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We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi
gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi
polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly
interacting impurity states. Using a time-dependent variational approach, we find that we can
accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi
polarons in both two and three dimensions. Crucially, our theoretical description does not include
relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement
demonstrates that the quasiparticle lifetime is dominated by many-body dephasing within the up-
per repulsive branch rather than by relaxation from the upper branch itself. Our findings shed
light on recent experimental observations of persistent repulsive correlations, and have important
consequences for the nature and stability of the strongly repulsive Fermi gas.

The concept of the quasiparticle is a powerful tool
for describing interacting many-body quantum systems.
Most notably, it forms the basis of Fermi liquid theory [1],
a highly successful phenomenological description of in-
teracting Fermi systems ranging from liquid 3He to elec-
trons in semiconductors. Here, the underlying particles
are “dressed” by many-body excitations to form weakly
interacting quasiparticles with modified properties such
as a finite lifetime and an effective mass. However, during
the past few decades, many materials have emerged that
defy a conventional explanation within Fermi liquid the-
ory [2, 3]. Therefore, it is important to understand how
quasiparticles can lose their coherence or break down.

Quantum impurities in quantum gases provide an ideal
testbed in which to investigate quasiparticles since the
impurity-medium interactions can be tuned to control-
lably create dressed impurity particles or polarons [4].
To date, there have been a multitude of successful cold-
atom experiments on impurities coupled to Fermi [5–17]
and Bose [18–22] gases, which are termed Fermi and Bose
polarons, respectively. In particular, Fermi-polaron ex-
periments have observed the real-time formation of quasi-
particles [13] and the disappearance of quasiparticles in
the spectral response with increasing temperature [15].
The Fermi-polaron scenario has even been extended be-
yond cold atoms, having recently been realized in charge-
tunable atomically thin semiconductors [23]. While the
ground state of the Fermi polaron (corresponding to the
attractive branch) is generally well understood [24–32],
there has been much debate about the nature of the
metastable repulsive branch [30, 33–38], with experi-
ments suggesting that it can be remarkably long-lived
for a range of interactions [7, 14, 16]. The stability of
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FIG. 1. (a) Two pseudo-spin states (red and green) of an
impurity embedded in a medium (blue) are coupled together
and undergo Rabi oscillations with an effective frequency Ω
and damping rate ΓR. (b) The impurity spectral function of
a nearly free impurity (left) is coupled to that of an impu-
rity that strongly interacts with the Fermi gas (right). The
repulsive polaron peak is centered at energy E+ above the
molecule-hole continuum and is characterized by the residue
Z (dark green area) and width Γ [35].

this branch is important for realizing Fermi gases with
strong repulsive interactions [4, 39–43].

In this Letter, we show that the lifetime of the repul-
sive branch itself is typically much longer than the quasi-
particle lifetime, which corresponds to the time scale over
which the repulsive polaron remains a coherent quasipar-
ticle. The character of the quasiparticle can be probed
by driving Rabi oscillations between different internal
states of the impurity atom (see Fig. 1), where only
one of the states strongly interacts with the surrounding
Fermi gas. Previous works have found that the Rabi fre-
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quency Ω provides a sensitive probe of the quasiparticle
residue Z (squared overlap with the non-interacting im-
purity state) [7]. Here we demonstrate that the damping
rate of oscillations ΓR is directly linked to the width of
the polaron peak in the spectral function, as depicted in
Fig. 1(b), which corresponds to the inverse quasiparticle
lifetime Γ.

Using a recently developed variational approach [44],
we model the Rabi oscillations for two different Fermi-
polaron experimental setups: a three-dimensional (3D)
6Li gas with a broad Feshbach resonance [14], and a
quasi-two-dimensional (2D) 173Yb gas [16] with an or-
bital Feshbach resonance [45]. We find that we can cap-
ture the Rabi dynamics observed in both experiments,
correctly reproducing both Ω and ΓR even though our
approximation neglects relaxation processes to the lower
attractive branch at negative energies. We furthermore
show that the repulsive polaron in the weak-coupling
limit is essentially equivalent to the scenario of a dis-
crete state coupled to a continuum, which differs from
the usual Fermi-liquid scenario. Thus, we conclude that
the quasiparticle lifetime of the repulsive Fermi polaron
in two and three dimensions is primarily limited by many-
body dephasing within the upper repulsive branch while
relaxation to the attractive branch is negligible, in con-
trast to the prevailing wisdom (see, e.g., Ref. [4] for a
review).

Model.— To model the impurity dynamics in the 3D
6Li experiment of Ref. [14] and the 2D 173Yb experiment
of Ref. [16], we use a unified notation where the dimen-
sionality of momenta and sums are implicit. For clarity,
even though we consider homonuclear systems, we intro-
duce majority fermion creation operators f̂†k and impu-

rity creation operators ĉ†k,σ with two different pseudo-
spins σ =↑, ↓ (Fig. 1). For a description of the precise
relationship to atomic states in experiments, see the Sup-
plemental Material [46].

The Hamiltonian we consider consists of four terms:

Ĥ = Ĥ0 + Ĥ↑ + Ĥ↓ + ĤΩ. (1)

The term Ĥ0 =
∑

k(εk − µ)f̂†kf̂k describes the medium
in the absence of the impurity. Here, k is the particle
momentum, εk = |k|2/2m ≡ k2/2m is the kinetic energy,
and m is the mass of both the fermions and the impu-
rity (we work in units where ~ and the system volume
or area are set to 1). We use a grand canonical formula-
tion for the medium, with µ the corresponding chemical
potential [47, 48].

The impurity spin-σ terms

Ĥσ =
∑
k

[
εkĉ
†
kσ ĉkσ + (εk/2 + νσ)d̂†kσd̂kσ

]
+ gσ

∑
k,q

(
d̂†qσ ĉq−kσ f̂k + f̂†kĉ

†
q−kσd̂qσ

)
, (2)

describe the interaction of the impurity and majority
fermions via the coupling into a closed channel with cre-
ation operator d̂†kσ, where we have coupling constant
gσ and closed-channel detuning νσ. Renormalizing the
model enables us to trade the bare parameters of the
model — the detuning, the coupling constant, and an ul-
traviolet momentum cutoff — for the physical interaction
parameters which parameterize the 2D and 3D impurity-
majority fermion low-energy scattering amplitudes

f2Dσ(k) ' 4π

− ln(k2a2
2Dσ) +R2

2Dσk
2 + iπ

, (3a)

f3Dσ(k) ' 1

−a−1
3Dσ + ik

, (3b)

namely the 2D and 3D scattering lengths, a2Dσ and a3Dσ,
and a 2D range parameter R2Dσ [46, 49]. The presence of
R2Dσ in Eq. (3a) allows us to model the strongly energy-
dependent scattering close to the 173Yb orbital Feshbach
resonance [45, 50, 51] in a 2D geometry. Conversely, we
can safely neglect effective range corrections for the broad
resonance, 3D case of 6Li. In what follows, we take the
impurity spin-↑ (spin-↓) state to be strongly (weakly)
interacting with the medium [46], as depicted in Fig. 1.
To simplify notation, we therefore identify a3D ≡ a3D↑,
a2D ≡ a2D↑, and R2D ≡ R2D↑.

The radio-frequency [14] or optical [16] fields that cou-
ple the impurities in states ↑ and ↓ are described within
the rotating wave approximation:

ĤΩ =
Ω0

2

∑
k

(
ĉ†k↓ĉk↑ + ĉ†k↑ĉk↓

)
+ ∆ω n̂↓. (4)

Here, n̂σ =
∑

k

(
ĉ†kσ ĉkσ + d̂†kσd̂kσ

)
is the spin-σ impu-

rity number operator, Ω0 is the (bare) Rabi coupling, and
∆ω is the detuning from the bare ↓-↑ transition.
Perturbative analysis.— We can gain insight into the

nature of the repulsive Fermi polaron by analyzing the
quasiparticle peak in the spectrum at weak interactions
and temperature T = 0, such that the polaron is at rest.
Focussing on the 3D case, in the limit kFa3D � 1 the
polaron energy E+ is given by the mean-field expression

E+ = 4kF a3D
3π EF + O(a2

3D) [52], where EF =
k2F
2m is the

Fermi energy with kF the Fermi momentum. Thus, the
quasiparticle state is pushed up into the continuum of
scattering states that exists above zero energy in the case
of attractive interactions. In particular, by performing a
perturbative analysis [46], we find that the broadening
of the quasiparticle peak [Fig. 1(b)] is dominated by the
coupling to this continuum, such that the leading order
behavior is

Γ ' 8(kFa3D)4

9π3
EF ' 0.029 (kFa3D)4EF . (5)

This has two important consequences. First, at orders
below a4

3D, the quasiparticle behavior is indistinguish-
able from the case of truly repulsive interactions, where
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FIG. 2. Rabi oscillations calculated using the TBM (solid lines) and compared with the data (black dots) from the 2D 173Yb
experiment [16] (top row) and the 3D 6Li experiment [14] (bottom row). In the top row, Ω0/EF ' 0.95 and T/TF ' 0.16 while,
from left to right, ln(1/kF a2D) = 0.73, 0.57, and 0.25. In the bottom row, Ω0/EF ' 0.68 and T/TF ' 0.13 while, from left to
right, 1/(kF a) = 2.63, 1.27, and 0.22. The shaded regions correspond to the estimated uncertainty in the detuning around the
repulsive polaron energy [46]. In the top row, the data is calculated from the sole measurement of N↓(t), and the normalization
of each data point to N↓(t = 0) [46]. We define the Fermi time τF ≡ 1/EF .

the lifetime would be infinite [34, 52]. In this regime,
the repulsive polaron is adiabatically connected to the
non-interacting impurity. Second, the contribution to
the quasiparticle width from relaxation to the attractive
branch is negligible in this limit, since it is dominated
by three-body recombination [14] and takes the form
Γ3 ' 0.025(kFa3D)6EF � Γ [53]. This illustrates that —
within the perturbative regime — the finite quasiparticle
lifetime arises from many-body dephasing processes that
are manifestly distinct from relaxation to negative-energy
states. Moreover, this cannot be viewed as momentum
relaxation like in usual Fermi liquid theory [1], since we
are considering a zero-momentum quasiparticle.

Rabi oscillations as a probe of quasiparticles.— We
now argue that Rabi oscillations provide a sensitive probe
of the repulsive polaron width (or quasiparticle lifetime).
We focus on zero total momentum, since we are interested
in decoherence effects beyond the standard momentum
relaxation occurring in Fermi liquid theory [1]. At times
t ≥ 0, the impurity population in spin σ is

Nσ(t) = Tr[ρ̂0ĉ(t)n̂σ ĉ
†(t)], (6)

where ĉ(t) is the impurity operator in the Heisenberg
picture. Here, our initial state ĉ(t = 0) = ĉ0↓ is cho-
sen such that N↓(0) = 1 and N↑(0) = 0. The trace
is over all states of the medium in the absence of the
impurity, and we use the thermal density matrix ρ̂0 =
exp(−βĤ0)/Tr[exp(−βĤ0)] with β ≡ 1/T (we set the
Boltzmann constant to 1). Under the assumption that
the initial zero-momentum component dominates such

that n̂↓ ' ĉ†0↓ĉ0↓, we find [46]

N↓(t) '
∫
dωdω′ Ã↓(ω)Ã↓(ω

′)e−i(ω−ω
′)t, (7)

where Ã↓(ω) is the spin-↓ impurity spectral function in
the presence of Rabi coupling. Taking the Rabi oscil-
lations to be on resonance with the repulsive quasipar-
ticle, i.e., ∆ω = E+, we can furthermore approximate
the spin-dependent impurity Green’s functions in the ab-
sence of Rabi coupling as G↓(ω) ' 1/(ω − E+ + iη) and
G↑(ω) ' Z/(ω − E+ + iΓ), where Z is the quasiparticle
residue and η is a convergence factor that implicitly car-
ries the limit η → 0+. With these approximations and
as long as Γ .

√
ZΩ0, we finally obtain [46]

N↓(t) ' e−Γt

[
1

2
+

1

2
cos

(
t
√

Ω2
0Z − Γ2

)]
. (8)

Equation (8) provides two valuable insights. First, the
Rabi oscillation frequency Ω is related to the residue via
Z ' (Ω2 + Γ2)/Ω2

0, which provides a correction to the
standard approximation of Z ' (Ω/Ω0)2 [7]. Second, we
see that the damping of Rabi oscillations is precisely the
quasiparticle width Γ. This key result has been observed
in experiment [14, 16] but has previously lacked theoret-
ical support.
Variational approach.— We now turn to modelling

the experimental Rabi oscillations. We apply the finite-
temperature variational approach developed in Ref. [44]
in the context of Ramsey spectroscopy of impurities in
a Fermi sea [13] (see also Ref. [54] for a related zero-
temperature approach). The idea in this truncated basis
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method (TBM) is to introduce a time-dependent varia-
tional impurity operator ĉ(t) = ĉ↑(t) + ĉ↓(t) that only
approximately satisfies the Heisenberg equation of mo-
tion. This allows us to introduce an error operator
ε̂(t) ≡ i∂tĉ(t)− [ĉ(t), Ĥ] and an associated error quantity
∆(t) ≡ Tr

[
ρ̂0ε̂(t)ε̂

†(t)
]
. Our variational ansatz for the

spin-σ component of the impurity operator is inspired by
the work of Chevy [24] and corresponds to

ĉσ(t)=ασ0 (t)ĉ0σ+
∑
k

ασk(t)f̂†kd̂kσ+
∑
k,q

ασkq(t)f̂†qf̂kĉq−kσ.

(9)

The variational operator consists of three terms: the bare
impurity, the impurity bound to a fermion in a closed-
channel dimer, and the impurity with a particle-hole exci-
tation. The time dependence is entirely contained within
the variational coefficients {α}, allowing us to impose
the minimization condition ∂∆(t)

/
∂α̇σ∗j (t) = 0. Since

the Rabi coupling is suddenly turned on at t = 0, we can
use the stationary solutions obtained from a set of lin-
ear equations for the expansion coefficients. This follows
Ref. [44] with straightforward modifications due to the
two possible impurity spin states [46].

Following the application of an external driving field,
we obtain the Rabi oscillations within our variational ap-
proach via Eq. (6). We show the resulting Rabi oscil-
lations in Fig. 2 for a representative set of interaction
strengths and temperatures T/TF in both two and three
dimensions, where the Fermi temperature TF = EF .
Here we set the detuning to match the theoretical re-
pulsive polaron energy, with a small shift due to initial
state interactions [46]. The shaded regions illustrate the
range of possible results that can be obtained by varying
the detuning within the width of the repulsive polaron
quasiparticle peak [46]. This accounts for the Rabi oscil-
lations being slightly off resonance in experiment due to
the non-zero density of impurities, the density inhomo-
geneity within the trap, and other technical limitations.

Figure 2 demonstrates that our variational approach
captures the Rabi oscillations between the bare impu-
rity and the repulsive polaron in the 2D [16] and 3D [14]
experiments. We note that there is a small positive off-
set in the 2D data [46], which does not strongly affect
the extracted Rabi parameters. Crucially, our varia-
tional ansatz does not incorporate any processes where
the repulsive polaron decays into the attractive branch,
because these involve additional particle-hole excita-
tions [35] which are neglected in Eq. (9). Therefore, the
consistency between our theoretical results and the ex-
periments provides strong evidence that the decoherence
in the Rabi oscillations — and hence the inverse quasi-
particle lifetime Γ — is physically dominated by the cou-
pling to the continuum at positive energies, rather than
by relaxation to the attractive branch. Given the funda-
mental differences between the two experiments [14, 16],

FIG. 3. The extracted frequency (Ω/Ω0)2 and damping ΓR

of the Rabi oscillations as determined from the TBM (blue
circles) and in the 2D (a,c) and 3D (b,d) experiments (black
dots). The TBM error bars are derived from the uncertainty
in detuning [46], which tends to increase the oscillation fre-
quency. The extracted Rabi parameters are also compared
with the quasiparticle residue Z ' (Ω/Ω0)2 (top row) and
quasiparticle inverse lifetime Γ ' ΓR (bottom row) obtained
directly from the finite-temperature impurity Green’s func-
tion (green solid line). The TBM simulations are set to
match the experimental parameters [46]. Inset: Data in (d)
plotted on a log-log scale, together with the result of a zero-
temperature Green’s function calculation (green dashed line).

we expect this to be a generic feature of the mobile Fermi
polaron with short-range attractive interactions.
Quasiparticle properties.— We can further quantify

the nature of the repulsive polaron by determining the
frequency Ω and damping ΓR of the observed Rabi oscil-
lations, which can be modelled approximately as [14]:

N↓(t) ' be−Γbgt + (1− b)e−ΓRt cos(Ωt). (10)

Here, b is a dimensionless fitting parameter, while Γbg

can be regarded as a background decay rate of the spin-↓
state. We see that Eq. (10) reduces to our theoretical
expression in Eq. (8) if we set b = 1/2 and Γbg = ΓR. In
practice, we find that Γbg < ΓR since there are scatter-
ing processes that can populate the spin-↓ state without
contributing to the damping of oscillations, and these are
neglected in our approximation (7) .

Using the fit provided in Eq. (10), we extract both Ω
and ΓR from our simulated Rabi oscillations within the
TBM and compare them with the experimental results,
as depicted in Fig. 3. We also show the repulsive polaron
residue Z and inverse quasiparticle lifetime Γ obtained di-
rectly from the impurity Green’s function G↓(ω), where
the impurity self energy is calculated using ladder dia-
grams [46]. Such an approach is equivalent to our spin-↓
variational ansatz in Eq. (9) in the absence of Rabi cou-
pling [44], and similarly it does not include the contribu-
tion to the quasiparticle lifetime due to relaxation from
the repulsive branch to lower lying states.
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Referring to Fig. 3, we see that all three methods are
in good agreement with each other for weak to intermedi-
ate interaction strengths. This is particularly evident for
ΓR in Fig. 3(d), where the agreement spans two orders of
magnitude. Here we find that the finite temperature of
the Fermi gas leads to deviations from the perturbative
result in Eq. (5), but the behavior is still markedly differ-
ent from the momentum relaxation predicted by Fermi
liquid theory [11]. The observed agreement suggests that
temperature predominantly affects the many-body de-
phasing via thermal fluctuations of the medium rather
than through finite impurity momenta. In Fig. 3(a), the
slightly elevated values of (Ω/Ω0)2 compared to the ex-
pected residue Z can be attributed to the strong Rabi
driving (Ω0/EF & 1), such that the oscillation period
approaches the formation time of the polaron.

At stronger repulsive interactions, there are more pro-
nounced deviations as the repulsive polaron quasiparticle
becomes less well defined and the effects of a finite im-
purity density in experiments are expected to be more
important [14]. In particular, it becomes increasingly
difficult to extract quasiparticle properties from the Rabi
oscillations once the quasiparticle width Γ is comparable
to Ω, which is consistent with our theoretical analysis in
Eq. (8). This accounts for the suppression of coherent
oscillations in Fig. 2(f) as well as the anomalously low
ΓR obtained from the TBM near unitarity in Fig. 3(d).
Our results suggest that one could better probe the re-
pulsive polaron quasiparticle lifetime at strong coupling
by increasing the Rabi drive Ω0.

Conclusions.— We have investigated the nature of
the repulsive Fermi polaron in two and three dimen-
sions. We have shown that both the quasiparticle lifetime
and the residue can be probed by driving Rabi oscilla-
tions between weakly and strongly interacting impurity
spin states. By simulating the Rabi oscillations in two
fundamentally different experiments and by performing
a perturbative analysis of the weak-coupling limit, we
have demonstrated that the quasiparticle lifetime is de-
termined by many-body dephasing within the upper re-
pulsive branch and is thus typically much shorter than
the lifetime of the repulsive branch itself. Our work pro-
vides an important benchmark for many-body numerical
approaches [55] and it opens up the prospect of explor-
ing a long-lived repulsive Fermi gas with novel excitations
beyond the Fermi liquid paradigm.
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MODEL AND SCATTERING PARAMETERS

Model

In modelling the dynamics of impurities coupled to a Fermi sea, we use the following effective Hamiltonian

Ĥ = Ĥ0 + ĤΩ + Ĥ↑ + Ĥ↓, (S1)

where

Ĥ0 =
∑
k

(εk − µ)f̂†kf̂k, (S2a)

ĤΩ =
Ω0

2

∑
k

(
ĉ†k↓ĉk↑ + ĉ†k↑ĉk↓

)
+ ∆ω n̂↓, (S2b)

Ĥσ =
∑
k

[
εkĉ
†
kσ ĉkσ + (εk/2 + νσ)d̂†kσd̂kσ

]
+ gσ

∑
k,q

(
d̂†qσ ĉq/2−k,σ f̂q/2+k + f̂†q/2+kĉ

†
q/2−k,σd̂qσ

)
. (S2c)

The meaning of the various symbols is discussed in the main text.

Relation between Hamiltonian operators and experimental atomic states

In the 2D 173Yb experiment of Ref. [16], the states of the atoms are defined by the electronic state, with ground
state 1S0 and long-lived excited state 3P0 (i.e., the “clock” state), as well as the nuclear-spin state with mF ∈
{−5/2,−3/2, . . . ,+5/2}. The majority f̂†k atoms exist in the mF = +5/2 ground state, which acts as a bath for the

weakly interacting ĉ†k↓ and resonantly interacting ĉ†k↑ impurities in the mF = −3/2 ground state and mF = −5/2

‘clock’ state, respectively. Interactions between the ĉ†k↑ and f̂†k atoms are tunable through an orbital Feshbach
resonance [45] as has been demonstrated experimentally [50, 51].

On the other hand, the 3D experiment of Ref. [14] involves 6Li atoms in the three lowest Zeeman levels. The

majority f̂†k atoms exist in the lowest Zeeman level, while the weakly interacting ĉ†k↓ and resonantly interacting ĉ†k↑
impurities occupy the second-lowest and third-lowest Zeeman levels respectively. Owing to two off-centered broad
Feshbach resonances, the scattering between the ĉ†k↑ and f̂†k atoms can be resonantly enhanced while only moderately

increasing the comparatively weak interactions between the ĉ†k↓ and f̂†k atoms [14].

Scattering parameters

Within the model in Eq. (S1), fermions of the same spin do not interact and the two spin states of the impurity
are only coupled through the light-field. Ignoring for the moment the light-field (i.e., setting Ω0 = 0), we calculate
the vacuum spin-dependent impurity-fermion T matrix, which characterizes the interactions between the majority



2

fermions and a particular spin state of the impurity. This yields

Tσ(E) =

[
E − νσ
g2
σ

−
Λ∑
k

1

E − 2εk

]−1

, (S3)

where E is the collision energy and Λ is the ultraviolet cutoff.
To proceed, we compare the scattering T matrix with the 2D and 3D scattering amplitudes using f2Dσ(k) = mTσ(E)

and f3Dσ(k) = −m
4πTσ(E), with E = k2/m. The scattering amplitudes at low energy are known to take the forms

f2Dσ(k) ' 4π

− ln(k2a2
2Dσ) +R2

2Dσk
2 + iπ

, (S4a)

f3Dσ(k) ' − 1

a−1
3Dσ +R3Dσk2 + ik

. (S4b)

By comparing Eq. (S3) with the low-energy scattering amplitudes, we obtain the renormalized scattering parameters.
In 2D, this results in

νσ + E2σ

g2
σ

=

Λ∑
k

1

E2σ + 2εk
, R2

2Dσ =
4π

m2g2
σ

, (S5)

where a2Dσ is the scattering length, R2Dσ is the effective range [57], and E2σ is the binding energy of the two-body
bound state that exists for all interactions in 2D:

E2σ =
1

mR2
2Dσ

W

(
R2

2Dσ

a2
2Dσ

)
, (S6)

with W the Lambert W function. In 3D, we have

m

4πa3Dσ
= −νσ

g2
σ

+

Λ∑
k

1

2εk
, R3Dσ =

4π

m2g2
σ

, (S7)

where a3Dσ is the scattering length and R3Dσ is a range parameter [58]. In this case, we only have a bound state
when a3Dσ > 0, with corresponding binding energy

E3σ =

[√
1 + 4R3Dσ/a3Dσ − 1

]2
4mR2

3Dσ

. (S8)

Through this procedure, we have related the bare interaction parameters g, Λ, and ν to the physical parameters,
the scattering length a and effective range R, which characterises the relevant Feshbach resonance. For the broad
Feshbach resonances in 6Li we use R3Dσ = 0 for both spin states. For the orbital Feshbach resonance in quasi-2D,
the description of the effective range is somewhat more complicated, as discussed in the following.

Effective model for scattering at an orbital Feshbach resonance in the presence of confinement

We now discuss how the scattering parameters, a2Dσ and R2Dσ, of the 173Yb experiment are determined. The orbital
Feshbach resonance is known to lead to a strongly energy dependent scattering [45], which is well approximated by
the introduction of a 3D effective range [56]. Furthermore, quasi-2D confinement generally leads to a non-trivial
energy dependence of the effective 2D scattering amplitude even for a broad Feshbach resonance [59]; for strong
confinement, this energy dependence can be modelled by the introduction of a 2D effective range [49]. Thus, we use
the effective range in our model to provide the simplest possible description of both the orbital Feshbach resonance
and the confinement. This greatly simplifies the numerical simulations of Rabi oscillations, since it drastically reduces
the possible degrees of freedom in the problem.

We now describe the possible scattering channels in 173Yb atoms close to an orbital Feshbach resonance, following
the analysis in Ref. [45]. We focus on the two electronic orbitals described above (denoted here by |g〉 and |e〉)
as well as two particular nuclear spin states (denoted here by |⇓〉 and |⇑〉). These states form the open channel



3

FIG. S1. The open channel 2D scattering length (a) and 2D effective range (b) as a function of magnetic field strength (in
Gauss). These parameters are used to create an effective 2D two-channel model description of scattering at an orbital Feshbach
resonance in the presence of confinement. To match Ref. [16] we use ωz = 2π × 37.1 kHz.

|o〉 ≡ |g ⇑, e ⇓〉 and the closed channel |c〉 ≡ |e ⇑, g ⇓〉, which are detuned by δ = ∆µB, where ∆µ = h×554 Hz/G [16]
is the differential Zeeman shift and B is the magnetic field strength in Gauss. The interactions in this system are not
diagonal in the open- and closed-channel basis, but instead proceed via the triplet (+) and singlet (−) channels, with
|±〉 ≡ 1√

2
(|o〉 ± |c〉). Associated with the singlet and triplet interactions are the singlet and triplet scattering lengths

a± [45] and effective ranges r± [50].
In the experiment [16], the 173Yb atoms were confined to move in a 2D plane with a harmonic potential V (z) =

1
2mω

2
zz

2 acting in the transverse direction. Reference [16] used this to extend the theoretical analysis of quasi-2D
scattering in Refs. [59, 60] to derive an effective scattering amplitude of the form in Eq. (S4a). For the weakly
interacting ↓ state, it was found that ln(kFa2D↓) ' −4.9(1) [16]. In this case, the dependence on R2D↓ is strongly
suppressed, and we simply take R2D↓ = 0. For the case of strong interactions, the open channel scattering amplitude
was found to be given by [16]

fq2D(E) = 2
√

2π
lz

(
ã−1
− −

mr−E
2

)
+ lz

(
ã−1

+ −
mr+E

2

)
− 2F

(
−E+δ
ωz

)
−F

(
−E+δ
ωz

) [
lz(ã

−1
− −

mr−E
2 ) + lz(ã

−1
+ −

mr+E
2 )− 2F

(
− E
ωz

)]
−F

(
− E
ωz

) [
lz(ã

−1
− −

mr−E
2 ) + lz(ã

−1
+ −

mr+E
2 )

]
+ 2l2z(ã

−1
− −

mr−E
2 )(ã−1

+ −
mr+E

2 )


, (S9)

where lz = 1/
√
mωz and ã−1

± = a−1
± −

r±
4l2z

(1− δ/ωz). Here, F is a transcendental function defined by [60]

F(x) =

∫ ∞
0

du√
4πu3

[
1− e−xu√

(1− e−2u)/2u

]
, (S10)

and the energy is measured with respect to the quasi-2D zero point energy.
To extract an effective low-energy open-channel 2D scattering length and effective range for the strongly interacting

spin-↑ impurity case, we perform a low energy expansion of Eq. (S9) and compare it with the standard form of the
low-energy scattering amplitude, Eq. (S4a). In the following, we use the notation a2D ≡ a2D↑ and R2D ≡ R2D↑, as in
the main text. Assuming that δ � |E| (i.e., that we are not close to B = 0) we find the 2D scattering length [16]

a2D = lz

√
π

D
exp

−√2π
l2z(ã−ã+)−1 − 1

2 (lzã
−1
− + lzã

−1
+ )F

(
δ
ωz

)
lzã
−1
− + lzã

−1
+ − 2F

(
δ
ωz

)
, (S11)

where D ' 0.905 [59]. The 2D effective range takes the form

(
R2D

lz

)2

= ln 2−

√
2π

{
l−1
z r+

[
lzã
−1
− −F

(
δ
ωz

)]2
+ l−1

z r−

[
lzã
−1
+ −F

(
δ
ωz

)]2
+
[
lzã
−1
− − lzã−1

+

]2 F ′ ( δ
ωz

)}
(
lzã
−1
− + lzã

−1
+ − 2F

(
δ
ωz

))2 , (S12)

where F ′ is the first derivative of F .
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FIG. S2. The attractive (orange) and repulsive (blue) Fermi polaron energy as calculated through our effective two-channel
model description of an orbital Feshbach resonance in the presence of confinement. The energies are highly consistent with the
full theory calculation of the polaron energies (black) from Ref. [16]. The curves are calculated at temperature T/TF = 0.16.

Figure S1 shows the extracted scattering parameters using the experimentally determined values for all param-
eters [16] (see also Ref. [50]). We see that indeed the change of the magnetic field provides a means to tune the
interactions via a2D. On the other hand, the effective range is not strongly dependent on magnetic field — indeed, the
effective range is approximately constant (kFR2D ∼ 1) within the magnetic field strengths of interest to the present
work.

In general, we find that the 2D effective range is able to highly accurately capture the physics of the orbital Feshbach
resonance and the confinement in the domain of interaction strengths used in Ref. [16]. This is shown in Fig. S2,
where we show the near perfect agreement between the full theory model [16] and our effective model in calculating
the energy of the Fermi polaron.

FINITE TEMPERATURE VARIATIONAL APPROACH FOR IMPURITY DYNAMICS

In order to model the dynamics of the Rabi oscillations and the impurity spectral response, we use the finite-
temperature Truncated Basis Method (TBM) developed in Refs. [44, 54]. The basic details of this method are
discussed in the main text. Our ansatz for the impurity operator is

ĉ(t) =
∑
σ

[
ασ0 (t)ĉ0σ +

∑
k

ασk(t)f̂†kd̂kσ +
∑
k,q

ασkq(t)f̂†qf̂kĉq−kσ

]
, (S13)

where, for simplicity, we consider a vanishing total momentum. As discussed in the main text, we may quantify the
error incurred in the Heisenberg equation of motion by introducing the error operator ε̂(t) ≡ i∂tĉ(t)− [ĉ(t), Ĥ] and the
associated error quantity ∆(t) ≡ Tr

[
ρ̂0ε̂(t)ε̂

†(t)
]
. Using the minimization condition ∂∆(t)

/
∂α̇σ∗j (t) = 0 with respect

to the variational coefficients {αj}, we arrive at

Eα↑0 = g↑
∑
q

α↑q Tr
[
ρ̂0f̂
†
qf̂q

]
+

Ω0

2
α↓0 (S14a)

(E − εq↑)α↑q = g↑α
↑
0 + g↑

∑
k

α↑kq Tr
[
ρ̂0f̂kf̂

†
k

]
(S14b)

(E − εkq)α↑kq = g↑α
↑
q +

Ω0

2
α↓kq (S14c)

(E −∆ω)α↓0 = g↓
∑
q

α↓q Tr
[
ρ̂0f̂
†
qf̂q

]
+

Ω0

2
α↑0 (S14d)

(E − εq↓ −∆ω)α↓q = g↓α
↓
0 + g↓

∑
k

α↓kq Tr
[
ρ̂0f̂kf̂

†
k

]
(S14e)

(E − εkq −∆ω)α↓kq = g↓α
↓
q +

Ω0

2
α↑kq. (S14f)

Here we have taken the stationary condition since our Hamiltonian is time-independent,

ασj (t) = ασj (0)e−iEt ≡ ασj e−iEt, (S15)
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and defined εqσ ≡ νσ − εq/2 and εkq ≡ εq−k + εk − εq.
Equation (S14) represents a set of linear integral equations that define the time dependence of the variational

coefficients {αj}. It is quite similar to the corresponding set of equations derived in Refs. [44, 54]. However, here
we account for temperature, initial-state interactions, and the Rabi coupling between the two impurity spin states.

Diagonalizing Eq. (S14) yields eigenvectors {α(l)
j } and corresponding eigenvalues El. In what follows it is useful to

write the eigenvectors as the union of the spin-↑ and spin-↓ components, i.e., {α(l)
j } = {α↑(l)j } ∪ {α

↓(l)
j }.

The solutions of Eq. (S14) allow us to obtain stationary impurity operators

φ̂(l) ≡
∑
j

α
(l)
j Ôj , (S16)

where the impurity basis operators {Ôj} = {ĉ0↑, f̂†kd̂k↑, f̂†qf̂kĉq−k↑, ĉ0↓, f̂
†
kd̂k↓, f̂

†
qf̂kĉq−k↓} are those introduced in

Eq. (S13). These all satisfy Tr
[
ρ̂0ÔjÔ

†
k

]
= 0 when j 6= k, since the trace is over medium-only states. This in turn

allows us to normalize the stationary solutions according to

Tr
[
ρ̂0φ̂

(l)φ̂(m)†
]

= δlm. (S17)

Using this, the impurity annihilation operator in Eq. (S13) can be expressed as

ĉ(t) =
∑
l

Tr
[
ρ̂0ĉ(0)φ̂(l)†

]
φ̂(l)e−iElt =

∑
l

α
↓(l)∗
0 φ̂(l)e−iElt, (S18)

where the initial impurity operator ĉ(0) = ĉ0↓. We take a bare impurity as the initial state even though there are
initial-state interactions, since the simulations yield essentially the same result as when we use a weakly interacting
polaron. We presume this is because the weakly interacting polaron forms quickly (on a time scale set by a2

3D↓ in 3D)
once we start the dynamics.

Finally, we discuss the character of the medium-only states appearing in Eq. (S14). Assuming that the interactions
between the initial ↓ impurity and the medium particles are negligible (as is the case in the experiments [14, 16]), we
may take the medium states to be thermal eigenstates at temperature T . Therefore, we have

Tr
[
ρ̂0f̂
†
qf̂q

]
≡
〈
f̂†qf̂q

〉
β

= nF (εq) (S19)

where β is the inverse temperature and nF is the Fermi-Dirac distribution function:

nF (εq) ≡ Tr
[
ρ̂0f̂
†
qf̂q

]
=

1

eβ(εq−µ) + 1
. (S20)

The chemical potential µ is related to the medium density n via

n =
∑
q

nF (εq) =

−
(
m

2πβ

)3/2

Li3/2(−eβµ) (3D)

m
2πβ ln

(
1 + eβµ

)
(2D)

(S21)

where Li is the polylogarithm. The density is related to the Fermi energy via

EF =
k2
F

2m
=

{
(6π2n)2/3

2m (3D)
4πn
2m (2D)

(S22)

Impurity spectral function

In the limit of a weak Rabi coupling, we can obtain the spin-↑ impurity spectral function within linear response:

A↑(ω) '
∑
l

|α↑(l)0 |2δ(ω − El), (S23)
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FIG. S3. Example of the calculation of the uncertainty in the detuning of Rabi oscillations onto the repulsive polaron. We
show the spectral function of the repulsive polaron in the 2D 173Yb experiment of Ref. [16] (solid line), with the dashed lines
indicating the full-width half-maxima. The detuning is set between these half-maxima, leading to the uncertainty shown in
Fig. 2 in the main text. The shown spectral function is for ln(1/kF a2D) = 0.41, kFR2D = 0.69 and T/TF = 0.16.

where the variational equations in Eq. (S14) are solved at Ω0 = 0. In practice, the spin-↓ impurity interacts weakly
with the medium, and thus the spectral function can be measured by driving transitions from the initial (nearly)
non-interacting spin-↓ impurity state into the spin-↑ state. Indeed, this has been done in both experiments [14, 16].

Since the solution of Eq. (S14) are discrete, we convolve the resulting spectrum with a Gaussian to yield

I(ω) =
∑
l

|α↑(l)0 |2g(ω − El). (S24)

Convolution of the spectrum in this case has the added benefit of enabling one to approximately model the finite
duration of the pulses used in experiment.

Simulating Rabi oscillations

The Rabi oscillations are defined by

N↓(t) =
〈
ĉ(t)n̂↓ĉ

†(t)
〉
β
. (S25)

We will take as our initial condition that ĉ(t = 0) = ĉ0↓, i.e., the impurity is initially in a bare spin-↓ state, which
means that the impurity number is N↓ +N↑ = 1 at all times. The Rabi oscillations are then given by

N↓(t) ' Tr[ρ̂0ĉ↓(t)n̂↓ĉ
†
↓(t)] =

∑
j

〈Ôj n̂↓Ô†j〉β

∣∣∣∣∑
l

α
↓(l)∗
0 e−iEltα

↓(l)
j

∣∣∣∣2. (S26)

With the exception of detuning, all of the parameters used to define the Rabi oscillations are provided from the
relevant experiment. The detuning in experiment is set to address the repulsive polaron peak, and to match this
procedure, we use a calculated detuning such that the Rabi oscillations address the theoretically obtained spin-↑
repulsive polaron. Due to small but finite initial state interactions, this detuning must take into account the energy of
the spin-↓ impurities. This is achieved by assuming the spin-↓ impurities exist as zero-momentum repulsive polarons
with a narrow spectral width. Owing to this assumption, combined with thermal fluctuations, a finite density of
impurities and experimental limitations, we place an uncertainty on the detuning (see Fig. S3). This requires that we
simulate Rabi oscillations over the range of possible detunings. The parameters used in the simulations of the Rabi
oscillations in Figs. 2 and 3 can be found in Table S1.

We find that the inclusion of initial state interactions leads to a small reduction in the damping of the Rabi
oscillations. This can be understood from the fact that in the limit in which the spin states have equal interactions,
spin-symmetry implies that the Rabi oscillations would be undamped and oscillate at the bare Rabi frequency.
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FIG. S4. Comparison of theory (blue solid lines) of Fig. 2(a)-(c) in the manuscript and the experimental data (black circles)
with a constant offset of 0.2 removed and normalized to the value at time t = 0. The light-gray circles correspond to the
unmodified data in the main text.

Finite offset in the Rabi oscillation measurement of the 2D experiment

As noted in the main text, there is a slight disagreement in the amplitude of the Rabi oscillations in the 2D
experiment [16] and our variational approach. This disagreement can be explained with a constant offset ε > 0 of
the N↓ measurement in the experiment. In our work, the relative population N↓/(N↓ +N↑) of the 2D experiment is
inferred from the sole measurement of N↓(t) and

N↓ /(N↓ +N↑) ≈ N↓ /[N↓(t = 0) +N↑(t = 0)] ≈ N↓/[N↓(t = 0) + 0] = N↓ /N↓(t = 0) . (S27)

Thus, a constant offset in the measurement of N↓ changes the relative population as

N↓ /N↓(t = 0) → (N↓ + ε) /[N↓(t = 0) + ε] = N↓ /[N↓(t = 0) + ε] + ε /[N↓(t = 0) + ε] , (S28)

which directly shows how the mean of the relative population is artificially increased by ε/[N↓(t = 0) + ε] and the
amplitude is artificially reduced by the additional term ε in the denominator.

The offset ε in the experimental data originates from the detection method, for which the majority Fermi sea is
removed, but a finite number of remaining majority atoms contributes a positive spurious signal to the measurement
of N↓. This contribution is independent of t and we estimate ε . 0.2N↓ from a reevaluation of the existing data of
Ref. [16]. In Fig. S4, we illustrate how the removal of such an offset considerably improves the agreement between
experiment and the variational approach. However, we have chosen not to subtract ε from the data in Fig. 2 of the
main text as we lack a precise number for each data set.

TABLE S1. Parameters used for obtaining the theoretical curves and simulations shown in Figs. 2 and 3, matching the
experimental ones from Refs. [16] and [14]. Experimental uncertainties are given in parenthesis were applicable. Note that the
3D effective range is always zero.

Fig. 2 Fig. 3

(a) (b) (c) (d) (e) (f) (a), (c) (b), (d)

Interaction parameter ln(1/kF a2D↑) 0.73(4) 0.57(5) 0.25(5) — 0.07–0.91 —
ln(1/kF a2D↓) 4.9(1) — 4.9(1) —
1/kF a3D↑ — 2.63(4) 1.27(2) 0.22(1) — 0.22–4.23
1/kF a3D↓ — 9.20(15) 6.94(11) 5.03(8) — 5.03–11.43

Range parameter kFR2D↑ 0.71 0.67 0.68 — 0.67–0.76 —
Rabi coupling Ω0/EF 0.95(11) 0.96(11) 0.94(11) 0.68(1) 0.69(1) 0.67(1) 1.08 0.70
Reduced temperature T/TF 0.16(4) 0.13(2) 0.16(4) 0.13–0.14

Rep. polaron energy E+↑/EF 0.71 0.76 0.89 0.19 0.42 1.08 0.64–1.02 0.11–1.08
E+↓/EF 0.19 0.05 0.07 0.09 0.19 0.04–0.09

Detuning uncertainty δE+/EF 0.24 0.31 0.47 0.02 0.05 0.42 0.19–0.65 0.02–0.42
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GREEN’S FUNCTION APPROACH FOR QUASIPARTICLE PROPERTIES

A key alternative to our study of the impurity dynamics and properties in the TBM is provided through a Green’s
function approach. It has been shown that a variational approach using a single particle-hole excitation is equivalent to
a Green’s function approach calculated with non-self consistent T matrix theory — see Ref. [25] for a zero-temperature
treatment, or Ref. [44] at finite temperature.

In this section, we take Ω0 = 0 in the variational equations (S14), while we consider the more general case in the
next section. This allows us to derive a finite temperature impurity self energy Σσ(E) separately within each of the
impurity subspaces. Solving these equations for the energy then yields the expression

E =
∑
q

nF (εq)

[
E − εqσ
g2
σ

−
∑
k

1− nF (εk)

E − εkq

]−1

. (S29)

The right hand side of this expression is precisely the impurity self energy at zero momentum using ladder diagrams
at finite temperature [44]. The self energy is then related to the impurity (single-particle) Green’s function through
Dyson’s equation,

Gσ(E) =
1

E − Σσ(E)
. (S30)

The relevant properties of the repulsive polaron can now be defined in terms of the impurity self energy. In
particular, the repulsive polaron energy E+σ is a (positive) solution to the implicit equation

Re [Σσ(E)] = E. (S31)

Expanding the Green’s function around this pole, the repulsive polaron quasiparticle residue is

Zσ =

(
1− ∂ Re (Σσ(E))

∂E

∣∣∣∣
E=E+σ

)−1

, (S32)

and the quasiparticle width is

Γσ = −Zσ Im [Σσ(E+σ)] . (S33)

In addition to these properties, the impurity spectral function in Eq. (S23) is given by

Aσ(E) = − 1

π
Im[Gσ(E)]. (S34)

Repulsive polaron width at weak interactions

Here we provide details of the calculation of the approximate width of the repulsive polaron peak at weak inter-
actions, Eq. (5). To perform this calculation, we specialize to three dimensions, zero temperature, and to a broad
Feshbach resonance, i.e., R3D = 0. In fact, the arguments in the following are valid as long as the thermal wavelength
exceeds the scattering length while R3D . 1/(na2

3D).
Assuming zero impurity momentum, the spin-↑ impurity self-energy in Eq. (S29) is given by (for simplicity, in this

section we suppress all spin indices as well as “3D” subscripts)

Σ(E) =
∑
q

Θ(kF − q)

[
m

4πa
−

(∑
k

1

2εk
+
∑
k

1−Θ(kF − k)

E − εkq + i0

)]−1

. (S35)

where k ≡ |k| and q ≡ |q| and we take the limit of R3D → 0, which according to Eq. (S7) is equivalent to taking the
limit of ν, g →∞ in such a way that

ν

g2
= − m

4πa
+

Λ∑
k

1

2εk
. (S36)
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We have also introduced a convergence factor +i0 which shifts the energy poles by an infinitesimal amount into the
lower half of the complex plane.

In order to find the approximate form of the self-energy (and thereby the width) in the limit of weak interactions,
we perturbatively expand the self-energy in scattering length (up to order a2):

Σ(E) =
∑
q

Θ(kF − q)

[
4πa

m
+

16π2a2

m2

(∑
k

1

2εk
+
∑
k

1−Θ(kF − k)

E − εkq + i0

)]
. (S37)

In the limit of weak repulsive interactions, the repulsive polaron will have residue Z ' 1 and the width is thus given
by

Γ ' − Im[Σ(E+)]. (S38)

We can extract the imaginary component of the self-energy through the symbolic identity, which is valid for all real
α:

1

α+ i0
= P

1

α
− iπδ(α), (S39)

where P denotes the Cauchy principal value. We thus have,

− Im[Σ(E)] =
16π3a2

m2EF

∑
q,k

Θ(kF − q)(1−Θ(kF − k))δ(E/EF − εkq/EF ). (S40)

In the thermodynamic limit, these sums reduce to integrals that can be solved analytically in spherical coordinates:

− Im[Σ(E)] =
k4
Fa

2

16πmE2
F

[
4E2 ln

(
2EF√

EF (2E + EF ) + EF

)
+ 3E2 − 4EEF − 2E2

F + 2(E + EF )
√
EF (2E + EF )

]
.

(S41)

Importantly, the imaginary part of the self energy is zero at zero energy, and we must therefore consider finite energy.
In the limit of weak interactions, the energy of the repulsive polaron is given by the mean-field approximation [52]:

E+ =
2k3
Fa

3πm
. (S42)

Using this energy and only retaining terms of order a4 (the lowest non-zero contribution) the width is given by

Γ

EF
=

8

9π3
(kFa)4. (S43)

Since we originally expanded the self-energy up to order a2 and have ended with a result that is of order a4 we justify
this result numerically in Fig. S5. Furthermore, we have checked that all contributions with multiple particle-hole
excitations vanish at order a4.

APPROXIMATE RABI OSCILLATIONS BASED ON GREEN’S FUNCTIONS

We finally turn to the arguments that led to Eq. (10) in the main text, which allowed us to link the repulsive
polaron width to the damping of the Rabi oscillations. This will allow us to extend the standard approximation for
extracting polaron properties from impurity Rabi oscillations [7]. It is useful to introduce a spectral decomposition
of the Rabi oscillations, which is provided by the Fourier transform of Eq. (S26):

R↓(ω) ≡
∫
dt eiωtN↓(t) '

∑
j,l,l′

〈Ôj n̂↓Ô†j〉β α
↓(l)∗
0 α

↓(l)
j α

↓(l′)
0 α

↓(l′)∗
j δ(ω − El + El′). (S44)
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FIG. S5. Comparison of the perturbative expression for the repulsive polaron quasiparticle width in Eq. (S43) against the
numerically exact calculation from Eq. (S33).

If the interactions are not too strong, the sum over intermediate states is dominated by the “bare” α0 component. In
this case, 〈Ôj n̂↓Ô†j〉β ' 〈Ôj ĉ

†
0↓ĉ0↓Ô

†
j〉β and thus

R↓(ω) '
∑
l,l′

|α↓(l)0 |
2
|α↓(l

′)
0 |

2
δ(ω − El + El′). (S45)

We thus recognize the Rabi spectrum as developing according to a convolution of spectral functions in the presence
of Rabi coupling:

N↓(t) '
∫
dω dω′ Ã↓(ω)Ã↓(ω

′)e−i(ω−ω
′)t. (S46)

Here

Ã↓(ω) = − 1

π
Im[G̃↓(ω)], (S47)

is calculated from the impurity Green’s function including Rabi coupling.
We can approximate the Rabi coupled Green’s function G̃ via the relation

G̃(ω)'
(
G−1
↑ (ω) Ω0/2

Ω0/2 G−1
↓ (ω)

)−1

, (S48)

where, for ease of notation, we define G̃↓(ω) ≡ G̃22(ω). We point out that in using Eq. (S48) to calculate G̃↓(ω), we
are ignoring the coexistence of the spin-↓ impurity with excitations of the Fermi gas. Approximating the decoupled
Green’s functions as

Gσ(ω) ' Zσ
ω − E+σ − δσ↓∆ω + iΓσ

, (S49)

we find that

N↓(t) ' Z2
↓e
−(Γ↓+Γ↑)t

 Γ↑ − Γ↓√
Ω2

0Z↓Z↑ − (Γ↑ − Γ↓)
2

sin

(
t

√
Ω2

0Z↓Z↑ − (Γ↑ − Γ↓)
2

)

+

(
1− Ω2

0Z↓Z↑

2Ω2
0Z↓Z↑ − 2 (Γ↑ − Γ↓)

2

)
cos

(
t

√
Ω2

0Z↓Z↑ − (Γ↑ − Γ↓)
2

)
+

Ω2
0Z↓Z↑

2Ω2
0Z↓Z↑ − 2 (Γ↑ − Γ↓)

2

]
. (S50)

Here, we have taken ∆ω = E+↑ − E+↓ for simplicity (i.e., on resonance Rabi oscillations). In the cases of interest
where Z↓ is slightly below 1, the Rabi oscillations are not normalised. However, this is simply an artefact of our
approximation of G↓(ω) and is overcome by dividing Eq. (S50) by Z2

↓ .
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Equation (S50) allows us to immediately identify the Rabi frequency and damping

Ω '
√

Ω2
0Z↓Z↑ − (Γ↑ − Γ↓)

2
, (S51)

ΓR ' Γ↓ + Γ↑. (S52)

These reduce to Ω '
√

Ω2
0Z↑ − Γ2

↑ and ΓR ' Γ↑ in the case of weak initial state interactions. Equation (S51) illustrates

why a strong Rabi coupling is necessary in order to drive coherent oscillations once Γ↑ becomes appreciable, which
is why the oscillations are strongly suppressed for the strongest repulsive interactions in the 2D case (see Fig. 2). It
also implies that we can estimate the quasiparticle residue by

Z↑ '
Ω2 + Γ2

↑

Ω2
0

. (S53)

Finally, assuming weak initial state interactions such that Z↓ = 1 and Γ↓ = 0, and taking Ω0Z↑ & Γ↑, we arrive at
the form in Eq. (8) of the main text:

N↓(t) ' e−Γ↑t

[
1

2
+

1

2
cos
(
t
√

Ω2
0Z↑ − Γ2

↑

)]
. (S54)

The limiting feature of this effective model comes from our approximation of n̂↓ ' ĉ†0↓ĉ0↓. For any Γ↑,Γ↓ > 0, this
approximation will always lead to N↓(t) → 0 for large t, which does not match the behaviour of Rabi oscillations
in experiment or the TBM. However, at the intermediate times considered in Fig. 2 it provides a good model of the
actual oscillations.
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