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Abstract

In this paper we consider the inverse problem of determining a rigid
inclusion inside a thin plate by applying a couple field at the bound-
ary and by measuring the induced transversal displacement and its
normal derivative at the boundary of the plate. The plate is made by
non-homogeneous, linearly elastic and isotropic material. Under suit-
able a priori regularity assumptions on the boundary of the inclusion,
we prove a constructive stability estimate of log type. Key mathemat-
ical tool is a recently proved optimal three spheres inequality at the
boundary for solutions to the Kirchhoff-Love plate’s equation.

Mathematics Subject Classification (2010): Primary 35B60.
Secondary 35B30, 35Q74, 35R30.

Keywords: Inverse problems, elastic plates, stability estimates, unique
continuation, rigid inclusion.

1 Introduction

In this paper we consider the inverse problem of the stable determination of
a rigid inclusion embedded in a thin elastic plate by measuring the trans-
verse displacement and its normal derivative at the boundary induced by a
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couple field applied at the boundary of the plate. We prove that the stability
estimate of log-log type found in [M-Ro-Ve2] can be improved to a single
logarithm in the case in which the plate is made of isotropic linear elastic
material. From the point of view of applications, modern requirements of
structural condition assessment demand the identification of defects using
non-destructive methods, and, therefore, the present results can be useful
in quality control of plates. We refer, among other contributions, to Bon-
net and Constantinescu [Bo-Co] for a general overview of inverse problems
arising in diagnostic analysis applied to linear elasticity and, in particular,
to plate theory ([Bo-Co, Section 5.3]), and to [K] for the identification of
a stiff inclusion in a composite thin plate based on wavelet analysis of the
eigenfunctions.

In order to describe our stability result, let us introduce the Kirchhoff-
Love model of thin, elastic isotropic plate under infinitesimal deformation;
see, for example, [G]. Let the middle plane of the plate Ω be a bounded
domain of R2 with regular boundary. The rigid inclusion D is modelled as a
simply connected domain compactly contained in Ω. Under the assumptions
of vanishing transversal forces in Ω and assigned couple field M̂ acting on ∂Ω,
the transversal displacement w ∈ H2(Ω) of the plate satisfies the following
mixed boundary value problem





div(div(P∇2w)) = 0, in Ω \D,

(P∇2w)n · n = −M̂n, on ∂Ω,

div(P∇2w) · n+ ((P∇2w)n · τ),s = (M̂τ ),s , on ∂Ω,

w|D ∈ A, in D,

∂we

∂n
= ∂wi

∂n
, on ∂D,

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)

coupled with the equilibrium conditions for the rigid inclusion D

(1.6)

∫

∂D

(
div(P∇2w) · n+ ((P∇2w)n · τ),s

)
g − ((P∇2w)n · n)g,n = 0,

for every g ∈ A,

where A denotes the space of affine functions. We recall that, from the phys-
ical point of view, the boundary conditions (1.4)-(1.5) correspond to ideal
connection between the boundary of the rigid inclusion and the surrounding
elastic material, see, for example, [O-Ri, Section 10.10]. The unit vectors n

and τ are the outer normal to Ω \D and the tangent vector to ∂D, respec-
tively. Moreover, we have defined we ≡ w|Ω\D and wi ≡ w|D. The functions

M̂τ , M̂n are the twisting and bending component of the assigned couple field
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M̂ , respectively. The plate tensor P is given by P = h3

12
C, where h is the con-

stant thickness of the plate and C is the non-homogeneous Lamé elasticity
tensor describing the response of the material.

The existence of a solution w ∈ H2(Ω) of the problem (1.1)–(1.6) is

ensured by general results, provided that M̂ ∈ H− 1
2 (∂Ω,R2), with

∫
∂Ω

M̂i =
0, for i = 1, 2, and P is bounded and strongly convex. Let us notice that w
is uniquely determined up to addition of an affine function.

Let us denote by wi a solution to (1.1)–(1.6) for D = Di, i = 1, 2. In
order to deal with the stability issue, we found it convenient to replace each
solution wi with vi = wi − gi, where gi is the affine function which coincides
with wi on ∂Di, i = 1, 2. By this approach, maintaining the same letter to
denote the solution, the equilibrium problem (1.1)–(1.5) can be rephrased
in terms of the following mixed boundary value problem with homogeneous
Dirichlet conditions on the boundary of the rigid inclusion





div(div(P∇2w)) = 0, in Ω \D,

(P∇2w)n · n = −M̂n, on ∂Ω,

div(P∇2w) · n+ ((P∇2w)n · τ),s = (M̂τ ),s , on ∂Ω,

w = 0, on ∂D,
∂w
∂n

= 0, on ∂D,

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

for which there exists a unique solution w ∈ H2(Ω \D). The arbitrariness of
this normalization, related to the fact that gi is unknown, i = 1, 2, leads to
the following formulation of the stability issue.

Given an open portion Σ of ∂Ω, satisfying suitable regularity assumptions,
and given two solutions wi to (1.7)–(1.11) when D = Di, i = 1, 2, satisfying,
for some ǫ > 0,

(1.12) min
g∈A

{
‖w1 − w2 − g‖L2(Σ) +

∥∥∥∥
∂

∂n
(w1 − w2 − g)

∥∥∥∥
L2(Σ)

}
≤ ǫ,

to evaluate the rate at which the Hausdorff distance dH(D1, D2) between D1

and D2 tends to zero as ǫ tends to zero.
In this paper we prove the following quantitative stability estimate of log

type for inclusions D of C6,α class:

(1.13) dH(D1, D2) ≤ C| log ǫ|−η,

where C, η, C > 0 and η > 0, are constants only depending on the a priori
data, see Theorem 3.1 for a precise statement.
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The above estimate is an improvement of the log-log type stability esti-
mate found in [M-Ro-Ve2], although it must be said that the latter is not
restricted to isotropic materials and also applies to less regular inclusions
(e.g., D of C3,1 class). It is worth to notice that a single logarithmic rate
of convergence for the fourth order elliptic equation modelling the deflection
of a Kirchhoff-Love plate is expected to be optimal, as it is in fact for the
analogous inverse problem in the scalar elliptic case, which models the de-
tection of perfectly conducting inclusions in an electric conductor in terms of
measurements of potential and current taken on an accessible portion of the
boundary of the body, as shown by the counterexamples due to Alessandrini
([Al]), Alessandrini and Rondi ([Al-R]), see also [Dc-R].

The methods used to prove (1.13) are inspired to the approach presented
in the seminal paper [Al-Be-Ro-Ve] where, for the first time, it was shown
how logarithmic stability estimates for the inverse problem of determining
unknown boundaries can be derived by using quantitative estimates of Strong
Unique Continuation at the Boundary (SUCB) which ensure a polynomial
vanishing rate of the solutions satisfying homogeneous Dirichlet or Neumann
conditions at the boundary. Precisely, in [Al-Be-Ro-Ve] the key tool was a
Doubling Inequality at the boundary established by Adolfsson and Escauri-
aza in [A-E].

Following the direction traced in [Al-Be-Ro-Ve], other kinds of quantita-
tive estimates of the SUCB turned out to be crucial properties to prove op-
timal stability estimates for inverse boundary value problems with unknown
boundaries in different frameworks, see for instance [S] where the case of
Robin boundary condition is investigated. Let us recall, in the context of the
case of thermic conductors involving parabolic equations, the three cylin-
ders inequality and the one-sphere two-cylinders inequality at the boundary
([Ca-Ro-Ve1], [Ca-Ro-Ve2], [E-F-Ve], [E-Ve], [Ve1]), and similar estimate at
the boundary for the case of wave equation with time independent coefficients
[S-Ve], [Ve2], [Ve3].

In the present paper, the SUCB property used to improve the double
logarithmic estimate found in [M-Ro-Ve2] takes the form of an optimal three
spheres inequality at the boundary. This latter result was recently proved in
[Al-Ro-Ve] for isotropic elastic plates under homogeneous Dirichlet boundary
conditions, and leads to a Finite Vanishing Rate at the Boundary (Proposi-
tion 3.6).

Other main mathematical tools are quantitative estimates of Strong Unique
Continuation at the Interior, essentially based on a three spheres inequality
at the interior obtained in [M-Ro-Ve1] which allows to derive quantitative
estimates of unique continuation from Cauchy data (Proposition 3.2), a Lip-
schitz estimate of Propagation of Smallness (Proposition 3.3) and the Finite
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Vanishing Rate at the Interior (Proposition 3.5) for the solutions to the plate
equation.

Let us observe that estimate (1.13) is the first stability estimate with
optimal rate of convergence in the framework of linear elasticity. Indeed,
up to now, the analogous estimate for the determination, within isotropic
elastic bodies, of rigid inclusions ([M-Ro2]), cavities ([M-Ro1]) or pressurized
cavities ([As-Be-Ro]) show a double logarithmic character, and the same
convergence rate has been established by Lin, Nakamura and Wang for star-
shaped cavities inside anisotropic elastic bodies ([L-N-W]).

The plan of the paper is as follows. Main notation and a priori information
are presented in section 2. In section 3, we first state some auxiliary proposi-
tions regarding the estimate of continuation from Cauchy data (Proposition
3.2) and from the interior (Proposition 3.3), and the determination of the
finite vanishing rate of the solutions to the plate equation at the interior
(Proposition 3.5) and at the Dirichlet boundary (Proposition 3.6). Finally,
in the second part of section 3 we give a proof of the main theorem (Theorem
3.1).

2 Notation

Let P = (x1(P ), x2(P )) be a point of R2. We shall denote by Br(P ) the
disk in R2 of radius r and center P and by Ra,b(P ) the rectangle of center
P and sides parallel to the coordinate axes, of length 2a and 2b, namely
Ra,b(P ) = {x = (x1, x2) | |x1 − x1(P )| < a, |x2 − x2(P )| < b}. To simplify
the notation, we shall denote Br = Br(O), Ra,b = Ra,b(O).

Given a bounded domain Ω in R2 we shall denote

(2.1) Ωρ = {x ∈ Ω | dist(x, ∂Ω) > ρ}.

When representing locally a boundary as a graph, we use the following defi-
nition.

Definition 2.1. (Ck,α regularity) Let Ω be a bounded domain in R2. Given
k, α, with k ∈ N, 0 < α ≤ 1, we say that a portion S of ∂Ω is of class Ck,α with
constants r0, M0 > 0, if, for any P ∈ S, there exists a rigid transformation
of coordinates under which we have P = 0 and

Ω ∩ Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},

where g is a Ck,α function on [−r0, r0] satisfying

g(0) = g′(0) = 0,
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‖g‖Ck,α([−r0,r0]) ≤ M0r0,

where

‖g‖Ck,α([−r0,r0]) =

k∑

i=0

ri0 sup
[−r0,r0]

|g(i)|+ rk+α
0 |g|k,α,

|g|k,α = sup
t,s∈[−r0,r0]

t6=s

{ |g(k)(t)− g(k)(s)|
|t− s|α

}
.

Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,α, with
k ≥ 1, we consider as positive the orientation of the boundary induced by
the outer unit normal n in the following sense. Given a point P ∈ ∂Ω, let
us denote by τ = τ(P ) the unit tangent at the boundary in P obtained by
applying to n a counterclockwise rotation of angle π

2
, that is

(2.2) τ = e3 × n,

where × denotes the vector product in R3 and {e1, e2, e3} is the canonical
basis in R3.

In the sequel we shall denote by C constants which may change from line
to line.

2.1 A priori information

i) A priori information on the domain.
Let us consider a thin plate Ω×[−h

2
, h
2
] with middle surface represented by

a bounded domain Ω in R2 and having uniform thickness h, h << diam(Ω).
We shall assume that, given r0, M1 > 0,

(2.3) diam(Ω) ≤ M1r0.

We shall also assume that Ω contains an open simply connected rigid inclusion
D such that

(2.4) dist(D, ∂Ω) ≥ r0.

Moreover, we denote by Σ an open portion within ∂Ω representing the part
of the boundary where measurements are taken.

Concerning the regularity of the boundaries, given M0 ≥ 1
2
and α, 0 <

α ≤ 1, we assume that

(2.5) ∂Ω is of class C2,1 with constants r0,M0,
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(2.6) Σ is of class C3,1 with constants r0,M0.

(2.7) ∂D is of class C6,α with constants r0,M0.

Let us notice that, without loss of generality, we have chosen M0 ≥ 1
2
to

ensure that Br0(P ) ⊂ Rr0,2M0r0(P ) for every P ∈ ∂Ω.
Moreover, we shall assume that for some P0 ∈ Σ and some δ0, 0 < δ0 < 1,

(2.8) ∂Ω ∩ Rr0,2M0r0(P0) ⊂ Σ,

and that

(2.9) |Σ| ≤ (1− δ0)|∂Ω|.

ii) Assumptions about the boundary data.

On the Neumann data M̂ we assume that

(2.10) M̂ ∈ L2(∂Ω,R2), (M̂n, (M̂τ ),s ) 6≡ 0,

(2.11) supp(M̂) ⊂⊂ Σ,

the (obvious) compatibility condition

(2.12)

∫

∂Ω

M̂i = 0, i = 1, 2,

and that, for a given constant F > 0,

(2.13)
‖M̂‖L2(∂Ω,R2)

‖M̂‖
H−

1
2 (∂Ω,R2)

≤ F.

iii) Assumptions about the elasticity tensor.
Let us assume that the plate is made by elastic isotropic material, the

plate tensor P is defined by

(2.14) PA = B [(1− ν)Asym + ν(trA)I2] ,

for every 2 × 2 matrix A, where I2 is the 2 × 2 identity matrix and tr(A)
denotes the trace of the matrix A. The bending stiffness (per unit length) of
the plate is given by the function

(2.15) B(x) =
h3

12

(
E(x)

1− ν2(x)

)
,
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where the Young’s modulus E and the Poisson’s coefficient ν can be written
in terms of the Lamé moduli as follows

(2.16) E(x) =
µ(x)(2µ(x) + 3λ(x))

µ(x) + λ(x)
, ν(x) =

λ(x)

2(µ(x) + λ(x))
.

Hence, in this case, the displacement equation of equilibrium (1.1) is

(2.17) div
(
div
(
B((1− ν)∇2w + ν∆wI2)

))
= 0, in Ω.

We make the following strong convexity assumptions on the Lamé moduli

(2.18) µ(x) ≥ α0 > 0, 2µ(x) + 3λ(x) ≥ γ0 > 0, a.e. in Ω,

where α0, γ0 are positive constants.
We assume that the Lamé moduli λ, µ satisfy the following regularity

assumptions

(2.19) ‖λ‖C4(Ω), ‖µ‖C4(Ω) ≤ Λ0.

Under the above assumptions, by standard variational arguments (see, for
example, [Ag]), problem (1.7)–(1.11) has a unique solution w ∈ H2(Ω \ D)
satisfying

(2.20) ‖w‖H2(Ω\D) ≤ Cr20‖M̂‖
H−

1
2 (∂Ω,R2)

,

where C > 0 only depends on α0, γ0, M0, and M1.
In the sequel, we shall refer to the set of constants α0, γ0, Λ0, α, M0, M1,

δ0 and F as to the a priori data.

3 Statement and proof of the main result

Here and in the sequel we shall denote by G the connected component of
Ω \ (D1 ∪D2) such that Σ ⊂ ∂G.

Theorem 3.1 (Stability result). Let Ω be a bounded domain in R2 satisfying
(2.3) and (2.5). Let Di, i = 1, 2, be two simply connected open subsets of
Ω satisfying (2.4) and (2.7). Moreover, let Σ be an open portion of ∂Ω

satisfying (2.6), (2.8) and (2.9). Let M̂ ∈ L2(∂Ω,R2) satisfy (2.10)–(2.13)
and let the plate tensor P given by (2.14) with Lamé moduli satisfying the
regularity assumptions (2.19) and the strong convexity condition (2.18). Let
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wi ∈ H2(Ω \Di) be the solution to (1.7)–(1.11) when D = Di, i = 1, 2. If,
given ǫ > 0, we have

(3.1) min
g∈A

{
‖w1 − w2 − g‖L2(Σ) + r0

∥∥∥∥
∂

∂n
(w1 − w2 − g)

∥∥∥∥
L2(Σ)

}
≤ ǫ,

then we have

(3.2) dH(D1, D2) ≤ r0ω


 ǫ

r20‖M̂‖
H−

1
2 (∂Ω,R2)


 ,

where ω is an increasing continuous function on [0,∞) which satisfies

(3.3) ω(t) ≤ C(| log t|)−η, for every t, 0 < t < 1,

and C, η, C > 0, η > 0, are constants only depending on the a priori data.

The proof of Theorem 3.1 is obtained from a sequence of propositions.
The following proposition can be derived by merging Proposition 3.4 of
[M-Ro-Ve2] and geometrical arguments contained in Proposition 3.6 of [Al-Be-Ro-Ve].

Proposition 3.2 (Stability Estimate of Continuation from Cauchy Data
[M-Ro-Ve2, Proposition 3.4]). Let the hypotheses of Theorem 3.1 be satisfied.
We have

(3.4)

∫

(Ω\G)\D1

|∇2w1|2 ≤ r20‖M̂‖2
H−

1
2 (∂Ω,R2)

ω


 ǫ

r20‖M̂‖
H−

1
2 (∂Ω,R2)


 ,

(3.5)

∫

(Ω\G)\D2

|∇2w2|2 ≤ r20‖M̂‖2
H−

1
2 (∂Ω,R2)

ω


 ǫ

r20‖M̂‖
H−

1
2 (∂Ω,R2)


 ,

where ω is an increasing continuous function on [0,∞) which satisfies

(3.6) ω(t) ≤ C(log | log t|)− 1
2 , for every t < e−1,

with C > 0 only depending on α0, γ0, Λ0, M0, M1 and δ0.
Moreover, there exists d0 > 0, with d0

r0
only depending on M0, such that if

dH(Ω \D1,Ω \D2) ≤ d0 then (3.4)–(3.5) hold with ω given by

(3.7) ω(t) ≤ C| log t|−σ, for every t < 1,

where σ > 0 and C > 0 only depend on α0, γ0, Λ0, M0, M1, δ0, L and r̃0
r0
.
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Next two propositions are quantitative versions of the SUCP property
at the interior for solutions to the plate equilibrium problem. Precisely,
Proposition 3.3 has global character and gives a lower bound of the strain
energy density over any small disc compactly contained in Ω \D in terms of
the Neumann boundary data. Proposition 3.5 establishes a polynomial order
of vanishing for solutions to the plate problem at interior points of Ω \D.

Proposition 3.3 (Lipschitz Propagation of Smallness [M-Ro-Ve2, Propo-
sition 3.3]). Let Ω be a bounded domain in R2 satisfying (2.3) and (2.5).
Let D be an open simply connected subset of Ω satisfying (2.4), (2.7). Let
w ∈ H2(Ω \D) be the solution to (1.7)–(1.11), coupled with the equilibrium
condition (1.6), where the plate tensor P is given by (2.14) with Lamé moduli
satisfying the regularity assumptions (2.19) and the strong convexity condi-

tion (2.18) and with M̂ ∈ L2(∂Ω,R2) satisfying (2.10)–(2.13).
There exists s > 1, only depending on α0, γ0, Λ0, M0 and δ0, such that

for every ρ > 0 and every x̄ ∈ (Ω \D)sρ, we have

(3.8)

∫

Bρ(x̄)

|∇2w|2 ≥ Cr20

exp

[
A
(

r0
ρ

)B]‖M̂‖2
H−

1
2 (∂Ω,R2)

,

where A > 0, B > 0 and C > 0 only depend on α0, γ0, Λ0, M0, M1, δ0 and
F .

Remark 3.4. The exponential character of the dependence on ρ in (3.8) comes
from the fact that this global estimate follows from the trace-type inequality

‖M̂‖
H−

1
2 (∂Ω,R2)

≤ C‖∇2w‖L2(Ω\D),

with C only depending on M0, M1, δ0 and Λ0 (see [M-Ro-Ve2, Lemma 4.6])
and from a lower bound of the strain energy density over the disc Bρ(x) in
terms of the strain energy density over all the domain Ω \ D. The latter
estimate requires a geometrical construction involving a number of iterated
applications of the three spheres inequality depending in the radius ρ which
leads to an exponential dependence. The local polynomial vanishing rate at
the interior is given in the following proposition.

Proposition 3.5 (Finite Vanishing Rate at the Interior). Under the hy-
potheses of Proposition 3.3, there exist c0 < 1

2
and C > 1, only depending

on α0, γ0, Λ0, such that, for every r > 0 and for every x ∈ Ω \D such that
Br(x) ⊂ Ω \D, and for every r1 < r2 = c0r, we have

(3.9)

∫

Br1 (x)

|∇2w|2 ≥ C
(r1
r

)τ0 ∫

Br(x)

|∇2w|2,

10



where τ0 ≥ 1 only depends on α0, γ0, Λ0, δ0 and F .

Proof. The above estimate is based on the following three spheres inequality
at the interior, which was obtained in [M-Ro-Ve1, Theorem 6.6]: there exist
c0, 0 < c0 < 1, and C > 1 only depending on α0, γ0, Λ0, such that for
every r > 0, for every x ∈ (Ω \D) such that Br(x) ⊂ Ω \D, and for every
r1 < r2 < r3 < c0r, we have
(3.10)

∫

Br2 (x)

|∇2w|2 ≤ C

(
r3

r1

)C
(∫

Br1(x)

|∇2w|2
)ϑ0

(∫

Br3 (x)

|∇2w|2
)1−ϑ0

,

where

(3.11) ϑ0 =
log
(

c0r3
r2

)

2 log
(

r3
r1

) .

Inequality (3.9) can be derived by exploiting the optimality of the exponent
ϑ0 and by reassembling the terms in (3.10).

As noticed in the introduction, our key SUCB property is stated in the
following proposition, which is the counterpart at the boundary ∂D of Propo-
sition 3.5.

Proposition 3.6 (Finite Vanishing Rate at the Boundary). Under the hy-
potheses of Proposition 3.3, there exist c < 1

2
and C > 1, only depending on

α0, γ0, Λ0, M0, α, such that, for every x ∈ ∂D and for every r1 < r2 = cr0,

(3.12)

∫

Br1 (x)∩(Ω\D)

w2 ≥ C

(
r1

r0

)τ ∫

Br0 (x)∩(Ω\D)

w2.

where τ ≥ 1 only depends on α0, γ0, Λ0, M0, α, M1, δ0 and F .

Proof. By Corollary 2.3 in [Al-Ro-Ve], there exist c < 1, only depending on
M0, α, and C > 1 only depending on α0, γ0, Λ0, M0, α, such that, for every
x ∈ ∂D and for every r1 < r2 < cr0,

(3.13)

∫

Br1 (x)∩(Ω\D)

w2 ≥ C

(
r1

r0

) logB

log
cr0
r2

∫

Br0 (x)∩(Ω\D)

w2,

where B > 1 is given by

(3.14) B = C

(
r0

r2

)C
∫
Br0 (x)∩(Ω\D)

w2

∫
Br2 (x)∩(Ω\D)

w2
,

11



Let us choose in the above inequalities r2 = cr0, with c = c
2
.

By (2.20) we have

(3.15)

∫

Br0 (x)∩(Ω\D)

w2 ≤ Cr60‖M̂‖2
H−

1
2 (∂Ω,R2)

,

with C depending on α0, γ0, M0, α, M1. By interpolation estimates for solu-
tions to elliptic equations (see, for instance, [Al-Ro-Ve, Lemma 4.7], stated
for the case of hemidiscs, but which holds also in the present context), we
have that ∫

Br2(x)∩(Ω\D)

w2 ≥ Cr42

∫

B r2
2
(x)∩(Ω\D)

|∇2w|2,

with C depending on α0, γ0 and Λ0. By Proposition 3.3 and recalling the
definition of r2, we derive

(3.16)

∫

Br2 (x)∩(Ω\D)

w2 ≥ Cr60‖M̂‖2
H−

1
2 (∂Ω,R2)

,

with C depending on α0, γ0, Λ0, M0, α, M1, δ0 and F .
By (3.15)–(3.16), we can estimate B from above, obtaining the thesis.

Proof of Theorem 3.1. In order to estimate the Hausdorff distance between
the inclusions,

(3.17) δ = dH(D1, D2),

it is convenient to introduce the following auxiliary distances:

(3.18) d = dH(Ω \D1,Ω \D2),

(3.19) dm = max

{
max
x∈∂D1

dist(x,Ω \D2), max
x∈∂D2

dist(x,Ω \D1)

}
.

Let η > 0 such that

(3.20) max
i=1,2

∫

(Ω\G)\Di

|∇2wi|2 ≤ η.

Following the arguments presented in [Al-Be-Ro-Ve], we first control dm in
terms of η, and then we use this estimate to control d in terms of η. Finally,
by improving the results in [Ca-Ro-Ve2, proof of Theorem 1.1, step 2], we
estimate δ in terms of d.

12



Let us start by proving the inequality

(3.21) dm ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)




1
τ

,

where τ has been introduced in Proposition 3.6 and C is a positive constant
only depending on the a priori data.

Let us assume, without loss of generality, that there exists x0 ∈ ∂D1 such
that

(3.22) dist(x0,Ω \D2) = dm > 0.

Since Bdm(x0) ⊂ D2 ⊂ Ω \G, we have

(3.23) Bdm(x0) ∩ (Ω \D1) ⊂ (Ω \G) \D1

and then, by (3.20),

(3.24)

∫

Bdm (x0)∩(Ω\D1)

|∇2w1|2 ≤ η.

Let us assume that

(3.25) dm < cr0,

where c is the positive constant appearing in Proposition 3.6. Since w1 =
0, ∇w1 = 0 on ∂D1, by Poincaré inequality (see, for instance, [Al-M-Ro,
Example 4.4]) and noticing that dm ≤ diam(Ω) ≤ M1r0, we have

(3.26) η ≥ C

r40

∫

Bdm (x0)∩(Ω\D1)

w2
1,

where C > 0 is a positive constant only depending on α, M0, M1.
By Proposition 3.6, we have

(3.27) η ≥ C

r40

(
dm

r0

)τ ∫

Br0 (x0)∩(Ω\D1)

w2
1,

where C > 0 is a positive constant only depending on α0, γ0, Λ0,α, M0, M1

and F .
By Lemma 4.7 in [Al-Ro-Ve], we have

13



(3.28) η ≥ C

(
dm

r0

)τ ∫

B r0
2
(x0)∩(Ω\D1)

|∇2w1|2,

where C > 0 is a positive constant only depending on α0, γ0, Λ0,α, M0, M1.
By Proposition 3.3, we have

(3.29) η ≥ C

(
dm

r0

)τ

r20‖M̂‖2H−1/2(∂Ω),

where C > 0 is a positive constant only depending on α0, γ0, Λ0,α, M0, M1,
δ0, F , from which we can estimate dm

(3.30) dm ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)




1
τ

,

where C > 0 is a positive constant only depending on α0, γ0, Λ0,α, M0, M1,
δ0, F .

Now, let us assume that

(3.31) dm ≥ cr0.

By starting again from (3.24), and applying Proposition 3.3 and recalling
dm ≤ M1r0, we easily have

(3.32) dm ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)


 ,

where C > 0 is a positive constant only depending on α0, γ0, Λ0, M0, M1,
δ0, F . Assuming η ≤ r20‖M̂‖2

H−1/2(∂Ω)
, we obtain (3.21).

Without loss of generality, let y0 ∈ Ω \D1 such that

(3.33) dist(y0,Ω \D2) = d.

It is significant to assume d > 0, so that y0 ∈ D2 \D1. Let us define

(3.34) h = dist(y0, ∂D1),

possibly h = 0.

14



There are three cases to consider:
i) h ≤ d

2
;

ii) h > d
2
, h ≤ d0

2
;

iii) h > d
2
, h > d0

2
.

Here the number d0, 0 < d0 < r0, is such that d0
r0

only depends on M0, and it
is the same constant appearing in Proposition 3.4. In particular, Proposition
3.6 in [Al-Be-Ro-Ve] shows that there exists an absolute constant C > 0 such
that if d ≤ d0, then d ≤ Cdm.

Case i).
By definition, there exists z0 ∈ ∂D1 such that |z0 − y0| = h. By applying

the triangle inequality, we get dist
(
z0,Ω \D2

)
≥ d

2
. Since, by definition,

dist
(
z0,Ω \D2

)
≤ dm, we obtain d ≤ 2dm.

Case ii).
It turns out that d < d0 and then, by the above recalled property, again

we have that d ≤ Cdm, for an absolute constant C.

Case iii).

Let h̃ = min{h, r0}. We obviously have that Bh̃(y0) ⊂ Ω \ D1 and
Bd(y0) ⊂ D2. Let us set

d1 = min

{
d

2
,
c0d0

4

}
.

Since d1 < d and d1 < h̃, we have that Bd1(y0) ⊂ D2 \ D1 and therefore
η ≥

∫
Bd1

(y0)
|∇2w1|2.

Since d0
2
< h̃, B d0

2

(y0) ⊂ Ω\D1 so that we can apply Proposition 3.5 with

r1 = d1, r = d0
2
, r2 = c0 r, obtaining η ≥ C

(
2d1
d0

)τ0 ∫
B d0

2

(y0)
|∇2w1|2, with

C > 0 only depending on α0, γ0, Λ0, δ0 and F . Next, by Proposition 3.3,
recalling that d0

r0
only depends on M0, we derive that

d1 ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)




1
τ0

,

where C > 0 only depends on α0, γ0, Λ0, M0, M1, δ0 and F . For η small
enough, d1 <

c0d0
4
, so that d1 =

d
2
and

d ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)




1
τ0

.

15



Collecting the three cases, we have

(3.35) d ≤ Cr0


 η

r20‖M̂‖2
H−1/2(∂Ω)




1
τ1

,

with τ1 = max{τ, τ0} and C > 0 only depends on α0, γ0, Λ0, α, M0, M1, δ0
and F .

Finally, let us estimate δ in terms of d. By (3.35), for η small enough, we
have that

d <
r0

4
√
1 +M2

0

.

Let us notice that if a point y belongs to D1 \D2, then dist(y, ∂D1) ≤ d.
Without loss of generality let x ∈ D1 such that dist(x,D2) = δ > 0. Then

x ∈ D1 \D2 and therefore dist(x, ∂D1) ≤ d.
Let w ∈ ∂D1 such that |w − x| = dist(x, ∂D1) ≤ d.
Letting n the outer unit normal toD1 at w, we may write x = w−|w−x|n.

By our regularity assumptions on D1, the truncated cone C(x,−n, 2(π
2
−

arctanM0)) ∩B r0
4
(x) having vertex x, axis −n and width 2(π

2
− arctanM0),

in contained in D1.
On the other hand, by definition of δ, Bδ(x) ⊂ Ω \ D2, so that the

truncated cone C(x,−n, 2(π
2
− arctanM0)) ∩ Bmin{δ,r0/4}(x) is contained in

D1 \D2.
Let us see that δ < r0

4
. In fact if, by contradiction, δ ≥ r0

4
, we can

consider the point z = x − r0
4
n. Since z ∈ D1 \ D2, as noticed above,

dist(z, ∂D1) ≤ d. On the other hand, by using the fact that |z−w| ≤ r0
2
and

by the regularity of D1, it is easy to compute that dist(z, ∂D1) ≥ r0

4
√

1+M2
0

,

obtaining a contradiction.
Hence min{δ, r0

4
} = δ and, by defining z = x − δn and by analogous

calculations, we can conclude that δ ≤ (
√

1 +M2
0 )d, which is the desired

estimate of δ in terms of d.
By Proposition 3.2,

(3.36) d ≤ Cr0


log

∣∣∣∣∣∣
log


 ǫ

r20‖M̂‖2
H−1/2(∂Ω)



∣∣∣∣∣∣




− 1
2τ1

,

with τ1 ≥ 1 and C > 0 only depends on α0, γ0, Λ0, α, M0, M1, δ0 and F .
By this first rough estimate, there exists ǫ0 > 0, only depending on on α0,

16



γ0, Λ0, α, M0, M1, δ0 and F , such that, if ǫ ≤ ǫ0, then d ≤ d0. Therefore the
second part of Proposition 3.2 applies and the thesis follows.
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