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Matrix model for collective 
phenomena in electron beam’s 
longitudinal phase space
Giovanni Perosa1* & Simone Di Mitri1,2 

The possibility to predict, characterize and minimize the presence of spurious harmonic content in 
the longitudinal profile of high brightness electron beams, namely the microbunching instability, 
has become vital to ensure accurate modeling and reliable operation of radiofrequency and plasma-
based linear accelerators such as those driving free-electron lasers. Recently, the impact of intrabeam 
scattering (IBS) on the instability has been experimentally demonstrated by the authors. This work 
complements that experimental study by extending existing theories in a self-consistent, piece-wise 
calculation of IBS in single pass linacs and multi-bend transfer lines. New expressions for the IBS are 
introduced in two different semi-analytical models of microbunching. The accuracy of the proposed 
models and the range of beam parameters to which they apply is discussed. The overall modeling 
turns out to be a fast comprehensive tool for the optimization of linac-driven free-electron lasers.

Modern science found its fortune in the disposal of high brightness charged particles and photon beams to 
advance its frontiers. In particular, electron beams have become crucial for several operations, ranging from 
X-ray free-electron  lasers1–4 (FELs) and plasma  accelerators5–7 to coherent electron  cooling8 and generation of 
high power THz broadband  radiation9. A common need of all these initiatives is preservation and control of the 
electron beam quality, commonly parametrized by brightness. For instance, matter exploration benefits from 
stable narrow spectral lines of FELs, granted by longitudinal coherence.  However, to date its extension to the 
water window (from 300 to 500 eV) and higher photon energy results uncertain because of apparently partial 
understanding and not reproducible evidence of microbunching instability (MBI)10–13. As the name suggests, 
this phenomenon is a cascade process that enhances initial non-uniformities of the charge distribution. Because 
of its broadband gain, it is able to capture and amplify modulations from several µ m to few 100’s of µ m wave-
length. Bunch length compression blueshifts these wavelengths by a factor 10–100, reaching the scale of the FEL 
cooperation  length14. The large amplitude µm-scale modulations in the final electron beam longitudinal phase 
space translate into large slice energy  spread15, causing the reduction of photon brilliance. Moreover, the mixing 
of MBI-frequencies and FEL coherent emission generates shot-to-shot fluctuations of the multiline FEL, leading 
to the appearance of sidebands at specific  frequencies16,17.

The instability is usually mitigated by Landau  Damping18, phase  mixing19 or a combination of  both20. The first 
approach makes use of a laser heater (LH)21 in the low energy region of the linac; the second one is implemented 
via linear optics control through dispersive regions.

The standard analysis of MBI relies on the linearization of Vlasov–Maxwell equation for the electrons distri-
bution f (�X)22,23 passing through a magnetic bunch length  compressor24. The 1-D bunching factor b, defined as 
the Fourier transform of the bunch longitudinal charge distribution,

is a broadband shot-noise-like spectral distribution. This is amplified by longitudinal space charge (LSC) along 
accelerating sections and coherent sinchrotron radiation (CSR) in dispersive regions. The effect of LSC and CSR 
on the formation of microbunches results in an integral equation with specific initial  condition23:

(1)b(k; s) = 1

N

∫

d �Xe−ikz f (�X),

(2)b[k(s); s] = b0[k(s); s] +
∫ s

0
dτK(τ , s)b[k(τ ); τ ],
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Hereafter we call this ensemble of assumptions and expressions Huang–Kim model (HK). Together with den-
sity and energy modulations, the formalism allows one to determine the instability gain G, defined as the ratio 
between final and initial bunching factor. The dominant terms of the expression are

and the effective energy spread induced by energy  modulations15

R56 is the element of the transfer matrix that couples the longitudinal coordinates (z, δ) , �p(k0; 0) is an initial 
energy modulation and �γ (k) is the energy modulation in Lorentz unit per unit bunching factor, C is the bunch 
length compression factor implemented at a 4-dipoles magnetic chicane, k is the modulation wave number, σδ is 
the relative energy spread at the entrance of the compressor. The complete expression for the gain can be found 
in the  reference23.

Similarly, the beam harmonic content can be obtained following the Bosch–Kleman (BK)  formalism25. Dif-
ferently from the HK model, whose results are derived for magnetic bunch length compressors only, the BK 
allows the description of MBI in linear regime along dispersive sections of arbitrary geometry, such as multi-bend 
transfer lines. The theory treats a 2-dimensional vector space of longitudinal modulations of electrons bunches. 
All the collective phenomena, namely LSC, CSR and coherent edge radiation (CER), possibly including the effect 
of vacuum chamber shielding, are introduced by means of impedances Z(�)26, as a function of the modulation 
wavelength � . The contribution to beam modulations are expressed via matrix multiplication. Although we limit 
our discussion to LSC, CSR and CER, it is always possible to add piece-wise other longitudinal collective effects, 
as long as they can be described by impedances. This makes the model highly adaptable to any kind of section 
and to any degree of accuracy in the description of the beam line.

Given the integrated impedance Zcol(�) of a specific collective effect along a section of length L, the corre-
sponding matrix acting on the modulations space is

where E(z) is the energy value along the section, with 0 < z < L.
When the section is energy-dispersive, the effect of longitudinal Landau Damping can be included through 

the following matrix

where C = (1− hR56)
−1 and the functions F and G are

These quantities embody the suppression of gain due to uncorrelated energy spread and they depend on the 
slice energy profile. Authors considered f (δ) as a normalized Gaussian function with rms energy spread σE . 
More precisely, the dynamics of microbunching inside a dispersive region is regulated by the harmonic content 
of the slice energy distribution, i.e. by its Fourier transform.

This paper concerns the theoretical description of intrabeam scattering (IBS)27 and its integration in a com-
prehensive MBI model. Recently, the accelerator community shows a renewed interest in IBS effect in linear 
accelerators and linac-driven X-ray  FELs28–31. When the study involves a careful characterization of the electron 
beam longitudinal phase space, IBS cannot be considered as a minor effect. In a previous  work30, we demon-
strated experimentally the need of inclusion of IBS to correctly understand the development of MBI, especially 
at high gain values. To do so we used the HK formalism for MBI and a set of equations semi-analytically solved 
for the IBS. In this paper, we derive completely analytic expressions for the slice energy spread induced by IBS. 
These results are inserted in both HK and BK models, keeping track of the IBS-induced energy spread and 
updating piece-wisely the beam slice energy distribution. Starting with a specific but arbitrary profile for f (δ) 
and associated energy spread σE(0) , this value will be increased after a L-long section by the collisions between 
particles, resulting in an enlargement of the distribution width. To quantify σE(L) , or equivalently the relative 
uncorrelated energy spread σδ(L) , we recall an expression for the energy spread growth rate and integrate it. In 
addition to this, the LH modeling is upgraded with respect to the 1-D approximation adopted in  BK25. In order 
to consider the spatial superposition of laser and  electrons32, we treat the whole 3-D configuration space, for 
arbitrary beam energy distributions.

Results
IBS growth rate. Historically, there are two consistent approaches to characterize the growth rate of trans-
verse and longitudinal emittances. The first one, due to  Piwinski33, is based on Analytical Mechanics; the second 
one, due to Bjorken and  Mtingwa34, is based on Quantum Field Theory. These formalisms coincides in the high 
energy  approximation35. In the framework of beam-driven light sources, we are particularly interested to the 
growth rate of the relative energy spread, whose differential equation  is35:

(3)G ≈ |(1− iR56�p(k0; 0))|e−
1
2C

2k2R256σ
2
δ ,

(4)σ
(MBI)
E = (mc2)2

1

2πnz

∫

dk|G(k)2�γ (k)2|.

(5)SL = 1

E(L)

(

E(L) 0
−Zcol(�)I E(0)

)

,

(6)D =
(

F(�) ik(�)R56CF(�)
iCG(�)/E CF(�)− k(�)R56C

2G(�)/E

)

,

(7)F(�) =
∫

cos[k(�)CR56δ/E]f (δ)dδ and G(�) =
∫

sin[k(�)CR56δ/E]f (δ)δdδ.
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where c is the speed of light, re is the classical electron radius, Ne is the number of electrons, σδ = σE/E , 
γ = E/mc2 , ǫn is the normalized emittance, σx,y are the beam’s rms sizes, βx,y are the betatron functions, σz is 
the bunch length,

in which η is the dispersion lattice function, and finally

Both the  Piwinski33 and Bjorken-Mtingwa34 theory includes the so-called Coulomb logarithm:

with bmax and bmin the maximum and minimum impact parameter of IBS scattering events, θmax and θmin the 
maximum and minimum scattering angle. Equation (11) inherits the logarithmic behaviour from the phase 
space divergence in the presence of long-range interactions; the divergence can be avoided by imposing a cutoff. 
This procedure is mandatory not only to normalize the integration in the phase space, but also to discard hard 
scattering events, which may heavily bias IBS contributions in the bunch core.

The minimum scattering angle is usually chosen in terms of Debye length or beam size. The lower limit is 
taken to be

choosing bmax = σx ,  (see30), and p is the momentum in the C.o.M. system. We propose a new estimate for the 
maximum scattering  angle30, inspired to the strategy proposed for  synchrotrons36. The upper limit is given in 
terms of the momentum transfer in the collision, q, calculated as the boundary beyond which the integrated scat-
tering rate matches a characteristic time τ . In the absence of equilibrium conditions, as they commonly happen 
to be in a storage ring, τ becomes here the time the beam takes to travel along the accelerator.

We start  from36

where the relation between q and θ  is33

and β̄ is the average normalized velocity in the C.o.M. system and the coefficients u, v and w  are36

For a round ( ǫx = ǫy , βx = βy ) and ultra-relativistic electron beam in a straight section, the polynomial’s 
coefficients reduce to:

and the integral can be rewritten in the simpler form

(8)
1

τδ
= 1

σδ

dσδ

dt
= cr2e Ne[log ]σH

16γ 2(ǫnxσx)1/2(ǫnyσy)1/2σzσ
3
δ

g

[

(

βxǫny

βyǫnx

)1/2
]

,

(9)1

σ 2
H

= 1

σ 2
δ

+ γHx

ǫnx
+ γHy

ǫny
, Hx,y =

[

η2x,y +
(

βx,yη
′
x,y − 1

2β
′
x,yηx,y

)2]

βx,y
,

(10)g(x) = 4
√
x

π

∫ ∞

0

y2dy
√

(1+ y2)(x2 + y2)

(

1

1+ y2
+ 1

x2 + y2

)

.

(11)[log ] = ln

(

bmax

bmin

)

≈ ln

(

θmax

θmin

)

,

(12)θmin ≈ 2rem
2c2

bmaxp2
= 2re

σx β̄2
,

(13)q2max = cτNer
2
e

2πγ 2ǫxǫyσzσδ

∫ ∞

0

dx√
x4 + ux3 + vx2 + wx

,

(14)q = β̄

2
sin

(

θ

2

)

≈ β̄θ ,

(15)u = γ 2

(

γHx

ǫnx
+ 1

σ 2
δ

+ βx

γ ǫnx
+ βy

γ ǫny

)

,

(16)v = γ 2

(

γ 2Hxβy

ǫnx ǫny
+ βxβy

ǫnx ǫny
+ γβx

ǫnxσ
2
δ

+ γβy

ǫnyσ
2
δ

+ γ 2η2x

ǫnx

)

,

(17)w = γ 2

(

γ 3η2xβy

ǫ2nx ǫny
+ γ 2βxβy

ǫnx ǫnyσ
2
δ

)

.

(18)u = γ 2

σ 2
δ

, v = 2
βx

ǫn

γ 3

σ 2
δ

= 2
βxγ

ǫn
u = 2χu, w = β2

x

ǫ2n

γ 4

σ 2
δ

= χ2u,
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We now apply a change of variable of the form x = χ/(z − 1) , we get

where δ = u/χ = γ ǫn/βxσ
2
δ  . We note that in high brightness electron beams, and even for multi-GeV beam 

energies, δ is a small quantity, of the order of 105–106 . This allows us to take into account only terms of the order 
of O(1/

√
δ) . We therefore rewrite Eq. (13) as:

The mean value of the electron velocity in the C.o.M. frame is β̄ = γ σx′√
2

30. This is substituted in the expression 
for the angles in (11), getting

Differently from our first  extimation30, we can conclude that, at first order in δ , the Coulomb logarithm does 
not depend on σδ , but it does depend upon γ . The implication of our new findings compared to our first estimates 
are illustrated and discussed below.

For an ultra-relativistic beam in a dispersive section,  instead36,

Again, the integral can be rewritten in the simpler form

Since αu/ζ ≈ 1 and defining the coefficient ω = ζ/α2 , we obtain

Notice that α plays the role of χ in the non-dispersive case, but now u depends on σH . As a consequence, the 
Coulomb logarithm has the same formal expression of the non-dispersive case, but now qmax is the expression 
(13) times the ratio σH/σδ.

Again, it is important to underline that these integrals at first order in δ are analytically exact, differently from 
the numerical one used so  far30. On top of the higher precision reached in the determination of the Coulomb 
logarithm, which was still ambiguous in dispersive regions, its functional dependence from the beam energy and 
from the energy spread is now explicit, leading to new expressions for the induced energy spread.

IBS-induced energy spread. With the proposed expression for the Coulomb logarithm in Eq. (22), we 
can proceed and solve Eq. (8). We discriminate two cases: dispersive section at constant energy and straight 
(or non-dispersive) section, in the presence or absence of acceleration. In the latter configuration, the 
beam energy is assumed to grow linearly along the section with a null dispersion ( Hx,y = 0 ) and a gradient 
G = [E(L)− E(0)]/L , i.e.

Straight section with varying energy. For the moment, we simplify the math by assuming a round beam. Thus, 
the function in (10) becomes g(1) = 2 and the growth rate differential equation is simplified:

where we make explicit the dependence from γ of the terms. Eq. (8) can be recast in the following form

Using the Fourier Method we get

(19)I =
∫ ∞

0

dx
√
x
√

x3 + u(x + χ)2
.

(20)I = 1

χ

1√
δ

∫ ∞

1

dz
√

z3 − z2 + 1/δ
,

(21)q2max ≅
cτNer

2
e

2γ 3/2ǫ
3/2
n σz

√
βx

.

(22)log

(

θmax

θmin

)

= log

(

qmaxσx β̄

2re

)

= log

(

qmaxǫn

2
√
2re

)

.

(23)u = γ 2

σ 2
H

, v = γ 2βy

σ 2
Hǫny

+ γ 2σ̃ 2
x

σ 2ǫ2nx
= αu+ ζ , w = γ 2βy σ̃

2
x

σ 2ǫ2nx ǫny
= αζ .

(24)I =
∫ ∞

0

dx
√
x
√

x3 + (ux + β)(x + α)
.

(25)
1

α

∫ ∞

0

dy
√

1+ ωy(y + 1)2
= 1

α
√
ω

∫ ∞

1

dz
√

1/ω + z3 − z2
∝ 1

α
√
ω

= 1√
αu

.

(26)dγ = G

mc2
cdt = G

mc2
ds.

(27)
1

τδ
= cr2e Ne[log ](γ )

8γ 2ǫnσx(γ )σzσ
2
δ

,

(28)
dσ 2

δ

dγ
= reNemc2[log ](γ )

4Gγ 2ǫnσx(γ )σz
= k

[log ](γ )
γ 3/2

with k = reNemc2

4Gǫ
3/2
n β

1/2
x σz

.
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where q is the part of the argument of the Coulomb logarithm which does not depend on γ.

Straight section with constant energy. In this case the separation of variables is immediate, leading to

This expression can also be derived by looking at certain limits of the previous solutions. In fact, this results 
coincides with the first case, if dγ tend to zero, since the ratio dγ /G reduces to L/mc2.

Dispersive section. The differential equation to be solved has the form:

The equation can be integrated separating the variables,

in which Ei stands for the exponential  integral37.
In order to find the value of σδ(s)2 , we need to find numerically the zero of the function F, written as

If we take the limit for h that tends to zero, Eq. (33) coincide with (30).

Laser heater. As indicated by Eqs. (3) and (7), the MBI can be damped by a large uncorrelated energy 
spread. The effect, however, depends on the specific beam energy distribution. Such energy Landau damping 
is in most cases obtained via the LH. The functionality of a LH has been succesfully tested already at several 
FEL facilities. Its positive effects on both coherent optical transition radiation and FEL performances are widely 
 known32,38,39.

LH consists of an undulator placed at the center of a chicane in which the electron beam interacts with an 
external laser. The ongoing process is the formation of modulations at the laser wavelength. The chicane’s disper-
sion is arranged to smear the phase space structure, leaving the beam with an higher uncorrelated energy spread.

Following the standard procedure to characterize the interaction of the laser with the electron bunch, the 
process can be described as a shaping of the electron energy  distribution32.

where �γLH(r) is the amplitude of the modulation induced by the resonant  interaction32

�γ = �γLH(0) and, assuming a round beam, we’re using cylindrical coordinates to describe the transverse part 
of the distribution. To obtain the energy distribution, it is sufficient to integrate ρ over the spatial coordinates

In the original BK formalism, a simpler expression for F and G is  given25 and the dependence of ρ from the 
transverse coordinates is neglected. Here, we derive fully three-dimensional expressions for Landau damping 
terms, plugging f (�γ ) in Eq. (7), to obtain 

(29)σ 2
δ (γ )− σ 2

δ (γ0) = 3k log (q)

(

1
√
γ

− 1
√
γ0

)

− 2k

(

ln (q/γ 3/4)
√
γ

− ln (q/γ
3/4
0 )

√
γ0

)

,

(30)σ 2
δ (s)− σ 2

δ (0) =
reNe[log ]s

4γ 3/2ǫ
3/2
n β

1/2
x σz

.

(31)
dσ 2

δ

ds
=

a log
(

b σH
σδ

)

√

hσ 2
δ + 1

with a = r2e Ne

4γ 2ǫnσxσz
, b = √

cτa
ǫn

2re
, h = γHx

ǫn
.

(32)

∫

√

hσ 2
δ + 1dσ 2

δ

log

(

b√
hσ 2

δ +1

) = 2b3

h

{

Ei

[

3 log

(
√
hσδ(0)+ 1

b

)]

− Ei

[

3 log

(
√
hσδ(s)+ 1

b

)]}

= as,

(33)F(x) = 2b3

h

{

Ei

[

3 log

(
√
hx0 + 1

b

)]

− Ei

[

3 log

(

√
hx + 1

b

)]}

− as,

(34)

ρ(s,�γ , r) = fl(s,�γ )× ft(r) =
I

ec
√
2πσγ

exp

{

− [�γ −�γLH(r) sin kLHs]
2σγ

}

× 1

2πσ 2
x

exp

(

− r2

2σ 2
x

)

,

(35)�γLH(r) =
√

PL

P0

KLu

γ σr

[

J0

(

K2

4+ 2K2

)

− J1

(

K2

4+ 2K2
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exp

(

− r2

4σ 2
r

)

.

(36)

f (�γ ) =
∫

ρ(s,�γ , r)dV = 1

πσ 2
x

√
2πσγ

∫

rdr exp

(

− r2

2σ 2
x
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√

�γLH(r)− (�γ − ξ)2
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(

− ξ 2

2σ 2
γ

)

.

(37)FLH = exp

(

− 1

2
k(�)CR56σδ

)
∫

RdR exp

(

− R2

2

)

J0

[

k(�)R56δLH exp

(

− R2σ 2
x

4σ 2
r
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,
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These expressions allow to model the superposition of laser and electrons in the BK model and take into 
account the finite sizes of both laser spot and bunch transverse dimensions together with their eventual mismatch.

Simulations. As a case of study, HK and BK models are implemented to study the microbunching instability 
gain at the  FERMI40 linear accelerator. We use broadband shot-noise density modulation as initial condition for 
b0(�) and compute the bunching evolution along each section of the beam line. In dispersive regions, for the first 
formalism we apply equation (3), while for the second we build the Landau damping matrix (7). Parameters used 
for each section are shown in Table 1. The FERMI linac is made of a photo-injector followed by two magnetic 
compressors (chicanes), and interleaved by accelerating sections. The model starts being applied to the beam at 
the injector exit, at the beam energy of approximately 100 MeV.

Figure 1 shows the spectral gain obtained for HK and BK model, without the introduction of IBS (blue lines), 
with IBS given by the approximated Coulomb  logarithm30 (red lines) and with the new formulas (magenta lines), 
as in Eqs. (29), (30) and (33). Since our script uses mean values for β functions and it is not able to reproduce 
possible strongly non-periodic behaviour along an accelerator section, we used shaded areas to take into account 
uncertainties on the optics modelling. Taking into account variation of the β s respect to their mean values up to 
30% or so we observe a variation of ∼ 25% of the gain peak in both HK and BK formalisms. This variation corre-
sponds to an errorbar for σ (MBI)

E  at the end of the linac of approximately ± 30 keV with the parameters in Table 1.
The overlapping region between the gain curves obtained with different IBS approaches, namely the numeri-

cal  one30 and the one presented here, demonstrates the overall consistency of the two approaches. Still, the 
calculation of the Coulomb logarithm with the new expression tends to provide slightly larger growth rates of 

(38)GLH = exp

(

− 1

2
k(�)CR56σδ

)
∫

RdR exp

(

− R2

2

)

J1

[

k(�)R56δLH exp

(

− R2σ 2
x

4σ 2
r

)]

.

Table 1.  Table of parameters used for the simulations of FERMI linac.

Parameters Value Units

Bunch charge 650 pC

Initial current 55 A

Initial beam energy 96 MeV

Beam energy at BC1 278 MeV

Beam energy at BC2 610 MeV

Final beam energy 894 MeV

R56 of BC1 42 mm

R56 of BC2 0 mm

Compression factor 11

Normalized emittance 0.7–0.9 mm mrad

〈βx,y〉 along the linac 8–35 m

Figure 1.  Microbunching gain for (a) Huang–Kim model and (b) Bosch–Kleman model. Blue lines correspond 
to MBI model without IBS, red lines to MBI with numerical IBS and magenta lines to MBI model with the 
newly introduced analytical expressions for IBS.
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the energy spread and instability gain reduction. The comparison between plots in Fig. 1 underlines also a good 
agreement between the two models for the range of parameters considered here, and, in particular, a comparable 
reduction under the new IBS addition.

Bosch–Kleman formalism and the new expressions for IBS are also implemented to characterize microbunch-
ing instability at the end of the multi-bend transfer line (spreader) of FERMI. To authors’ best knowledge, this 
is the only way to describe in a semi-analytical manner the contribution of IBS to MBI in dispersive regions that 
are not chicanes. Parameters used for the linac are shown in Table 1, for the spreader in Table 2.

The gain is shown in Figs. 2 and 3 as a function of modulations uncompressed wavelength and of the energy 
modulation induced by the laser heater (using expressions (37) and (38)) at the end of the linac and at the end 
of the transfer line respectively. From these maps, it is possible to extract gain curves at different values of laser 
heater induced energy modulation. In particular, we show the results in two cases: absence of laser heater and 

Table 2.  Table of parameters used for FERMI transfer line.

Parameter Value Unit

Bunch current 600 A

Beam energy 894 MeV

R56 of first dipole 0.18 mm

R56 of second dipole − 1.7 mm

R56 of third dipole − 1.7 mm

R56 of fourth dipole 0.18 mm

〈βx,y〉 along the beam line 10–25 m

Figure 2.  Center: Gain map obtained with BK formalism at the end of FERMI linac, as a function of 
modulation uncompressed wavelength and laser heater induced energy modulation. On the right, spectral gain 
profile with no LH. On the left, gain profile for a LH-induced energy modulation of 10 keV. Both profiles are 
also shown without IBS.

Figure 3.  Same as in Fig. 2, but now the gain calculation is at the end of the FERMI spreader.
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10 keV of induced energy modulation. Clearly, due to the presence of a long dispersive region, the gain blows 
up, but it is still kept under control by the effect of IBS, even in the presence of laser heater.

Discussion
We discuss here the assumptions of our expressions. The proposed energy spread growth rate (29), (30) and 
(33), requires two conditions: ultra-relativistic energies and roundness of the transverse distribution. The first 
of this requirement is clearly fulfilled in each simulated section and can be used whenever the electrons kinetic 
energy is much greater than mec

2 . The second, in general, is not always true. What is true, indeed, is that Twiss 
parameters in x and y tend to be of comparable magnitude when averaged over tens of meters long sections, but 
not locally equal. It is easy to show that our approximation leads to an overestimation of IBS effect: the function 
g(x) has a maximum when its argument is equal to 1. The eventual overestimated contribution, however, lies 
inside the error-bar due to the optics uncertainties.

The numerical and analytical treatments of Coulomb logarithm gives comparable results in the range of 
parameters considered here, and typical at short wavelength FELs. The consistency of the two approaches and 
the fact that the numerical one has been already benchmarked  experimentally30 prove the validity of our for-
mulas. Still, it is worth reminding that in the numerical strategy the integration of Eq. (8) is done discarding the 
functional dependence of the Coulomb logarithm from γ and σδ . The similarity between the two treatments, in 
the range of parameter of Table 1, can be interpreted considering that, at first order in δ , the dependence of [log ] 
from the energy spread disappears along straight sections, see Eq. (21). In spite of this, we believe that, in general, 
the analytical method is preferable to the other one: while the numerical approach uses a mean value for γ and 
ignores its variation, our model keeps track of γ (s) and is capable of more accurate predictions.

As for the assumption of linear gain of the instability, we admit that our model is not able to uniquely identify 
a gain threshold over which the linear regime is not valid anymore. Nonetheless, we can demonstrate that, for 
the range of parameters considered here, the presence of IBS guarantees the assumption to be valid. This fact 
is proved by the omnipresent factor 2 (or even higher) of gain reduction in our new model and, at the same 
time, by the consistency of the analytical results with experimental data presented  elsewhere30. This analysis 
demonstrates once again that a proper inclusion of IBS in the MBI modelling is crucial to a faithfull description 
of MBI in linear regime.

As a final point, we discuss under which circumstances the growth of uncorrelated energy spread due to IBS 
can be neglected. Since the energy distribution and the bunching factor are updated step-wisely, by discretizing 
the curvilinear coordinate along the simulated beamline, the BK model is not able to fully couple the dynam-
ics of MBI, as instead permitted by massive numerical calculations by Vlasov  solvers22,31. To give a quantitative 
answer, we look at the microbunching gain as defined in HK model, Eq. (3), and plug in the analytically derived 
IBS terms (see Supplementary Material. Doing so, we derive explicit conditions under which the collisions can 
be neglected. To this purpose, it is easier to simplify Eq. (32), assuming that the uncorrelated energy spread 
remains small and keeping only the linear terms in s, obtaining

Considering this formula in the derivation of the gain, following the strategy and the assumptions of HK  model23, 
we find that IBS term can be neglected for

where ν is the chicane bending angle.
For the parameters in Table 1, �crit ≈ 2× 10−9 m and since the FEL process is affected by modulations at 

the micron scale, we are legitimized to neglect all the contributions. This result justifies the partial decoupling 
of MBI and IBS in our model.

Conclusion
The contribution of intrabeam scattering, taking into account the approximated functional dependence of the 
Coulomb logarithm from beam energy and energy spread, in arbitrary dispersive, non-dispersive and accelerating 
sections was analytically derived. We present here a new derivation of the expression for the maximum value of 
the momentum transfer in collisions, written as a function of the electron beam parameters. The expressions have 
been integrated into two different semi-analytical models for microbunching instability in linear regime. We have 
compared numerical and analytical results for IBS, finding a slightly stronger damping of the instability by IBS in 
the analytical model, but still compatible with experimental data presented in  literature30. This envisages the need 
for more accurate measurements of slice energy spread along the accelerator, possibly as function of varying beam 
parameters, of more accurate characterization of Twiss parameters along the beam line and the development of 
an even more realistic 3-D modelling of the instability based on the local optics values. Our analytical model 
results in a more accurate description of the momentum-space cutoff with respect to the numerical one, since 
it keeps track of the dependence of qmax from γ . The approximations adopted in our modelling are all justified, 
so that the proposed analytical framework for the MBI in the presence of IBS allows to rapidly characterize MBI 
in a wide range of accelerator parameters, given the capability of Bosch-Kleman formalism to include several 
collective phenomena, knowing the associated impedances, and arbitrary multi-bend lines.

(39)σδ(s) ≈ σδ(0)+ a log (b)s = σδ(0)+ As.

(40)� ≫ �crit =
πLbC

2R2
56A

2
√
ǫβν

,
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