


What you complainin’ about? he thought. ***** be carryin’ you, playa.

Skin
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Abstract

This thesis summarizes the research work done on the estimation of the Time

of Arrival (ToA) of signals in Orthogonal Frequency Division Multiplexing

(OFDM)-based communication systems. The estimated ToA values may be

employed for positioning purposes in land-based networks, thus providing an

alternative means of localization to satellite-based technologies. By employ-

ing signals of opportunity (SoP), this information can be obtained without

the need to allocate transmission resources specifically for positioning pur-

poses.

The OFDM multiplexing technique is widely employed in modern telecom-

munication standards and presents interesting properties with regard to ToA

estimation. In particular, the Third Generation Partnership Project (3GPP)

Long Term Evolution is interesting for its diffusion, geographical coverage,

and wide transmission bandwidth, making it a prime candidate for research.

The upcoming fifth generation (5G) mobile systems are also expected to

employ an OFDM-based physical layer, leading to further possibilities of ap-

plication and development.

In the first part of the work, novel algorithms for the estimation of ToA

in OFDM-based systems have been developed. The Slope-based algorithm

exploits the phase rotation of sub-carriers induced by the channel to obtain

the estimation with simple unwrap and linear fitting operations. It can be

shown that if the Direct Path (DP) is also the stronger one, the ToA can

be inferred from slope of the phase rotation even when secondary paths are

present. A piecewise variant with outliers removal is also introduced to re-

duce the effects of noise and phase jumps on the final estimation.

The Difference-Based algorithm (DBTE) instead relies on a rough first

estimate of the channel parameters to obtain an estimation of the first prop-
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agation path delay even when secondary paths present, on average, larger

amplitudes than the direct one. Multiple consecutive OFDM symbols can

be aggregated to achieve a more accurate and reliable estimate. The DBTE

method achieves good performance at the cost of a greater computational

complexity than the slope-based method.

In the second part of the research work, the use of multiple OFDM signals

transmitted on separate frequency bands has been explored. The developed

research is based on the assumption that the propagation environment is

highly correlated between the transmission bands, which is reasonable if the

carrier frequencies are relatively close to each other. This allows one to make

full use of the higher bandwidth occupied by the set of signals as a whole,

rather than just the bandwidth of each signal on its own, to achieve improved

precision and multi-path robustness.

The Space-Alternating Generalized Expectation-Maximization (SAGE)

algorithm has been chosen for the task, because of its versatility and good

performance in complex propagation environments. SAGE presents the ad-

vantage of being applicable to multi-band scenarios without the need of sig-

nificant modifications to its basic formulation. A simulator has been im-

plemented in Matlab to evaluate the possible benefits of dual-band usage,

showing significant performance gain even when the two signals are not per-

fectly synchronized.

In the LTE network multiple transmitters may be allocated on the same

physical base station mast, in order to decrease deployment costs and im-

prove the network coverage and quality of service. A set of live measurements

on downlink LTE signals has been performed in Monfalcone, Italy. The con-

sidered cellular mast carries 3 cell IDs for each operator and transmits on

LTE band 20. The Cell-Specific Reference Signal (CRS) has been used as

ii



the reference signal of choice. The CRS is always transmitted, allowing it to

be used in a fully opportunistic way. The Time of Arrival is derived from

the gathered data, showing (in agreement with simulations) that the combi-

nation of signals from multiple bands leads to a reduced range and standard

deviation in the estimations.

While the focus of this thesis is ToA estimation in OFDM-based envi-

ronments, the research on Low-Density Parity Check (LDPC) channel codes

started with the master thesis has been continued out as a side activity. The

research explored the generation of puncturation patterns for LDPC codes

through the use of a cost function based on the code’s own node degree dis-

tribution. The performance bound for LDPC codes proposed by Richardson

and Urbanke has been investigated as well, proposing an approximation of

the bound that is confirmed by simulations.
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Summary

The Ph.D. work presented in this dissertation was developed as part of a
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by the latter. During the three years of the doctoral program, this work has

been supported by u-blox U.K. Ltd through the figure of Dr. Chris Marshall

and u-blox Italy s.p.a. through its Sgonico branch.

Positioning and navigation technologies have been experiencing a mas-

sive increase in popularity over the past few years, and are now commonly

available to a large number of end users. The extent of applications spans

from military, security, and disaster relief purposes to vehicle navigation, fleet

management and tracking of shipped goods, to simple entertainment. The

rising sector of autonomous robots and self-driving vehicles also requires pre-

cise and robust positioning to offer reliable services and ensure the safety of

people. Recently, a more network-oriented approach to positioning is gaining

attention [1, 2]. In network localization, the position of nodes inside the net-

work becomes an integral part of networking. As such, efficient and reliable

positioning methods are needed to implement the localization function.

The positioning task is most often performed by means of a satellite po-

sitioning system (GNSS, Global Navigation Satellite System) such as the

Global Positioning System (GPS). GNSS-enabled modules have become af-

fordable to a vast number of users and are found in a majority of mobile

devices such as smartphones and tablets. However, the accuracy of the po-

sition estimated via GNSS is often subject to many impairments that may

negatively impact on the quality of the location service, or may even com-

pletely disrupt it. Indoor, subterranean, and urban canyon environments

can degrade the reception of the positioning signal, leading to a failure of the
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service. Furthermore, adding a dedicated GNSS-enabled module to a device

increases its complexity, which, in turn, leads to higher production costs and

increased power consumption. These two drawbacks are highly undesirable

on mobile devices. Alternative methods able to provide an accurate posi-

tioning for land-based systems become hence necessary. Various ranging and

positioning algorithms have been developed for this purpose, and the topic

has been widely explored in the literature [3]. These methods are based on

the estimation of a number of wave parameters for each propagation path,

such as its complex amplitude, Time of Arrival (ToA), Doppler shift, and

Angle of Arrival, or on differential parameter estimation [4, 5]. Among those

techniques, those based on ToA estimation account for a significant portion.

The thesis is structured as follows.

Chapter 1 introduces the problem of positioning exploiting OFDM sig-

nals, with a specific focus on LTE downlink signals.

The principles of the OFDM transmission technique are laid out, to give

a better understanding of the properties of OFDM transmission, especially

those regarding the estimation of the ToA. The OFDM system model is ex-

tended to a more general multi-band notation that is used as a reference

throughout the research work. The OFDM technique is widely employed

in modern wide-band communication standards thanks to its efficiency and

simple FFT-based implementation, making it a prime candidate for research

[6]. Another advantage of OFDM is the easy exploitation of pilot tones in

an opportunistic way. In fact, the use of Signals of Opportunity (SoP) for

ranging and positioning purposes presents many advantages [7, 8].

The 3GPP-LTE standard is a communication system of particular in-

terest because of its wide geographic coverage, signal strength and signal

bandwidth. It employs the OFDM technique for its downlink layer. Hence,
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an introductory overview of the LTE standard is then given, with a focus on

its downlink layer and the reference signals that have been exploited through-

out the research work. Those signals are employed opportunistically, thus

without the need to allocate resources specifically for the purpose of posi-

tioning. For this reason, several methods have been developed that exploit

the LTE framework for positioning [9, 10, 11, 12].

Finally, a classification of existing positioning techniques is presented.

Modern positioning methods may be subdivided in different categories based

on the nature of the measured quantity, the area of coverage, or the employed

technology.

Chapter 2 describes the novel algorithms that were developed for Time or

Arrival estimation in OFDM systems. The estimation of the ToA is a widely

researched topic, and ToA-based positioning systems are the vast majority

among those used nowadays. Novel positioning and navigation techniques

such as cooperative positioning [13, 14, 15] often employ ToA-based ranging,

furthering the need for efficient, accurate estimation algorithms that can be

implemented on mobile devices with low power and transmission resources.

The OFDM technique presents interesting properties in that regard [16,

17], thanks to the subdivision of the total bandwidth in a large number of

narrow-band channels. The Slope-Based algorithm exploits the sub-carriers

phase rotation, which presents a linear behavior, to obtain an estimation of

the ToA through a least-squares linear fitting procedure. The measured sub-

carrier phase rotation undergoes an unwrapping process. It is crucial to avoid

spurious jumps in the unwrapped phase at this may lead to an estimation

bias. When the Direct Path (DP) is also the stronger one, the first path ToA

can be inferred from the slope of the phase rotation even when secondary

paths are presents. A piecewise variant with outliers removal is also intro-
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duced to reduce the effects of noise and phase jumps on the final estimation.

Piecewise linear fitting proves especially beneficial when the Signal to Noise

ratio is low. The Slope-Based method achieves good performance when the

direct path propagation is dominant, while retaining a low computational

complexity.

The Difference-Based ToA Estimation algorithm (DBTE) instead relies

on a rough first estimate of the propagation channel parameters with a sim-

ple FFT-based method. Using the inferred values, an estimation of the first

propagation path delay is obtained even when secondary paths present, on

average, larger amplitudes than the direct one. Multiple consecutive sym-

bols can be aggregated to achieve a more accurate and reliable estimate. The

DBTE method achieves good performance at the cost of a greater computa-

tional complexity than the Slope-Based method.

Chapter 3 treats the topic of multi-band estimation. in some cases, the

same information may be sent over multiple frequency bands, so as to give

rise to a frequency diversity scenario. The possibility of adopting multiple

bands, which requires the availability of wide or redundant bandwidth, might

occur, for example, in Gigabit-WiFi networks or in forthcoming 5G systems,

thanks to the exploitation of the millimeter-wave domain [18]. In the LTE

network, multiple transmitters can be allocated on the same physical base

station mast in order to decrease deployment costs and improve the network

coverage and quality of service, thus giving rise to a scenario where multiple

OFDM signals originate from the same location. This potential invites inves-

tigation of the behavior of positioning methods when multiple bands are used.

The SAGE algorithm has been chosen for the task because of its versatility

and good performance in complex propagation environments, without the

need to change its basic mathematical formulation. Firstly introduced as an
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extension of Expectation-Maximization (EM), SAGE is a reduced complex-

ity method for the evaluation of the Maximum Likelihood (ML) estimation.

More precisely, in SAGE, the multi-dimensional ML estimation problem is

subdivided into a certain number of smaller problems to jointly estimate the

desired parameters in an iterative way. However, the general lack of syn-

chronization between the clocks of the transmitters allocated on the same

physical rack means that additional processing is needed before the informa-

tion from the two sub-bands can be combined. To this end, two methods

are introduced: Signal Combining and Signal Aggregating. These methods

aim to achieve better precision by exploiting the additional bandwidth, un-

der the assumption that the propagation environment is flat across the total

bandwidth.

Chapter 4 summarizes the numerical results derived from simulations.

To validate the novel SAGE-based methods, a simulator has been developed

that implements the LTE downlink layer accurately. The obtained gain in

performance is assessed choosing the range (difference between the largest

and smallest value of a set) and standard deviation as metrics of compari-

son. Signal Aggregating presents a greater robustness when the propagation

environment differs between the considered transmission bands. Signal Com-

bining on the other hand presents a lower computational complexity thanks

to the smaller size of the input data.

In the next part of the research, a measurement campaign has been car-

ried out, with the aim to gather data from real LTE base stations. Chapter

5 gives an overview of the instrumentation and tools employed for the mea-

surements, as well as the scenario where the LTE data were gathered. A

transmission mast carrying multiple transmitters has been searched for and

considered, to observe a multiple transmission bands scenario. A suitable
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LTE base station has been located in Monfalcone, Italy. A set of static mea-

sures has been performed in several positions around the base station. The

gathered data have been processed to extract the basic cell configuration and

then the CFR, which is used as input for the estimation algorithm.

Chapter 6 shows the experimental results obtained from real-life LTE

signals gathered during the measurement campaign. The methods proposed

for band-combining are applied to the data, showing a significant gain with

regards to the considered metrics. In agreement with the simulation, the

Signal Aggregating method presents a better performance gain than Signal

Combining. Both methods are shown to outperform regular single-band es-

timation.

Finally, Chapter 7 summarizes the most important conclusions and the

possible future development.
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1 Introduction

In this chapter the principles at the basis of the research work are laid out.

First, the model for an OFDM communication system and its principles

of operation are formally introduced. The classical model for an OFDM com-

munication system is extended to include a multi-band treatise.

The 3GPP LTE cellular standard is then introduced, starting with a gen-

eral overview. A specific focus is reserved to the OFDM-based downlink

physical layer and the reference signals exploited throughout this work to

obtain the required estimations.

In the last section, an overview of positioning systems and techniques

is given, as well as the criteria used in their classification. Positioning tech-

niques that are based on distance measurements (and thus on Time of Arrival

estimation) are explained in greater detail.
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1.1 Multi-band OFDM model

The Orthogonal Frequency Division Multiplexing (OFDM) modulation is a

technique widely used in wireless communications. It allows high-rate, reli-

able transmissions in dispersive propagation environments such as the wire-

less channel, while maintaining a low implementation complexity. As such,

many modern communication standards adopt OFDM-based physical lay-

ers, such the IEEE 802.11 Wireless Fidelity (Wi-Fi), the 3GPP Long Term

Evolution, and the terrestrial Digital Video Broadcasting (DVB) and Digital

Audio Broadcasting (DAB).

The basic principle behind OFDM is the same as Frequency Division Mul-

tiplexing (FDM), where multiple parallel streams are transmitted separately

in the frequency domain, subdividing the available bandwidth in a number

of adjacent sub-bands. Thanks to the low data rate and narrow bandwidth

of each stream distortion is avoided, because each sub-band can be treated

as a narrow-band flat channel even if the overall channel present frequency-

selective characteristics.

In OFDM, the streams are transmitted orthogonally to avoid inter-symbol

interference [19, 20]. A prominent advantage of OFDM over FDM is the low-

complexity generation of the overall transmitted signal. OFDM employs a

Discrete Fourier Transform (DFT) based method for baseband signal gener-

ation, as opposed to multi-carrier signal generation needed for FDM imple-

mentation, where each stream requires its own modulator and demodulator.

In this work, the OFDM model is extended to a multi-band model.

The modeled multi-band OFDM system operates by transmitting the

modulated symbols on multiple sub-bands in a parallel way (Fig. 1.1). It

is organized as the union of M ≥ 1 single-band OFDM systems, where the

band available to each sub-system is subdivided into a certain number of
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Figure 1.1: Block scheme of a multi-band OFDM system.

single-carrier narrow-band channels. According to the conventional OFDM

structure, the single-band sub-carriers are spaced by a frequency ∆f = 1/Ts,

where Ts is the duration of an OFDM symbol. It is assumed that the sub-

carrier frequency spacing ∆f is common to all the sub-systems, and that the

bands do not overlap with each other.

The set of sub-carrier frequencies employed by the generic m-th sub-

system can be expressed as:

Fm={fmn : n=0, . . . , Nm−1}, m=1, . . . ,M (1.1)

where fmn is its n-th sub-carrier frequency and Nm is its number of sub-

carriers. Using (1.1), the total set of sub-carrier frequencies may be defined

as the union of the sub-carriers’ sets of all sub-systems as:

F =
M⋃
m=1

Fm (1.2)

The cardinality of F is N = C(F) =
∑M

m=1 Nm, hence the total set of sub-

carrier frequencies can also be expressed as:

F = {fq : q = 1, . . . , N} (1.3)
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Note that, using this general formulation, the frequency spacing between

two adjacent sub-carriers is no longer equal to ∆f in all cases. Yet, fq+1 −

fq remains identical to ∆f just if fq+1 and fq belong to the same band.

Moreover, observe that the multi-band OFDM system is organized so that

max[Fm] ≤ min[Fm+1] for m = 1, . . . ,M −1, thus the bands are increasingly

ordered.

Figure 1.2: Block scheme of the m-th OFDM sub-system.

The structure of the generic single-band OFDM sub-system is shown in

Fig. 1.2. The transmitted signal Xm[k] for m = 1, . . . ,M consists of complex

symbols taken from the constellation of a digital modulation. This signal

can therefore be represented as:

Xm[k] =

[
Xm

[
−Nm

2

]
, . . . , Xm

[
Nm

2
− 1

]]T
(1.4)

where (·)T is the transpose operator. Xm[k] is also referred to as OFDM

symbol. Accordingly, the OFDM signal can be defined as:

xm(t) =
∑
k∈Km

g(t)Xm[k]ej2πk∆f ·t, t ∈ [0, Ts[ (1.5)

where j is the imaginary unit, Km = {−Nm/2, . . . , Nm/2 − 1} is the set of

the sub-carrier indexes, and g(t) is the shaping impulse, which is assumed,
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for simplicity, as an ideal rectangle of amplitude 1 and duration Ts. The

discrete time signal xm[n], sampled with a period Tm = Ts/Nm, can then be

written as:

xm[n] = xm(t)
∣∣
t=nTm

= Nm · IDFT{X̃m[k]}

n = 0, . . . , Nm − 1 (1.6)

where IDFT denotes the Inverse Discrete Fourier Transform, and X̃m[k] is

obtained from Xm[k] with the left and right halves swapped. A cyclic prefix

is subsequently added to xm[n] by repeating the Ncpm tail samples of xm[n]

before the sequence, in order to enable the subsequent operation of circular

convolution. Therefore, defining Ntm = Nm + Ncpm , the generated sequence

may be represented as:

xcpm [n]=


xm[Nm−Ncpm+n] n=0, . . . , Ncpm−1

xm[n−Ncpm ] n=Ncpm , . . . , Ntm−1

(1.7)

which, after digital-to-analog conversion at sampling time Tm, provides the

continuous-time transmitted signal xcpm(t). The signal then undergoes up-

conversion at carrier frequency fcm before it is transmitted on the channel.

After transmission, the OFDM signal experiences the effects of the prop-

agation environment. This element is identified as an L-paths channel, which

is modeled by the impulse response:

h(t) =
L∑
l=1

αlδ(t− τl)ej2πfD,lc(φl) (1.8)

where αl, τl, fD,l and c(φl) are, respectively, the complex amplitude, the delay,

the Doppler frequency shift and the steering vector of the receiver antenna

array, with Angle of Arrival of the l-th path (assumed constant across the

duration Ts), and δ(t) is the Dirac delta function. Now consider the special
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case of a single receiver antenna (c(φ) = 1, ∀φ) and slow-moving receiver

(fD,l = 0, l = 1, . . . , L). The channel impulse response becomes:

h(t) =
L∑
l=1

αlδ(t− τl) (1.9)

Assuming perfect timing and synchronization at the receiver, it is possible

to ignore the effect of up-conversion and down-conversion, and consider the

equivalent baseband representation of the OFDM system. Hence, using (1.9),

the received signal can be represented as:

ym(t) = h(t) ∗ xcpm(t) + n(t)

=
L∑
l=1

αlxcpm(t− τl) + n(t) (1.10)

where ’ ∗ ’ denotes the convolution operation and n(t) is the Additive White

Gaussian Noise (AWGN). By sampling ym(t) with a period Tm and applying

the DFT operator, one obtains the OFDM-demodulated signal:

Ym[k] = DFT
{
ym(t) | t=nTm

}
= Nm ·Hm[k]X̃m[k] + ñm[k], k ∈ Km (1.11)

where ñm[k] = DFT
{
n(t) | t=nTm

}
and Hm[k] is the Channel Frequency Re-

sponse (CFR), which is evaluated by the Least-Square (LS) estimation:

Ĥm[k] =
Ym[k]

X̃m[k]
, k ∈ Km (1.12)

More complex and accurate estimators have been developed [19, 21, 22].

These estimations are used as input for ToA estimation algorithms. Thanks

to the subdivision of the available bandwidth, OFDM systems are well suited

to obtain CFR samples at several frequencies without performing a frequency

sweep and without the need of dedicated hardware.
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1.2 The 3GPP Long Term Evolution

The Third Generation Partnership Project (3GPP) Long Term Evolution

(LTE) is the global standard for the fourth generation cellular mobile commu-

nication systems. It is sometimes referred to as simply LTE or 4G, however

the latter denomination is improper as it does not have the characteristics of

a true 4G system as defined by 3GPP.

Unlike previous generations systems, the LTE network operates fully in

packet switching (IP) mode, with the aim to unify the technology regard-

less of the service required. LTE offers high data rates, up to 300 Mbps in

downlink and 75 Mbps in uplink [23], a latency time of 10 ms, and wide

user mobility thanks to various improvements in the core network and radio

interface. It also implements Multiple Input Multiple Output (MIMO) and

beam-forming techniques to achieve greater user separation and data rates.

1.2.1 The LTE downlink physical layer

The LTE downlink physical layer is based upon the OFDM technique, pre-

viously described in Section 1.1. A LTE Base Station (BS) is referred to as

eNodeB, and mobile terminals are referred to as User Equipments (UEs). An

eNodeB provides its services to many UEs through the use of an Orthogonal

Frequency Division Multiple Access (OFDMA) [23] scheme. This allows for

a high spectral efficiency, up to 15 bit/s/Hz, and flexible use of the available

bandwidth.

The LTE downlink physical layer has two possible configurations, the

Frequency Domain Duplexing (FDD) or Type 1 physical layer and the Time

Division Duplexing (TDD) or Type 2 physical layer. The Type 1 physical

layer is by far the most commonly used: as such, it has been considered

throughout the research work. The real-life measurements of Section 5 also
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Figure 1.3: Representation of a Resource Block with the time-frequency grid

structure. Each square in the grid corresponds to a Resource Element.

refer to an eNodeB with a Type 1 configuration.

When the Type 1 configuration is adopted, the smallest unit of transmis-

sion resource corresponds to a single sub-carrier k of an OFDM symbol n,

and is referred to as Resource Element (RE). REs are grouped in Resource

Blocks (RB), each consisting of NRB
sc adjacent sub-carriers for the duration

of one slot, which is equal to 0.5 ms. RBs can be represented in a time-

frequency grid structure, where REs are arranged in a square in the grid and
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Figure 1.4: Type 1 LTE downlink physical layer configuration with normal

CP.

can be uniquely identified by its sub-carrier index k, its slot number ns, its

symbol number n and its antenna port p. The time-frequency grid is depicted

in Fig. 1.3.

Each slot is composed of NDL
symb consecutive OFDM symbols, and each

symbol consists of Nsc = NRB
sc NDL

RB sub-carriers in the frequency domain,

spaced by ∆f = 15 kHz. The number of total sub-carriers used in each

OFDM symbol depends on the number NDL
RB of RBs per slot and, ultimately,

on the total signal bandwidth. Table 1.1 lists the possible bandwidth configu-

rations for LTE downlink. Two slots comprise a sub-frame, and 10 sub-frames

comprise a radio frame. Hence, a LTE frame consists of 20 slots and has a

duration of 10 ms. Fig. 1.4 shows the structure of a LTE downlink frame.

Each OFDM symbol is composed by the actual symbol that carries in-

formation, with a duration of Ts = 1/∆f ' 66.7 µs, and the symbol’s own

cyclic prefix. The LTE sampling time T is defined as T = Ts/2048 ' 32.55

ns.

Two different kinds the cyclic prefix are possible: the normal and ex-

tended configuration. When the normal CP configuration is adopted NDL
symb =

7, and the CP for the first OFDM symbol of each slot has a duration of 160T .

The following symbols of a slot have a CP with a duration of 144T instead.
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The normal CP configuration is the most commonly used and has been ob-

served in the real-life measurements as well. The extended CP configuration

is usually employed in large rural-area cells where larger delay spread values

are supported [23]. Throughout this work, the normal CP configuration is

always assumed unless otherwise noted.

1.2.2 LTE Physical Cell ID

Each cell in the LTE network is characterized by a numeric ID N cell
ID , whose

value can range between 0 and 503. These values, also referred to as Physi-

cal Cell Identities (PCI) are grouped into 168 Physical Cell Identity Groups

(PCIG) each containing 3 identities. A PCI is defined as N cell
ID = 3N

(1)
ID +N

(2)
ID ,

where N
(1)
ID ∈ {0, . . . , 167} is the PCIG and N

(2)
ID ∈ {0, 1, 2} identifies a spe-

cific cell within the PCIG. The three identities of a group are assigned to

the cells under the control of the same eNodeB. Often, the three cell IDs

are assigned to cells deployed to the same base station mast in a sectored

configuration. The reference signals of cells belonging to the same PCIG are

structured to be orthogonal in the frequency domain (thus easily separable)

to avoid overlapping.

Sectors controlled by the same eNodeB are physically separated by means

of directional antennas. However, near the edge of a sector or in the presence

of reflection, it is still possible for an UE to receive from more than one cell

sector. Because the LTE standard specifies a unitary reuse factor, it is pos-

sible to exploit the simultaneous reception from multiple cells. This is also

possible when the UE is located on the cell edge.

Often, mobile network operators deploy their LTE base stations using

the same frequency band for all the sectors. Real-life observations has con-

firmed this trend, and the BS considered for the measurements adopts this
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BW 1.4MHz 3MHz 5MHz 10MHz 15MHz 20MHz

NDL
RB 6 15 25 50 75 100

Ntot 12 30 50 100 150 200

Nsc 72 180 300 600 900 1200

Table 1.1: List of possible LTE downlink bandwidths.

kind of configuration for the cells belonging to both operators. The unitary

frequency reuse factor however leads to a strong Inter Cell Interference (ICI),

which needs to be addressed by adopting Inter Cell Interference Coordination

(ICIC) techniques.

1.2.3 The Positioning Reference Signal

The LTE standard includes a downlink pilot signal specifically designed for

range measurement, the Positioning Reference Signal (PRS). The PRS allows

for the acquisition of multiple simultaneous range measurements [24].

The PRS is defined as a QPSK-modulated Gold sequence of length 31. It

is transmitted from the antenna port p = 6. The mapping of the PRS to REs

differs depending on the PCI of the transmitting cell. The mapping presents

a frequency-domain shift of ks = mod(N cell
ID , 6) sub-carriers. This way, up to

six orthogonal PRS signals can be transmitted from cell sectors having six

consecutive cell IDs. An example of PRS mapping is depicted in Fig 1.5.

The PRS is designed to span the whole available bandwidth, with one pi-

lot tone every six sub-carriers. The PRS frequency spacing is hence ∆fPRS =

6∆f = 90 kHz and the number of pilot tones per symbol is Nsc/6. It is trans-

mitted on specific positioning sub-frames that do not carry user data.

However, most often network operators avoid transmitting the PRS in
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Figure 1.5: PRS mapping to Resource Elements over two consecutive slots.

The number in the highlighted squares identifies the antenna port p = 6.

Note the diagonal mapping spanning the whole available bandwidth.

order to reserve more bandwidth for user data. Hence, this work considers

the use of another reference signal, the Cell-Specific Reference Signal (CRS)

for the purpose of ToA estimation instead.

1.2.4 The Cell-Specific Reference Signal

The CRS is designed to allow channel estimation and coherent demodulation

at the receiver, and it is always transmitted by the base station. Thanks to

its characteristics, the CRS can be exploited opportunistically for positioning

when the PRS is not present. The CRS is also defined as a QPSK-modulated

length-31 Gold sequence, mapped to the REs in a diamond pattern. As in
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Figure 1.6: CRS mapping to Resource Elements over two consecutive slots.

Note the diamond pattern.

the case of the PRS, the mapping of the CRS tones depends on the PCI of

the transmitting cell, with a frequency-domain shift of ks = mod(N cell
ID , 6)

sub-carriers. Six distinct CRS mappings are hence possible. The CRS is

transmitted twice per slot, at the symbols s = 0 and s = 4. When the BS

is configured to transmit from more than one antenna port, the CRS tones

transmitted from each antenna port are different to avoid overlapping. The

CRS pilot tones are mapped to one sub-carrier every six: as such, the number

of transmitted CRS tones is Ncrs = Nsc/6 and the spacing between them is

∆fCRS = 6∆f = 90 kHz. The LTE standard specifies the mapping of the

CRS to REs based on the Physical Cell ID (PCI ∈ {0, . . . , 503}). Fig. 1.6
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Figure 1.7: CRS mapping to Resource Elements over two consecutive slots

when the 2 antenna ports configuration is employed. The numbers in the

highlighted squares identify the antenna port.

shows a possible mapping of the CRS when transmitted from a single antenna

port. When the configuration with 2 antenna ports is adopted, the CRS pilot

symbols are transmitted as shown in Fig. 1.7.
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1.3 Positioning

Over the last decades a wide number of different positioning systems have

been developed, exploiting many different techniques and algorithm to achieve

localization of mobile stations [25]. These methods are most often based on

the measurement of the properties of a wireless signal [26].

The positioning systems most commonly employed are the Global Navi-

gation Satellite Systems (GNSSs), including the Global Positioning System

(GPS) [27] as well as Europe’s Galileo, the Russian GLONASS, the Chi-

nese BeiDou and many others. Such systems exploit distance measurements

from the satellites of a low orbit constellation. By estimating the Time of

Arrival of the satellite signals, terminals on the ground are enabled to deter-

mine their position on a worldwide scale. Localization-related services are in

fact widely employed, ranging from military and security application to fleet

management, navigation, and entertaining. GNSS-enabled modules have be-

come affordable and are thus found in the majority of commercially available

mobile devices. Phones, tablets, and other mobile devices commonly include

a GNSS-enable module.

However, the accuracy of the position estimated via GNSS is often sub-

ject to many impairments that could negatively impact on the quality of

the localization service, or may even completely disrupt it. Indoor, subter-

ranean, and urban canyon environments could degrade the reception of the

positioning signal, leading to a failure of the service. Furthermore, adding a

dedicated GNSS-enabled module to a device increases its complexity, which,

in turn, leads to higher production costs and increased power consumption.

These two drawbacks are highly undesirable on mobile devices.

Alternative methods able to provide an accurate positioning become hence

necessary. Land-based systems can be employed to assist GNSS-based posi-
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tioning when its performance falters or even to replace it altogether as the

sole providers of the service. Mobile cellular networks in particular enjoy

vast diffusion and a comprehensive geographic coverage, making them prime

candidates for land-based positioning purposes. The 3GPP LTE mobile sys-

tem includes an integrated positioning framework [24] based on the PRS,

which as already noted in Section 1.2.3 sees only a limited use nowadays.

Other frameworks have been developed for smaller-scale positioning using

wireless LAN or sensors networks signals to perform positioning, especially

for short-range localization [28, 29].

1.3.1 Structure of a positioning system

Regardless of the type of system and the specifications, the base elements of

a wireless or terrestrial positioning system are referred to as nodes. Nodes

can be subdivided in two broad categories: agents and anchors.

• Agents are the nodes to be located and as such have unknown posi-

tions. In cellular-based systems, the agents correspond to the mobile

terminals.

• Anchors nodes have known and usually fixed locations. In cellular sys-

tems anchors are identified with the base stations. Often, but not al-

ways, anchors share a synchronized clock. A certain degree of synchro-

nization is needed to achieve precise positioning. In recent years there

has been a rising interest in cooperative positioning systems, where

agents can act as anchors for other nodes when their position is known

within a certain degree of accuracy [14, 15, 30].
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1.3.2 Overview of the positioning process

Regardless of the network structure, the task of positioning in a wireless net-

work consists of two steps: the measurement phase and the location update

phase.

In the measurement phase, nodes measure the physical properties of in-

terest from the wireless signal, to infer information on the relative position

of nodes. See Section 1.3.3 for more details.

In the location update phase, each agent determines its own position

based on the information acquired during the measurement phase and any

previously available information, such as the last agent position and the lo-

cation of anchors. The update process can be computed locally by agents

(distributed positioning) or by anchors and then transmitted to agents over

the network (centralized positioning).

These steps are performed sequentially every time the position informa-

tion needs to be updated. The present thesis works focuses on the measure-

ment phase, in particular on the estimation of the ToA.

1.3.3 Classification of positioning systems

Existing positioning methods can be classified in several ways. Different

subdivisions can be defined depending on the parameter of choice, such as

topology, territorial coverage, and the physical quantity that is measured to

obtain the positioning information [31]. An overview of the possible classifi-

cation criteria follows, including some examples.

When the provided physical coverage is considered, positioning systems

can be classified as satellite, terrestrial, or short-range.

• Satellite localization methods rely on a constellation of satellites to

provide positioning services on a global scale. An obvious example is
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the GPS.

• Terrestrial systems are based on signals broadcast by land-bound sta-

tions. Terrestrial systems may be dedicated, such as the LOng RAnge

Navigation (LORAN) system, or integrated in a multi-purpose network

like in the LTE standard. Terrestrial systems need base stations to be

deployed in the whole area to be covered, depending on the employed

communication technology.

• Short-range localization systems provide positioning in small areas such

as a single building or building complex, and are well suited for indoor

positioning [32]. Often, short-range positioning systems are based on

WLAN technologies, sensor networks, or on dedicated anchors [4, 5].

Positioning systems can also be subdivided in integrated, opportunistic or

hybrid systems based on their intended purpose.

• Integrated systems are developed specifically for positioning purposes.

Examples include the GNSS systems and the LORAN.

• Opportunistic systems exploit protocols developed for different pur-

poses than localization. Such systems are of particular interest because

they allow positioning information to be inferred without the need to

allocate dedicated transmission resources and hardware and without

changing the existing technology and protocols. However, Signals of

Opportunity (SoP) are generally more difficult to exploit than dedi-

cated ones.

• Hybrid systems employ a mixture of dedicated and opportunistic ap-

proach in an adaptive fashion. The LTE network can act as a hybrid
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system when both the positioning protocol and signals of opportunity

are exploited.

Positioning systems are usually classified taking in consideration the physical

quantities that are exploited to determine the relative position of nodes. In

this case, systems can be subdivided as follows.

Time of Arrival (ToA) In ToA-based ranging systems, the distance be-

tween nodes is estimated by measuring the time a signal takes to prop-

agate between the transmitter and the receiver. ToA-based positioning

techniques are explained in greater detail in Section 1.4.

Time Difference of Arrival (TDoA) The TDoA method has the advan-

tage of not needing tight synchronization between the agents, but only

for anchor nodes. This is easier to exploit since anchors are usually

fixed. The anchors transmit a reference signal at the same time, and

the mobile terminal estimates the ToA relative to each anchor. Then

for each possible pair of anchors the difference between the ToA is eval-

uated, leading to an estimation of the differential distance between the

two anchors and the receiver. Being τ̂ (1) and τ̂ (2) the ToA estimations

from a pair of anchors, the differential distance is estimated as:

∆̂d = c(τ̂ (2) − τ̂ (1)) (1.13)

This is not an actual distance measurement, but it can be exploited for

localization techniques such as hyperbolic positioning [25].

Received Signal Strength (RSS) The RSS-based method exploits the de-

pendence on the distance of the received signal power. The mobile node

measures the received power level and determines the distance from the

anchor. The propagation model needs to be determined beforehand and
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affects the accuracy of the estimation greatly. A simple propagation

model that is often used in general cases is the following:

Pr,dB = Pt,dB − 10α log10(d)−K −Xf −Xs (1.14)

where Pr,dB and Pt,dB are the received and transmitted powers ex-

pressed in dB, K is a constant factor depending on the antenna gains,

Xf is a random variable that models fading, Xs models shadowing, and

the logarithmic term models the attenuation due to distance depending

on the path loss exponent α. Assuming knowledge of all the param-

eters, the distance d can easily be estimated by inverting (1.14) after

the path loss exponent α has been estimated:

d̂ = 10−
Pr,dB−Pt,dB+K

10α (1.15)

The fading and shadowing terms can be removed if enough samples are

accumulated, due to the fast variation rate. More complex propagation

models have been developed for specific scenarios and can be found in

[33]. Usually, a receiver module already has the received signal power

information, thus most RSS-based systems are fully opportunistic. The

downsides of RSS-based method include the requirement of extensive

mapping campaigns before the system can be deployed and the sensi-

tivity to environment changes. An example of such techniques can be

found in [34].

Differential Received Signal Strength (DRSS) Similarly to TDoA, the

DRSS method estimates the differential distance between the nodes to

be positioned and the anchor. It exploits the difference between the

powers received from a pair of anchors, using (1.15) to estimate the

differential distance between agents.
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Direction of Arrival (DoA) In DoA measurements, an array of receiving

antennas is exploited to determine the angle of incidence of the in-

coming signal, with respect to a fixed direction. However, the need of

multiple antennas at the receiver limits its usefulness for small-sized

mobile terminals. DoA techniques are usually employed in radar sys-

tems.

Power Delay Profile (PDP) These methods are based on the shape of

the estimated Power Delay Profile of the channel. This can be used to

obtain ToA or TDoA estimations by selecting the first peak in the PDP

that exceeds a given threshold or the one with the greatest amplitude.

More refined methods have been developed to overcome the inherent

sensibility to multi-path propagation of PDP based methods.

Node ID In node ID based positioning methods, each anchors transmit its

own unique ID as part of the reference signal. ID-based positioning is

very simple to implement, but it generally has poor performance and

needs densely deployed anchors to operate. For example, in a cellular

network the Base Station identifier can be used to locate the mobile

terminal, based on the coverage area of the Base Station the terminal

is currently associated to. Node ID based positioning techniques are

also referred to as proximity-based.

Others Some positioning methods do not fall into any of the above cate-

gories. One example is presented in [35], where the author propose a

model-order based criteria to discriminate the reference signals,

A novel category of positioning methods is that of cooperative localization

[36]. Cooperative localization might employ any of the mentioned ranging

22



methods to obtain an estimation of the distance between nodes. When co-

operative localization is performed, the roles of agents and anchors are not

completely separated: any node can act as anchor provided its own position

is known with a certain degree of accuracy. In [15], cooperative positioning

is achieved using the message-passing algorithm [37]. It however becomes

necessary to estimate the distances between mobile agents as well as the dis-

tance between agents and anchors, adding a substantial number of unknowns

and measurements. The positioning information also needs to be exchanged

between nodes, requiring additional resources for transmission and compu-

tation.

1.4 Time of Arrival-based Positioning

In ToA-based radio positioning systems the distance between two nodes is

estimated by measuring the time of travel of the electromagnetic signal be-

tween the transmitter and the receiver. In radio propagation it can be as-

sumed that the signal travels at the speed of light c, which is approximately

equal to 3× 108m/s.

ToA based ranging is trivial to perform under the assumption that the

clocks of all the nodes are perfectly synchronized. The transmitter (anchor)

can include the timestamp of transmission time Tt in the reference signal.

The receiver simply measures the time of reception of the reference signal Tr

and the distance between the nodes can be determined as:

d̂ = (Tr − Tt)c (1.16)

An example of ToA estimation in a synchronized environment is proposed

in Fig. 1.8. However, such a degree of synchronization is difficult to achieve

and often beyond that needed for communication purposes. In satellite-based
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Figure 1.8: ToA estimation with synchronized nodes.

systems, atomic clocks are employed to tightly synchronize the transmitters.

In most practical cases nodes lack such synchronization.

Now assume that the receiver clock has an offset es compared to the

transmitter clock, as shown in Fig. 1.9. The receiver measures the time

of arrival Tr according to its own clock, however the timestamped time of

transmission Tt is measured with respect to the transmitter’s clock. In this

case, the estimated range does not depend only on the distance but also on

the error. As such the calculated range is referred to as pseudo-range and

it is equal to p̂ = (Tr − Tt)c. To compensate this error the clock offset es

needs to be estimated in some way. The actual range can then be obtained

by correcting the pseudo-range as:

d̂ = (Tr − Tt)c− esc = p̂− esc (1.17)

An example of this behavior is proposed in Fig. 1.9.

There are many methods to estimate the clock offset es. The GPS for

instance implements its own technique to compensate for the receiver clock

offset [27], while other techniques have been developed for terrestrial systems

that require a certain number of anchors to estimate the offset.

Distance estimation based on ToA measurements presents other issues
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Figure 1.9: ToA estimation with non-synchronized nodes.

that need to be addressed to obtain a reliable, usable estimate. The most

important issue is related to the propagation environment, which is often

characterized by multi-path propagation.

Satellite-based positioning systems rarely exhibit multi-path propagation,

except in condition of limited sky visibility where the positioning service is

often disrupted. In land-based systems however multi-path is almost always

present. The propagation time between the station and the mobile terminal

is only related to ToA if the signal propagates through Line of Sight (LoS).

The presence of secondary, non-Line of Sight (NLoS) paths may severely

impair the estimation of the LoS ToA. Indeed, several signal processing tech-

niques have been devised to separate the direct path from the indirect paths.

In case of shadowing the LoS path may not be present at all, causing an

inherent bias in the distance estimation even when the shortest path is cor-

rectly recognized.

The accuracy achievable by ToA estimation techniques depends directly

on the available bandwidth of the reference signal [38] and on the nature

of the propagation environment [39]. When high positioning precision is
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required, a wide transmission band needs to be employed. Under this per-

spective, LTE becomes an interesting standard for positioning because of its

reasonably high bandwidth and band-spanning reference signals described in

Sections 1.2.3 and 1.2.4.

1.5 Trilateration

Estimating the distance d̂ between the agent and the anchor accounts for

the measurement phase of ToA-based positioning. Most often in ToA-based

positioning, the location update phase is performed by means of the trilater-

ation technique. Trilateration consists of finding the intersection of a set of

circles centered in the anchors’ positions, with a radius equal to the respec-

tive measured ranges.

For simplicity’s sake, the 2-dimensional (2-D) trilateration is considered,

although the problem can be extended to the 3-D case easily. Let pi ∈ R2,

i = 1, . . . ,M be the (known) positions of the anchors and d̂i , i = 1, . . . ,M

the respective estimated distances of the agent from the anchors. The posi-

tion of the agent p can be determined by solving the trilateration problem,

which corresponds to: 

||p− p1|| = d̂1

||p− p2|| = d̂2

. . .

||p− pM || = d̂M

(1.18)

This is a non-linear system of equations. In the 2-D positioning case, at least

3 visible anchors are needed to update the location of the agent without am-

biguities (hence the name trilateration). However, real life range estimation

may be affected by errors. Hence, to obtain a position estimation from (1.18),

approximate methods such as least-square estimation are required.
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Another problem affecting trilateration is the lack of synchronization be-

tween the nodes. Assuming synchronization between each anchor (this is true

in GNSS systems, where satellites are equipped with high-precision atomic

clocks), only the time offset of the agent es needs to be estimated. The offset

is treated as an additional unknown variable to determine in the equation

system. The pseudo-ranges between the agent and each anchor are defined:

ρ̂i = di + esc (1.19)

leading to the following set of equations:

||p− p1||+ esc = ρ̂1

||p− p2||+ esc = ρ̂2

. . .

||p− pM ||+ esc = ρ̂M

(1.20)

Because an additional variable is present, the minimum number of equations

(and thus of visible anchors) required increases by one as well.
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2 OFDM-based ToA Estimation Algorithms

In this chapter the novel algorithms developed for the estimation of ToA in

OFDM systems are presented. Two methods are proposed: the Slope-based

algorithm and the Difference-Based algorithm. Both exploit the physical

properties of OFDM transmission to obtain a ToA estimation. These meth-

ods can be applied to any communication system using OFDM, and are easily

scalable.

The Slope-Based algorithm is meant as a low-complexity method to ob-

tain a quick delay estimation when the propagation conditions are favorable,

that is, there is a strong Line of Sight (LOS) propagation. It is applied on a

symbol basis, processing one OFDM symbol at a time.

The Difference-Based algorithm, on the other hand, can be applied to

multiple consecutive symbols at once and it can provide an accurate estima-

tion of the first propagation path delay even when strong secondary paths

are present. It does however require a large computational complexity when

compared to the simple Slope-Based algorithm.
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2.1 The Slope-Based ToA Estimation Algorithm

In a multi-path propagation environment, each of the L paths is character-

ized by its complex amplitude coefficient αl = |αl|ejφl and by its delay τl.

The delays are assumed to be different from each other and ordered increas-

ingly (that is, τ1 < τ2 < . . . < τL) for the sake of simplicity. The weights are

assumed to be independent from each other. The expression of the Chan-

nel Impulse Response referred to a single-band channel is reported here for

convenience.

h(t) =
L∑
l=1

αlδ(t− τl) (2.1)

Consider now the Channel Frequency Response, given by the Fourier trans-

form of (2.1):

H(f) =
L∑
l=1

αle
−j2πfτl (2.2)

In the baseband representation of an OFDM system, the sub-carrier frequen-

cies are given by f = k∆f , k ∈ K. Now consider a noiseless channel with a

single propagation path (L = 1). The CFR becomes:

H1(f) = α1e
−j2πk∆fτ1 , k ∈ K (2.3)

In this case, the phase rotation induced by the propagation channel for each

sub-carrier is given by:

ρ(τ1, k) = arg
{
α1e

−j2πk∆fτ1
}

= arg{α1} − 2πk∆fτ1 (2.4)

which decreases linearly with the sub-carrier index k. The phase difference

between two adjacent sub-carriers results:

ρ(τ1, k + 1)−ρ(τ1, k) = arg{α1}−2πτ1(k + 1)∆f (2.5)

− (arg{α1}−2πτ1k∆f) = −2πτ1∆f
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The difference does not depend on the argument of α1. This property can

be exploited to obtain a delay estimation by inverting (2.5). The ranging

method of [40] employs the phase difference between two sole sub-carriers in

this fashion. Now consider the phase rotation for a two-path channel (L = 2),

which is given by:

ρ(τ, k) = arg
{
α1e

−j2πk∆fτ1 + α2e
−j2πk∆fτ2

}
= (2.6)

= arg

{
α1e

−j2πk∆fτ1

(
1 +

α2

α1

e−j2πk∆f(τ2−τ1)

)}
It can be shown that if |α1|/|α2| > 1, the slope trend of the unwrapped phase

across the sub-carrier frequencies holds significant information on the first

path delay τ1. Thus, phase unwrapping and least-squares linear fitting can

be used to obtain a delay estimation if a large enough interval of frequencies

is available. If |α2|/|α1| > 1, the unwrapping and fitting procedure can be

used to obtain τ2 instead. In the general case with L > 2 paths, τi can be

easily determined by means of linear fitting if the i-th propagation channel

satisfies the following dominance condition:

|αi| >
L∑
l=1
l 6=i

|αl| (2.7)

If the phase rotation between adjacent sub-carriers is greater than 2π, a

wraparound occurs that causes an estimation bias. As such, the wraparound

condition is defined:

ρ(τ1, k + 1)− ρ(τ1, k) < 2π (2.8)

This limits the range of τ1 values that can be correctly estimated without

bias. After some manipulation:

τ1∆f � 1 (2.9)
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Under these sufficient conditions, the linear fitting of the unwrapped phase

will hold significant information on the delay of the dominant channel. Some

examples are included in [41], where the effects of the unwrap procedure on

the linear estimation of the slope are assessed. To this end, a full baseband

OFDM system has been simulated in multi-path and noisy conditions.

2.1.1 The unwrap algorithm

The Slope-Based method employs a standard algorithm to unwrap the chan-

nel phase samples. The following pseudocode, which illustrates the unwrap

procedure, is reported for convenience. More advanced unwrap algorithms

have been developed, some with the purpose of being used for delay estima-

tion [42, 43, 44].
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Algorithm 1 Listing of the Phase Unwrap procedure.

1: procedure VectorUnwrap

2: output(0)← input(0)

3: for i from 1 to length(input) do

4: diff ← UNWRAP(input(i), input(i− 1))

5: output(i)← output(i− 1) + diff
return output

6: procedure Unwrap

7: d← new angle− previous angle

8: if d > π then

9: diff ← d− 2π

10: else

11: if d < −π then

12: diff ← d+ 2π

13: else

14: do nothing
return diff
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2.1.2 Slope Estimation Algorithm and Piecewise Variant

The available information at the receiver is Ĥ[k], k ∈ K, which is a sampled

and noisy version of the channel frequency response over a single OFDM

symbol. The estimated CFR is calculated as per (1.12). The channel phase

is then evaluated as:

φ̂(k) = arg
{
Ĥ[k]

}
(2.10)

The phase is then unwrapped using the standard algorithm of 2.1.1 to obtain

φ̂uw[k]. The phase slope is estimated by applying the least squares linear

fitting algorithm to the unwrapped phase vector.

This procedure will yield two coefficients β0 and β1, representing the

vertical offset and the slope of the best linear approximation. The estimation

of the ToA τ̂1 can easily be obtained as:

τ̂i = − β1

2π
(2.11)

assuming that the first propagation path satisfies the dominance condition

(2.7) and the wraparound condition (2.9). However, the correct estimation of

τ1 is still impaired by the presence of secondary propagation paths even when

the dominance condition is verified. The presence of noise also affects the

estimation, in particular the unwrap procedure, where it can cause spurious

2π phase jumps. Hence, a piecewise variant of the slope estimation technique

is introduced to compensate the effect of noise at low SNR.

To perform piecewise linear fitting, the set of observed sub-carrier fre-

quencies K is subdivided in a number U of contiguous sub-sets ku, each

containing Nk elements so that:

K =
⋃

ku u = 1, . . . , U (2.12)

The length of the sub-interval is chosen so that N is a multiple of Nk. Sim-

ilarly, the set of unwrapped channel phase rotations φ̂uw[k] is subdivided in

33



U sub-sets φ̂u[k], so that:

φ̂uw[k] =
⋃

φ̂u u = 1, . . . , U (2.13)

This way, φ̂u contains the phase values corresponding to the set of sub-carrier

frequencies ku. Each ku,φ̂u pair can be considered as an OFDM system on

its own, with a number of sub-carriers equal to Nk.

Then, the linear fitting procedure is applied to each ku,φ̂u pair, obtaining

U slope estimations β1,u. The sample mean µβ and standard deviation σβ of

the estimations set are calculated as:

µβ =
1

U

U∑
q=u

β1,u (2.14)

σβ =

√√√√ 1

U − 1

U∑
u=1

(β1,u − µβ)2 (2.15)

At this point, outliers need to be removed from the set of estimated slopes.

All the values β1,u that do not satisfy the condition:

|β1,u − µβ| ≤ rσβ (2.16)

where r is a suitable coefficient, are discarded. Let U be the set of indexes u

so that the β1,u satisfy the condition of Eq. (2.16). A new mean is calculated

using the U ′ < U remaining values, where U ′ is the cardinality of U.

µ′β =
1

U ′

∑
u∈U

β1,u (2.17)

The estimated delay is finally calculated as:

τ̂i = −
µ′β
2π

(2.18)

The outliers removal procedure is of crucial importance for the piecewise

Slope-Based delay estimation. It has been shown [45] that without outliers
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N 1024

Ncp 128

∆f [kHz] 15

r 3

Table 2.1: Simulation Parameters for the Slope-Based Algorithm.

removal, the piecewise method does not yield any advantage at lower SNR

values, while presenting worse performance at high SNR compared to regular

linear fitting.

2.1.3 Slope-Based Estimation Results

An accurate simulator is implemented to assess the performance of linear

fitting slope estimation and its piecewise variant with outliers removal in

multi-path channels. The simulation software is written in the C++ lan-

guage, with the inclusion of the ALGLIB libraries [46] which provided an

efficient implementation of the linear fitting procedure.

The COST207 4-taps and 6-taps channel models for rural areas [47] were

chosen for the simulations. The simulation parameters are reported in Ta-

ble 2.1. It is assumed that the phase rotation information is available for all

the sub-carriers. The results for the COST207 4-taps channel are shown in

Fig. 2.1. It can be seen that piecewise linear fitting slope estimation generally

outperforms regular linear fitting, with the smallest values of Nk having the

best performance at low SNR and the largest values working better at high

SNR.

For the 6-taps channel, the simulated results are reported in Fig. 2.2.

Because of the larger number of secondary paths, the dominance condition
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Figure 2.1: RMSE performance for Slope-Based and piecewise Slope-Based

estimation on the COST 207 RA4 channel. –: Regular Linear Fitting. −−:

Nk = 16. −·: Nk = 32. ·· : Nk = 64. •: Nk = 128. +: Nk = 256.

of (2.7) is less likely to be satisfied with respect the 4-taps channel, leading

to a different behavior. The value Nk = 256 has the overall best perfor-

mance, with smaller values of Nk presenting better performance at low SNR.

It can be seen that at low SNR, a denser subdivision of the available car-

riers outperforms regular linear fitting. The larger number U of estimates

compensates for the loss in Gabor bandwidth at lower values of the interval

length. For higher SNRs, a larger value of Nk is optimal, and when the SNR

is very high the best performance is given by regular linear fitting over the
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Figure 2.2: RMSE performance for Slope-Based and piecewise Slope-Based

estimation on the COST 207 RA6 channel. –: Regular Linear Fitting. −−:

Nk = 16. −·: Nk = 32. ·· : Nk = 64. •: Nk = 128. +: Nk = 256.

whole bandwidth. This suggests the use of an adaptive estimation algorithm,

that employs different values of Nk according to the estimated SNR if such

information is available. In all cases, the value r = 3 has been chosen for the

outliers removal procedure.
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2.2 The Difference-Based ToA Estimation Algorithm

In the absence of noise (2.2) can be rearranged as:

H(f) =
L∑
l=1

Ale
j(φl−2πfτl) (2.19)

= A1e
j(φ1−2πfτ1)

{
1 +

L∑
l=2

Al
A1

ej[φl−φ1−2πf(τl−τ1)]

}

where αl = Ale
jφl . The argument of H(f) may be written, after some ma-

nipulations, as:

Φ(f) = arg{H(f)}

= φ1 − 2πfτ1 + arctan

[
Y1(f)

X1(f)

]
(2.20)

where X1(f) and Y1(f) are defined as:

X1(f) =
L∑
l=1

Bl cos(∆φl − 2πf∆τl) (2.21a)

Y1(f) =
L∑
l=1

Bl sin(∆φl − 2πf∆τl) (2.21b)

The following substitutions were made:

Bl =
Al
A1

(2.22a)

∆φl = φl − φ1 (2.22b)

∆τl = τl − τ1 (2.22c)

Now, take in account the first frequency derivative of (2.20), which is given

by:

Φ′(f) = −2π

[
τ1 +

X1(f)X2(f) + Y1(f)Y2(f)

X2
1 (f) +X2

2 (f)

]
(2.23)
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where the following substitutions were made:

X2(f) =
L∑
l=1

Bl∆τl cos(∆φl − 2πf∆τl) (2.24a)

Y2(f) =
L∑
l=1

Bl∆τl sin(∆φl − 2πf∆τl) (2.24b)

The purpose of this formulation is to obtain an estimate of the propagation

delay τ1 corresponding to the shortest path. To this aim, inverting (2.23)

with respect to τ1, one obtains:

τ1 = −Φ′(f)

2π
− X1(f)X2(f) + Y1(f)Y2(f)

X2
1 (f) +X2

2 (f)
(2.25)

A good estimate for Φ′(f) can be derived from the difference quotient of the

measured channel phase. This phase estimation may be performed recalling

(1.11), from which one can define:

Ĥ[k] =
Y [k]

X̃[k]
= NH[k] + n̂[k], k = 0, . . . , N − 1 (2.26)

where n̂[k] = ñ[k]/X̃[k]. From (1.12), in fact, the required difference quotient

may be evaluated as:

Φ̂′(k) =
φ̂(k + 1)− φ̂(k)

∆f
, k ∈ K′ (2.27)

where K′ = K − {N/2} is the set of all sub-carriers except the last one and

the estimated phase φ̂(k) is given by:

φ̂(k) = arg
{
Ĥ[k]

}
, k ∈ K (2.28)

These values are substituted into (2.25) to obtain a generic estimation of τ1

as a function of Φ̂′(k):

τ̂1

[
Φ̂′(k)

]
=−X1(k∆f)X2(k∆f) + Y1(k∆f)Y2(k∆f)

X2
1 (k∆f) +X2

2 (k∆f)
− Φ̂′(k)

2π
(2.29)
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Figure 2.3: Flowchart of the DBTE algorithm.

To improve the accuracy of (2.29), which may suffer from noise effects, a

Difference-Based approach is proposed in this section. The resulting DBTE

algorithm is organized in four steps (Fig. 2.3), which are described in detail

in the following paragraphs.

2.2.1 The DBTE Algorithm step-by-step

Step 1: moving average The algorithm receives as input a sequence of

sampled CFRs Ĥ1[k], . . . , Ĥq[k], . . . , ĤQ[k], measured over several Q

consecutive symbols. Let Ns(≤ N) be the number of OFDM sub-

carriers carrying reference symbols that are actually employed for the
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CFR calculation. As a first step, to smooth the noise effect over time-

consecutive symbols, a moving average with window length equal to

lw = 2lh + 1, with lh ∈ N, lh ≥ 1, lw < Q is applied in the time

direction. This results into a filtered version of the sampled CFR,

which provides Q−2lh samples for each sub-carrier. Thus, for the k-th

sub-carrier (k ∈ K), the p-th sample may be expressed as:

H̄p[k] =
1

lw

p+2lh∑
u=p

Ĥu[k], p ∈ P (2.30)

where P = {1, . . . , Q−2lh} is the set of the symbol indexes. These sam-

ples are grouped in the Ns×(Q−2lh) matrix H =
[
H̄1[k] . . . H̄Q−2lh [k]

]
.

Step 2: channel parameter estimation The second step involves the es-

timation L̂ of the number of paths L, which is subsequently used to

estimate the L̂ normalized amplitudes Bl, the L̂ relative phases ∆φl,

and the L̂ − 1 differential delays ∆τl required by (2.21) and (2.24).

The easiest way to obtain these estimates is to calculate the Chan-

nel Impulse Response (CIR) ĥ[n] by performing an IDFT operation.

The first symbol (column) of H is chosen for this purpose by assuming

that the CIR does not vary significantly over Q consecutive symbols.

The absolute value of the CIR results into a N -sequence |ĥ[n]|. A

minimum threshold ξ is used to detect the L̂ peaks corresponding to

the ToAs of the different paths displayed by the CIR. The index values

n̄1, . . . , n̄l̂, . . . , n̄L̂ for which |ĥ[n̄l̂]| > ξ holds true are stored. Therefore,

Bl, ∆φl and ∆τl in (2.22) are estimated, respectively, as:
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B̂l̂ =
|ĥ[n̄l̂]|
|ĥ[n̄1]|

, l̂ = 1, . . . , L̂ (2.31a)

∆̂φl̂ = arg{ĥ[n̄l̂]} − arg{ĥ[n̄1]}, l̂ = 1, . . . , L̂ (2.31b)

∆̂τ l̂ = (n̄l̂ − n̄1)T, l̂ = 1, . . . , L̂ (2.31c)

from which, by (2.21) and (2.24), one obtains X1(f), Y1(f), X2(f) and

Y2(f).

Step 3: ToA samples estimation As a third step, considering the mea-

sured differential phases Φ̂′p(k) for p ∈ P and k ∈ K′ provided by (2.27)

and (2.28), one can evaluate the set of U = (Ns−1)(Q−2lh) estimates:

τ̂ p,k1 = τ̂1

[
Φ̂′p(k)

]
, p ∈ P , k ∈ K′ (2.32)

The elements of the set defined by (2.32) are in general affected by

noise and may suffer from a systematic error due to phase wraparounds.

Thus, an additional step is needed to refine the final estimation.

Step 4: outliers removal and mean calculation The first operation per-

formed in the fourth step is the outliers removal. To this aim, the mean

and the standard deviation of the set defined by (2.32) are calculated

as:

µ =
1

U

∑
p∈P

∑
k∈K′

τ̂ p,k1 (2.33)

σ =

√
1

U − 1

∑
p∈P

∑
k∈K′

(τ̂ p,k1 − µ)2 (2.34)

A subset U of index pairs (p, k) is now defined by selecting the esti-

mates satisfying the relationship |τ̂ p,k1 − µ| ≤ rσ, where r is a suitable
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General DBTE

N = Ns 1024 Q 100

Ncp 128 lw 25

∆f [kHz] 15 ξ 0.1

Number of simulations 100 r 2

DP [µs] [1, 1.2, 1.4, 1.6]

Table 2.2: Simulation Parameters for the DBTE Algorithm.

threshold. The second operation carried out at this final step is the

evaluation of a novel average calculated over the samples identified by

the indexes belonging to U . This finally yields the desired estimation

of the ToA for the first path:

τ̂1 =
1

U ′

∑
(p,k)∈U

τ̂ p,k1 (2.35)

where U ′ = C(U) is the cardinality of U .

2.2.2 Difference-Based Estimation Results

The developed DBTE algorithm is implemented in MATLAB and its perfor-

mance is compared with that provided by the Slope-Based algorithm, pro-

posed in 2.1, which exploits the phase rotation of OFDM sub-carriers to

obtain a ToA estimation when the first path is also the strongest one. The

adopted parameters and settings are reported in Table 2.2.

Figs. 2.4-2.6 show the Root Mean Square Error (RMSE) performance as a

function of the Signal-to-Noise Ratio (SNR) for the four compared algorithms

in three channel scenarios characterized by different power profiles. In par-
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Figure 2.4: ToA estimation for an average power profile [0 -6 -10 -20] dB.

◦: Slope-Based +: DBTE.

ticular, Fig. 2.4 refers to a scenario in which the shortest path is dominant,

that is, its average amplitude is higher than the sum of the amplitudes of all

the secondary paths. Instead, Fig. 2.5 considers the case of a non-dominant

shortest path with the highest average amplitude, while Fig. 2.6 refers to

the case of a non-dominant second path with the highest average amplitude.

These three situations are selected to check the proposed DBTE algorithm

in scenarios where the ToA estimation of the first path becomes more and

more difficult. The non-coincidence of the shortest path with the strongest

path affects also the Slope-Based algorithm, whose evolution is yet strictly

related to the dominance of the shortest path.

The DBTE algorithm outperforms the Slope-Based methods, presenting
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Figure 2.5: ToA estimation for an average power profile = [0 -1 -2 -7] dB.

◦: Slope-Based +: DBTE.

an accuracy that increases with the SNR regardless of the specific scenario.

This reveals that the developed solution may be applied in a wide set of

situations.
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Figure 2.6: ToA estimation for an average power profile [-1 0 -2 -7] dB.

◦: Slope-Based +: DBTE.
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3 Multi-Band Time of Arrival Estimation

This chapter presents the work done on the use of multiple frequency bands

for the purpose of ToA estimation. The Space Alternating Generalized

Expectation-Maximization (SAGE) algorithm was selected, because of its

versatility and good performance in complex propagation environments. An

overview of SAGE is given starting with its basic principles, then moving to

the specific implementations that were used throughout the research work.

The advantages of employing multiple transmission bands for the purpose

of ToA estimation are assessed through simulations. Two novel methods for

combining information inferred from non-synchronized transmission bands,

Signal Combining and Signal Aggregating, are then described.
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3.1 An overview of the SAGE algorithm

SAGE was first introduced as an extension of the Expectation-Maximization

(EM) algorithm [48, 49, 50]. It is a reduced complexity method for the evalu-

ation of the Maximum Likelihood (ML) estimation. More precisely, in SAGE,

the multi-dimensional ML estimation problem is subdivided into a certain

number of smaller problems to jointly estimate the desired parameters in an

iterative way.

An introduction of the EM algorithm is first given, to explain the funda-

mentals upon which SAGE is based.

3.1.1 The Expectation Maximization Algorithm

Let us consider the adopted L-path channel of (1.8), with

θl = [Re(αl), Im(αl), τl, φl, fD,l] representing the set of parameters of interest

for the l-th path. Because L paths are present, the overall set to be estimated

is θ = [θ1, . . . ,θL], whose cardinality is equal to 5L. Let Fo be the set of

observed sub-carrier frequencies and To the set of time instants when the

CFR is sampled. We define H̄(fk, ts), fk ∈ Fo as the observation of Ĥ[k] in

(1.12) at time ts. The ML Estimate (MLE) of θ is then defined as:

θ̂ML(H̄) = arg max
θ

[Λ(θ; H̄)] (3.1)

being θ̂ML the value of θ for which the ML function Λ is maximized. The

value in (3.1) represents the optimum one, however the maximization opera-

tion results computationally prohibitive because of the large dimension of the

searching space for large L values. Besides, no general closed formula exists

to express the global maximum because of the non-linearity of the function

Λ.

The EM algorithm represents a first approach to address the problem.
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EM adopts an iterative approach to solve the ML problem in (3.1). It is

based upon the distinction between complete data, which are unobservable,

and incomplete observable data. With reference to the considered L-paths

channel, the CFR can be written as:

H(f, t;θ) =
L∑
l=1

Hl(f, t;θl)

=
L∑
l=1

αle
−j2πfτlej2πfD,ltc(φl) (3.2)

where Hl(f, t;θl) for l = 1, . . . , L is the contribution of the l-th path to the

overall CFR. These contributions are assumed independent of each other and

their union corresponds to the complete data. No observation H̄l(f, t;θl) for

l = 1, . . . , L of the complete data is available, hence they must be estimated

relying on the incomplete (observable) data H̄(f, t) and on a previous esti-

mation of θ.

The EM algorithm consists of an initialization part and an Expectation

(E) and a Maximization (M) step, which are performed at each iteration.

Initialization The initial parameter vector θ is set to 0. The number

L of paths is estimated by means of an appropriate method, such as

the Minimum Descriptive Length algorithm [51], resulting into the es-

timated value L̂.

E-step Assuming that the L multipath components are separately observ-

able, it is possible to isolate the contribution of the l-th path from the

channel samples to estimate the complete data for the l-th path using

the incomplete available data and the current estimation. This is re-

ferred to as Parallel Interference Cancellation (PIC): all the impinging

waves except for the one to be estimated are cancelled from the channel
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observation:

H̄l(fk, ts)=H̄(fk, ts)−
L̂∑

l′=1,l′ 6=l

Hl′(fk, ts; θ̂
′
l′) (3.3)

where θ̂
′
l′ is a previous estimate of θl.

M-step The parameters θl relative to the l-th path (or wave) are estimated

as:

θ̂′′l = θ̂l,ML =arg min
θl

{∑
fk

∑
ts

||v(fk, ts;θl)||2
}

(3.4)

where:

v(fk, ts;θl) = H̄(fk, ts)−Hl(fk, ts;θl) (3.5)

for fk ∈ Fo, ts ∈ To. With reference to the adopted L-path channel

model of (1.8). the delay τl, the Angle of Arrival φl and the Doppler

shift fD,l can be estimated first by solving a 3D maximization problem:

(τ̂l,φ̂l,f̂D,l)ML=argmax
τ,φ,fD

{∣∣z(τ, φ, fD; H̄l(t, f)
)∣∣} (3.6)

where z is the 3D correlation function. The complex path amplitude

α̂l is then updated as a function of the estimated parameters τ̂l,φ̂l and

f̂D,l:

α̂l,ML =
z
(
τ̂l,ML, φ̂l,ML, f̂D,l)ML; H̄l(fk, ts)

)
NRNt||c(φ̂l,ML)||2

(3.7)

where z is the correlation function, NR is the number of observed chan-

nel frequencies and Nt is the number of instants where the CFR was

sampled.

Once the full set of parameters of interest θ̂ML is estimated, it is also possible

to estimate the noise variance σ̂2
n.
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3.2 Multi-Band SAGE for ToA Estimation

In a multi-band environment, it is interesting to exploit the information

gathered from the overall occupied bandwidth to obtain a more reliable and

accurate estimation of the ToA. This is possible if the propagation environ-

ment is relatively flat across the whole considered bandwidth. In particular

the first propagation path (often, but not always, the direct path) must have

similar characteristics across all the considered sub-bands. This is commonly

verified and confirmed by observations. An example of a multi-band appli-

cation of SAGE for ranging purposes is found in [52].

To this purpose, a reduced-complexity implementation of SAGE focused

on delay estimation was chosen. The implementation, based on [53], can

easily be extended to a multi-band environment, and had been indeed de-

vised to be used in such a scenario. An accurate simulator is implemented

in Matlab to infer the possible benefits of dual-band usage and evaluate the

ToA estimation performance.

3.2.1 SAGE Implementation

The chosen implementation focuses on the estimation of the ToA. The set

of parameters to be estimated is θl = [αl, τl]. To simplify the treatise, it is

assumed that the number L of paths is exactly known a-priori. The initial-

ization and the E- and M-steps of the SAGE algorithm, specifically referred

to delay and amplitude estimation, can be detailed as follows.

Initialization At iteration i = 0 the values to be estimated are initialized

to zero, thus: [
τ̂

(0)
l , α̂

(0)
l

]
= [0, 0], l = 1, . . . , L (3.8)

where α̂
(i)
l and τ̂

(i)
l denote the estimates of αl and τl at the i-th iteration,
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respectively.

E-step The complete data for the l-th path are estimated using the in-

complete available data and the current estimation
[
τ̂

(i)
l , α̂

(i)
l

]
as:

Ĥ
(i)
l (q)=Ĥ(q)−

L∑
l′=1
l′ 6=l

α̂
(i)
l′ exp

[
−j2πfq τ̂ (i)

l′

]
(3.9)

for q = 1, . . . , N , where N is the number of observed sub-carrier fre-

quencies.

M-step The delay and amplitude estimates of the l-th path are updated

using (3.9) by:

τ̂
(i+1)
l = arg max

τ

∣∣∣ζ(i)
l (τ)

∣∣∣ (3.10)

α̂
(i+1)
l =

ζ
(i)
l

[
τ̂

(i+1)
l

]
N

(3.11)

where:

ζ
(i)
l (τ) =

N∑
q=1

Ĥ
(i)
l (q) exp (j2πfqτ) (3.12)

identifies the cost function.

3.2.2 Multi-band Simulation Results

This section presents the results obtained from the Matlab implementation

of the described SAGE algorithm in a dual-band communication context

with contiguous frequency bands. The adopted parameters are reported in

Table 3.1, where Num (m = 1, 2) is the number of sub-carriers occupied by

modulated symbols and Nsm (m = 1, 2) is the number of sub-carriers reserved

for the reference signals in the m-th system. Several scenarios, characterized

by different number of multi-path components, power profiles (PP), and De-

lay Profiles (DP) are considered for the dual-band system (Table 3.2). These
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SAGE

Delay sampling interval [s] 1× 10−10

Termination threshold γτ 1× 10−4

Maximum number of iterations imax 100

Number of symbols 1000

Dual-band Equivalent single-band

N1, N2 2048 N = N1 +N2 4096

Ncp1
, Ncp2

144 Ncp = Ncp1
+Ncp2

288

Nu1 , Nu2 1200 Nu = Nu1 +Nu2 2400

Ns1 , Ns2 200 Ns = Ns1 +Ns2 400

∆f [kHz] 15 ∆f [kHz] 15

fc1 [MHz] 1835 fc = fc1 [MHz] 1835

fc2 [MHz] 1855

Table 3.1: Parameters and settings.

scenarios have been specifically selected to represent increasingly complex

situations for the purposes of LoS ToA estimation.

The first set of results, reported in Fig. 3.1, shows the RMSE performance

for L = 2 as a function of the Signal-to-Noise Ratio (SNR). To quantify the

possible benefits, the derived performance is compared to that obtained by

two single-band systems: a first one using half of the bandwidth, and a

second one using the entire bandwidth (equivalent single-band). We may ob-

serve from this figure that the dual-band ToA estimation is better than the

half-bandwidth single-band one, and is close to the equivalent single-band

estimation especially in low SNR conditions. It is hence worth going on to

check the performance of the dual-band system in a wider set of scenarios.
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L 2

PP [dB] [0 0]

Scenario Band 1 Band 2

1 DP [µs] [1, 1.1] [1.05, 1.15]

L 4

PP [dB] [0 -2 -10 -20]

Scenario Band 1 Band 2

1 DP [µs] [1, 1.2, 1.4, 1.6] [1, 1.2, 1.4, 1.6]

2 DP [µs] [1, 1.2, 1.4, 1.6] [1, 1.2, 1.4, 1.8]

3 DP [µs] [1, 1.2, 1.4, 1.6] [1, 1.2, 1.6, 1.8]

4 DP [µs] [1, 1.2, 1.4, 1.6] [1, 1.4, 1.6, 1.8]

L 6

PP [dB] [0 -4 -8 -12 -16 -20]

Scenario Band 1 Band 2

1 DP [µs] [1, 1.1, 1.2, 1.3, 1.4, 1.5] [1, 1.1, 1.2, 1.3, 1.4, 1.5]

2 DP [µs] [1, 1.1, 1.2, 1.3, 1.4, 1.5] [1, 1.1, 1.2, 1.3, 1.6, 1.7]

3 DP [µs] [1, 1.1, 1.2, 1.3, 1.4, 1.5] [1, 1.1, 1.4, 1.5, 1.6, 1.7]

4 DP [µs] [1, 1.1, 1.2, 1.3, 1.4, 1.5] [1, 1.3, 1.4, 1.5, 1.6, 1.7]

Table 3.2: Simulated dual-band scenarios.
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Figure 3.1: SAGE ToA estimation for scenario 1 with L = 2. �: Single-band

4: Dual-band ∗: Equivalent single-band.

This is the objective of the simulations that lead to Fig. 3.2 and Fig. 3.3,

which reports the ToA RMSE performance in different scenarios for L = 4

and L = 6 respectively.

With reference to Fig. 3.2, a direct comparison between a single-band

and a dual-band system shows that the latter presents a lower RMSE in low

SNR conditions. This behavior is due to the fact that, at low SNRs, the main

impact on the estimation error is determined by the noise, which partly hides

the inaccurate estimation of the secondary path. Instead, at high SNRs, this

inaccuracy becomes dominant in higher-order scenarios. However, as the

multi-path environment becomes richer (L = 6), the dual-band system tends
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Figure 3.2: SAGE ToA estimation for scenarios with L = 4. −: Single-band

�: Dual-band (scenario 1)4: Dual-band (scenario 2) ∗: Dual-band (scenario

3) ◦ Dual-band (scenario 4).

to outperform the single-band one even in high SNR conditions.

A general aspect that can be highlighted regarding this second set of

results concerns the negative influence of the inaccuracy in estimating the

delays of the secondary paths on the estimation of the ToA referred to the

LoS one, even if it has been assumed identical on the two bands in all the

analyzed scenarios. In summary, however, the above results suggest that a

dual-band OFDM system might be usefully exploited for ToA estimation pur-

poses when the power-delay profiles of the two bands are correlated enough.
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Figure 3.3: SAGE ToA estimation for scenarios with L = 6. −: Single-band

�: Dual-band (scenario 1)4: Dual-band (scenario 2) ∗: Dual-band (scenario

3) ◦ Dual-band (scenario 4).

3.3 Multi-Band SAGE Application

The use of the SAGE in multiple-bands scenarios has been investigated,

with the purpose of combining information coming from non-synchronized

transmission bands.

A different implementation of the SAGE algorithm was selected for the

investigation. The chosen implementation of SAGE, derived from [54] and

[55], differs substantially from the one of Section 3.2.1 as described in the

following section.
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3.3.1 SAGE Implementation

Initialization The initial parameter vector θ(−L + 1) is set to 0. This

means that the first iteration of the algorithm is completely blind, as

only the parameters for the waves already detected are exploited in

the E-step. The notation indicates that the first L iterations of the

algorithm are necessary to fully initialize it before the actual SAGE

iteration can start.

E-step As in the EM algorithm, interference cancellation is performed to

isolate the contribution of the l-th path. The initial L iterations how-

ever differ from the regular ones. During the initialization phase this

is performed with Serial Interference Cancellation (SIC), as only the

parameters relative to the paths that have already been detected are

cancelled:

H̄l(fk, ts) = H̄(fk, ts)−
i−1∑
l′=1

Hl′(fk, ts; θ̂
′
l′) (3.13)

where i is the current iteration of the SAGE algorithm. In the iterations

of the algorithm after the L-th, the Expectation step is carried out as

described in Section 3.1.1.

M-step During the Maximization step, the parameters relative to a single

path are updated sequentially, based on the previous estimates. Each

parameter is updated separately by solving a single-dimensional maxi-

mization problem.

τ̂ ′′l =arg max
τ

{∣∣∣z(τ, φ̂′l, f̂ ′D,l; Ĥl(fk, ts)
)∣∣∣} (3.14a)

φ̂′′l =arg max
φ

{∣∣∣z(τ ′′l , φ, f̂ ′D,l; Ĥl(fk, ts)
)∣∣∣} (3.14b)

f̂ ′′D,l=arg max
fD

{∣∣∣z(τ ′′l , φ̂′′l , fD; Ĥl(fk, ts)
)∣∣∣} (3.14c)
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where z is the correlation function. The amplitude α̂l is then updated

as per (3.7)

3.3.2 Methods for Multi-Band SAGE Application

The multi-band ToA estimation method is developed building upon the

SAGE algorithm as described in Section 3.3.1. Let KR,m ⊆ Km be the set of

sub-carrier frequencies, equally spaced by ∆fR,m, for which a CFR sample is

available for the m-th OFDM sub-system. Equivalently, KR,m is the set of

sub-carriers occupied by exploitable reference symbols in the m-th OFDM

sub-system. Also let To,m be the set of time instants when the CFR is sam-

pled for the m-th sub-system. The overall set of observed CFR samples for

sub-band m is denoted as H̄m(k, t), k ∈ KR,m, t ∈ To,m.

At this point two assumptions are introduced. First, the CFR obser-

vations are taken at the same time instants for all the sub-bands, that is,

To,m = To, m = 1, . . .M . Even if the reference symbols are not synchronized

between the transmitters, it is sufficient that the time offset between corre-

sponding symbols is smaller than the coherence time of the channel. Second,

the number of pilot tones NR and their frequency spacing ∆fR,m are assumed

to be uniform across all sub-systems, that is, ∆fR,m = ∆fR, m = 1, . . .M .

From this point on, only the m = 2 (dual-band) case will be considered,

being the extension to the m > 2 case straightforward.

SAGE receives as input a time-frequency matrix H̄(f, t) of contiguous

CFR samples, as shown in Fig. 3.4. The available samples for the transmis-

sion bands H̄m(f, t) must hence be joined into a single time-frequency matrix

H̄T (f, t) that is used as input for the SAGE algorithm.

However, base stations generally lack synchronization between the clocks

of the transmitters, meaning that additional processing is needed before the
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Figure 3.4: The time-frequency CFR estimation matrix.

information from the two sub-bands can be combined. In [56] a method

is proposed to synchronize the downlink signals of LTE base stations for

ranging purposes. In most current network deployments, however, LTE base

stations are asynchronous. To this end, two methods are introduced: Signal

Combining and Signal Aggregating.

3.3.3 Signal Combining

In the Signal Combining technique, Maximal Ratio Combining is used to

combine the available estimations. The algorithm consists of an initializa-

tion part, in which the timing offset between the two transmission bands is

estimated, and a main part in which data from the two bands are combined

to achieve a ToA estimation.
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The set of CFR sampling instants To is subdivided in a number Q of

adjacent sub-sets tq, each containing Nt contiguous elements so that:

To =
⋃

tq q = 1, . . . , Q (3.15)

Correspondingly, the CFR samples for each transmission band are subdivided

in sub-sets Ĥq
m(f, t), f ∈ KR,m, t ∈ tq of Nt time-contiguous CFR estimations

spanning the available bandwidth of each sub-system.

Initialization 1 The SAGE algorithm is applied separately to the first chunk

of data from each transmission band, Ĥ1
1 (f, t) and Ĥ1

2 (f, t) respectively,

resulting in the estimated parameters L̂1, τ̂
(1)
l and σ̂2

n,1 for Band 1 and

L̂2, τ̂
(2)
l and σ̂2

n,2 for Band 2. Because of the lack of synchronization be-

tween the two transmitters, the ToA of the two signals will not be the

same. The timebase of the first signal is arbitrarily chosen as reference.

Initialization 2 The time shift is calculated as:

ts = τ̂
(2)
1 − τ̂

(1)
1 (3.16)

The signal-combining ToA estimation algorithm is then applied for each

of the Q pair of samples sub-sets Ĥq
1(f, t) and Ĥq

2(f, t).

Step 1 By substituting φs = 2π∆fRts, the phase-shifting matrix is defined

as:

Φs =


e−jφs e−jφs . . . e−jφs

e−j2φs e−j2φs . . . e−j2φs

...
...

...

e−jNRφs e−jNRφs . . . e−jNRsφs

 (3.17)

where ∆fR is the frequency spacing between reference signals. This

accounts for the clock shift between the two transmitters.
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Step 2 An additional phase shift is added to account for the carrier phase.

Hence, by substituting;

φc = min [KR,2] ts + (fC,2−fC,1)τ̂
(2)
1 (3.18)

where fC,1 and fC,2 are the carrier frequencies for Band 1 and Band 2

respectively. The second phase-shifting matrix is defined as:

Φsc = e−j2πφc · 1NR×Nt (3.19)

where 1m×n is a m × n matrix of ones. The shifts are then applied to

Band 2 by phase-shifting the CFR estimation matrix:

H̃q
2 = Ĥq

2 ⊗ Φs ⊗ Φsc (3.20)

where ⊗ denotes the elementwise product between matrices.

Step 3 Weighed signal combining is performed. By substituting dσ = 1
σ̂2
n,2
−

1
σ̂2
n,1

, the combined input matrix is calculated as:

Ĥq
C = Ĥq

1 + 10dσ/20H̃q
2 (3.21)

Step 4 The SAGE algorithm is applied to Ĥq
C, resulting into the final esti-

mations L̂C and τ̂l,C.

For the Signal Combining method to be used efficiently, the propagation

environment must be highly correlated between the two sub-bands. If not,

the combined CFR values might lead to bias in the estimation of the ToA of

the first path.

3.3.4 Signal Aggregating

In Signal Aggregating, the estimated CFR matrices are joined into a larger

matrix. Usually a guard band is inserted between the transmission bands
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of a multi-band OFDM system, to avoid interference and ease the filtering

operations at the receiver. Hence, zero filling is needed to fill the frequency

gap between the available CFR samples. The added zeros do not affect the

outcome of the estimation and allow the use of an efficient implementation

of the SAGE algorithm. Similar to Signal Combining, the available CFR

samples are subdivided in a number Q of sub-sets and the time shift between

the transmission bands is estimated with a first run of SAGE.

Initialization Similarly to the Signal Combining method, the SAGE algo-

rithm is applied separately to the first chunk of data from each trans-

mission band and the time shift is calculated as per (3.16).

Step 1 The phase-shifting matrix is defined as per (3.17). Because the sam-

ples are aggregated instead of added together, the difference in carrier

frequency is naturally accounted for by the SAGE implementation.

Step 2 A further shift φa is needed to compensate the effects of the timing

offset.

φa = min [KR,2] ts (3.22)

The additional phase-shifting matrix is defined as:

Φsa = e−j2πφa · 1NR×Nt (3.23)

The shifts are then applied to Band 2 by phase-shifting the CFR esti-

mation matrix:

H̃q
2 = Ĥq

2 ⊗ Φs ⊗ Φsa (3.24)

Step 3 The CFR matrices are aggregated and zeros are added to fill the

frequency gap. Being:

fgap = min [KR,2]−max [KR,1] (3.25)
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the frequency gap between the two bands, a number NG = bfgap/∆fRc

of null sub-carriers is inserted to account for the gap.

Ĥq
A =

[
Ĥq

1 0Nt×NG
H̃q

2

]
(3.26)

where 0m×n is a m× n null matrix.

Step 4 The SAGE algorithm is applied to Ĥq
A, resulting into the final esti-

mations L̂A and τ̂l,A.
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4 Simulated Results

This section discusses the results obtained from simulations for multi-band

estimation using the Signal Combining and Signal Aggregating methods pro-

posed in Section 3. Simulations have been run to assess the behavior of the

SAGE-based methods in multi-path propagation environments. The consid-

ered LTE scenario uses the CRS as the reference signal to simulate real-life

measurements as closely as possible.
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4.1 Overview of Simulations

Simulations were used to investigate the behavior of multi-band methods

in complex propagation scenarios. The simulator is designed to accurately

implement the LTE downlink layer signals. Assuming that the propaga-

tion environment doesn’t change over the duration of a single LTE slot, it

is possible to merge the s = 0 and s = 4 reference symbols of a slot into

a single OFDM symbol with twice as many REs occupied by CRS tones.

This merged symbol is considered to be transmitted once per slot at s = 0,

and the spacing between pilot tones becomes half the normal one, that is,

∆fCRS = 3∆f = 45 kHz. This is shown in Fig. 4.1. As such, each LTE

slot corresponds to a merged reference symbol. Because Nt = 20 consecutive

pilot symbols are grouped together, a SAGE estimation output is obtained

each 20 symbols, equivalent to a LTE frame of data.

The parameters adopted for the simulations are reported in Table 4.1,

where N is the number of sub-carriers occupied by modulated symbols and

NR is the number of sub-carriers reserved for reference symbols. These values

have been chosen to mirror the scenario encountered during the live measure-

ment campaign as closely as possible. Both algorithms have been simulated

using the same parameter values.

The metrics chosen to evaluate the performance are the RMSE, range rτ ,

and standard deviation στ of the estimated ToA values.
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Figure 4.1: CRS merging over a single LTE slot.

L = 4

PP [dB] [0 -2 -10 -20]

Band 1 Band 2

DP [µs] [1, 1.2, 1.4, 1.6] [1.1, 1.3, 1.5, 1.7]

L = 6

PP [dB] [0 -4 -8 -12 -16 -20]

Band 1 Band 2

DP [µs] [1, 1.1, 1.2, 1.3, 1.4, 1.5] [1.1, 1.2, 1.3, 1.4, 1.5, 1.6]

SNR [dB] −10÷ 30

BW [MHz] 10

N 600

NR 200

Nt 20

Nsymb 1000

Table 4.1: Simulated dual-band scenarios.
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4.2 Simulations - Signal Combining

4.2.1 Performance Assessment

The Signal Combining method is simulated over the channel models of Ta-

ble 4.1 to assess its performance in a multi-path propagation environment.

The simulated results for the 4-paths channel model (based on the COST207

RA4 specifications) are shown in Fig. 4.2. This propagation model presents a

strong second path and a wide delay spread. The Signal Combining method

achieves a moderate performance gain across the considered SNR range when

compared to single-band estimation. Figs. 2(a)-2(c) display a common trend

for the three considered metrics.

The channel model considered for the results of Fig. 4.3 is based on the

COST207 RA6 6-paths specifications. In this case Signal Combining presents

no performance gain at low-to-mid SNR values when compared to single-band

estimation, while at higher SNR values the dual-band estimation method

shows better performance. This behavior is displayed for all the considered

performance metrics (Figs. 3(a)-3(c)).
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(a) RMSE performance.
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(c) Std. dev. performance.

Figure 4.2: Performance metrics for the Signal Combining method for the

L = 4 scenario. ◦: Single-band estimation •: Dual-band estimation.
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(a) RMSE performance.
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(b) Range performance.

-10 -5 0 5 10 15 20 25 30

SNR [dB]

10
-9

10
-8

10
-7

σ
τ

 [
s
]

(c) Std. dev. performance.

Figure 4.3: Performance metrics for the Signal Combining method for the

L = 6 scenario. ◦: Single-band estimation •: Dual-band estimation.
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4.2.2 Example Estimation

Two examples of ToA estimation performed using the Signal Combining

method are shown in Fig. 4.4 and Fig. 4.5. The figures refer to a time

span of 50 LTE frames, corresponding to the 500 ms duration of real-life

measurements, and a SNR of 0 dB in both the transmission bands.

Table 4.2 and Table 4.3 summarize the performance metrics for the sce-

narios. Confirming the trend of 4.2.1, in both the considered cases the range

rτ and standard deviation στ decrease significantly when both transmission

bands are employed for estimation. The RMSE is also noticeably smaller in

the dual-band case.

The estimated ToA values reported in Figs. 4.4-4.5 are normalized to

the value of the first path ToA (1 µs in the simulations), to allow a more

immediate comparison of the range and spread of the estimation sets.
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Figure 4.4: Normalized ToA estimation simulation with the Signal Combin-

ing method for the L = 4 scenario. ◦: Single-band estimation ∗: Dual-band

estimation.

L = 4

SNR [dB] 0

Single-Band Dual-Band

rτ [ns] 2.879 1.852

στ [ns] 0.716 0.373

RMSE [ns] 2.195 1.942

Table 4.2: Simulated performance for the Signal Combining method for the

L = 4 scenario.
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Figure 4.5: Normalized ToA estimation simulation with the Signal Combin-

ing method for the L = 6 scenario. ◦: Single-band estimation ∗: Dual-band

estimation.

L = 6

SNR [dB] 0

Single-Band Dual-Band

rτ [ns] 3.543 2.085

στ [ns] 0.748 0.466

RMSE [ns] 0.851 0.482

Table 4.3: Simulated performance for the Signal Combining method for the

L = 6 scenario.
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4.3 Simulations - Signal Aggregating

4.3.1 Performance Assessment

The simulated performance of the Signal Aggregating method can be seen in

Fig. 4.6 and Fig. 4.7 for the L = 4 and L = 6 propagation scenarios respec-

tively.

The Signal Aggregating method shows a large performance gain in both

the considered scenarios. The gain obtained with the use of the added band-

width results much greater than the one achieved by Signal Combining.

It can also be observed in the L = 6 scenario that the performance of

the dual-band estimation presents an almost flat behavior across the con-

sidered SNR range, whereas single-band estimation metrics decrease as the

SNR increases.
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(a) RMSE performance.
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(c) Std. dev. performance.

Figure 4.6: Performance metrics for the Signal Aggregating method for the

L = 4 scenario. ◦: Single-band estimation •: Dual-band estimation.
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(a) RMSE performance.
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(c) Std. dev. performance.

Figure 4.7: Performance metrics for the Signal Aggregating method for the

L = 6 scenario. ◦: Single-band estimation •: Dual-band estimation.
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4.3.2 Example Estimation

Examples of simulated estimation employing the Signal Aggregating method

are shown in Fig. 4.8 and Fig. 4.9. The COST207 RA4 4-paths and COST207

RA6 6-paths channel models are considered. The SNR for both transmission

band is 0 dB. The simulated performance are reported in Table 4.4 and Ta-

ble 4.5. Agreeing with the previous results, the Signal Aggregating method

achieves better performance than Signal Combining at the cost of a slightly

larger computational complexity because of the larger size of the SAGE algo-

rithm input matrix. Table 4.4 and Table 4.5 summarize the metrics obtained

from the simulations. As per the Signal Combining method, the reported

ToA values are normalized to the value of the first path ToA for comparison

purposes.

77



0 0.1 0.2 0.3 0.4 0.5

Time [s]

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

1.003

1.004

1.005
N

o
rm

a
liz

e
d
 T

o
A

Figure 4.8: Normalized ToA estimation simulation with the Signal Aggregat-

ing method for the L = 4 scenario. ◦: Single-band estimation ∗: Dual-band

estimation.

L = 4

SNR [dB] 0

Single-Band Dual-Band

rτ [ns] 2.958 1.154

στ [ns] 0.648 0.244

RMSE [ns] 2.326 0.201

Table 4.4: Simulated performance for the Signal Aggregating method for the

L = 4 scenario.
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Figure 4.9: Normalized ToA estimation simulation with the Signal Aggregat-

ing method for the L = 6 scenario. ◦: Single-band estimation ∗: Dual-band

estimation.

L = 6

SNR [dB] 0

Single-Band Dual-Band

rτ [ns] 2.605 1.117

στ [ns] 0.618 0.246

RMSE [ns] 1.129 0.667

Table 4.5: Simulated performance for the Signal Aggregating method for the

L = 6 scenario.
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5 Measurements Setup and Scenario

In this chapter the measurement campaign for the real-time acquisition of

LTE downlink signals is illustrated. The CellSearch LTE scan tool was em-

ployed in the search for a suitable Base Station carrying multiple trans-

mitters, as it provides a cheap and easily portable tool for scanning the

surrounding LTE cells. To obtain usable measurements of the LTE signal,

instrumentation that provides high-frequency sampling and synchronized ac-

quisitions is needed. The scenario in which the measurements have been

taken is also presented, together with the configuration of the transmitting

base station.
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Figure 5.1: Example screenshot of the CellSearch scan tool.

5.1 The CellSearch scan tool

The LTE Cell Scanner software tool is used to locate LTE BS cells using very

low performance RF front ends. This tools operates with USB dongles based

on the RTL2832 tuner chip. The RTL2832 tuner chip has a noise figure of 20

dB, a 8 bits ADC, and an oscillator crystal with a frequency error of about

100 ppm.

The CellSearch tool can be used to search for LTE carriers within a

specified range of frequencies. It outputs a number of parameters for the

detected cell IDs, including the received power, frequency offset, and the cell

configuration. An example output is shown in Fig. 5.1. The tool is available

for free from [57] and can run on any reasonably modern Linux distribution.
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5.2 Instrumentation Setup

The measurements setup comprises two Universal Radio Peripheral (USRP)

Ettus N210 Software Defined Radios (SDR) [58]. The block scheme of the in-

strumentation setup is shown in Fig. 5.2. The two USRP SDRs are employed

to simultaneously measure two channels, in the considered scenario two down-

link signals from different operators allocated on the same base station mast.

The Ettus USRP Network Series offers high-bandwidth, high-dynamic range

processing capability and MIMO capabilities. The Gigabit Ethernet inter-

face of the USRP Network Series allows high-speed streaming capability up

to 50 millions of samples per second (MSPS) in both directions when the

8-bit samples configuration is used. These features, combined with plug-

and-play MIMO capability make the USRP Network an ideal candidate for

software defined radio systems with demanding performance requirements.

The USRP mounted a WBX daughterboard, which has a frequency capabil-

ity range from 50 to 2200 MHz and a maximum noise figure of 5 dB.

A high-precision 10 MHz reference clock from a GPS-locked SRS FS 725

Rubidium frequency standard is employed to synchronize the two USRPs.

Both USRP units are connected to the 10 MHz reference clock, so the data

acquisition is synchronized between the two units. A u-blox EVK-6N GNSS

evaluation kit provides the GPS-locked PPS signal to the Rubidium clock.

The GNSS module employs a magnetic-mount vehicular antenna.

A conventional personal computer (PC) acts as system controller and

data recording unit, guaranteeing coherent sampling between the two USRP

devices. The PC is connected to the USRP units via Gigabit Ethernet con-

nections. The calculator presents a separate GbE interface for each of the

connected USRPs, so each unit can make use of the full 1 Gb data rate.

Labview is used as the data acquisition software, allowing for easy config-
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Figure 5.2: Block scheme of the measurement setup.

uration and synchronization between the two USRP units. Data is recorded

in a binary format, with a sampling rate of 25 MSPS and a precision of 16

bits for the real and imaginary part of each sample. The acquisition scheme

has been developed by Alessandro Pin from University of Udine.

A single directive MRT504 LTE wide-band antenna is used, coupled with

a two-way splitter to feed the signal to the two USRP measuring units.

5.3 Measurement Scenario

The dual-band measurements have been performed in Monfalcone, Italy, in

an industrial district characterized by low-rise buildings and parking lots sep-
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Figure 5.3: Map of the area where the measurements were performed. The

triangle denotes the Base Station position, and the circles are the measure-

ment positions. Map courtesy of OpenStreetMap Foundation [59].

arated by wide roads. The considered cellular mast carries 3 cell IDs for each

operator arranged in a sectored configuration, and transmits on the 806 MHz

and 816 MHz bands (LTE band 20), with a 10 MHz transmission bandwidth

on both carrier frequencies. The measurements have been taken in four dif-

ferent positions around the location of the base station, as shown in Fig. 5.3.

Positions 1 and 4 have a clear view of the transmitting antennas, while in

positions 2 and 3 the mast is partially obscured by buildings and vegetation.

Each measurement consists of 500 milliseconds of continuous recording. The
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Band 1 Band 2

Carrier Frequency [MHz] 806 816

Bandwidth [MHz] 10 10

NDL
RB 50 50

Cell IDs 384,385,386 9,10,11

Antenna Ports 2 2

CP type Normal Normal

Table 5.1: Configuration of the considered base station.

instrumentation has been installed on a car for transportation, however the

measurements were taken statically. The acquired data has been thoroughly

searched for all visible Cell ID values, which have been compared to the val-

ues found within on-line archives [60] and those found with the use of the

CellSearch [57] scan tool with the Elonics E4000 USB dongle. The identified

cell IDs and other observed parameters for the 806 MHz band and the 816

MHz band are reported in Table 5.1.
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6 Experimental Results

In this section, the proposed methods are applied to the real-life LTE data

gathered during the measurement campaign. As it was done for the simu-

lations, the range and standard deviation are used as metric to assess the

performance of both methods when compared to single-band estimation. The

results are discussed and tabulated for easier understanding.
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6.1 Measurements Specifications

Each measurement consists of 500 milliseconds of continuous recording taken

from a static position. This corresponds to 50 LTE downlink frames. How-

ever, as the measure is not synchronized with the frame structure of either

transmitter, the number of full frames available in the recording will be less

than 50. The transmitters are also not synchronized between each other,

hence the CFR samples available for estimation do not span the whole 500

millisecond duration. Data is recorded with a sampling rate of 25 MSPS,

which is down-sampled to 15.36 MHz in post-processing, corresponding to a

FFT length of 1024. Each file contains the signal samples from both LTE

transmitters, corresponding to 100 MB total of data. The measured data

are first searched to infer the visible Cell IDs. For this purpose, the signal

is correlated against a locally-generated CRS signal for all possible Cell ID

values. This information is compared to the Cell ID values found within

on-line archives and those found with the LTE Scan tool, and is needed to

correctly extract the CFR using (1.12).

Similarly to the simulations, the s = 0 and s = 4 symbols of a slot are

merged into a single symbol transmitted at s = 0 within the LTE slot. 20

consecutive symbols are grouped together, hence one ToA value is estimated

for each LTE slot.

In the following sections the results derived from the measurements using

both proposed methods are displayed. The ToA estimation results for each

measure file are normalized, and the values of the chosen performance met-

rics are reported in the corresponding table.

In the measurement taken from Position 3, two cell IDs are visible in the

816 MHz band. Hence, two sets of estimations are shown for Position 3. On

the other hand, the measurements taken in Position 2 did not produce any
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significant result for the 806 MHz band. As such, results for Position 2 are

not included.
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6.2 Experimental Results - Signal Combining

The results obtained with the Signal Combining method are shown in Figs. 6.1-

6.4. The displayed ToA values are normalized, as it was done for the simu-

lated results, to unify the scale. Because the exact value of the ToA is not

available, the estimations are normalized to the average value of dual-band

estimation set. A table next to each figure summarizes the values of the

range and standard deviation for the each set. The detected Cell IDs are

reported as well. The CFR observed for both transmission bands presents a

strong direct path, thanks to the clear view of the transmitter and the use

of a directive antenna at the receiver. These conditions are ideal for the use

of the Signal Combining method, which outperforms single-band estimation

in all the considered cases.
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Figure 6.1: Normalized ToA estimation results using the Signal Combining

method for Position 1 measurements. ◦: Single-band estimation ∗: Dual-

band estimation.

Detected Cell IDs: 384, 10

Single-Band Dual-Band Combining

rτ [ns] 4.838 3.402

στ [ns] 0.964 0.863

Table 6.1: ToA estimation results using the Signal Combining method for

Position 1 measurements.
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Figure 6.2: Normalized ToA estimation results using the Signal Combining

method for Position 3 measurements (set 1). ◦: Single-band estimation ∗:

Dual-band estimation.

Detected Cell IDs: 10, 386

Single-Band Dual-Band Combining

rτ [ns] 2.749 1.641

στ [ns] 0.478 0.352

Table 6.2: ToA estimation results using the Signal Combining method for

Position 3 measurements (set 1).
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Figure 6.3: Normalized ToA estimation results using the Signal Combining

method for Position 3 measurements (set 2). ◦: Single-band estimation ∗:

Dual-band estimation.

Detected Cell IDs: 9, 386

Single-Band Dual-Band Combining

rτ [ns] 2.570 2.044

στ [ns] 0.501 0.390

Table 6.3: ToA estimation results using the Signal Combining method for

Position 3 measurements (set 2).
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Figure 6.4: Normalized ToA estimation results using the Signal Combining

method for Position 4 measurements. ◦: Single-band estimation ∗: Dual-

band estimation.

Detected Cell IDs: 10, 386

Single-Band Dual-Band Combining

rτ [ns] 1.568 1.234

στ [ns] 0.344 0.290

Table 6.4: ToA estimation results using the Signal Combining method for

Position 4 measurements.
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6.3 Experimental Results - Signal Aggregating

The results obtained with the Signal Aggregating method applied to real

LTE data are shown in Figs. 6.5-6.8. Similarly to Signal Combining, the

ToA values are normalized to the average value of the dual-band estimation

set. Thanks to the favorable flat environment, Signal Aggregating achieves

significant gain over single-band estimation. This is especially evident in

Fig. 6.6, where the estimation obtained with the Signal Aggregating method

shows a sharp decrease in both the performance metrics.
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Figure 6.5: Normalized ToA estimation using the Signal Aggregating method

for Position 1 measurements. ◦: Single-band estimation ∗: Dual-band esti-

mation.

Detected Cell IDs: 10, 384

Single-Band Dual-Band Aggregating

rτ [ns] 4.838 2.083

στ [ns] 0.964 0.341

Table 6.5: ToA estimation results using the Signal Aggregating method for

Position 1 measurements (set 1).
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Figure 6.6: Normalized ToA estimation results using the Signal Aggregating

method for Position 3 measurements (set 1). ◦: Single-band estimation ∗:

Dual-band estimation.

Detected Cell IDs: 10, 386

Single-Band Dual-Band Aggregating

rτ [ns] 2.749 0.877

στ [ns] 0.478 0.195

Table 6.6: Normalized ToA estimation results using the Signal Aggregating

method for Position 3 measurements (set 2).
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Figure 6.7: Normalized ToA estimation results using the Signal Aggregating

method for Position 3 measurements (set 2). ◦: Single-band estimation ∗:

Dual-band estimation.

Detected Cell IDs: 9, 386

Single-Band Dual-Band Aggregating

rτ [ns] 2.570 1.215

στ [ns] 0.501 0.250

Table 6.7: ToA estimation results for Position 3 measurements using the

Signal Aggregating method.
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Figure 6.8: Normalized ToA estimation results using the Signal Aggregating

method for Position 4 measurements. ◦: Single-band estimation ∗: Dual-

band estimation.

Detected Cell IDs: 10, 386

Single-Band Dual-Band Aggregating

rτ [ns] 1.568 0.866

στ [ns] 0.344 0.213

Table 6.8: ToA estimation results using the Signal Aggregating method for

Position 4 measurements.

98



Single-Band
Dual-Band

Combining

Dual-Band

Aggregating

Position 1
rτ [ns] 4.838 3.402 2.083

στ [ns] 0.964 0.863 0.341

Position 3

(set 1)

rτ [ns] 2.749 1.641 0.877

στ [ns] 0.478 0.352 0.195

Position 3

(set 2)

rτ [ns] 2.570 2.044 1.215

στ [ns] 0.501 0.390 0.250

Position 4
rτ [ns] 1.568 1.234 0.866

στ [ns] 0.344 0.290 0.213

Table 6.9: ToA estimation results.

6.4 Experimental Results - Summary

Both the Signal Combining and Signal Aggregating methods present better

performance with respect to the chosen metrics (range and standard devia-

tion) compared to single-band estimation, with Signal Aggregating generally

achieving the best performance. This agrees with the results obtained from

the simulation. Taking the measurement of Position 1 as an example, the

range of the estimated ToA values decreases by 27.8% for Signal Combin-

ing and 61.2% for Signal Aggregating; the standard deviation decreases by

20.7% and 56.0% respectively for Signal Combining and Signal Aggregating.

Similar results are observed from the data gathered in the other positions.

In general, Signal Aggregating shows a larger performance gain when com-

pared to Signal Combining. Table 6.9 summarizes the numerical results for

comparison purposes.

99



7 Conclusions

This dissertation treated the problem of Time of Arrival estimation in OFDM

systems, with a specific focus on the Third Generation Partnership Project

(3GPP) Long Term Evolution (LTE) standard and on the possibility to com-

bine multiple signals transmitted from the same physical mast on separate

frequency bands. Among commercial standards, LTE standard stands out

because of its high available bandwidth, comprehensive geographical cover-

age, and the physical properties of its downlink layer. The ToA information

can be obtained opportunistically for positioning purposes. Indeed, it has

been shown that the LTE standard can achieve good performance with re-

gards to ranging accuracy [61].

Novel algorithms for the estimation of ToA in Orthogonal Frequency Divi-

sion Multiplexing (OFDM) systems have been developed. The Slope-Based

algorithm exploits the sub-carriers phase rotation, which presents a linear

behavior, to estimate the ToA through a simple least-squares linear fitting

procedure. The sub-carrier phase rotation can be easily estimated when

bandwidth-spanning reference signals are present. This is a common occur-

rence in OFDM systems. When if the Direct Path (DP) is also the stronger

one, the delay relative to the first path can be inferred from the slope of the

phase rotation even in the presence of secondary paths. A piecewise variant

of the alogrithm employs outliers removal to reduce the effects of noise and

phase jumps on the final estimation. Piecewise linear fitting proves especially

beneficial when the Signal to Noise ratio is low. The Slope-Based method is

characterized by a low computational complexity, and achieves good perfor-

mance when the direct path propagation is dominant.

In the Difference-Based ToA Estimation algorithm (DBTE) an estimate

for the phase rotation frequency derivative is derived from the difference quo-
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tient of the measured channel phase. A rough first estimate of the channel

parameters is obtained by means of a simple FFT-based method. Using the

inferred values, an estimation of the first propagation path delay can obtained

even in the presence of strong secondary paths. The inaccuracies determined

by noise are smoothed through the use of a sliding window average and an

outliers removal procedure. Multiple consecutive symbols can be aggregated

to achieve a more accurate and reliable estimate, giving the algorithm addi-

tional flexibility. The DBTE method achieves good performance at the cost

of a greater computational complexity than the Slope-Based method.

Computer simulations have been used to validate the developed ToA

estimation methods and assess their performance in a number of different

propagation scenarios, using the Root Mean Square Error (RMSE) as the

performance metric.

In the next part of the research work, the problem of multi-band ToA

estimation has been researched. As the obtainable estimation accuracy is

directly related to the available bandwidth [38, 39, 62], it becomes interest-

ing to exploit multiple transmission bands at the same time, even when said

bands are not contiguous. In the LTE network, base stations from multi-

ple operators can be installed on the same physical station to realize better

coverage, increased quality of service, and a reduction of deployment costs.

This structure gives rise to a multi-band OFDM communication systems,

where the transmission bands can be combined under the assumption that

the propagation environment is flat across the whole bandwidth. This is of-

ten the case when the transmission bands are relatively close to each other.

The Space-Alternating Generalized Expectation-Maximization (SAGE)

algorithm has been selected because of its versatility and good performance

in complex propagation environments, without the need to change its basic
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mathematical formulation. Initially introduced as an extension of Expectation-

Maximization (EM) algorithm, it is a reduced complexity method for the

evaluation of the Maximum Likelihood (ML) estimation. More precisely, in

SAGE, the multi-dimensional ML estimation problem is subdivided into a

certain number of smaller problems to jointly estimate the desired parame-

ters in an iterative way. Efficient implementations of SAGE exist that can

be easily adapted to estimate the parameters of interest, such as ToA [53],

Doppler shift, and Angle of Arrival (AoA).

However, the general lack of synchronization between the clocks of the

transmitters means that additional processing is needed before the informa-

tion from the two sub-bands can be combined. To this end, two methods

are introduced: Signal Combining and Signal Aggregating. Both methods

employ phase shifting to match the input time-frequency matrices from each

band to a common timebase. The time shift between the transmitters is first

estimated and used to match the phases of the CFR sub-matrices. The time

shift is assumed unchanging over the duration of several LTE frames.

In Signal Combining, the estimated Channel Frequency Responses (CFRs)

from each sub-band are combined into a single matrix by means of the Max-

imal Ratio Combining (MRC) method. Signal Combining requires the ref-

erence signals for each transmission band to be analogous in their time-

frequency structure, limiting it to scenarios where all the sub-systems are

similarly structured and configured.

In Signal Aggregating, the channel samples matrices are instead joined

into a larger matrix. Zero-filling is performed in the frequency gaps between

sub-bands where no samples of the CFR are available. The zeros do not effect

the outcome of the estimation and allow for a more efficient implementation

of SAGE to be used. Signal Aggregating is more flexible with respect to the
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sub-system structures and configuration. However, because of the largest size

of the input matrix fed to the SAGE estimation algorithm, it is characterized

by a greater computational cost than Signal Combining.

A simulator that accurately implements the LTE downlink layer has been

developed to test and validate the band-combining methods. The Cell-

Specific Reference Signal (CRS) has been used as the reference signal of

choice, as it is always transmitted by the base station hence readily available

for use. It has been shown that using the CRS for channel estimation pur-

poses achieves the same performance as the dedicate Positioning Reference

Signal (PRS) [62], encouraging its use in an opportunistic positioning frame-

work. Both the Signal Combining and Signal Aggregating methods display

interesting performance gain with respect to regular single-band estimation.

A set of live measurements on downlink LTE signals has been performed

in Monfalcone, Italy. The instrumentation setup is based on two Software

Defined Radio (SDR) devices, driven by an atomic reference clock to obtain

synchronized sampling of separate frequency bands. The considered cellular

mast carries 3 cell IDs for each operator, deployed in a sectored configuration,

and transmits on LTE band 20. The Signal Combining and Signal Aggre-

gating methods are compared to regular single-band estimation, using the

range and standard deviation of the estimated delay values as performance

indicators. The ToA is derived for the gathered data, showing (in agreement

with simulations) that the combination of signals from multiple bands leads

to a reduced range and standard deviation in the estimations. The Signal

Aggregating method presents a greater performance gain compared to Signal

Combining, at the cost of a slightly larger computational complexity.

The obtained numerical results are encouraging to explore more complex

scenarios. Future works on the topic include testing the developed methods
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in propagation environments characterized by stronger multi-path and user

mobility. The possibility to combine signals of different nature, as technology

develops toward denser and more integrated networks such as those expected

in forthcoming fifth generation communication systems, becomes interesting

as well. From a more theoretical standpoint, the bound on estimation ac-

curacy for LTE signals in a complex propagation environment is a topic of

interest, following the work of [62]. The methods for calculating the bound

found in [39] are interesting, for they can be applied to any waveform and

propagation channel specification.
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