�
L2,L2

dt
���

≤ C 22(h+1) �
T

2

0

min{��−1, t�−1
�(�)

�
}‖vh‖2L2 dt,

����
T

2

0

n�
j,k=1

�
�xj vh, (T

m
aj,k,�

− (Tm
aj,k,�

)∗)�xk�tvh
�
L2,L2

dt
���

≤ C �
T

2

0

‖∇vh‖L2‖�tvh‖L2 dt

≤ C

N �
T

2

0

‖�tvh‖2L2 dt + CN 22(h+1) �
T

2

0

‖vh‖2L2 dt,

(33)

�
T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ �
T

2

0

�
‖

n�
j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2

+ �Φ��
�
(�(T − t))‖vh‖2L2 − C

�
24(h+1) min{�� , t�−1�(�)}

+ 22(h+1)(min{��−1, t�−1
�(�)

�
} + 1)

�‖vh‖2L2
�
dt.
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Choosing a suitable �0 , we have that, for all 𝛾 > 𝛾0,

We consider (33) for h ≥ 1 . Choosing � = 2−2h , we have

From (27) it is possible to deduce that

Suppose first that

From (27) we have

and then, using also (16), we obtain

�
T

2

0

‖�tv0 +
n�

j,k=1

�xj (T
m
aj,k
�xk v0) + Φ�

�
(�(T − t))v0‖2L2 dt

≥ �
T

2

0

(�Φ��
�
(�(T − t)) − C�)‖v0‖2L2

≥ �
T

2

0

(�(
T

2
)�−1 − C�)‖v0‖2L2 dt.

(34)�
T

2

0

‖�tv0 +
n�

j,k=1

�xj (T
m
aj,k
�xk v0) + Φ�

�
(�(T − t))v0‖2L2 dt ≥ �

2 �
T

2

0

‖v0‖2L2 dt.

�
T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ �
T

2

0

�
‖

n�
j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2

+
�
�Φ��

�
(�(T − t)) − C(24h min{2−2h� , t�−1�(2−2h)} + 22h)

�‖vh‖2L2
�
dt

≥ �
T

2

0

��‖
n�

j,k=1

�xj (T
m
aj,k
�xk vh)‖L2 − Φ�

�
(�(T − t))‖vh‖L2

�2

+
�
�Φ��

�
(�(T − t)) − C(24h min{2−2h� , t�−1�(2−2h)} + 22h)

�‖vh‖2L2
�
dt.

(35)‖
n�

j,k=1

�xj (T
m
aj,k
�xk vh)‖L2 ≥

�0

8
22h‖vh‖L2 .

Φ�
�
(�(T − t)) ≤ �0

16
22h.

‖
n�

j,k=1

�xj (T
m
aj,k
�xk vh)‖L2 − Φ�

�
(�(T − t))‖vh‖L2 ≥ �0

16
22h‖vh‖L2
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Then, there exist 𝛾0 > 0 and C > 0 such that, for all 𝛾 > 𝛾0 and for all h ≥ 1,

Suppose finally that

From (15), the fact that �0 ≤ 1 and the properties of the modulus of continuity � we obtain

and

Consequently

Then, there exist 𝛾0 > 0 and C > 0 such that, for all 𝛾 > 𝛾0 and for all h ≥ 1,

�
T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ �
T

2

0

��‖
n�

j,k=1

�xj (T
m
aj,k
�xk vh)‖L2 − Φ�

�
(�(T − t))‖vh‖L2

�2

+
�
�Φ��

�
(�(T − t)) − C(24h min{2−2h� , t�−1�(2−2h)} + 22h)

�‖vh‖2L2
�
dt

≥ �
T

2

0

�
(
�0

16
22h)2 + �(

T

2
)�−1 − C(2(4−2�)h)

�
‖vh‖2L2 dt.

(36)
�

T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ C �
T

2

0

(� + �
1

2 22h)‖vh‖2L2 dt

Φ�
�
(�(T − t)) ≥ �0

16
22h.

Φ��(�(T − t)) = t�−1(Φ�
�
(�(T − t)))2 �(

1

Φ�
�
(�(T − t)))

)

≥ t�−1(
�0

16
)224h�(

16

�0
2−2h) ≥ t�−1(

�0

16
)224h�(2−2h).

Φ��(�(T − t)) = t�−1(Φ�
�
(�(T − t)))2 �(

1

Φ�
�
(�(T − t)))

)

= t�−1 Φ�
�
(�(T − t))

�(
1

Φ�
�
(�(T−t))

)

1

Φ�
�
(�(T−t))

≥ (
T

2
)�−1.

�
T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ �
T

2

0

�
�Φ��

�
(�(T − t)) − C(24h min{2−2h� , t�−1�(2−2h)} + 22h)

�‖vh‖2L2 dt

≥ �
T

2

0

�
�

2

�
t�−1(

�0

16
)224h�(2−2h) + (

T

2
)�−1

�
− C

�
t�−124h�(2−2h) + 22h

��‖vh‖2L2 dt.
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As a conclusion, from (34), (36) and (37), there exist 𝛾0 > 0 and C > 0 such that, for all 
𝛾 > 𝛾0 and for all h ∈ ℕ,

and (29) follows. The proof is complete.

5 � A counterexample

Theorem 3  There exists

with

and there exist u, b1, b2, c ∈ C∞
b
(ℝt ×ℝ

2
x
) , with

such that

Remark 5  Actually, the function l will satisfy

From (41) it is easy to obtain (40).

Proof  We will follow the proof of Theorem  1 in [16] (see also Theorem  3 in [9]). Let 
A, B, C, J be four C∞ functions, defined in ℝ , with

(37)
�

T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2 dt

≥ C� �
T

2

0

(1 + 22h)‖vh‖2L2 dt.

(38)
�

T

2

0

‖�tvh +
n�

j,k=1

�xj (T
m
aj,k
�xk vh) + Φ�

�
(�(T − t))vh‖2L2(ℝn)

dt

≥ C �
T

2

0

(� + �
1

2 22h)‖vh‖2L2 dt

l ∈
( ⋂
�∈[0,1[

C0,�(ℝ)
)
∩ C∞(ℝ ⧵ {0})

(39)
1

2
≤ l(t) ≤ 3

2
, for all t ∈ ℝ,

(40)|l�(t)| ≤ C𝜀|t|−(1+𝜀), for all 𝜀 > 0 and t ∈ ℝ ⧵ {0},

Supp u = {(t, x) ∈ ℝt ×ℝ
2
x
|| t ≥ 0},

�tu + �2
x1
u + l�2

x2
u + b1�x1u + b2�x2u + cu = 0 in ℝt ×ℝ

2
x
.

(41)sup
t≠0

(
|t|

1 + | log |t|| )|l
�(t)| < +∞.
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and

Let (an)n, (zn)n be two real sequences such that

We define

We require

We set

We define

The condition

implies that u ∈ C∞
b
(ℝt ×ℝ

2
x
).

We define

0 ≤ A(s), B(s), C(s) ≤ 1 and − 2 ≤ J(s) ≤ 2, for all s ∈ ℝ,

A(s) = 1, for s ≤ 1

5
, A(s) = 0, for s ≥ 1

4
,

B(s) = 0, for s ≤ 0 or s ≥ 1, B(s) = 1, for
1

6
≤ s ≤ 1

2
,

C(s) = 0, for s ≤ 1

4
, C(s) = 1, for s ≥ 1

3
,

J(s) = −2, for s ≤ 1

6
or s ≥ 1

2
, J(s) = 2, for

1

5
≤ s ≤ 1

3
.

(42)− 1 < an < an+1, for all n ≥ 1, and lim
n

an = 0,

(43)1 < zn < zn+1, for all n ≥ 1, and lim
n

zn = +∞.

rn = an+1 − an,

q1 = 0 and qn =

n∑
k=2

zkrk−1, for n ≥ 2,

pn = (zn+1 − zn)rn.

(44)pn > 1, for all n ≥ 1.

An(t) =A(
t − an

rn
), Bn(t) = B(

t − an

rn
),

Cn(t) =C(
t − an

rn
), Jn(t) = J(

t − an

rn
).

vn(t, x1) = exp(−qn − zn(t − an)) cos
√
zn x1,

wn(t, x2) = exp(−qn − zn(t − an) + Jn(t)pn) cos
√
zn x2,

u(t, x1, x2)

=

⎧
⎪⎨⎪⎩

v1(t, x1), for t ≤ a1,

An(t)vn(t, x1) + Bn(t)wn(t, x2) + Cn(t)vn+1(t, x1), for an ≤ t ≤ an+1,

0, for t ≥ 0.

(45)lim
n

exp(−qn + 2pn)z
𝛼
n+1

p𝛽
n
r−𝛾
n

= 0, for all 𝛼, 𝛽, 𝛾 > 0,
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l is a C∞(ℝ ⧵ {0}) function. The condition

implies (39), i. e. the operator

is a parabolic operator. Moreover, l is in 
⋂

�∈[0,1[ C
0,�(ℝ) if

Finally, we define

As in [16] and [9], the functions b1, b2, c are in C∞
b
(ℝt ×ℝ

2
x
) if

We choose, for j0 ≥ 2,

With this choice (42) and (43) are satisfied and we have

where, for sequences (fn)n, (gn)n , fn ∼ gn means limn
fn

gn
= � , for some 𝜆 > 0 . Similarly

and condition (44) is verified, for a suitable fixed j0 . Remarking that we have, for j0 suit-
ably large,

and

l(t) =

{
1, for t ≤ a1 or t ≥ 0,

1 + J�
n
(t)pnz

−1
n
, for an ≤ t ≤ an+1.

(46)sup
n

{pnr
−1
n
z−1
n
} ≤ 1

2‖J�‖L∞

L = �t − �2
x1
− l(t)�2

x2

(47)sup
n

{pnr
−1−𝛼
n

z−1
n
} < +∞, for all 𝛼 ∈ [0, 1[.

b1 = −
Lu

u2 + (�x1u)
2 + (�x2u)

2
�x1u,

b2 = −
Lu

u2 + (�x1u)
2 + (�x2u)

2
�x2u,

c = −
Lu

u2 + (�x1u)
2 + (�x2u)

2
u.

(48)lim
n

exp(−pn)z
𝛼
n+1

p𝛽
n
r−𝛾
n

= 0, for all 𝛼, 𝛽, 𝛾 > 0.

an = −e−
√
log(n+j0), zn = (n + j0)

3.

rn ∼ e−
√
log(n+j0)

1

(n + j0)
√
log(n + j0)

,

pn ∼ e−
√
log(n+j0)

n + j0√
log(n + j0)

qn =

n∑
k=2

zkrk−1 ≥ znrn−1 ≥ �(n + j0)
7

4
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for some 𝜆 > 0 . Finally

As a consequence (45), (46), (47) and (48) are satisfied for a suitable fixed j0 . It remains to 
check (41). We have

and consequently

The conclusion of the theorem is reached simply exchanging t with −t . 	�  ◻
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