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Sommario 
La malattia di Parkinson (PD) è la seconda malattia neurodegenerativa più comune dopo la malattia di 

Alzheimer. Allo stesso tempo, l'ictus cerebrale è una delle principali cause di disabilità e morte nel mondo. La 

mattina di Parkinson e l'ictus cerebrale ischemico sono patologie neurologiche che provocano alterazioni del se-

gnale elettroencefalografico (EEG). Tuttavia, ci sono pochi studi che mettono in relazione le alterazioni EEG 

con il deficit neurologico per un migliore monitoraggio della progressione della malattia, per la neuroriabilitazio-

ne personalizzata e per la previsione dell’outcome clinico. I protocolli terapeutici avanzati per il miglioramento 
delle prestazioni motorie, compresi quelli basati sulla Brain Computer Interface (BCI), possono beneficiare 

dell’identificazione delle alterazioni EEG e del legame tra queste e il deficit specifico. Le tecniche BCI si sono 

dimostrate promettenti nella neuroriabilitazione motoria e cognitiva nei pazienti parkinsoniani e post-ictus spe-
cialmente attraverso l’utilizzo dell’Immaginazione Motoria (Motor Imagery, MI) supportata dalla BCI (MI-BCI) 

in grado di creare un ambiente di riabilitazione più controllato venendo fornito al paziente un feedback sulla 

corretta esecuzione del task riabilitativo. Per migliorare l’applicabilità, la prestazione e l’efficacia di questa stra-
tegia riabilitativa, le nuove tecniche di elaborazione del segnale EEG devono essere studiate e sviluppate. Inol-

tre, le alterazioni dei parametri EEG nei pazienti PD e ictus devono essere considerate nella progettazione di un 

sistema BCI personalizzato e robusto. 

Durante il corso di dottorato, sono stati condotti una serie di studi per identificare le correlazioni tra alte-

razioni EEG e il deficit neurofisiologico relativo all’ ictus e alla malattia di Parkinson. Inoltre, sono stati condot-
ti degli studi per identificare le tecniche di elaborazione del segnale, di apprendimento automatico e di classifica-

zione più appropriate per la modellazione BCI in queste popolazioni di pazienti. 

I risultati ottenuti ed in particolare la correlazione significativa tra i parametri spettrali dell’EEG e le sca-

le cliniche di interesse hanno confermato l’ipotesi che i parametri EEG sono sensibili ai cambiamenti delle fun-
zioni cerebrali nella prima fase dell'ischemia, che possono quindi essere utilizzati sia nella valutazione della gra-

vità dell'ictus sia come strumento di monitoraggio e mappatura dei cambiamenti longitudinali nel paziente con 

ictus. Inoltre, le correlazioni identificate tra i parametri spettrali dell’EEG e il deficit motorio nei parkinsoniani 
indicano che la valutazione EEG può essere un biomarcatore utile per il monitoraggio obiettivo della progressio-

ne della patologia e dell'efficacia delle diverse strategie riabilitative. 

Nella seconda parte della tesi, viene descritto uno studio che ha evidenziato la modulazione corticale in-

dotta dalla MI sull’EEG durante il resting-state, supportando l’ipotesi dell’efficacia della MI-BCI come strategia 

neuroriabilitativa. 

Nella terza parte sono riportati i risultati degli studi condotti su pazienti PD e su quelli con ictus che 

hanno dimostrato che entrambe le popolazioni, caratterizzate di deficit motorio, erano in grado di controllare la 
MI-BCI con elevata precisione. Inoltre, viene dimostrato che la migliore performance in termini di accuratezza di 

classificazione è stata ottenuta con la tecnica di preprocessing Filter Bank Common Spatial Patterns (FBCSP). 
Nel lavoro di tesi si propone anche una estensione dell'approccio FBCSP basato sul multi-session transfer lear-

ning. Il nuovo approccio è stato testato ed è stato osservato un miglioramento significativo in termini di accura-

tezza della calibrazione del modello BCI nei pazienti con PD. Infine, è stato condotto uno studio che ha eviden-
ziato come le non stazionarietà del segnale e le variazioni di covarianza di potenza del segnale riducono significa-

tivamente l'accuratezza dei modelli BCI. Tuttavia, introducendo la preelaborazione Stationary Subspace Analy-

sis (SSA), le prestazioni del classificatore possono essere notevolmente migliorate. 

I risultati di questa tesi possono contribuire al miglioramento in termini di accuratezza di classificazione e 

di usabilità degli attuali sistemi BCI, aumentando la diffusione e gli aspetti benefici della neuroriabilitazione MI-
BCI nei pazienti con PD e ictus.   
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Abstract 
Parkinson's disease (PD) is the second most common and chronic neurodegenerative disorder 

after Alzheimer's disease. At the same time, stroke is one of the leading causes of disability and 

death. Both PD and stroke are neurological disorders and are almost always associated with Elec-

troencephalography (EEG) changes. However, studies correlating EEG features with clinical scales 

and treatment outcomes are scarce. As a prerequisite for efficient diagnosis, monitoring of disease 

progression, neurorehabilitation, and outcome prediction, it is necessary to study the alterations of 

stroke and PD subjects' cerebral rhythms. Series of novel therapeutic protocols for motor perfor-

mance improvement, including those based on BCI, can benefit from these findings. In general, 

BCIs have shown promising outcome for motor and cognitive neurorehabilitation in PD and stroke 

patients.  When used in conjunction with Motor Imagery (MI), the mental execution of a move-

ment without any overt movement, BCI can lead a patient to functional recovery through real-time 

acquisition, processing, and feeding back information on his task engagement. The MI-BCI applica-

tion creates a more controlled rehabilitation environment as the MI -induced oscillatory activity can 

be monitored to assess whether the patient is performing the task correctly. For MI-BCI to reach 

the point of sustained success as a neurorehabilitation tool, the new EEG signal processing tech-

niques need to be studied and developed. In addition, the change in EEG rhythms in PD and stroke 

must be considered to develop a personalised and robust BCI system.  

During the PhD course, a series of studies were conducted to investigate EEG changes and 

neurophysiological deficits of PD's and stroke, signal processing, machine learning and classification 

techniques needed for BCI modelling.  

Our results on EEG spectral features and clinical data show that EEG has been confirmed as 

a sensitive measure of brain functions in the earliest phase of cerebral ischemia and that EEG can 

be used as complementary in the evaluation of stroke severity and as a potentially useful tool in 

monitoring and mapping longitudinal changes in acute stroke patients. Furthermore, the significant 

correlation between spectral EEG features and symptom-specific motor decline suggests that EEG 

assessment may be a useful biomarker for objective monitoring of disease progression and as an 

evaluation measure of the effect of PD's rehabilitation approaches.  

In the second part of the thesis, our study demonstrates the effect of MI induced cortical 

modulation on EEG resting state and provides support for further development of MI-BCI.   

The third part shows that PD's and stroke patients could control MI-BCI with high accuracy 

and that Filter Bank Common Spatial Patterns (FBCSP) can be used as MI-BCI approach for 

complementary neurorehabilitation. The additional novelty of the thesis is the proposal of the 

transfer learning based multisession augmentation FBCSP approach. The new approach has been 

tested and the study shows that it significantly improves the calibration accuracy of the BCI model 

in PD patients. Finally, our recent study results showed that signal nonstationarities and power co-

variance shifts significantly reduce BCI models' accuracy. However, only after the introduction of 

Stationary Subspace Analysis (SSA) preprocessing, the classifier's performance is significantly in-

creased.  

The abovementioned main findings of this thesis may improve the current BCI systems in 

terms of accuracy and usability and promote the diffusion and beneficial aspects of MI-BCI neu-

rorehabilitation for PD and stroke patients. 
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Chapter 1. INTRODUCTION 

PREFACE 

The population affected by Parkinson's disease (PD) and those fortunate to 

survive a brain stroke have been left to live the lower quality life. PD is the sec-

ond most common and chronic neurodegenerative disorder after Alzheimer's Dis-

ease. The PD main motor symptoms are tremor, slowness of movement (bradyki-

nesia), and muscle stiffness (rigidity), and they drastically reduce patients' quali-

ty of life [1]. On the other hand, according to the World Health Organization 

(WHO), stroke, a brain infarction resulting from the cessation of blood supply, is 

one of the leading causes of disability and death [2]. 

Both PD and stroke are neurological diseases that are almost always coupled 

with alterations of the electrophysiological oscillatory activity. However, studies 

that correlate the electrophysiological data with the clinical scales and treatment 

outcomes are rare, especially in the disease's early phases. 

As a prerequisite for efficient diagnosis, disease progression monitoring, neu-

rorehabilitation, and outcome prediction, it is required to study the alterations of 

stroke and PD subjects' cerebral rhythms with respect to the matched controls. 

Finally, a series of novel therapeutic protocols for motor performance improve-

ment, including those based on Brain-Computer Interfaces (BCI), may benefit 

from these findings, for example by targeting a specific brain area in a specific 

EEG band. 

BCIs have shown promising results in for motor and cognitive neurorehabili-

tation of PD and stroke patients by stimulating the brain to strengthen and cre-

ate new neural pathways or neural pathways impaired by pathology and helping 

patients regain lost motor [3]–[5] and cognitive abilities [6]–[8]. Motor Imagery 

(MI) is a well-known technique that has been practised in motor rehabilitation of 

the various pathologies and consists of a simulation of the motor act without per-

forming the actual movement. A BCI system in conjunction with Motor Imagery 

(MI-BCI) can be used to guide functional recovery by real-time acquisition, pro-

cessing and feeding back information on subject engagement with rehabilitation 

therapies. The MI-BCI application creates a more controlled rehabilitation envi-

ronment since the MI-induced oscillatory activity can be monitored to assess 

whether the patient performs the task correctly. 

The MI-BCI has shown good performance in healthy subjects but is limited 

in the clinical population that may present other BCI performance due to patho-

logical changes in brain function and morphology.  
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For MI-BCI to reach the point where it is consistently successful as a neu-

rorehabilitation tool, the new EEG signal processing, feature extraction and clas-

sification techniques need to be investigated and developed. Moreover, the altera-

tion of EEG rhythms in PD and stroke must be considered to design the person-

alised and robust BCI system.  

This thesis contributes to the study of electrophysiological markers of stroke 

and PD patients, and to the continuous progression of BCI neurorehabilitation 

systems development to make such systems more appropriate and more reliable, 

with the hope that affected patients can enjoy a higher quality of life. 
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1.1 THESIS OBJECTIVES 

The presented PhD manuscript is divided into three conceptual parts. The 

first part (Chapter 2) describes our study on EEG alterations and neurophysio-

logical deficits of stroke and PD with respect to healthy individuals. The second 

part (Chapter 3) examines the effect of Motor Imagery and Action Observation 

on sensorimotor resting-state EEG and hypothesises their usage for the PD and 

stroke clinical population. The third part belongs to the framework of BCI re-

search, focusing on the study of BCI modelling, in particular spatial filtering, re-

quired for personalised neurorehabilitation of stroke and Parkinson's disease pa-

tients, and suggestions for its improvement (Chapters 4, 5 and 6).  

1.1.1 EEG alterations and Neurophysiological deficits 

The understating of the variations of stroke and PD subjects' EEG cerebral 

rhythms with respect to the matched controls is a prerequisite for diagnosing, ef-

ficient neurorehabilitation, and progression monitoring. Early prognosis is essen-

tial to establish better treatment and rehabilitation strategies to improve recov-

ery. 

Therefore, studying the EEG and neurophysiological deficits of stroke and 

PD patients can help us better predict the disease's outcome and develop thera-

peutic protocols. Furthermore, based on studies that correlate EEG and neuro-

physiological deficits of stroke and PD patients, we can improve BCI performance 

by incorporating the a priori information about the spatiotemporal and spectral 

EEG characteristics of the disorders. This information will also help to evaluate 

the designed BCI system's neurophysiological plausibility in particular if the sys-

tem targets the right brain region or a spectral band of the EEG. 

1.1.2 Selection of a proper paradigm: Motor Imagery and Action Ob-

servation as neurorehabilitation approaches  

Motor Imagery (MI) and Action Observation (AO) may share motor circuits 

with action execution [9], [10] and as such have been recommended in clinical en-

vironment as additional neurorehabilitation settings [11], [12]. The functional 

equivalence and the use of common neural pathways in motor prepara-

tion/execution explain their neurorehabilitation effects. In the last decade, some 

studies have tested these paradigms' effect on the immediate changes during AO 

and MI task performance [13], but the studies on their longer effect on the resting 

state are quite rare. Obtaining these results might help us identify which of the 

paradigms is more effective in pathology.  
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Furthermore, it is also essential that neurorehabilitation is designed to meet 

each clinical group's needs and be adapted to patients affected by cognitive defi-

cits, which is not uncommon in PD or stroke. 

Therefore, the importance of the cortical activations induced by MI and AO 

needs to be studied to understand how to design an appropriate feedback system. 

1.1.3 Brain-Computer Interfaces and their application in neuroreha-

bilitation of Stroke and PD patients 

A Brain-Computer Interface (BCI) based on electroencephalography (EEG) 

provides a direct communication channel for subjects and refers to the closed-loop 

utilisation of real-time acquisition of neural data that is then transformed and 

prepared for the extraction of relevant features. The trained BCI model output is 

then presented back to the subject in the form of visual, auditory, or tactile feed-

back.  

Motor imagery (MI) related brain oscillatory activity can be predictably 

modulated, and therefore, a BCI system can identify these sensorimotor changes 

in EEG and produce the relevant output. 

Among many other applications, MI BCI technology may be used for neu-

rorehabilitation. Indeed, it has been shown to positively affect motor execution, 

cognitive capabilities, and coordination in healthy individuals as well as in pa-

tients, such as post-Stroke patients, PD and Autism spectrum disorders [14]–[16] 

MI-BCI is a technique based on EEG and used for alleviating the symptoms 

of various disorders [3], [17]–[20], requires a series of analysis procedures for iden-

tifying and classifying the MI particular cerebral signals and features. 

Apart from expected reliability, the process needs to be performed in real-

time, and improvements of the current classification techniques are required. As a 

matter of fact, physiotherapists have used MI without BCI for rehabilitation in 

stroke and PD patients for decades. However, the therapy's effectiveness is un-

predictable since it is unknown if the subject performs the task of MI [21].  

Therefore, it is crucial to understand whether and to what extent such pa-

tients can use existing BCI systems. Therefore, part of this thesis's contribution is 

the study of both stroke and Parkinson's patients and the accuracy they can use 

the already offered BCI paradigms, which will help identify such systems' weak 

points to offer new solutions. 

To achieve the thesis objectives, a series of studies were conducted on 

healthy subjects, PD's and stroke patients [22]–[31]. 
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Chapter 2. EEG ALTERATIONS AND NEU-

ROPHYSIOLOGICAL DEFICITS 

2.1 INTRODUCTION 

The human brain is a complex system in which hundreds of billions of neu-

rons, each with thousands of connections to other neurons and each connection of 

varying strength, are responsible for our motor, cognitive, emotional, and other 

capabilities. Our brain can produce remarkable art, technology and recently 

started to get a grip of understanding itself. The brain, as a complex structure, is 

susceptible to damage. Due to its complexity, it is not easy to cure it or find rem-

edies for its malfunctions. Worldwide, cerebrovascular ischemia is one of the lead-

ing causes of disability and death among the elderly population [32]. Strokes, or 

cerebrovascular accidents, are neurological deficits of cerebrovascular cause. It is 

a brain infarction resulting from the cessation of blood supply. According to the 

most recent Global health estimates (GHE) of the World Health Organization 

(WHO), cerebrovascular accidents are the second leading cause of death and the 

third leading cause of disability worldwide [33]. 

On the other hand, Parkinson's disease (PD) is the second most common and 

chronic neurodegenerative disorder of the Central Nervous System (CNS) after 

Alzheimer's Disease [80]. It is a neurodegenerative disease that cased by dopa-

minergic neurons' death. The resulting dopamine deficiency leads to a movement 

disorder, drastically reducing the patients' quality of life [1]. Both Ischemic stroke 

and PD are neurological diseases that often strike individuals of advanced age 

[34] and are coupled with an alteration of the electrophysiological oscillatory ac-

tivity [35]–[37].  

As a prerequisite for efficient neurorehabilitation, it is necessary to study and 

describe in detail the variations/changes in cerebral rhythms of stroke patients 

and PD compared to asymptomatic matched controls or other clinical data. 

Studying the electrophysiology and neurophysiological deficits of stroke and PD 

patients may help us to better diagnose, monitor, and predict disease progression 

and develop a range of novel therapeutic protocols to improve cognitive-motor 

performance, including those based on Brain-Computer Interfaces (BCIs). The re-

sults and implications of the studies conducted in stroke patients [26], [27], [29] 

and in PD’s [31] are reported in the following sections. 
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2.2 ELECTROENCEPHALOGRAPHY (EEG) 

The brain is composed of networks of neurons that communicate with each 

other all the time, even when we are asleep or when no clear stimuli are present. 

The Electroencephalographic (EEG) technique is safe and painless. This tech-

nique's main application is in the evaluation of dynamic cerebral functioning [38]–

[40]. In clinical practice, the EEG can monitor the depth of anaesthesia during 

surgical procedures and monitor eventual changes in neural functioning that can 

lead to complications such as ischemia or infarction; it can also be used to con-

firm brain death in a person in a coma [41]. 

A set of disk-shaped electrodes, about half the size of a dime, are placed on 

the scalp to produce an electroencephalogram. The recorded signal from the elec-

trodes (EEG) reflects the sum of electrical events at the brain's surface, including 

actual brain activity (recorded mainly from pyramidal neurons perpendicular to 

the cortex surface) and noise. The source of noise can be either internal: eye-

movements or muscular activity, or external coming from, for example, power 

lines. It is impossible to record the electrical activity from a single neuron with 

EEG; however, a summation of postsynaptic potentials are successfully measura-

ble [42]. Electrodes are placed according to a standard position map to cover the 

brain areas consistently across individuals. The electrodes are named according to 

their position with a number-letter code: F, P, O, T are respectively positioned 

on the frontal, parietal, occipital and temporal lobe, while numbers refer to a dis-

tance from the central line. The odd numbers on the left and even numbers on 

the right brain hemisphere. The 10/20 is the most basic system, made for 21 

channels, but nowadays it is more common to place a higher number of electrodes 

on the scalp. Figure 2.1 shows the 10/10 system, where the number of channels 

goes up to 64. An even higher number of electrodes are possible, so-called high-

density EEG 10/5 systems, where the electrodes go up to 256 [43]. Due to volume 

conduction in the scalp tissue, each electrode "picks up" the activity also activity 

of other more distant brain regions, which causes low spatial resolution of the 

EEG technique. Therefore, only with a high-density system, it is possible to per-

form source analysis of brain activity with a higher spatial resolution in compari-

son to standard a EEG. Either way, if an experimental analysis relays more on 

spatial resolution, then on the time resolution, a more appropriate instrument of 

investigation would be functional magnetic resonance imaging (fMRI) [44]. 

EEG records differential potentials or voltage differences over time between a 

point in an electrode site, and another neighbouring or distant reference elec-

trode. Relatively electrically neutral areas can be employed as references, these 

are usually ear lobes, mastoids, or some central electrode, for example, Cz (  
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Figure 2.1 - EEG electrode positions in the 10-10 system using modified combinatorial nomenclature, 
along with the fiducials and associated lobes of the brain (Source: [45] Licence: CC0 1.0) 

vertex). An extra electrode, called a "ground" electrode, prevents external 

noise from interfering by injection of potential that will cancel out the noise.  

The diagnostic applications and interpretations of the signal generally focus 

on the brain's spontaneous activity, so the type of neural oscillations observed in 

the EEG. Notably, brain activity changes according to the brain's functional sta-

tus, such as during anaesthesia, epilepsy attacks, sleep, and awakening status. 

The brain's electrical activity appears on the EEG machine screen as waveforms 

characterised by varying frequency and amplitude measured in voltage (specifical-

ly micro voltages). The different brain waves are characterised by different ampli-

tudes and frequencies that functionally distinct them into frequency bands rang-

ing from low (0.5 Hz) up to high frequencies (even 100 Hz). 

The different EEG waveforms representing the corresponding activities of the 

brain are generally classified according to their frequency bands: 

● Delta waves δ (0.5-3 Hz): are mostly found in infants and young children, 

but are also associated with the deepest levels of relaxation, like during 

the deep sleep; however, these waves are also seen in brain injuries and 

severe Attention Deficit Hyperactivity Disorder (ADHD). 

● Theta waves θ (4-7 Hz): mainly present in the frontocentral regions, these 

brain waves are associated with drowsiness or heightened emotional 

states. 
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● Alpha waves α (8-13 Hz): most prominent in the head's posterior and oc-

cipital portions, these waves are induced by closing the eyes and relaxa-

tion. 

● Beta waves β (14-30 Hz): are present during the normal state of wakeful-

ness with open eyes mainly in the fronto-centro-temporal head regions; 

moreover, they are related to the function of the sensorimotor cortex. 

● Gamma waves γ (>30 Hz): are fast oscillations found in conscious percep-

tion and their activity at temporal locations is associated with memory 

processes (working memory and long-term memory processes); however, 

gamma waves are also involved in psychiatric disorders such as schizo-

phrenia. 

It is important to note that the alpha band can be split into two sub-bands: 

the lower alpha band (8-10 Hz), which reflects attentional processes, and the up-

per alpha band (10-12 Hz), also called mu rhythm, which develops during the 

processing of sensory-semantic information [46]. Together with the β oscillation, 

mu oscillations can be recorded over the sensorimotor cortices and, for this rea-

son, they are known as Sensorimotor rhythms (SMR).  

Moreover, it is well known that some stimuli or events can block or desyn-

chronise the amplitude of the ongoing EEG activity [47]. In particular, the alpha 

rhythm is attenuated by visual attention and by sensory inputs. This suppressive 

reaction of the alpha wave is known as desynchronisation, and it reflects the syn-

chronisation level in neuronal networks. Pfurtscheller in 1977 [48] published a 

method for assessing the EEG desynchronisation parameter or Event-related 

desynchronisation (ERD), e.g. the suppression of the alpha rhythm, and the syn-

chronisation parameter or Event-related synchronisation (ERS) [49], e.g. the en-

hancement of the alpha rhythm.  

To reach this functional differentiation in bands, the Fourier Transformation, 

particularly the Fast Fourier Transformation (FFT), allows obtaining the original 

signal's amplitude and phase at a specific frequency. In the case of the EEG data, 

it is possible to estimate the power spectral density (PSD) or spectrum of each 

wave expressed in microVolts2 per Hertz (mV2/Hz). Generally, the brain oscilla-

tions' frequency is negatively correlated with their amplitude; moreover, the am-

plitude of oscillations is proportional to the number of synchronously active neu-

ral elements. So with an increasing number of connected neurons, the amplitude 

increases and the frequency decreases, so lower frequency waves have a higher 

spectral peak magnitude in mV2/Hz than higher frequency waves [47].  
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2.3 PATHOPHYSIOLOGY OF STROKE 

Strokes can either be ischemic when caused by the closure of a blood vessel 
or haemorrhagic when caused by the rupture of a blood vessel [50]. The ischemic 

kind is by far the most frequent. Among the most common causes, we find embo-

lism (when a clot is pushed from a large vessel into a smaller one) and thrombosis 

(when a stationary clot becomes large enough to occlude the vessel) or even arte-
riosclerosis (thickening, hardening, and loss of elasticity of the walls of arteries). 

When a blood vessel is occluded, not enough blood reaches the cells in the brain 

and, without blood to supply oxygen to the cells of the affected area starts dying 

[51]. 

The haemorrhagic stroke is caused by vessel rupture that creates intracranial 
pressure and a blood clot resulting once again in ischemia, limiting the blood 

supply to adjacent brain tissue [50]. For a summary of the leading causes of 

stroke, see Figure 2.2. 

 

Figure 2.2 - Main causes of ischemic (left side) and haemorrhagic (right side) stroke. The most common 
causes of vessel occlusion are embolism and thrombosis; the most common cause of vessel rupturing are hyper-
tension and aneurysms (Source: [52] License: CC BY-NC-ND 2.0) 

Stroke symptoms will significantly vary depending on the damaged area. In 

particular, damage in the brain's motor areas might affect the patient's motor 

abilities, including limb paralysis forms [53]. Once the damage is done, the brain 

struggles to regain its functionality and increases its plasticity. The plasticity is 
higher immediately after the trauma occurred and gets lower over time (for a re-

view, see [54]). Therefore, physical rehabilitation to recover the lost limb mobility 

should start as soon as possible.  

The traditional neurorehabilitation treatment for motor damage in stroke pa-
tients is based on techniques that aim to stimulate the paretic limb. The underly-

ing principle is that repetitive, active movements should induce cortical neuro-

plasticity mechanisms and improve a subject's motor abilities [55], [56]. Con-
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straint-induced movement therapy [57] is an excellent example of therapy based 

on such principles (see also [58], for a review).  

The problem arises when the patients' remaining motor functions after stroke 

are too low or when the time window for neuroplasticity has closed (chronic 

stroke stage). In these cases, the neuroplasticity induced by this motor practice 

can be extremely limited. For this reason, in addition to the motor training, to 

potentiate neuroplasticity of motor areas there is a need for additional strategies 

later introduced in Chapter 3.  
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2.4 EEG ALTERATIONS AND NEUROPHYSIOLOGICAL DEF-

ICITS IN STROKE1 

2.4.1 Introduction 

Stroke is associated with immediate brain changes resulting in a decrease of 

cerebral blood perfusion inducing the reduction of oxygen and glucose supply, 

leading to cerebral infarction [32], [59]. The ischemia to infarction transition in 

the ischemic Stroke acute phase is a rapidly developing process (from few minutes 

to few hours) causing cellular death in hypoperfused brain tissue [60]. EEG alter-

ations are related to neurophysiological changes in the brain tissue during hy-

poperfusion, as the expression of neurovascular coupling [61]. 

Neuroimaging, together with clinical assessment, has been proving to play a 

crucial role in ischemic stroke diagnosis and significantly to determine patients' 

eligibility for reperfusion therapy [62]–[65]. The National Institutes of Health 

Stroke Scale (NIHSS), consisting of 11 items to assess the main neurological func-

tions, is the most adopted tool in the actual medical practice to evaluate stroke 

severity, assess neurological status [66], and it has proved to be a powerful pre-

dictor of clinical outcome [67]. MRI- or CT Perfusion- (CTP) techniques can 

identify the ischemic core and the salvageable hypoperfused penumbra [68] while 

pointing out which patients can best benefit from the reperfusion treatments 

(thrombolysis and thrombectomy) [62]. In one of the publications, we proposed a 

model based on CTP features to predict the outcome of wake-up stroke patients 

in terms of NIHSS at discharge [29] and modified Rankin scale [69]. CTP is in-

creasingly used in hyperacute stroke assessment due to its distinctively short im-

aging time ensuring at the same time high sensitivity (80%) and specificity (95%) 

[64]. MRI- and CT-based perfusion imaging techniques are not feasible tools to 

monitor brain ischemia evolution in the acute phase, while in sub-acute phase 

functional MRI with a passive task, such as peripheral stimulation, could be a 

valuable tool the functional assessment[70].  

Electroencephalography (EEG) could be applicable for bedside functional 

monitoring in an emergency setting [61], [71]. EEG is a non-invasive technique, 

characterised by high temporal resolution, and it enables a fast evaluation of in-

stantaneous brain function. Moreover, it shows good sensitivity to acute changes 

in cerebral blood flow (CBF) [72], [73] and neural metabolism [74].  

Brain oscillatory activity changes in acute ischemic stroke are related to neu-

rophysiological changes in the cerebral tissue during hypoperfusion as a manifes-

 
1 Ajčević, M., Furlanis, G., Miladinović, A., Buoite Stella, A., Caruso, P., Ukmar, M., Cova, M. A., Naccarato, M., Accardo, A., Manganotti, P. (2021). Early EEG 

Alterations Correlate with CTP Hypoperfused Volumes and Neurological Deficit: A Wireless EEG Study in Hyper-Acute Ischemic Stroke. Annals of Biomedical Engineering. 
https://doi.org/10.1007/s10439-021-02735-w 
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tation of neurovascular coupling [61], [75]. The reduction of CBF in ischemic are-

as leads to changes in EEG activity, namely increased power, especially in delta 

frequencies and decreased power in alpha frequencies [76].  

During the PhD course, the EEG alterations were investigated to assess the 

relationship between EEG spectral parameters and hypoperfused volumes meas-

ured by CTP, and neurological deficit at admission [26], [77]. 

2.4.2 Materials and Methods 

2.4.2.1 Study population and protocol 

Thirty-one consecutive patients (mean age 78.5±10.9; 18 females, 13 males) 

with acute ischemic stroke, admitted to the Stroke Unit of the University Medical 

Hospital of Trieste (Trieste, Italy), who underwent CTP and EEG recording at 

the bedside within 4.5 hours from known stroke onset were included in this study. 

Due to lower sensibility of CTP, patients with posterior circulation stroke were 

excluded. Unknown stroke onset and wake-up stroke and stroke-mimic were ex-

cluded. Previous stroke, hematic effusion, history of an epileptic seizure, pre-

morbid dementia, use of medication such as neuroleptic or benzodiazepines, were 

also exclusion criteria due to their effect on EEG assessment. 

All patients underwent a neurological examination at admission including 

National Institutes of Health Stroke Scale (NIHSS) and a multimodal CT imaging 

protocol, comprising cerebral non-contrast CT (NCCT), CT angiography (CTA) 

and CTP. In the timespan between CTP and the decision of possible reperfusion 

treatment, if the conditions were suitable in the emergency setting, EEG was ac-

quired with a pre-wired cap and wireless EEG device. After this assessment, if 

the inclusion criteria were respected, the patient underwent thrombolysis and/or 

thrombectomy. 

In addition, 10 healthy age-matched (mean age 74.3±6.7; 6 females, 4 male) 

were recruited and underwent EEG recordings in order to compare the EEG pa-

rameters with those calculated in hyperacute stroke. Exclusion criteria were a 

history of neurologic and psychiatric disorders, such as depressive disorders, anxi-

ety, stroke, brain injury, epilepsy and dementia. Each subject underwent the 

Montreal Cognitive Assessment (MoCA) [78] test in order to exclude cognitive 

impairment. No differences in age (p=0.259) and sex (p=0.913) between enrolled 

stroke patients and a healthy control group were detected. 

This study was approved by the Local Ethics Committee CEUR (Comitato 

Etico Unico Regionale, FVG, Italy) with approval number 115/2018. The re-

search was conducted according to the principles of the Declaration of Helsinki. 

All participants released their informed consent. 
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2.4.2.2 EEG acquisition and processing 

EEG was acquired at bedside within 4.5 hours from stroke symptom onset by 

using 19 channel 10–20 Ag/AgCl electrodes headset and Be Plus LTM amplifier 

@64 channels Wi-Fi (EBNeuro, Florence, Italy). EEG signals were then transmit-

ted via Wi-Fi protocol to a base station allowing registration in an emergency 

setting without interfering with standard patient management procedure. All 

electrode impedances were kept below 5 kΩ, and the sampling rate was set to 128 

Hz. All signals were digitally filtered with the 0.5–40 Hz 2nd order Butterworth 

bandpass filter and the first 60 s of the artefact-free EEG were analysed. Power 

spectral density (PSD) was estimated for each channel using Welch's periodo-

gram [79], averaged on 11 tracts of 10 s each, windowed with a Hann window, 

with 50% overlap. The 10 s intervals were chosen as the mean and variance in 

such windows do not change, and therefore, the signal can be considered weakly 

stationary. The relative power for each of the spectral bands (delta: 1–4Hz; theta: 

4–8Hz; alpha: 8–13Hz; beta: 13–30Hz) was calculated for each channel. The rela-

tive powers were obtained by normalising with a total power across the 1–30 Hz 

range.  

                         𝐷𝑇𝐴𝐵𝑅 =
ௗ௧ା௧௧

ା௧
         (2.1) 

                                     𝐷𝐴𝑅 =
ௗ௧


                (2.2) 

In addition, DTABR (see equation 2.1) and DAR (see equation 2.2) were 

computed. Relative power for each band, DAR and DTABR parameters were av-

eraged over all nineteen scalp electrodes. 

2.4.2.3 CTP acquisition and processing 

All CTP scans were acquired on a 256-slice Philips Brilliance iCT scanner 

(Philips Healthcare, Best, The Netherlands) at 80 kVp and 150–200 mAs. At the 

initiation of scanning, 75 ml of contrast medium was injected intravenously at a 

rate of 4 ml/s, followed by 40 ml of a saline bolus. The three-dimensional axial 

acquisitions on a whole-brain volume with a reconstruction of the slices set to 5 

mm were performed. The acquisitions were carried out every 4 s, resulting in a 

total scanning time of 60 s. CTP source image processing was performed by Ex-

tended Brilliance Workstation v 4.5 (Philips Medical Systems, Best, Netherlands) 

and in-house developed in Matlab (MathWorks Inc., Natick, MA), as previously 

described [29], [80]. CTP analysis is summarised in Figure 2.3. The perfusion 

maps mean transit time (MTT), cerebral blood volume (CBV) and cerebral blood 

flow (CBF) were calculated from source CTP. The Gaussian curve fitting by least 

mean squares method was applied to obtain mathematical descriptions of each 

voxel's time-density curves. An arterial input function and venous output are se-

lected, and subsequently, a closed-form deconvolution was applied to produce an 
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MTT map [81]. CBV map was calculated from the area under the time attenua-
tion curve and finally CBF map as a ratio between CBV and MTT.  Ischemic 

core and penumbra areas were identified by application of specific thresholds [82], 

i.e. MTT voxels >145% of the contralateral healthy area and CBV<2.0 mL/100 

g, and MTT voxels > 145% of the contralateral healthy area and CBV>2.0 
mL/100 g, respectively. Ischemic core volume and total hypoperfused volume, ex-

cluding artefacts were calculated by integrating identified voxels as described in a 

previous study [80]. 

  

 

Figure 2.3 - CTP analysis. From left to right: Source CTP data; Supratentorial CBF, CBV and MTT 
calculated maps, from top to bottom, respectively; core (red) / penumbra (green) map; 3D representation of 
total hypoperfused supratentorial volume (core+penumbra) (Source: [26], License: CC BY 4.0) .  

2.4.2.4 NIHSS assessment 

NIHSS evaluation was carried out at the Stroke Unit presentation by a vas-
cular neurologist trained in performing NIHSS examination. The NIHSS test was 

performed within 15 minutes before CTP scanning. NIHSS consists of 11 items 

assessing the main neurologic functions, such as eye movement, visual fields, co-

ordination, motor strength, sensation, neglect, and language. NIHSS score ranges 
from 0 to 42, with 7 points attributed to language functions (2 points for orienta-

tion, 2 points for command execution, 3 points for aphasia). 

2.4.2.5 Statistical analyses 

Variables were presented with mean and standard deviation or median and 

range depending on the distribution. Kolmogorov-Smirnov test was used to eval-

uate the normal distribution of variables. The Spearman correlation was used to 

determine the degree of correlation between total hypoperfused volume and the 

EEG spectral band parameters and ratios. As the data was not normally distrib-
uted, the two-sided Wilcoxon rank-sum test was used to investigate the differ-
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ences between EEG parameters calculated in hyper-acute stroke patients and 

healthy controls. The correlation between NIHSS at admission and EEG and 

CTP parameters were also investigated. Stepwise multiple regression analysis was 

subsequently adopted to identify the most relevant independent parameters relat-

ed to acute neurological disability using NIHSS on admission. p <0.05 was con-

sidered statistically significant. The multiple comparison correction was not per-

formed as the used test was more conservative in comparison to the Student t-

test and a type I error is not likely to occur. 

2.4.3 Results 

 

Table 2.1 - Participants' demographics, clinical and radiological characteristics. 

Personal Characteristics n= 31 

Age [y] 78.5±10.9 

Sex F\M 18/13 

Symptom onset –EEG assessment [min] 178 (82-261) 

ASPECTS 9 (6-10) 

NIHSS at admission 8 (3-24) 

Anamnestic mRS 0 (0-4) 

Lesion side of the lesion L/R [n] 17/14 

Bamford stroke subtypes 

          TACI 

          PACI 

          LACI 

           

 

7 (23%) 

22(71%) 

2 (6%) 

 

TOAST classification  

          Atherothrombotic 

          Lacunar 

          Cardioembolic 

          Cryptogenic 

          Other cause 

 

6(19%) 

2(6%) 

12(39%) 

10(32%) 

1(3%) 

CTP parameters 

          Total hypoperfused tissue [ml] 

          Core [ml] 

          Mismatch 

 

56.0 (2.0-219.0) 

2.5 (0-102.0) 

0.92 (0.13-1.0) 

HTN [n (%)] 15(74%) 

DM [n (%)] 15(47%) 

Dyslipidemia [n (%)] 17 (50%) 

AF [n (%)] 12 (35%) 

ICP [n (%)] 7 (21%) 

Notes: Participants' reported age (y), Sex (n), Symptom onset –EEG assessment [min], ASPECTS, 
NIHSS at admission, anamnestic mRS, Lesion side (n), Bamford stroke subtypes (%) (Total Anterior Circula-
tion Infarct, TACI; Partial Anterior Circulation Infarct, PACI; Lacunar Stroke, LACI; Posterior Circulation 
Infarct, POCI), TOAST classification (%), CT Perfusion parameters (mL), history of hypertension (HTN, %), 
diabetes (DM, %), dyslipidemia (%), atrial fibrillation (AF, %), ischemic cardiomyopathy (ICM, %). 
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Patients' demographic, clinical and radiological data are summarised in Ta-

ble 2.1. The median neurological impairment at admission was NIHSS=8 (3–24). 

ASPECT score of 9 (range 6–10) assessed on NCCT was observed. The median 

time between symptoms onset and EEG recording was 178 min (range 82–261 

min). The CTP analysis showed a median total hypoperfused volume, core and 

mismatch of 56.0 (2.0-219.0) ml, 2.5 (0-102.0) ml, 0.92 (0.13-1.0), respectively. In 

Table 2.1 are reported EEG extracted parameters and their correlation with CTP 

extracted volumes and neurological deficit at admission. DAR, DTBAR and rela-

tive delta power correlated directly, while alpha correlated inversely with total 

hypoperfused volume as well as with ischemic core. In Figure 2.4, delta and alpha 

relative powers, as well as DAR and DTABR ratios, were plotted against total 

hypoperfused volume. Delta relative power, DAR, DTABR showed linear de-

pendency, while for relative alpha power, an inverse power law relation was ob-

served. 

Box and whisker plot of EEG parameters extracted in hyperactive stroke pa-

tients and 10 healthy age-matched controls is reported in Figure 2.5. Relative del-

ta (p<0.001) and theta (p=0.006) powers were significantly higher in stroke pa-

tients compared to healthy subjects, while relative alpha (p=0.002) and beta 

(p<0.001) powers were significantly lower. In addition, also DAR and DTABR 

were significantly higher in stroke patients (p<0.001 and p<0.001, respectively).  

 

Table 2.2 - Correlation between extracted EEG spectral parameters and Total hypoperfused volume, Is-
chemic core and NIHSS, respectively. 

EEG spectral 

parameter 

Median (range) Spearman's ρ (p-value) 

 
vs Total Hy-

poperfused volume 
vs Ischemic core vs NIHSS 

Delta 0.46 (0.25 - 0.67) 0.65 (p<0.001) 0.59 (p=0.002) 0.78 (p<0.001) 

Theta 0.22 (0.09 - 0.35) 0.05 (p=0.831) 0.06 (p=0.811) 0.03 (p=0.897) 

Alpha 0.13 (0.06 - 0.38) -0.66 (p<0.001) -0.51 (p=0.012) -0.75 (p<0.001) 

Beta 0.14 (0.05 - 0.22) -0.05 (p=0.818) -0.01 (p=0.970) -0.31 (p=0.137) 

DAR 3.75 (1.21 - 8.81) 0.72 (p<0.001) 0.55 (p=0.005) 0.81 (p<0.001) 

DTABR 2.67 (1.10 - 6.85) 0.63 (p<0.001) 0.50 (p=0.013) 0.86 (p<0.001) 
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Figure 2.4 - Delta and alpha relative powers, as well as DAR and DTABR ratios, were plotted against to-
tal hypoperfused volume. Delta relative power, DAR, DTABR showed linear dependency, while for alpha relative 
power an inverse power law relation was observed. 

 

Figure 2.5 - Comparison of EEG parameters extracted in hyperactive stroke patients and healthy age-
matched controls. Box and whisker plot. Panel (A) delta, theta, alpha and beta relative powers. Panel (B) DAR 
and DTABR ratios. IS – ischemic Stroke; HC- healthy controls. All EEG parameters differed significantly be-
tween hyper-acute ischemic stroke patients and age-matched healthy controls. 

Regarding, the relation of EEG parameters and neurological deficit at admis-
sion, the strong correlation of DAR, DTBAR, delta and alpha with NIHSS was 

observed (rho=0.81, p<0.001; rho=0.86, p<0.001; rho=0.78, p<0.001; rho=-0.75, 

p<0.001, respectively). As expected also, CTP parameters were related to neuro-

logical deficit. A significant positive correlation was found between total hy-

poperfused volume and neurological deficit (rho=0.75; p<0.001) as well as be-
tween ischemic core and neurological deficit (rho=0.69; p<0.001). The multivari-
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ate stepwise regression showed the DAR is the strongest predictor of NIHSS on 

admission (beta=0.828; p<0.001). 

2.4.4 Discussion 

This study's main finding is a significant correlation between stroke-related 

EEG alterations and the total hypoperfused volume measured by CTP in the is-

chemic stroke hyperacute phase (<4.5 h from symptom onset). In particular, 

DAR, DTBAR and relative delta power correlated directly, while alpha correlat-

ed inversely with total hypoperfused volume as well as neurological deficit at ad-

mission. In addition, the same was observed in a moderate manner for the is-

chemic core. 

Abnormal EEG delta waves foci correlated with areas of cerebral lesion de-

termined by NCCT, PET and MRI techniques [60], [83]–[85]. Comparing NCCT, 

performed at 4 days after stroke's onset, and EEG, recorded within 24 hours from 

the onset, highlighted a relationship between the site of increase of delta power 

and anatomical position parenchymal damage [60]. Nevertheless, NCCT cannot 

identify morphological changes in the hyperacute phase of ischemic stroke [83]. A 

modest correlation between alteration of delta activity assessed by EEG and 15-

hour DWI was reported by Finnigan et al. [84]. 

The joint analysis of the EEG and hemodynamic activity assessed by perfu-

sion neuroimaging is gaining increasing interest in the initial phase of ischemic 

stroke. EEG recording and DWI-PWI MRI sequences allowed direct correlation 

EEG abnormalities with functional MRI changes in rodent models of ischemic 

stroke [86]. A recent study reported agreement between slow rhythms hemispher-

ic prevalence on EEG maps and lesion side assessed using CTP in patients with 

hyper-acute stroke [61]. 

Our results showed that the larger CTP volumes are related to a bilateral 

linear increase of delta, DAR and DTBAR parameters and inverse power law de-

crease of alpha waves in the early phase. The diffused bilateral EEG changes are 

consistent with previous findings which report that diffused alterations may re-

flect the early phase of brain ischemia [71] and early changes in interhemispheric 

connectivity [87], [88]. In addition, we observed that these EEG spectral parame-

ters were more related to total hypoperfused volume than to infarct core, indicat-

ing that total hypoperfused tissue, not only the necrotic core, has a great impact 

on EEG alteration. Delta frequency range and an attenuation in the higher part 

of EEG spectra in stroke are related to CBF reduction as an expression of neuro-

vascular coupling [89], [90]. Notably, a decrease of rapid frequencies can be ob-

served when CBF drops to 25–35 ml/100 g/min. Marked alterations in brain me-

tabolism occur, and regional areas of the cerebral cortex experience failed perfu-

sion when CBF falls below 20–30 ml/100 g/min [91]. 
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Moreover, considerable decreases of flow (17–18 ml/100 g/min) causes a low 

frequencies increase associated with progressive neuronal death [92]. In our hyper-

acute study, EEG parameters differed highly significantly between early ischemic 

stroke patients and age-matched healthy controls. The observed EEG changes are 

consistent with findings in the sub-acute phase [84], [92], [93]. Our results showed 

that higher delta power was associated with higher neurological impairment at 

admission, while higher alpha power corresponded to extremely low NIHSS values 

at admission. In turn, this could be explained with the preservation of alpha ac-

tivity being indicative of neuronal survival in the ischemic regions and good 

prognosis [94].  A recent study reported the positive correlation between CTP 

hypoperfused volume and NIHSS [80].   

This study observed that CTP volumes and EEG spectral parameters were 

both related to the neurologic deficit. A multi-regression stepwise analysis indi-

cated DAR as the strongest parameter related to NIHSS at admission. This find-

ing highlighted the additional informativity of EEG hyper-acute stroke-related 

biomarkers. Quantitative biomarkers may identify systems at risk before the 

overt expression of the disorder. Ideally, biomarkers are sustainable, noninvasive, 

unaffected to bias and highly available. EEG combines these aspects [95] and 

provides insight into cortical dysfunction by directly measuring brain activity 

[96]. As this pathology entails both neural injury and neural function impair-

ments [97], [98], the measure for neural function offered by the EEG technique 

may contribute to decision making for treatment and subsequent neurorehabilita-

tion. 

Therefore, we also studied EEG spectral parameters' predictive power to 

predict short and long-term clinical and morphological outcomes in thrombolysis-

treated stroke patients [25], [27]. In particular, the main findings were that early 

EEG parameters might contribute to the prediction of neurological deficit, func-

tional disability, and morphological lesion at discharge and at 12 months in 

thrombolysis-treated stroke patients. 7-day and 12-month NIHSS outcomes were 

inversely related to relative alpha power and directly related to relative delta 

power as well as DAR and DTABR parameters. A good clinical outcome meas-

ured with mRS ≤ 2 at 1 year was strongly associated with DAR. Moreover, the 

final infarct volume was significantly associated with all considered EEG parame-

ters, except theta and beta. 
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2.5 PATHOPHYSIOLOGY OF PARKINSON'S DISEASE 

First described by Dr James Parkinson in 1817 [99], Parkinson's Disease 

(PD) is the second most common and chronic neurodegenerative disorder of the 

Central Nervous System (CNS) after Alzheimer's Disease [100]. Nowadays, PD 

affects approximately 6 million people worldwide, and according to some esti-

mates, 12 million people will suffer from PD by 2050 [101]. It is mainly consid-

ered a disease of the elderly (e.g. over 60 years), but some individuals can develop 

the disorder in their 30s and 40s [1]; in general, men have a higher risk to suffer 

from the disease than women, with a 3:2 ratio of males to females [102].  

The aetiology of Parkinson's Disease is not well-known (we mainly talk 

about PD as an idiopathic disease), but evidence states that there are many dif-

ferent causes [103], including risk factors and genetic mutations. Some gene muta-

tions have been identified as associated with the development of both sporadic 

and familial PD cases. The mutations [104] mainly regard the LRKK2 gene, the 

Parkin gene, the GBA gene and the alpha-synuclein protein, which has been 

found to form insoluble fibrils associated with Lewy Bodies (LB) [105], that con-

tribute to the histopathological features of PD.    

Risk factors for the disease include oxidative stress, the formation of free rad-

icals and several environmental toxins, like pesticides [106]; some epidemiologic 

studies suggested that environmental factors like rural living, exposure to well 

water, herbicides and wood pulp mills [107] might also be risk factors for develop-

ing PD. However, no toxic or environmental agent has been definitively indicated 

as a cause of sporadic PD. Conversely, there is an inverse relationship between 

cigarette smoking, caffeine intake and the risk of developing PD [108].   

Despite these observations, it is essential to underline that it is still unknown 

if the different PD cases are due to a single cause or result from the complex in-

teraction among susceptibility genes and environmental factors ("The double hit 

hypothesis"), that may vary in different individuals [109]. Moreover, some factors 

like oxidative stress, mitochondrial dysfunction, excitotoxicity and inflammation 

[110] have contributed to cell death. There is sustained evidence that cell death in 

PD occurs through a signal-mediated apoptotic process commonly associated with 

mitochondrial dysfunction [111]. 

The histopathological features of PDs concern the motor structures of the 

basal ganglia. They include the loss of dopaminergic neurons [112], with a conse-

quent deterioration of motor functions due to abnormal aggregation of proteins 

that form the LB [113].  

Basal ganglia are a group of subcortical nuclei, placed within the cerebral 

hemispheres and the brainstem, and play a prominent role in modulating move-
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ment through complex feedback loops to and from the cerebral cortex. These nu-

clei are the following: Caudate and Putamen developed together and formed the 

Striatum (STR); the Globus Pallidus (GP) divided into inner GP (GPi) and ex-

ternal GP (GPe); the Substantia Nigra (SN) divided into pars reticulate (SNr) 

and pars compacta (SNc); finally, there is the Subthalamic Nucleus. The Stria-

tum is the major input site that receives excitatory glutamatergic afferences from 

the cerebral cortex while has inhibitory (GABAergic) striatal efferents that pro-

ject to the GPi/SNr, which are functionally integrated and considered as one 

unit. The Striatum outputs to the GPi/SNr are divided into two opposing path-

ways, which balance is regulated by dopaminergic efferents released from the SNc 

to the Striatum (nigrostriatal pathway). In the direct pathway, dopamine (DA) 

has an excitatory effect (as it acts via its D1 receptor) upon cells in the Striatum, 

sending its GABAergic efferents to the GPi/SNr which consequently disinhibits 

the thalamus and motor activity is turned up. Conversely, in the indirect path-

way, DA has an inhibitory effect (as it acts via its D2 receptor) on striatal cells 

which are no more able to inhibit the complex GPi/SNr which, in turn, sends its 

GABAergic efferents to the thalamus with consequent turning down of the motor 

activity. 

The majority of PD symptoms result from the progressive degeneration of 

dopaminergic neurons in the SNc, which project to the Striatum, with consequent 

loss of dopaminergic function. The degenerating nigral dopaminergic cells accu-

mulate in intracellular, round, cytoplasmic aggregates called LB and considered 

the major pathological hallmark of PD [114]. 

Since dopamine excites striatal neurons at the head of the direct pathway, 

this neurotransmitter's decreased presence turns down the activity in the direct 

pathway and motor activity because the motor thalamus and the cortex are less 

active. In the indirect pathway, dopamine inhibits typically striatal neurons, but 

the loss of dopaminergic inhibition leads to increased activity in the pathway 

with consequent less motor activity (Basal Ganglia-Neuroanatomy).  

Losing dopamine activity on both the direct and indirect pathways leads to 

the appearance of the motor symptoms characteristic for PD: the "classical triad" 

(resting tremor, rigidity and bradykinesia) and the postural instability, that is 

present approximately in the 50% of patients [115]. Bradykinesia means slowness 

of movement [116], while rigidity is associated with muscle stiffness. Resting 

tremor occurs, indeed, at rest and is the most common of tremor in PD, which 

can affect the hands, the feet and, to a lesser extent, other body parts. Around 

70% of PD patients experience tremor during the disease [117]. In addition to all 

those primary motor symptoms [118], it is also worth it to cite the incapacitating 

motor symptom that leads to difficulties in initiating movements, named akinesia. 
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Among the secondary motor symptoms present in PD, gait disturbance and 

speech problems are the most common. In this context, Freezing of gait (FOG) is 

defined as a walking deficit with a diminished forward progression of the feet, an 

incapacitating motor symptom that affects patients' quality of life, since it is of-

ten associated with falls [119]. Speech disorders come out at some point during 

the course of the disease and are more common in patients who had a high occur-

rence of FOG [120]. This correlation can be because both motor processes require 

the coordination of different motor effectors. 

Furthermore, PD is also characterised by non-motor features [121] such as ol-

factory dysfunction, sleeping disorders, constipation, fatigue, depression, demen-

tia, hallucinations and pain [122]. These non-motor symptoms may precede the 

onset of the disorder's classic dopaminergic features [123] and almost inevitably 

emerge with disease progression. One of the neurorehabilitation strategies is Mo-

tor Imagery (MI), described in Chapter 3. Accordingly, MI corresponds to an ac-

tive process in which the representation of a particular action is mentally repro-

duced without any external output. Moreover, MI can be useful to reinforce also 

executive functions in PDs, as induces general relax and reduction of freezing of 

gait episodes [124]. As the MI generates the particular EEG pattern [125], the 

prerequisite is to obtain a detailed description of the alterations of cerebral oscil-

latory activity in PD subjects with respect to the matched controls. Therefore, it 

is necessary to correlate the standardised scales that evaluate deficits in PD with 

their EEG. The implication of such a study's findings can help us design Brain-

Computer Interface (BCI) based neurorehabilitation techniques to target specific 

bands and brain regions. Moreover, it gives more information on how to monitor 

the disease's progression and evaluate treatment effectiveness. 
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2.6 EEG ALTERATIONS AND NEUROPHYSIOLOGICAL DEFI-

CITS PARKINSON'S DISEASE2  

2.6.1 Introduction 

Parkinson's Disease (PD) is a neurodegenerative disorder characterised by 

motor and cognitive impairments coupled with an alteration of the electrophysio-

logical oscillatory activity [35]–[37]. Around 70% of PD patients experience trem-

ors during the disease [117]. These primary motor symptoms are usually followed 

by difficulties in initiating movements, gait disturbance and speech problems. 

Such symptoms affect patients' quality of life [119]. 

Various scales have been developed to quantify motor abilities, behaviour, 

mood, daily living activities, and PD patients. The UPDRS has achieved the 

highest acceptance for evaluating possible interventions and as a clinical tool to 

follow the patients' progress [126]. Hoehn and Yahr (H&Y) scale [127] assesses 

the patterns of progressive motor decline. The patients' walking capabilities can 

be quantified by using the 6 Minutes Walking Test (6MWT) [128]. Timed Up & 

Go (TUG) test measures functional mobility and gait speed [129]. Freezing of 

Gait (FOG) severity, as one of the most disabling symptoms in PD patients, is 

assessed by FOG Questionnaire (FOGQ)  

Growing research interest in neurophysiological biomarkers for monitoring 

neurological disability progression is usually measured by clinical scales [35], 

[130]–[132]. Currently, there are no reliable objective biomarkers for disease pro-

gression in PD [35]. Quantitative biomarkers may identify systems at risk before 

the overt expression of the disorder. Biomarkers ideally should be techniques that 

are non-invasive, widely available, and economical. EEG is a technique that com-

bines the aspects mentioned above, provides insight into cortical function by 

measuring cerebral electrical activity, and quantitative analyses of brain rhythms 

measured by EEG can provide about the cortical dysfunction [95], [96]. 

Changes in oscillatory brain activity in the relative powers of the delta, the-

ta, alpha and beta bands have been observed in PD patients during resting-state 

EEG recordings. In particular, alpha and beta bands show a decrease in the rela-

tive powers, even in the initial phase of the disease, while delta and theta bands 

display an increase in their relative powers [36], [37], [133]. These findings may 

represent a breakthrough in the research. Those brain wave changes may repre-

sent the hallmark of EEG abnormalities in PD that can be important to better 

understand the disease. 

 
2 Miladinović, A., Ajčević, M., Busan, P., Jarmolowska, J., Silveri, G., Ciacchi, G., Deodato, M., Mezzarobba, S., Lizzi, P., Battaglini, P. P., & Accardo, A. (2021). 

Brain oscillatory activity changes and motor deficits in Parkinson’ s disease patients: Correlation of quantitative EEG and motor scales., NBC 2020. 
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The correlation between EEG slowing and global cognitive impairment in 

PDs was widely studied [134]–[136], and reports provide consistent findings. Dif-

ferent studies investigated the relation between EEG alterations and motor defi-

cit, mainly focusing on various revisions of Unified Parkinson's Disease Rating 

Scale (UPDRS) and Hoehn & Yahr (H&Y) reporting inconsistent results [35], 

[130], [135], [137]. Therefore, the relation of the motor scales and EEG is still de-

bated, and there is a lack of information. 

This study aimed to investigate the relationship between brain oscillatory ac-

tivity alterations and the most used PD-related motor deficit scales, as a prereq-

uisite for the development of novel neurorehabilitation techniques based on BCI. 

2.6.2 Materials and Methods 

2.6.2.1 Participants and the Study protocol 

Seven PD patients (4M/3F; age 72±4.5 years) were enrolled in the study. 

The inclusion criteria were: diagnosis of PD; diagnosis of gait's FOG disturbance; 

stage of Hoehn and Yahr Scale < 3; cognitive Mini-Mental State Examination 

(MMSE) score > 24; stable pharmacological treatment for at least two months. 

All included patients gave their signed consent for participation in the study. The 

experimental protocol was pre-approved by the Local Ethical Committee and was 

conducted according to the Declaration of Helsinki principles.  

All patients underwent motor deficit assessment made up of a battery of mo-

tor (physiotherapy) tests and the EEG recording. In particular, UPDRS-III, 

H&Y, 6MWT, Berg, TUG, FOGQ motor tests and questionnaires were per-

formed, and corresponding scores were assigned. The relations between relative 

power for each spectral band and the aforementioned motors scales were investi-

gated. All the evaluations were conducted in the pharmacological "on" state of 

PD patients. 

2.6.2.2 Motor scales 

UPDRS 
The Unified Parkinson Disease Rating Scale (UPDRS) is a tool to judge the 

course of the disease in the patients and consists of 5 segments: 1) Mentation, 

Behavior, and Mood, 2) Activities of Daily Living (ADL), 3) Motor section, 4) 

Modified Hoehn and Yahr Scale and 5) Schwab and England ADL scale. In this 

study, we considered the third, motor-related, section of the overall UPDRS. 

UPDRS-III consists of 14 items to evaluate the speech abilities, the resting trem-

or, the postural stability, the rigidity, the hand movements, bradykinesia and 

hypokinesia of the PD patients, assigning a score from 0 to 4 points for each item 

depending on the degree of impairment. 
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Hoehn and Yahr (H&Y) 
The Hoehn and Yahr (H&Y) scale is a clinical rating scale that captures 

progressive motor decline patterns. However, because of its simplicity and lack of 

details, it is limited to some aspects of PD disease, such as the presence or ab-

sence of postural reflex impairment, leaving other aspects of the motor deficit un-

treated. The H&Y scale consists of 1 to 5 stages (Table 2.3), where the last two 

indicate a severe disability and less patient independence [138]. 

Table 2.3 - Hoehn and Yahr scale Stage Description 

Stage Main symptoms 

1 Unilateral involvement only, usually with minimal or no functional 

disability 

2 Bilateral or midline involvement without impairment of balance 

3 Bilateral disease: mild to the moderate disability with impaired pos-
tural reflexes 

4 Severely disabling disease; still able to walk or stand unassisted 

5 Confinement to bed or wheelchair unless aided 

MPAS 
Modified Parkinson Activity Scale (MPAS) consists of 14 items organised in-

to 3 domains, such as chair transfer, gait akinesia, and bed mobility. Also, this 

scale uses a 5-points scoring system from 0 to 4, with a total score ranging from 0 

(best) to 56 (worst) performance [139]. 

FOGQ 
FOG severity in maximum 10 minutes: it consists of 6 items and a 5-points 

scale ranging from 0 (absence of symptoms) to 4 (most severe) for a total score of 

24, where higher scores correspond to most severe FOG [140], [141].  

6MWT  
Among PD's features, reduced velocity is a well-defined characteristic. It is 

possible to measure the patients' walking capacities by using the 6 Minutes Walk-

ing Test (6MWT): it typically combines numerous turns and straight-line walk-

ing. It quantifies moving abilities as the distance travelled in 6 minutes [128]. 

TUG 
Finally, the Timed Up & Go (TUG) test correlates with functional mobility, 

gait speed and falls as it measures the time taken by a subject to rising from an 

ordinary chair (with no arms), walk 3 m, turn through 180°, walk back and sit 

down again as fast as possible wearing typical walking shoes. The shorter the 

time to perform the activity, the better the mobility. The time spent on the two 
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attempts is recorded by using a digital stopwatch [129]. Concerning PD patients, 

TUG cut off scores range from 8 to 11.5 seconds: longer TUG times are associat-

ed with decreased mobility and increased risk of falls [142].  

2.6.2.3 EEG acquisition and processing 

EEG signals were acquired by using SAM 32FO amplifier (Micromed, Italy) 

with the sampling rate of 256Hz and a prewired head cap with 23 Ag/AgCl elec-

trodes (Electro-Cap International, Eaton, OH, USA) placed at standard 10-20 

(Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 

Oz, O2). The reference electrode was placed in POz, while the ground electrode 

was placed in AFz. Electrode impedances were kept below 5 kΩ. 

EEG off-line analysis of the resting state data was carried out using 

MATLAB(R) (The MathWorks Inc., Natick, MA). All channels were filtered 0.5 

- 45 Hz with the 2nd order Butterworth bandpass filter. The Power Spectral Den-

sity (PSD) was extracted on 80 seconds long data by using the approach based 

on Welch's periodogram [143] (averaged on 15 tracts of 10 s each, windowed with 

a Hann window, with 50% overlap). The band powers: delta (1-4Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (13-30 Hz) were calculated and normalised with the 

total power in the range 1 to 30 Hz. The relative power for each band was aver-

aged over all 21 channels. 

2.6.2.4 Statistical analysis 

Continuous variables with a normal distribution are presented as means and 

standard deviations, those with a skewed distribution as median and ranges. The 

correlation between the relative power of each spectral band and assessed motor 

deficit scores were investigated using Spearman's nonparametric test. The value 

of p< 0.05 was considered significant. 

2.6.3 Results 

The median (range) values obtained from seven enrolled PD patients' motor 

assessment data are summarised in Table 2.4. The median relative delta, theta, 

alpha and beta power were 0.12 (range 0.04–0.16), 0.21 (range 0.13–0.45), 0.25 

(range 0.12–0.44) and 0.23 (range 0.13– 0.35), respectively. Results of correlation 

between relative powers of each spectral band with Motor Scales are reported in 

Table 2.5.  The scale which expresses the deficit related to freezing of gait symp-

tom (FOGQ) correlated significantly with delta and alpha band. In particular, 

the positive correlation was found with delta (rho=0.67; p=0.008), while a nega-

tive correlation was observed with alpha (rho=-0.59, p=0.027). Moreover, the 

motor-related third section of commonly used UPRS (i.e., UPDRS-III) correlated 

directly with theta (rho=0.55, p=0.040) and inversely with beta (rho=-0.77, 



38 

 

p=0.001). No significant correlation was found between spectral powers and 

H&Y, BERG, MPAS, 6MWT and TUG scales. 

Table 2.4 - The median (range) values obtained from motor assessment data of enrolled PD patients. 

Motor scale Median (range) 

FOGQ 6 (0 - 11) 

H&Y 1.5 (1.0 - 2.5) 

UPDRS-III 8.5 (4.0 - 24.0) 

BERG 52.5 (45.0 - 58.0) 

MPAS 60 (53 - 64) 

6MWT 360 (262 - 461) 

TUG 909.5 (753.0 - 1366.0) 

  

Table 2.5 - Correlation between relative powers of each spectral band and motor scales (significant results 
are marked with boldface and asterisk). 

 Spearman's rho (p-value) 

 delta theta alpha beta 

FOGQ 0.67 
(p=0.008) * 

0.33 

(p=0.224) 

-0.59 
(p=0.027) * 

-0.39 (p=0.169) 

H&Y -0.02 
(p=0.945) 

0.17 
(p=0.550) 

0.19 
(p=0.524) 

-0.44 (p=0.113) 

UPDRS -0.03 

(p=0.909) 

0.55 

(p=0.040) * 

0.09 

(p=0.766) 

-0.77 (p=0.001) * 

BERG 0.24 

(p=0.415) 

-0.38 

(p=0.182) 

0.08 

(p=0.798) 

0.23 (p=0.428) 

MPAS 0.26 

(p=0.370) 

0.05 

(p=0.872) 

-0.06 

(p=0.848) 

-0.16 (p=0.573) 

6MWT 0.45 
(p=0.106) 

-0.20 
(p=0.502) 

-0.36 
(p=0.205) 

0.37 (p=0.188) 

TUG -0.42 

(p=0.132) 

0.02 

(p=0.952) 

0.46 

(p=0.097) 

-0.25 (p=0.382) 

2.6.4 Discussion 

The motor deficit in PD's was largely studied; however, over the years, no 

consistent pattern of relations emerged between qEEG variables and measures of 

the motor domain [35]. The work's focus was to investigate the association of 

EEG spectral bands with a decline of different motor domains in patients with 

PD.  
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This preliminary study's main finding is a significant positive correlation be-

tween delta and negative correlation between alpha-band and freezing of gait-

related FOGQ scale. This is the first study that assessed these EEG alterations' 

correlation with an increased number of FOG episodes. The observed effect can 

be explained by the presence of general EEG slowing (an increase of power in 

lower frequency bands and increased power in higher frequency bands) in PDs as 

the disease progresses [134]–[136], affecting one's ability to initiate and coordinate 

motor movements.   

Furthermore, the positive correlation was observed in the theta band and 

negative in the beta band, which is in line with the recent study [144]. A study 

on early-onset PD also reports beta band power coherence decrease with the dete-

rioration measured by MDS-UPDRS III [145].  

Studies have reported alternation of the resting-state EEG, in particular, in-

crease power of lower frequency bands (delta and theta) and decrease in higher 

frequency bands (beta, gamma), also called slowing of EEG, in PD patients [36], 

[37], [133]. Correlation of various scales that assess cognitive and motor dysfunc-

tion is required better to understand the cause of the observed EEG changes. In 

contrast to the cognitive domain where many different scales were compared with 

EEG, the motor domain remained limited to a comparison of UPDRS and H&Y. 

The published results are, furthermore, inconsistent, and requires broader investi-

gation involving different motor aspects [35]. The aforementioned inconsistency in 

the previous studies' results might be due to pharmacological treatment where 

the studies [143], [145] report correlations of alpha and beta powers and UPDRS  

induced by Levodopa administration. 

Furthermore, some types of non-pharmacological treatments, such as BCI 

Motor-Imagery, Action Observation, or their combination with standard thera-

peutic practice, can alternate the resting-state EEG of subjects [146], [147]. De-

spite the small sample size, our preliminary study supports the earlier findings 

suggesting a link between EEG slowing and motor decline, providing more insight 

into the relation between EEG alteration and single motor domains. Future in-

vestigations with larger sample sizes and control medication administration are 

needed to confirm clinical aspects of mutual interchangeability of EEG power 

band slowing and motor impairment in PD patients. 
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2.7 SUMMARY 

The understating of the variations of stroke and PD subjects' EEG cerebral 

rhythms with respect to the matched controls is a prerequisite for diagnosing, ef-

ficient neurorehabilitation, and progression monitoring. Studying electrophysiolo-

gy and neurophysiological deficits of stroke and PD patients can help us better 

predict the disease's outcome and develop therapeutic protocols.  

In section 2.4, we assessed the relation between EEG alterations in the earli-

est phase of ischemic stroke and hypoperfused volume assessed by CTP, and neu-

rological deficit at admission. We also found that EEG behaviour varies depend-

ing on the extent of hypoperfused tissue. Moreover, an additional measure of neu-

ral function (EEG) and neural hypoperfusion (CTP) may better depict the im-

pairment level than the neuroimaging assessment at admission alone. EEG con-

firmed to be a sensitive measure for brain function in the earliest phase of cere-

bral ischemia. These results highlight the added value of EEG as complementary 

in the evaluation of stroke severity and as a potentially useful tool in monitoring 

and mapping longitudinal changes in acute stroke patient in the hyper-acute 

phase.  

Early post-stroke prognosis is essential to establish better treatment and re-

habilitation strategies to improve recovery and minimize disability [148]. In par-

ticular, the study of the new early prognostic factors that modulate the stroke 

outcome may support personalized therapeutic interventions to improve patients' 

recovery.  

Furthermore, in section 2.6, we presented a pilot study, and we identified the 

association between EEG changes and different motor deficit domains measured 

by specific motor scales. The significant correlation between the slowing of EEG 

and symptom-specific motor decline indicates that EEG assessment may be a use-

ful biomarker for objective monitoring of progression and neurophysiological ef-

fect of PD's rehabilitation approaches. However, in the case of the PD, this has 

to be yet confirmed in the more extensive study.  
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Chapter 3. MOTOR IMAGERY AND ACTION 

OBSERVATION AS NEUROREHABILITATION 

PARADIGMS 

3.1 INTRODUCTION 

Motor Imagery (MI) can be defined as the cognitive ability linked to the vol-

untary motor act representation without the body's physical movements [149]. 

This mental activity is accomplished by high-order processes that enable the re-

activation of specific motor actions without any motor execution. Motor-Imagery 

neuroimaging studies reveal activation of neuronal networks present in cortical 

and subcortical areas, like lateral and medial premotor cortex, anterior cingulate 

areas, posterior cerebellar cortex [150], supplementary motor area [151], [152], 

sensorimotor cortex [153] and primary motor cortex [154]. Some studies also show 

that the activated cortical areas during physical movements overlap with those 

engaged in the motor imagery [155]–[157]. Another neuroimaging study also re-

viles the relevance of the basal ganglia's neuronal networks and the striatal-

thalamocortical pathways activated by both executed and imagined movements 

[158]. 

The increase of cellular excitability in thalamocortical systems results in the 

EEG's desynchronisation and leads to so-called Even-Related Desynchronisation 

(ERD). Vice versa, during mental inactivity (idling) or after the termination of a 

voluntary movement, the Event-Related Synchronisation (ERS) is notable [125]. 

Both ERD and ERS are neurophysiological signals that are linked to the MI [13], 

[49], [125], [159]. 

As a mental technique, the MI approaches can be divided into visual and 

kinaesthetic. The kinaesthetic MI relates to the proprioception, with all the sen-

sory consequences that lead to the so-called "first-person perspective" strategy. 

On the other hand, the visual MI, the idea is to produce a visual image of the 

movement mentally "third-person perspective" [160], and it is related to the Ac-

tion Observation (AO) [13], [161]. The main difference between AO and MI is 

that the former can be considered a dynamic state that internally activates a mo-

tor action without having a physical motor output. Simultaneously, AO is the 

simple observation of someone else performing a movement, seeming to be a more 

passive strategy.  

The evidence that AO and MI activate similar neuronal circuits to the one 

during actual physical movement represents a breakthrough from the neurological 
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point of view, and leads to a hypothesis that the thru MI and AO one can im-

prove motor performance [124], [162]–[165]. The shared neural representations 

grow the evidence that both AO and MI may promote brain plastic changes and 

motor learning in a way similar to motor exercise [166]. Since cortical representa-

tions in the brain are highly dynamic, the experience can modify the brain struc-

ture: this plastic ability is an essential component of learning and recovery after 

neural injury, but it has to be kept active in order to prevent the reorganisation 

in both the topographical representations of somatosensory and motor systems as 

a result of inactivity and disuse [167], and in this context, MI and AO play a rel-

evant role in the (re-) motor skills learning. Our study results on AO and MI 

[150] on the resting-state are reported in the following sections. 
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3.2 MOTOR IMAGERY AND ACTION OBSERVATION IN 

NEUROREHABILITATION 

Motor Imagery (MI) is often also seen as a potential motor rehabilitation 

tool and functionally close neuronal circuits for motor imagery and physical 

movement support this idea. The MI as a training technique has been employed 

to improve performance and functional recovery in a variety of applications such 

as learning complex motor skills in sports practices [7], rehabilitation of gait dis-

orders [15], [168]–[170], improvement of the motor performance of the patients 

with limited motor functions or people with spinal cord injury [171]. It has also 

gained attention as a promising, supplementary rehabilitation tool, in re-learning 

motor skills in people with neurological disorders as stroke patients [172], [173] or 

Parkinson's disease (PD) patients [15], [124], [174]. In general, MI tasks have a 

significant effect on PD individuals, as it accesses proprioceptive representations 

which may result in an improvement in the individual's locomotor ability, with a 

relevant effect on the Freezing of Gait (FOG), considered the main factor respon-

sible for the risk of falls [175]. Besides, the combination of MI and real physical 

practice may help reorganise better PD patients' brain characterised by FOG epi-

sodes [176] and reduce symptoms such as bradykinesia [6]. Moreover, an essential 

advantage of MI rehabilitation is that it is a suitable technique for home-based 

exercises to maintain gains and prevent the decline of PD patients' motor per-

formance because of the disease's progression [177].  

Furthermore, MI seems to be a promising neurorehabilitation tool for stroke 

[178]. Some studies report MI's potential of neurorehabilitation on stroke patients 

who showed clinical improvements assessed by neuroimaging techniques [167], 

[179]. Other studies show improvement even in chronic stroke patients thanks to 

MI's employment [180], [181].  

On the other hand, it is known that action observation (AO) also engages 

almost the same brain regions as action execution [182], [183]. The neurophysio-

logical basis for this hypothesis lies in the presumed human mirror neuron sys-

tem, where cortical motor regions that are active both when we execute an action 

and when we observe similar actions being performed by others [182]–[184].  Re-

cent work has described that "action observation network" involves parietal, 

premotor, and occipitotemporal brain regions, too [183], [185]. By sharing motor 

circuits with action execution, AO may prime the motor system for subsequent 

motor practice [186], [187]. In that regard, in the last decade, AO has been rec-

ommended in the clinical environment as additional neurorehabilitation settings 

[11], [12].  
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The cognitive literature proposes that the effective kinaesthetic sensations, 

including movement, effort, heaviness, and position provide information that ena-

bles the human system to determine the position of limbs and to identify the ori-

gins and the cause of action [188]. Further, it has been proposed that there are 

functional equivalence and the use of common neural pathways in motor prepara-

tion/execution and motor imagery [189], [190]. Thus, because motor prepara-

tion/execution and motor imagery involve the same motor representation sys-

tems, they likely have the same neuronal substrates [182], [183], [191]. 

To hypothesize about the effect of the neurorehabilitation on in clinical pop-

ulation, we need to study how MI and AO and their combination alter oscillatory 

activity in healthy individuals. The finding from the study can be further used for 

the design of the novel neurorehabilitation strategies that are based on Brain-

Computer Interfaces (BCI). 
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3.3 COMBINED AND SINGULAR EFFECTS OF ACTION OB-

SERVATION AND MOTOR IMAGERY PARADIGMS ON 

RESTING-STATE SENSORIMOTOR RHYTHMS: A STUDY 

ON HEALTHY INDIVIDUALS3 

3.3.1 Introduction  

In neurorehabilitation, both AO and MI have shown beneficial effects [7], 

[178]. Moreover, together with physical exercise, MI does not produce only bene-

ficial effects on athletes [192] and musicians [193] but also improves behavioural 

outcomes on a clinical population suffering from stroke and other neurological 

impairments [186], [187], [194]. 

The cortical activation using either AO or MI alone was studied [13], but un-

til now, the investigations on how to combine MI with AO are quite rare. Accord-

ing to recent studies, combined AO and MI could enhance motor circuits' activa-

tion by producing changes in the EEG [160], [195], suggesting that the combined 

use of them might be even more useful. On these bases, in order to investigate 

the possibility of development of new neurorehabilitation protocols, this study 

examines changes in resting-state oscillatory activity in the sensorimotor area af-

ter AO, MI and their simultaneous application, in healthy subjects. The findings 

are significant as they can give information for the future design of the BCI pro-

tocols. 

3.3.2 Materials and Methods 

3.3.2.1 Subjects and experimental protocol 

Experiments were performed on 30 right-handed (Edinburgh Handedness In-

ventory [196] (83.5 ± 19.3) participants (18 females, 12 males; mean ± 1SD age: 

21.66 ± 1.18 years), all with normal or corrected-to-normal vision. The subjects' 

motor capabilities were evaluated by the Italian version of Movement Imagery 

Questionnaire [197], [198].  The research was conducted according to the princi-

ples of the Declaration of Helsinki. All participants released their informed con-

sent to participate in the study after all procedures had been fully explained. 

Participants were randomly assigned to one of three motor neurorehabilita-

tion paradigms: AO, MI and combined AO+MI, thus yielding three different 

groups with 10 participants each. The experimental protocol consisted of (1) pre-
 

3 Miladinović, A., Barbaro, A., Valvason, E., Ajčević, M., Accardo, A., Battaglini, P. P., & Jarmolowska, J. (2020). Combined and Singular Effects of Action Obser-
vation and Motor Imagery Paradigms on Resting-State Sensorimotor Rhythms. IFMBE Proceedings, 76. https://doi.org/10.1007/978-3-030-31635-8_137 
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resting-state recording, (2) one of the mentioned paradigms repeated for 40 times 

and (3) post-resting-state recording (Figure 3.1). to avoid Fixation-related poten-

tials and to increase comfort, after every 10 trials a long pause was introduced. In 

each experimental block, participants were seated in a dark room in front of a 

computer screen that was located at eye-height in front of the observer's central 

viewing position. 

In the AO paradigm, subjects were asked to watch a video showing a right 

hand reaching, grasping and moving objects. The video was filmed from the sub-

ject perspective, with the aim to create an immersive effect. A male or female 

hand was displayed in accordance with the subject's gender. Each trial started 

with the warning "beep" sound followed by two seconds of black screen after 

which the video-clip started to play automatically. The single video had a dura-

tion of 6.5 seconds, and it was presented 40 times. In order to keep subjects at-

tentive, two types of videos with a randomised number of precision or coarse 

grasp into a single block (of 10 trials) were presented, and the subjects were in-

structed to count the number of appearances of one of them and report it after 

an experimental block of 10 trials. 

 

Figure 3.1 - A schematic diagram of the experimental protocol which begins and ends with the resting-
state recordings of 5min (grey boxes) and administers (for N=40 repetitions) one of the AO, MI and AO+MI 

paradigms, to each 10-participant group (denoted by Gr.1-3 

In the MI paradigm, the subjects were trained on how to properly perform 

motor imagery, simulating their proprioception and adopting the first-person per-

spective (i.e. imagining the movement of their own hand). After the training, the 

recording session started with the "beep" warning followed by the still image of a 

grip (hand movement) as in AO. In this case, subjects were instructed to mental-

ly simulate the action by trying to "experience the same feelings as during the ac-

tual execution" facilitating kinaesthetic motor imagery approach. As in AO, the 

subjects had 6.5 seconds for MI, and the process repeats for 40 times. 

For the AO+MI condition, subjects observed the same videos presented in 

AO, but in this case, they were additionally required to perform MI correspond-

ing to the displayed video. The paradigm was performed with the same parame-

ters (duration and repetition) as the previous two. 
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3.3.2.2 EEG acquisition and processing 

5-minutes resting-state EEG for each subject was recorded before and imme-

diately after each session. EEG signals were sampled at 256 Hz by using SAM 

32FO amplifier (Micromed, Treviso, Italy) and a prewired head cap with 10 

Ag/AgCl electrodes (Spes Medica, Genova, Italy) placed at standard 10-10 loca-

tions covering the sensorimotor area (FC3, FC4, C3, C4, C1, C2, C5, C6, CP3 

and CP4). The reference electrode was placed in POz, while the ground electrode 

was placed in AFz. Electrode impedances were kept below 5 kΩ. EOG activity 

was recorded to identify eye-movement artefacts. EEG off-line analysis was car-

ried out using MATLAB® (The MathWorks Inc., Natick, MA). All channels 

were digitally filtered with the 0.5-45 Hz 2nd order Butterworth bandpass filter. 

Artefacts were manually discarded after visual inspection of tracings and 60 sec-

onds of stationary (signal with the mean and the variance constant over time) 

EEG signal pre and after motion paradigm epochs were selected for spectral 

analysis. Power spectral density (PSD) was estimated for each channel using 

Welch's periodogram [79] (averaged on 11 tracts of 10s each, windowed with a 

Hamming window, with 50% overlap). Subsequently, for each channel the relative 

power in each spectral band (delta: 0.5-4Hz; theta: 4-8Hz; alpha: 8-13Hz; mu: 8-

10Hz; betalow:13-18Hz; betahigh: 18-30Hz) was calculated. For each subject and 

each band average power was calculated for left (FC3, C3, C1, C5 and CP3) and 

right (FC4, C4, C2, C6 and CP4) sensorimotor area channels. Differences be-

tween pre and post-activity for each of three motion paradigms and for each 

power band were determined by using Wilcoxon signed-rank test. P-values<0.05 

were considered statistically significant. 

3.3.3 Results 

Median and range values of relative powers of the considered bands during 

the resting state before (PRE) and after (POST) each of the three performed 

paradigms are reported in Table 3.1. Difference between PRE and POST activity 

in the case of MI, showed a significant decrease of power in the delta, theta and 

mu bands on the left contralateral sensorimotor area, while low beta increased 

significantly. Except for the mu band, similar behaviour was observed on the 

right ipsilateral side, where delta and theta also decreased significantly, and low 

beta became significantly higher. No significant changes were observed for AO in 

any of the analysed bands. In the case of AO+MI, a significant difference was 

found only in the theta band, which decreased in both hemispheres.  
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Table 3.1 - Median (range) values of relative power in delta, theta, beta and sigma bands during the rest-
ing state right before and after each of the three paradigms (MI, AO and AO+MI). * statistically different from 
Pre (p-value < 0.05). 

 

3.3.4 Discussion 

The main finding of our study is that motor imagination induces higher acti-

vation of the motor cortex with respect to action observation or their combina-

tion, inducing significant changes of resting-state EEG in mu and low beta bands, 

also known as sensorimotor (SMR) bands, and in the slower oscillatory bands, in 

particular delta and theta. 

The effect of MI on mu rhythms could be explained by the specific repetitive 

motor event-related synchronisation (ERS) and desynchronisation (ERD) occur-

ring during imagination. During ERS/EDR the strongest activity is present on 

the contralateral hemisphere with respect to the imagined arm [48], [125], [199], 

SM Area BAND Paradigm PRE POST  p-value 

Left 
contralateral  

delta 
AO 0.413 (0.275-0.478) 0.437 (0.330-0.565) 0.148 
MI 0.429 (0.226-0.517) 0.377 (0.154-0.545) 0.049 * 

AO+MI 0.412 (0.279-0.671) 0.342 (0.263-0.770) 0.82 

theta 
AO 0.120 (0.084-0.198) 0.121 (0.092-0.158) 0.461 
MI 0.110 (0.081-0.198) 0.085 (0.059-0.170) 0.004 * 

AO+MI 0.118 (0.075-0.171) 0.085 (0.073-0.168) 0.027 * 

alpha 
AO 0.085 (0.068-0.193) 0.082 (0.062-0.254) 0.844 
MI 0.082 (0.071-0.135) 0.078 (0.054-0.135) 0.557 

AO+MI 0.089 (0.045-0.132) 0.072 (0.038-0.128) 0.203 

mu 
AO 0.038 (0.029-0.093) 0.034 (0.020-0.064) 0.109 
MI 0.035 (0.027-0.065) 0.029 (0.021-0.045) 0.048 * 

AO+MI 0.037 (0.026-0.058) 0.031 (0.017-0.045) 0.164 

betalow 
AO 0.098 (0.048-0.394) 0.135 (0.064-0.211) 0.945 
MI 0.127 (0.055-0.342) 0.203 (0.077-0.498) 0.01 * 

AO+MI 0.111 (0.060-0.326) 0.142 (0.039-0.349) 0.25 

betahigh 
AO 0.147 (0.116-0.227) 0.132 (0.073-0.176) 0.195 
MI 0.154 (0.062-0.392) 0.137 (0.068-0.408) 0.77 

AO+MI 0.165 (0.041-0.287) 0.118 (0.042-0.304) 0.95 

Right 
ipsilateral  

delta 
AO 0.383 (0.276-0.571) 0.384 (0.283-0.527) 0.94 
MI 0.444 (0.211-0.526) 0.351 (0.128-0.544) 0.037 * 

AO+MI 0.497 (0.263-0.664) 0.375 (0.285-0.688) 0.426 

theta 
AO 0.120 (0.084-0.191) 0.113 (0.090-0.170) 0.461 
MI 0.106 (0.072-0.202) 0.086 (0.057-0.174) 0.02 * 

AO+MI 0.124 (0.088-0.166) 0.101 (0.060-0.146) 0.008 * 

alpha 
AO 0.099 (0.069-0.193) 0.095 (0.050-0.234) 0.742 
MI 0.079 (0.061-0.106) 0.076 (0.045-0.136) 0.846 

AO+MI 0.086 (0.042-0.134) 0.073 (0.048-0.132) 0.652 

mu 
AO 0.040 (0.031-0.082) 0.040 (0.020-0.057) 0.312 
MI 0.035 (0.024-0.051) 0.032 (0.014-0.041) 0.105 

AO+MI 0.035 (0.018-0.063) 0.032 (0.016-0.050) 0.301 

betalow 
AO 0.128 (0.042-0.427) 0.172 (0.093-0.280) 0.25 
MI 0.123 (0.057-0.363) 0.163 (0.097-0.533) 0.004 * 

AO+MI 0.096 (0.065-0.232) 0.154 (0.062-0.350) 0.25 

betahigh 
AO 0.150 (0.096-0.195) 0.141 (0.101-0.188) 0.945 
MI 0.127 (0.062-0.433) 0.153 (0.060-0.435) 0.922 

AO+MI 0.133 (0.069-0.209) 0.099 (0.059-0.290) 0.652 
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which can lead to effective changes of the resting-state EEG even after the MI 

session has been completed.  

On the other hand, the significant increase in the lower beta band, in MI in 

comparison to AO and AO+MI, could be interpreted as a result of repeated mo-

tor specific beta rebounds (ERS) occurring immediately after every imagination 

on both contralateral and ipsilateral hemisphere, and are physiologically related 

to sustained muscle contraction or voluntary movement [199].  

The present study participants were explicitly asked to use motor imagery to 

simulate a movement. Therefore, we speculate, that motor imagery can assist in 

creating a vivid simulation of the same feelings as during the actual execution 

[200], [201], activating in this way, the common neural pathways in motor prepa-

ration/execution and motor imagery [189], [190].  Our results suggest that motor 

imagery induce most efficiently changes of resting-state of SMR. 

Regarding the effects of AO on the resting-state, in our case, no significant 

change was observed. The possible lack of attention during the task has to be dis-

regarded as an explanation for the results since all subjects had an excellent per-

formance on the side-task (counting the repetition of hand movements) that con-

trolled their focus on a task. As a matter of fact, the inefficacy of AO to induce 

significant corticomotor variation in SMR is probably due to a lower activation 

causing no significant variation of resting-state activity with respect to MI. 

Concerning the effects of combined action observation and motor imagery on 

the resting-state of SMR, in our case, no significant change was founded. There-

fore, we must recognise that brain activity during motor imagery with action ob-

servation was not merely the sum of these two tasks. It should be noted that in 

such dual-task, the cognitive load requested to the participants was very high, 

and this could have an impact on its efficiency. 

Clearly, our results support the idea that MI, AO and AO+MI all cause dif-

ferent changes of SMR. In fact, despite the apparent similarity, suggesting a 

common substrate underlying MI and AO [161], the present results show substan-

tial differences between them, that could be explained from a different theoretical 

point of view.  

MI is an explicit covert mental state during which participants internally 

simulate a movement without actually performing it [202]. During real execution, 

mental simulation of movement involves anticipations about that action's sensory 

and motor effects. Precisely, the framework of internal models suggests that, dur-

ing both actual and imagined actions, the future sensorimotor state is predicted 

by the given efferent copy of the motor command and the body's current state 

[202]. It has been proposed that such kinaesthetic feeling related to the limb is 
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typically processed through the parietal region that modulates, in turn, motor 

cortex facilitation during MI [203].  

In contrast, during AO, the visual inputs of the movement performed by the 

others would not have immediate access to the observer's motor system [33]. In 

this context, our results are not in contrast with previous findings, which have 

suggested the existence of a common neural substrate for MI and AO. We believe 

that both AO and MI activate the motor network but exploit different sensory-

motor processes. AO is based on visual information processing involved in the 

movement, indirectly activating the motor cortex [202]. This is a type of bottom-

up processing, in which attention is mainly focused on sensory input that is ex-

ternal to the body. On the other hand, MI is related to top-down internal pro-

cessing. This is the main difference, which in our opinion, can explain why in a 

short session of only 15 minutes, MI, but not AO, activated the motor system 

rapidly, causing a change in the oscillatory activity in the following resting state.  

In other words, we suggest that mental simulation of movement, which in-

volves anticipations about sensory and motor effects of that action, induces high-

er activation of the motor cortex with respect to action observation. 

We also found that theta power band decreased bilaterally in MI and in 

AO+MI and that the delta power band decreased contralaterally in MI. The role 

of the theta band is usually related to memory formation, information processing 

[204], working memory [205] and sensorimotor integration [206]. It was also re-

ported that the theta band plays a role in motor imagery tasks [207]. There is 

some evidence supporting the idea that frontal theta EEG activity correlates neg-

atively with the resting state's default mode network [208]. Another study reports 

that amplitude increase in low-frequency oscillations (e.g., delta, theta) are relat-

ed to a decrease of the BOLD signal. Based on theoretical considerations, it is 

suggested that higher energy dispersal, and therefore a higher BOLD signal, is re-

lated to a relative shift in neuronal activity from lower to higher frequencies 

[209]. This would result in, for instance, reduced delta and theta and increased 

beta amplitudes. For this reason, we suggest that the default mode network of 

brain regions could be deactivated during attention-demanding cognitive tasks 

required by both MI and AO+MI paradigm. Thus, the delta and theta decrease 

may be considered to reflect the participant's sensory-motor integration and at-

tention load.  
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3.4 SUMMARY 

In summary, in this chapter, we defined Motor Imagery (MI) as the cognitive 

ability linked to the voluntary motor act representation without the body's phys-

ical movements [149]. Moreover, MI approaches can be divided into visual and 

kinaesthetic. The kinaesthetic MI relates to the proprioception, and so-called 

"first-person perspective" strategy, while the visual on the visual image of the 

movement mentally or so-called "third-person perspective" [141]. The second is 

related to the Action Observation (AO) [140], [142], a neurorehabilitation strate-

gy that activates motor cortex just by observation of motor act. State of the art 

literature shows that both are promising approaches for neurorehabilitation. 

Therefore, to study AO and MI's effect, we have to examine how each alters the 

individuals' oscillatory activity. The study's finding can be further used to design 

novel neurorehabilitation strategies based on Brain-Computer Interfaces (BCI), 

targeting specific brain regions in specific EEG frequency bands. 

Our study on healthy individuals demonstrates a direct and rapid effect of 

cortical modulation induced by MI on the EEG resting-state, and therefore, pro-

vides for support for further development of MI-based BCI (MI-BCI). The study 

also shows substantial differences between MI and AO, and such information may 

be used to improve clinical protocols of AO and MI and perform further studies 

on the topic. 
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Chapter 4. BRAIN-COMPUTER INTERFACES 

4.1 INTRODUCTION 

BCI systems' taxonomy can be divided into two main categories: (1) invasive 

and non-invasive, (2) endogenous and exogenous.  

The invasive BCI requires the electrodes to be implanted in the brain (thus 

suitable for subjects with severe disabilities only). Due to the high quality of the 

acquired signal, the invasive BCI systems provide high signal classification accu-

racy. Such invasive BCI system can be implanted directly on neuronal tissues, al-

so called fully invasive, or inside the skull. The skull implanted electrodes for BCI 

lower risk of forming scar-tissue in the brain than fully invasive.  

The principal disadvantage of invasive BCI is that they are “invasive, " re-

quiring that the subject experience a surgery operation to use such a system. Be-

sides, implanted electrodes have a restricted lifetime, and periodical replacement 

is necessary, which increases possible health risks during the procedures. Lastly, 

implanting electrodes for BCI in a human's brain also raises various ethic issues.  

The mentioned points make non-invasive BCI most used and the most com-

mon BCI systems. The focus will be exclusive to the non-invasive BCI as the 

most commonly used ones for motor neurorehabilitation. 

Compared to the invasive BCI, non-invasive procedures do not require im-

plantations, and the subject gets to interface with the machine through wearable 

devices, such as EEG. Signals acquired by EEG have a low amplitude, in the or-

der of some microvolts, and therefore requires sophisticated low noise and high 

gain acquisition devices. However, the noisy recording environments and effects of 

the human tissue on the signal's attenuation make such systems less reliable than 

invasive ones. Apart from the advancement in the acquisition equipment, the en-

hanced usability, costs, and information transfer, the performance advancement 

was made using modern machine learning (ML) and data-driven signal processing 

techniques.  

In addition to the classification to invasive or non-invasive, BCI system can 

be classified as exogenous or endogenous depending on the recorded signal's na-

ture. The exogenous one depends on neuronal activity evoked by external stimuli 

(e.g., visual evoked potential, VEP, or auditory evoked potentials, AEP). On the 

other hand, in the endogenous case, the user voluntarily produces the required 

signal. In other words, it is not based on an external stimulus, but on internal 

self-placed and triggered brain rhythms.   
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4.2 EEG SIGNALS TO DRIVE BRAIN-COMPUTER INTER-

FACES 

The advancement of the research in the EEG field had brought discoveries 

that specific neurophysiological signals can be used to drive BCI systems. 

These signals can be divided into two main categories [210], [211]: 

 Evoked signals that are produced unintentionally by the subject when 

he/she perceives an external stimulus. Those signals are also known as 

Evoked Potentials (EP), and they are the basis for exogenous BCIs. 

 Spontaneous signals are voluntarily elicited by the user, usually with-

out a specific external stimulus and following an internal cognitive pro-

cess. Those signals are the basis for endogenous BCI systems. 

4.2.1 Evoked potentials as the basis of exogenous BCI 

The Steady-State Evoked Potentials (SSEP) and the P300 [210], [211] belong 

to the evoke potential BCI class. The main advantage of evoked potentials is that 

contrary to spontaneous signals, they do not require any specific training for the 

user, as the brain automatically produces them in response to a stimulus. None-

theless, these signals require external stimulations to be evoked, which can be un-

comfortable, and their applications are more in the domain of communication and 

diagnostics. 

Steady-State Evoked Potentials (SSEP) are brain potentials observable 

on EEG when the subject perceives a periodic stimulus (often flickering light). 

Therefore, the SSEPs can be quantified by changes of the EEG power in the fre-

quencies corresponding to the periodic stimulus or its harmonics and sub-

harmonics [212], [213] (see Figure 4.1).  

There are different kinds of SSEP, such as Steady State Visual Evoked Po-

tentials (SSVEP) [212], [214], [215], auditory SSEP [213] or somatosensory SSEP 

[216]. 
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Figure 4.1 - EEG spectrum showing SSVEP for stimulation frequencies f1. We can notice the peak of 
power at the stimulation frequencies and their sub-harmonic (Source: [217], license CC-ND-NC 4.0). 

 

Although its advantages and potential capabilities to distinguish up to 48 
commands [218], due to the adverse effect of the aggressive periodic stimulation, 

its applications are today limited [219]. In many cases, the SSEP systems can be 

replaced by an eye-tracking device with similar or even better performances [220]. 

The second class of the evoke potentials belongs to the so-called P3 or P300 
potentials. The P300 consists of a waveform appearing about 300 ms after a rare 

(non-frequent) stimulus (see Figure 4.2) [221]. It is evoked by the "odd-ball" par-

adigm, in which the subject is requested to attend a random sequence of rare 
(target) and frequent stimulus. The P300 is mostly used as a communication 

channel in the so-called P300 spellers [221]–[225]. 

 

Figure 4.2 – A prototypical ERP showing different components, including the N100 (labelled N1) and 
P300 (labelled P3). Note that the ERP is plotted with negative voltages upward, a common, but not universal, 

practice in ERP research (Source: [226] License CC BY-SA 3.0) 
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4.2.2 Spontaneous EEG activity as the basis of the endogenous BCI 

This category can be divided into non-motor specious activity (such as slow-

cortical potentials, alpha wave control, etc.) and sensory-motor activity induced 

by Motor-Imagery. These activities are the basis for the BCI's endogenous group 

and more important class for BCI neurorehabilitation. A moderately large num-

ber of non-motor cognitive processing tasks can induce observable EEG changes 

and therefore, suitable for BCI. These changes can be induced by asking the sub-

ject to perform mental tasks, such as rotation of the geometric figures, counting, 

mathematical calculations, etc. [210], [227]–[230]. These tasks are, for instance, 

mental mathematical computations, mental rotation of geometric figures, visual 

counting, mental generation of words, music imagination, etc. Some of these tasks 

can be used for the neurorehabilitation of ADHD [231], Autism-spectrum disorder 

[232], [233], etc.  

The second group are so-called slow cortical potentials (SCP), slow oscillato-

ry activity [234], [235], that can be used for two-class (binary) BCI. SCP control 

requires users training and can be achieved by operand-conditioning [236]–[239]. 

One type of operand-conditioning is Motor-Imagery, which can elicit characteris-

tic somatosensory rhythms. 

Since this manuscript is mainly focused on applications of BCIs on motor 

neurorehabilitation, the further manuscript will exclusively be centred on endoge-

nous systems based on somatosensory rhythms or so-called Motor-Imagery Brain-

Computer Interfaces (MI-BCI).  

4.2.3 Motor Imagery EEG signal to drive BCI 

A particular type of EEG signal recorded from the primary sensorimotor 

(SMI) cortex (the so-called sensorimotor rhythm, SMR) is the basis for Motor-

Imagery based BCI (MI-BCI). Since it allows the patient to interact with the sys-

tem more naturally, it has demonstrated its usefulness for the motor neuroreha-

bilitation, particularly for control of virtual limbs on the computer screen or Vir-

tual-Reality (VR) environments [169], [240]–[242]. BCI based on EEG SMR is 

known as motor imagery Brain-Computer Interface (MI-BCI), a type of endoge-

nous system that refers to imagining a specific action using a kinaesthetic feeling 

of the movement without executing it.  
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Figure 4.3 - Time course of ERD and ERS over left and right sensorimotor cortex during MI with a spa-
tial distribution (lower image) of the beta ERS calculated for the cortical surface of one subject after the execu-
tion of a real right-hand movement (left) and MI of the same movement  (Source: [243] License: IEEE copy-

right) 

The basic principle relies on the fact that the movement or the preparation 

for movement are typically accompanied by a decrease in mu/alpha activity (8-13 

Hz) over SMI cortex, particularly evident in the movement's contralateral hemi-

sphere, which is called event-related desynchronization (ERD). On the contrary, 
the rhythm amplitude increases, or event-related synchronization (ERS) occurs in 

the post-motor imagery period and relaxation. Therefore, the motor-imagery 

starting phase or preparation suppresses the mu's cortical activity (mu-rhythm: 

8-13 Hz) and beta (13-30 Hz) bands (see Figure 4.3). 

4.2.4 Summary 

The neurophysiological signals presented in this section have found their ap-

plications in different area, for entertainment by controlling video games, as a 
communication channel for disabled individuals, for controlling stimuli that can 

be used for neurorehabilitation, etc. The advantage of EP is that they can be 

used without subject training, but most can be used as a communication channel. 

Besides, EPs require external stimuli that are not always pleasant for the sub-
jects. On the other hand, spontaneous signals are more natural since they rely on 

internal (endogenous) task without external stimulation. SPs' drawback is that 

the subjects need to be trained and that the generated EEG response is harder to 

discriminate. It is a subject of higher intersubjective differences than EPs, casing 

lower reliability and overall BCI performance. Nevertheless, the advancement of 
signal processing and machine learning can resolve these issues [244]. Therefore, 

this is one reason why the thesis is focused on spontaneous activity, mainly to MI 

signals that are primarily described in the literature for its effects in neurorehabil-

itation. Therefore, the following sections are dedicated to the overview of the 
steps necessary to make EEG-based BCI system work.  
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4.3 BRAIN-COMPUTER INTERFACE FRAMEWORK 

A typical signal processing pipeline for a BCI system includes preprocessing, 

feature extraction, and classification stages (see Figure 4.4). Finally, the classifier 

out is fed to the feedback presentation. In the preprocessing step, signals are fil-

tered in the spatial or spectral domain. Then, the reprocessed signals are further 

processed in the feature extraction framework. In practice, all the pipeline com-

ponents have to work in real-time and provide continuous results to be presented 

back to the patients. Therefore, the BCI systems impose restrictions in the final 

classifier's choice. Many non-invasive BCI systems used features derived from 

single channels, including frequency-band power, autoregressive model coeffi-

cients, and wavelets. These features allow BCIs to discriminate between different 

brain mental tasks. The classifier's choice is limited and mainly restricted to the 

linear ones, making the feature extraction step the most crucial step of the pipe-

line [245]. Therefore, an additional mapping is required that will reduce the EEG 

data dimensionality, such as spatial filtering. Spatial filters usually create a linear 

mixture of existing signal channels, selecting the most relevant ones.  The spatial 

filters are directly linked to the feature extraction step, aiming to find a suitable 

representation ("signal features") of the data that simplifies the subsequent clas-

sification or detection of specific brain patterns.  

 

 

Figure 4.4 - Block diagram of the closed-loop BCI procedure. 

4.3.1 Preprocessing 

The preprocessing is the next step after data acquisition, and it generally re-

fers to the signal denoising and re-referencing the electrodes, if necessary. In the 

BCI, the denoising procedures are rather limited since the fast and real-time re-

sponse is required. There is usually no EEG data available (usually only a current 

signal trial). The procedure can involve detecting excessive EOG and EMG arte-

facts by using specialized electrodes on specific positions [246]. Depending on the 

activity required for the BCI, these operations can be performed by temporal fil-

tering of the raw data. Alternatively, an artefact detection mechanism can be de-
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ployed to reject the trail and inform a subject to repeat the command. The pre-

processing is not always limited to the temporal domain but can also be extended 

to spatial and spectral or a combination [247]–[249]. The preprocessing steps are 

not only used for cleaning the signals. The temporal filters, such as high-, low- 

and band-pass filter, are generally used to restrict the frequency range in which 

we expect neurophysiological signals. For example, if we are building the Motor-

Imagery based BCI, we can expect that the neurophysiological signals are in the 

sensorimotor frequency range of 8-32Hz [248]. Simultaneously, by applying band-

pass filtering, we can eliminate other non-desired artefacts, such as slow EEG 

signal drifts caused by the polarization of EEG electrodes or 50Hz power-line 

noise in Europe. Most used temporal filters are achieved by Discrete Fourier 

Transform (DFT) or by the Finite Impulse Response (FIR) or Infinite Impulse 

Response (IIR) filter types. Likewise, to the temporal domain, we can also apply 

various spatial filters to select relevant channels. This can be achieved by linear 

mapping or weighting of the contribution from different electrodes covering dif-

ferent brain regions [247].  

In simple words, if we know the brain location where the expected neuro-

physiological signal comes from, associate higher weights with the corresponding 

channel, and lower or zero to all other non-relevant channels. Our previous ex-

ample of Motor-Imagery-based BCI shows that the signal comes from the motor 

area. Therefore, we can select electrodes C3 & C4 located over the motor or sen-

sorimotor cortex [49], [243]. 

Another example of simple spatial filters are Common Average Reference 

(CAR) and the Surface Laplacian (SL), to reduce background activity and en-

hance the source signals [247]. In the class of more advance preprocessing tech-

niques that regard the spatial characteristic of the signals are Independent com-

ponent analysis and blind source separation [250], Principal Component Analysis 

(PCA) [251]–[253], various spatial filters based on Common Spatial Patterns 

(CSP) algorithm [254], and other methods. Because of its relevance for Motor-

Imagery based BCI, they will be described in more details in a specific section. 

4.3.2 Feature extraction 

The feature extraction step is usually most important and concerns the selec-

tion of the characteristics, including salient once, that best describes the neuro-

physiological signal. It is worth mentioning that there is no clear boundary be-

tween preprocessing and feature extraction, especially in advanced data-driven 

techniques. The conceptually separate step is required to describe the need for 

this process, as the acquired EEG data can vary both in sampling frequency and 

in many channels. Therefore, the large number of data points in time-series data 

in most cases cannot be fed directly to the classifier. The idea is that a selection 
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of sub-portion of the data or transforming the data can quantify fewer data 

points that bring more information and, if possible, features some of the desirable 

statistical properties (e.g., normal distributions). 

There are various feature extraction strategies proposed for BCI [255], [256], 

and they can usually be divided into the 4 groups: 1) temporal domain features 

(signal amplitude, fractal dimension, autoregressive parameters, Hjorth parame-

ters, etc.) [230], [257]–[260], 2) spectral-domain features (band power features) 

[227], [243], [249], [261], [262], 3) time-frequency, a combined approach of tem-

poral and spectral information (short-time Fourier transformation, wavelets etc.) 

and 4) hybrid method based on spatial-spectro-temporal information 

4.3.3 Classification 

The final step of BCI modelling is a classification [256], [263]. Depending on 

if the desired outcome is continuous or belongs to a discrete class, we can use re-

gression algorithms [264], [265] or classification algorithms [266], [267]. Since most 

of the reported BCI systems [255], [267] uses classification; this chapter will be 

focused more on them. The classification processes can usually be divided into 

two phases:  

1) training phase, where the classifier can "learn" class belonging char-

acteristics from the extracted feature, and the 

2)  online where the classifier's goal is to assign a class label automati-

cally. 

According to the literature, the classifier used for BCI can be divided into 

five main categories:  

 linear classifiers, 

 nonlinear Bayesian classifiers,  

 neural networks,  

 nearest neighbour classifiers, and  

 mixed 

As the thesis focus is on the preprocessing and feature extraction techniques, the 

following text introduces only linear classifiers that are used exclusively through-

out the performed BCI experiments. Full description of the other classifiers can 

be found in the F. Lotte work [268]. Recently, two novel aspects are gaining at-

tention in the BCI community. First, some authors have successfully applied 

brain connectivity modelling exploring the communication patterns among brain 

regions and the network organization, progressively superseding the classical ap-
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proach relying on simple regional activations or synchronization [269]. Second, 

other techniques such as and deep learning are becoming pervasive for their ca-

pability of modelling and predicting complex scenarios where a huge amount of 

data is involved [270], [271]. However, these approaches were not considered in 

this work from the practical point of view. The BCI requires fast modelling with 

relatively limited dataset, usually acquired in the same session. In practice there 

is a little time between the calibration session (data acquisition for modelling) 

and the application of the model in online session for rehabilitation. Nevertheless, 

with the introduction of inter-subject and inter-session transfer learning tech-

niques discussed in the section 6.2 this issue becomes less prominent and addi-

tional data obtained from other sessions and from other subjects open the door 

for their application in the future. 

4.3.3.1 Linear classifiers  

Among the classification methods, linear classifiers were the widely used clas-

sifiers for BCI [272]. There are two main types of linear classifiers used for BCI 

design, Linear Discriminant Analysis (LDA) [265] and Support Vector Machines 

(SVM) [273], [274]. As the thesis manuscript focuses on the preprocessing and 

feature extraction steps, the Linear Discriminant Analysis (LDA) was selected as 

the classification algorithm. The LDA was chosen as one of the most popular 

classifiers for EEG based-BCIs [270]. The shrinkage sLDA classifier [275], [276] is 

effective with little training data and effective for EEG-based BCI design. The 

shrinkage parameter was obtained by optimizing the problem analytically. 

The Linear Discriminant Analysis (also Fisher's LDA) is the classifier that 

separates the data using a hyperplane. The separating hyperplane is obtained by 

selecting the projection that minimizes the interclass variance and maximizes the 

distance between the two classes means [277]. To get optimal results, the LDA 

assumes that the data follow the normal distribution. The LDA approach is usu-

ally applied for the two-class classification problem, but it can also be extended 

to multiclass by introducing a higher number of separating hyperplanes. This 

technique requires low computational power, and it can work in real-time, which 

makes it suitable for BCI applications. The negative side of the LDA is its linear-

ity and therefore, can provide poor results on nonlinear data [278]. The LDA per-

formance advancement was introduced by a shrinkage LDA (sLDA), which 

proves to be more robust to the outliers and high-dimensional data [279]. The de-

ployed version of the LDA for this thesis is the sLDA. 

4.3.4 Feedback and applications of BCI 

The BCI community has stressed the need to develop signal processing tech-

niques for BCI to gain brain dynamics insights. Such focus has shadowed the BCI 
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feedback design that provides easily interpretable and self-explanatory results for 

the clinical population and in particular PDs and Stroke patients. 

Once the BCI model is produced, the classifier's output identifying a specific 

mental state must be associated with a specific feedback system presented back 

to the subject. BCI feedback systems can be divided into two classes. The first 

objective is to provide additional control in the domain of multimedia and video 

games. The second class that is extensively described in this manuscript has ob-

jectives in the medical domain, and therefore, it can either provide a new com-

munication channel [211], [280]–[282] or neurorehabilitation. In both the men-

tioned applications, it essential to provide explanatory feedback to a subject that 

easy to interact with. The explanatory side should directly relate the mental state 

recognized by the BCI classifier that enables the user to know if they have cor-

rectly performed the given task. Therefore, it also enables him to learn how to 

control his brain activity voluntarily. An adequately selected feedback can reduce 

the user's time to learn how to control a BCI system [211]. According to the lit-

erature [211], most BCI systems are designed to provide visual feedback, followed 

by auditory and haptic [283], [284]. Advanced MI BCI methods are needed to 

overcome the accuracy, time-related MI BCI calibration challenges, appropriate 

visual feedback to facilitate the MI task and its impact on the rehabilitation pro-

cess in such patients. In particular, the standard feedback defined by Graz proto-

col [285] represented by simple modulation of the direction and the length of the 

bar visualized on the screen might not be entirely suitable for the neurorehabili-

tation as it was shown to be suboptimal for skill teaching and requires more ex-

tended training [286]. The embodied visual feedback approach, where the realist 

feedback is presented to a subject, can facilitate comprehension and the MI task 

performance.  

The adequate feedback systems from the patients' stance implicitly improve 

the quality of the acquired training data. An easy-to-understand task will enable 

patients to adopt the right neurorehabilitation strategy and maintain a consistent 

mental status during data acquisition. The importance of the cortical activations 

by MI, AO, and MI+AO, are studied in Chapter 3 and demonstrate how they af-

fect the feedback system's design implications. Therefore, BCI should follow each 

clinical group's needs and be adapted to patients affected by specific cognitive 

deficits, which is not uncommon in PD or stroke. For the purpose of the thesis, a 

specific software NeuroTS4 was developed. The software follows the need for em-

bodied visual feedback with the aim to facilitate comprehension and the Motor 

Imagery task performance to provide more realistic feedback.  

  

 
4 https://github.com/miladinovic/NeuroTS 
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4.4 SUMMARY 

This chapter discusses how Brain-Computer Interfaces (BCIs) are of great 

value to the rehabilitation engineering for different pathologies. The subsequent 

sectioned explained the BCI systems' taxonomy divided by the electrodes appli-

cations' type to invasive and non-invasive. Furthermore, we explained the differ-

ence between endogenous and exogenous, depending on the used neurophysiologi-

cal signal. In the chapter, we noted the importance of spontaneous signals that 

are voluntarily elicited by the user, usually without a specific external stimulus 

and following an internal cognitive process, that is the basis for MI based BCIs. 

With MI and EEG that captures these mental its correlates, patients can engage 

in voluntary modulation of their brain activity, creating a Neurofeedback (NF) 

loop. However, to detect the MI's characteristic EEG correlates, specific BCI 

pipelines are required. The general pipeline steps consist of preprocessing, feature 

extraction and classification. The final step is the feedback presentation, that 

points the importance of the appropriate visual feedback to facilitate the MI task 

and its impact on the rehabilitation.  
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Chapter 5. STUDY OF BCI SPATIAL FILTER-

ING METHODS FOR MOTOR IMAGERY 

NEUROREHABILITATION IN STROKE AND 

PARKINSON’S DISEASE PATIENTS 

5.1 INTRODUCTION 

Brain-Computer Interfaces (BCIs) are of great value to the rehabilitation en-

gineering for stroke, Parkinson's disease, and patients with disrupted neuromus-

cular channels (e.g., amyotrophic lateral sclerosis or spinal cord injury, cerebral 

palsy, etc.). These systems have gained considerable interest in clinical applica-

tions. Their applications include brain-derived communication in paralyzed pa-

tients [287], neurorehabilitation and restoration of the motor functions in people 

who cannot freely move or control specific bodies parts because of severe disabili-

ties. BCI serves as communication device for disabled individuals allowing them 

to write sentences [288], move a cursor on the computer screen [211], control a 

prosthesis that provides a hand grasp [289] or operate a brain-controlled wheel-

chair [290]. Various studies [16], [147], [291] reported that BCI induced changes 

on brain rhythms have positive effects on the treatment of different pathologies, 

such as Parkinson's disease [20], [292], Stroke [18], Autism-spectrum disorder [16], 

[233], ADHD [293], etc. 

With motor imagery (MI), the ability to generate the mental correlate of 

motor and perceptive events in the absence of muscular activation, and an EEG 

that captures these mental correlates, patients can engage in voluntary modula-

tion of their brain activity creating a loop also called as Neurofeedback (NF).   

Accordingly, MI-BCI Neurofeedback stimulation of the motor brain areas 

will possibly induce an increase in sensorimotor production rhythms and induce a 

general relax [294]. Ultimately, both should allow better movement control and 

muscle recruitment in both PDs and Stroke [19], [20], [174], [292], [295].  

The correct interpretation of the neural information extracted from electro-

encephalogram (EEG) is a cornerstone of the sensorimotor BCI. Therefore, it is 

important to enhance sensitivity to particular brain sources, improve source local-

ization, and suppress artefacts [296]. The proper channel selection realized by ap-

plying spatial filtering plays a pivotal role in making a system more sensitive to 

SMR, and less sensitive to other non-related brain activities and noises. Spatial 

filters and their application in BCI were largely studied [247], [248], [254], [297]–

[300]. Data-independent spatial filters like Surface Laplacian with fixed weights 
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[243], [247], [301], [302] were largely used due to its simplicity, but it was found 

sensitive to anatomical differences and cross-subject variability [303], [304]. The 

Surface Laplacian (SLap) is a spatial filter and BCI paradigm based on the Graz 

brain-computer interface [302], in which left and right motor images were used to 

generate specific brain-signals. The model uses non-adaptive, and non-data has 

driven spatial filter the Surface Laplacian [304], and a non-adaptive spectral filter 

set to 6 to 32Hz. The Surface Laplacian was implemented by using the five-point 

approximation method introduced by Hjorth in 1975 [305]. Data-driven filters 

spatial such as CSP and its variants were designed to overcome the aforemen-

tioned limits. 
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5.2 SPATIAL FILTERS AND BCI METHODS FOR MOTOR 

IMAGERY 

5.2.1 Filter Bank Common Spatial Patterns - (FB)CSP  

The CSP (Common Spatial Pattern) paradigm [299] is an extension of Slap, 

and it is initially described in [277] and applied to EEG in [248]. Like its prede-

cessor, the CSP uses variance (power) features over a single frequency range and, 

therefore, no temporal variations and interactions between frequency components 

have been captured. The improvement of this modelling is adaptive data-driven 

filtering which is computed using the CSP algorithm. The adaptive filtering pro-

jects the original channel space onto new lower dimension space. The linear map-

ping is obtained by optimizing the variance (power) to be maximally informative 

with respect to the MI task. The algorithm uses the pre-class signal covariance 

matrices and solves generalized eigenvalue problem. The FBCSP can be seen as 

an extension of the basic CSP approach. A series of spatial filters are implement-

ed for different frequency subranges Figure 5.1, thus creating a specific CSP for a 

narrow band that suits the oscillatory processes in different frequency bands and 

on distinct spatial locations.  

Analytically, the CSP can be expressed as a linear transformation of the 

EEG measurements using 

𝑍, = 𝑊
்𝐸,, (5.1) 

where 𝑍, ∈ ℜ×௧is the result of the spatial filtering, 𝑐- number of channels, 

𝑡- number of trials, 𝐸, ∈ ℜ×௧denotes the EEG signal of the ith trial, where the 

index 𝑏 is the band-pass filter that in the case of original CSP is always 𝑏 = {1} 

that covers the frequency range 6-32Hz and in the case of the FBCSP 𝑏 =

 {1, … , 𝐵}where the 𝐵 is the number of 6Hz wide pass-bands filters. 𝑊 ∈ ℜ× is 

the projection matrix, with the index 𝑏 that resembles the number of EEG sam-

ples per channel and 𝒄 is the total number of channels of the EEG recordings. 

The 𝑊 matrix yields the optimal variance that maximizes discriminative proper-

ties of MI task with respect to the relax task. The 𝑊 is calculated by solving a 

generalized eigenvalue decomposition problem: 

𝜮,ଵ𝑊 = (𝜮,ଵ + 𝜮,ଶ)𝑊𝐷 ,    (5.2) 

where 𝜮,ଵand 𝜮,ଶare estimated covariance matrices of the spectral filter 𝑏 

and 𝐷 represents the diagonal matrix with the eigenvalues 𝜮,ଵ.  

The spatially filtered 𝑍, from (5.1) and obtained by using 𝑊 weights from 

(5.2) maximize the differences in the variance of the given band-passed EEG sig-

nals obtained from the two classes (MI and relax). Usually, a set of 𝑚 pairs of 

CSP features are obtained by 



66 

 

𝑣,ଵ = 𝑙𝑜𝑔൫𝑑𝑖𝑎𝑔(Ŵ
்𝐸,𝐸,

் Ŵ) / 𝑡𝑟[Ŵ
்𝐸,𝐸,

் Ŵ]  ൯,   (5.3) 

Where 𝑣, ∈ ℜଶ; and the 𝑖 represents 𝑖𝑡ℎ trial and 𝑏 the index of the band-

pass filtered EEG signal and the Ŵ consists of the first 𝑚 and the last 𝑚 num-

ber of columns of 𝑊 (also referred to as the number of patterns per class, and in 

our study correspond to 𝑚 = 3). 

We can further define FBCSP feature vector for the ith trial as following: 

𝑣 = [𝑣ଵ, , 𝑣ଶ,, . . . , 𝑣,],   (5.4) 

where 𝑣 ∈ ℜଵ×(∗ଶ), 𝑖 = 1, . . . , 𝑛;  𝑛denotes the number of trials, 7 number 

used filters and multiplier 2 tells that there are two classes with 𝑚 patterns (in 

our study 𝑣 ∈ ℜଵ×ସଶ). 

The training data that comprised the extracted feature data:  

𝑉 =  ൣ𝑣ଵ, 𝑣ଶ, . . . , 𝑣
൧

்
,   (5.5) 

 the true class labels 

𝑌 =  ቂ𝑦ଵ, 𝑦ଶ, . . . , 𝑦
ቃ

்
,   (5.6) 

where 𝑉 ∈ ℜ×(∗ଶ);  𝑦 ∈ ℜ×ଵ; and 𝑦 denote the feature vector and true 

class label from the ith training trial,  𝑖 =  1, 2, … , 𝑛௧; and  𝑛௧  denotes the total 

number of trials in the training data. 

One additional implementation named FBCSPT (FBCSP Time) extends the 

idea to the time domain Figure 5.1, where for each spectral subband is paired 

with the temporal windows. The FBCSPT, in that case, captures not only com-

plex EEG dynamics in the spatial and frequency domain but extends to the in-

teraction between bands in frequency, spatial and time domain. This is particu-

larly useful when the time ERD/S dynamics are known, such in the case of MI, 

where the decrease (ERD) of the spectra in MU is expected in the first seconds of 

the task, followed by an increase of the spectra in beta (ERS) [125]. In summary, 

for CSP the following configuration was used: bandpass filter 6-32Hz with 3 pat-

terns per class. In the case of FBCSP, there are 6 subbands in the range of 6-

32Hz with 6Hz bandwidth and 2Hz overlap, followed by a 7th covering the whole 

spectra. In the case of FBCSPT, the same configuration of FBCSP was used ac-

companied by the time-windows as in Figure 5.1.  
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Figure 5.1 - Schematic representation of FBCSP spatial filtering configuration (FBCSP T1,...,T7=0.5 - 
4.5 sec, FBCSPT T1,T2=0.5 – 3.0sec,T3,T4,T5,T6=1.5 – 4.5sec, T7=0.5 – 4.5sec) 

5.2.2 Spectrally Weighted Common Spatial Patterns 

The Spectrally Weighted Common Spatial Patterns (SpecCSP) [299], [300] is 

an advanced paradigm for oscillatory processes using the spectrally weighted CSP 

algorithm. The approach is designed for the most oscillatory processes and gener-

ally gives better MI-based BCI results than a CSP with a suitably unrestricted 

spectral filter (e.g. wideband) ) [299], [300]. Therefore, it is useful in cases where 
the frequency band and conjectured oscillatory activity is unknown. The algo-

rithm optimizes the variance (power) to be maximally informative by the itera-

tive alternation of spectral and spatial filters. The most significant disadvantage 

of this approach is that it is slower than CSP [300] though in some implementa-

tions it is possible to reduce the search space by introducing a prior of the ex-
pected location and spectral band, as in the case of MI where the spectral prior is 

set in the range 6 to 32Hz producing 3 patterns per class. 

5.2.3 Source Power Comodulation 

The Source Power Comodulation (SPoC) approach [306], [307] has been de-

signed to decompose EEG data into components using a target variable to guide 

decomposition. This approach has advantages over blind source separation meth-

ods since it has more information to guide separation. SPoC can be seen as fur-
ther development of the CSP, but instead being applied to the raw EEG data 

(sensor space), it incorporates source component decomposition. The result of 

BCI modelling is a set of spatial filters that optimize the co-modulation between 

the target and the spatially filtered EEG signal's power time course.  

The advantage of the SPoC approach is the presence of the target variable, a 

scalar function of time, that can be defined as a behavioural measure as the out-

put of the central nervous activity (e.g. sensory response, reaction time, motor 

and visually evoked potentials, etc.) or parameters of stimulus, where the goal is 
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to correlate stimulus properties with the neuronal properties, or binary as in the 

case of MI and relax. 

5.2.4 Other spatial filtering methods 

There are other spatial filtering methods, both non-data-drive or data-driven. 

One of the most common non-data-driven is Surface Slaplacian (SLap). SLap is a 

spatial filter and BCI paradigm based on the design of the Graz brain-computer 

interface [285], in which left and right motor images were used to generate specif-

ic brain-signals. The model uses non-adaptive and non-data driven spatial filter 

the Surface Laplacian [304], [308], and a non-adaptive spectral filter set to from 6 

to 32Hz. The Surface Laplacian was implemented by using the five-point approx-

imation method introduced by Hjorth in 1975 [305] and can be expressed as fol-

lows: 

𝑀


= 𝑀 −
1

4


∈ேೕ

𝑀 ,   (5.7) 

where 𝑀 is the scalp potential EEG of the jth channel, and 𝑁 is an index 

set of the four adjacent channels (i.e. FC3,C5,C1,CP3 and FC4,C6,C2,CP4 are 

four surrounding channels of the C3 and C4 respectively). The filter also acts as a 

spatial high pass filter, and because of its properties, it enhances neuronal activi-

ty on the channels close to the motor cortex ( C3 & C4 ) [309]–[311], and at the 

same time, it reduces the diffused non-task related oscillatory activity [247]. How-

ever, it is robust to the nonstationarity of the data and high power EEG artefacts 

[303]. It also served as the idea for further data-driven and adaptive algorithms, 

such as Common Spatial Patterns (CSP) and its further derivatives (FBCSP, 

SpecCSP etc.). 

On the side of the data-driven approach we can be individuated various 

regularized version of the CSP, such as RCSP [297], Spectrally Weighted Regu-

larized Common Spatial Patterns (SpecRCSP), Tikhonov Regularized CSP 

(TRCSP) [312], etc. In addition to the regularization, some of them use different 

spectral estimates, such as Welch [79] or multi-taper spectral estimation method 

[313]. Similar approaches that can adapt the spectral features to a process of in-

terest are Common Sparse Spectral Spatial Pattern [314], r^2-based heuristics 

[298], partially based on cross-validation automated parameter search or semi-

automated selection based on user's visual feature inspection. The Dual-

Augmented Lagrange paradigm is one of the competitive methods specialized in 

the domains of the complex frequency band interaction and time domain dynam-

ics [315], [316]; however, the results are not comparable to spatial filtering tech-

niques because the approach merges the classification and optimization strategies, 

and cannot be used with the same classifier as other methods.   
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5.3 PERFORMANCE OF BCI SPATIAL-FILTERING METHODS 

ON STROKE PATIENTS5 

5.3.1 Introduction 

Despite current therapeutic and rehabilitative strategies, stroke remains one 

of the leading causes of mortality and disability in the elderly population world-

wide [32], [317], [318]. One of the most common deficits after ischemic stroke is 

hemiparesis of the contralateral limb, especially upper limb motor disability pre-

sent in 80% of the acute phase and more than 40% in the chronic phase [319].  

The traditional neurorehabilitation treatments for motor damage in stroke 

patients, such as physical therapy and constraint‐induced movement therapy, are 

based on techniques that aim to stimulate the use of the paretic limb. The under-

lying principle is that repetitive, active movements should induce cortical neuro-

plasticity mechanisms and improve a subject's motor abilities [55], [320]. These 

techniques require some residual movement of the affected limb. The problem 

arises when the patients' remaining motor functions after stroke are too low. The 

time window of enhanced neuroplasticity early after stroke has been closed (i.e., 

chronic stroke stage).  

In these cases, the neuroplasticity induced by this motor practice can be ex-

tremely limited. For this reason, in addition to the motor training, additional 

strategies to potentiate neuroplasticity of motor areas are needed [178], [321]. 

Furthermore, these strategies should be considered in early post-acute rehabilita-

tion in which the brain's dynamic response to injury is heightened, and rehabili-

tation might be particularly effective [322].  

MI is one of the promising neurorehabilitation tools  [15], [124], [163], [174] 

which have been suggested to improve restoration of motor function after stroke, 

both in acute and chronic stroke phases [178], [323]. It has been shown that MI 

can induce plastic changes to the basic neural mechanism underlying motor learn-

ing in the lesioned hemisphere [324], [325]. In particular, MI tasks activate the 

sensorimotor areas active during actual motor execution [243] and induce a signif-

icant increase in cerebral blood flow velocity related to the neural activation dur-

ing MI tasks [326]. Considering the correlation, at cerebral level, between execut-

ed and imagined movement, EEG-based MI brain-computer interface (BCI) sys-

tems seem to be promising tools to promote motor recovery after stroke, by ex-

ploiting the neuroplasticity phenomena induced on the motor cortex by the Mo-

tor-Imagery training [178], [327]. 

 
5 Miladinović, A., Ajčević, M., Jarmolowska, J., Marusic, U., Silveri, G., Battaglini, P. P., Accardo, A. (2020). Performance of EEG Motor-Imagery based spatial filter-

ing methods: A BCI study on Stroke patients. Procedia Computer Science, 176, 2840–2848. https://doi.org/10.1016/j.procs.2020.09.270 
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The MI-BCI neurorehabilitation refers to the closed-loop detection of EEG 

MI Event-related desynchronization/synchronization (ERD/S) and transfor-

mation via spatial filtering and machine learning techniques to the visual feed-

back presented to the subject in real-time [231]. In this way, the subject becomes 

aware of the voluntary modulation of EEG oscillatory activity, and when coupled 

with the adequate stimulus and electrode settings, can target desired brain re-

gions. Furthermore, it creates a more controlled rehabilitation environment since 

the MI induced oscillatory activity can be monitored to assess whether the pa-

tient performs the task correctly. However, due to anatomical differences and 

particularity of the stroke lesions, the electrode's precise spatial location is hard 

to determine apriori. This can be approached by using more electrodes on the 

broader area and employing data-driven spatial-filtering techniques to find the 

optimal ones [298].  

The most commonly applied data-driven spatial filtering technique in the 

MI-BCI domain is the Common Spatial Pattern (CSP) [248]. The CSP algorithm 

assigns weights to each channel to maximize and minimize the variance for the 

two tasks, MI and rest, respectively. The CSP in the past decade has been fur-

ther improved by introducing Filter Bank CSP (FBCSP) [254], Spectrally 

Weighted CSP (SpecCSP) [300], Source Power Co-Modulation (SPoC) [306]. In 

the FBCSP a series of CSP filters are designed for different frequency subbands 

producing frequency-specific task-related model, whereas the SpecCSP weights 

the spectral components to exploits interactions between frequency bands. Final-

ly, the SPoC the variance (power) is optimized on the component space, instead 

of on the raw EEG data, as in the previous two approaches. The average accura-

cy of these approaches exceeds 70% [328]–[330] and, in some cases, reaches 85% 

[331] in a healthy population.  

The disadvantages of the abovementioned studies are that the BCI ap-

proaches have been tested only on a healthy population, and studies of perfor-

mances on patients, similar to the one on Stroke patients reported in [18] or on 

Parkinson's disease patients [22] are quite rare. It cannot be overlooked that the 

clinical population is additionally characterized by EEG alterations in acute [22], 

[61], [92], [132] and chronic phase [332] as well as by cognitive decline [333] and 

therefore, may present different BCI performance. 

The MI-BCI neurorehabilitation in stroke patients was previously studied 

[334]–[336]. However, the performance of state-of-art spatial filtering methods has 

not yet been evaluated in the early post-stroke phase rehabilitation in which re-

habilitation might be particularly effective. 

This study aims to investigate the performance of MI-BCI approaches on 

stroke patients in the early post-stroke phase and to report a comparison of three 
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selected approaches. The results of the study are published and are also available 

in [24]. 

5.3.2 Materials and Methods 

5.3.2.1 Study population and protocol 

This study was conducted on five ischemic stroke patients (3M/2F 67±8 

years) with motor deficits who underwent 15-session BCI neurorehabilitation in 

the early post-acute phase. The inclusion criteria were minor/mild unilateral an-

terior circulation ischemic stroke patients able to follow verbal instructions, 

communicate and perform the BCI tasks. Participants were recruited from the 

neurology clinic of Trieste University Hospital in the sub-acute phase (i.e. in the 

first two weeks after the stroke). Exclusion criteria were previous brain injury, 

hemorrhagic stroke, other serious medical conditions, history of non-controlled 

seizures, severe cognitive deficits (Montreal Cognitive Assessment - MoCA score 

< 19), severe aphasia, unilateral spatial neglect. No-age and sex limits were ap-

plied.  

The study was conducted within the MEMORI-net Interreg ITS-SLO pro-

ject. All recruited patients gave their signed informed consent to participate in 

the study. The study protocol was approved by the Regional Ethical Committee 

CEUR (Comitato Etico Unico Regionale, FVG, Italy) with approval number 

118/2018. The research was conducted according to the principles of the Declara-

tion of Helsinki. 

5.3.2.2 Study population and protocol 

The BCI protocol consisted of a total of 15 neurofeedback MI sessions with a 

duration of 1-1.5 hours each repeated 2-3 times per week. The session was split 

into two parts: the initial calibration phase where the patients had to perform MI 

and the online where they had to control stimuli on the screen continuously. Dur-

ing the calibration phase to instruct patients to perform MI, an image of the limb 

was displayed for 5s over a cross-shaped icon at the centre of a monitor alterna-

tively to a blank screen for the "rest" (Figure 5.2a). The same task has been per-

formed 35-40 times in each session. 

During the feedback phase, the subjects interacted with the personalized vis-

ual feedback, which consisted of the moving hand. The movement of the hand 

has been controlled by the continuous output of the linear classifier. 

The BCI algorithms' performance in this study has been evaluated on the 

calibration phase's data. 
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Figure 5.2 - (a) BCI stimulus design. (b) Electrode placement 

The acquisition of 15 channel EEG was performed using SAM 32FO amplifi-

er (Micromed S.p.A., Italy) and Ag/AgCl electrodes (FC3, FC4, FCz, Cz, C4, 

C3, CP3, CP4, CPz, C2, C4, C6, C5, O1, O2) with the placement reported in 

Figure 5.2b. The signals were recorded with 256 Hz sample frequency. Also, two 

EMG electrodes were added to exclude any possible execution of a movement. 

5.3.2.3 EEG preprocessing 

EEG data processing was carried out using MATLAB (The MathWorks Inc., 

Natick, MA) and the BCI models were produced with the BCILAB [337] frame-

work. All channels were filtered from 0.5 to 48 Hz with the 2nd order Butter-

worth bandpass filter and resampled to 128Hz. 

5.3.2.4 BCI Approaches 

The BCI approaches selected for this work were based on their reported per-

formance on healthy individuals, which is in the case of SPoC 76% [329], Spec-

CSP 70-80% [338] and in the case of the FBCSP up to 90% [328]–[330]. Further-

more, we included only approaches that do not require a tedious tune-up of vari-

ous parameters and the approaches where the model can be produced on stand-

ard portable computers in a reasonable time of 5-10min. 

The SPoC (Source Power Comodulation) approach is the most advanced 

among the tested methods. Its advantage is that the log variance features are not 

extracted from the sensor data space (EEG raw data) but from a linear subspace, 

similar to one obtained with ICA [339], or beamforming algorithm [340]. The op-

timization algorithm is identical to the one used for Common Spatial Patterns 

(CSP) [248] with a difference that in the case of SPoC the variance is optimized 

on the component space, instead of on a raw EEG data. In that way, it is pre-

sumably less affected by noises and non-task related brain oscillatory activities. 

However, it may be more sensitive to artefacts with high variances, such as mus-

cular contraction that can involuntarily co-occur during MI task, that can be mis-

interpreted as a task-related signal. 

The second abovementioned algorithm is the SpecCSP, which is also an ex-

tension of the original CSP algorithm. It is designed for oscillatory processes 

where the exact frequency band is unknown so that the weights of the spectral 
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components have to be assigned automatically. The SpecCSP applies to most os-

cillatory processes and, in comparison and in general, gives better results of the 

standard CSP algorithm. 

Finally, the FBCSP [254] overcomes the spectral selectivity of the CSP by 

introducing the series of frequency filters (Filter Banks) to the preprocessing 

mechanism. Similarly, to the SpecCSP, also, in this case, the variance optimiza-

tion on each subband creates a specific frequency and task-related model. 

All three mention approaches exploit the interaction between frequency 

bands and show the best performances when the EEG activity is present on dif-

ferent scalp locations and on different subbands. This is particularly useful for MI 

task where the relative power of mu/beta is changed during the process of Event-

related desynchronization/synchronization (ERD/S) [159]. 

At the end of the log-variance (power), features are fed to the regularized 

LDA classifier with automatic shrinkage parameter estimation [341]. 

5.3.2.5 Performance evaluation and Statistical analysis 

The classification accuracy as a performance measure had been selected, and 

it was estimated using 10-fold chronological/blockwise cross-validation with five 

trials margin. Together with accuracy, the type I and type II errors are also re-

ported. 

Differences in classification accuracy and related type I (false positive ratio - 

FPR) and II errors (false negative ration - FNR) among selected approaches were 

tested by repeated‐measure analysis of variance (ANOVA). Bonferroni corrections 

were used for post hoc multiple comparisons. 

5.3.3 Results 

Table 5.1 reports the demographic and clinical summary of included patients. 

Figure 5.3 shows the comparison of accuracy values obtained with three consid-

ered approaches for each subject and session. It can be observed the better per-

formance of FBCSP method compared to SpecCSP and the SPoC. Mean±SD 

values and 95% confidence intervals of obtained accuracies were reported in Ta-

ble 5.2 
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Table 5.1. Patients' demographic and clinical data.  

Age (Mean + SD) years 67 ± 8 

Sex (F / M) 2 / 3 

Lesion side (L / R) 3 / 2 

NIHSS 4 ± 1.9 

Fugl-Mayer 19.8 ± 1.6 

MoCA 25.4 ± 1.3 

MIQ-RS Visual Imagery Score 5.4 ± 1.1 

MIQ-RS Kinaesthetic Imagery Score 5.0 ± 0.75 

Note: NIHSS - National Institutes of Health Stroke Scale; Fugl-Mayer; MoCA - Montreal Cognitive As-

sessment; MIQ-RS - Movement Imagery Questionnaire—Revised second version. 

 

Figure 5.3 - Comparison of accuracy values (%) obtained with three considered approaches for each sub-
ject and session. (a) SPoC against SpecCSP, (b) FBCSP against SpecCSP, (c) FBCSP against SPoC. 

The accuracy of FBCSP was significantly higher than the accuracy of SPoC 

(85.1±1.9 % vs. 83.0±1.9 %; p=0.002), while the accuracy of FBCSP was slightly 

higher than the accuracy of SpecCSP (85.1±1.9 % vs. 83.8±2.0 %; p=0.068) No 

significant difference was found between SPoC and SpecCSP (p=0.616). In addi-

tion, FBCSP presented better average performance over 15 sessions for each sub-

ject (Table 5.3). The average FPR was 16.9%, 17.1%, 14.3%, while the average 

FNR was 15.5 %, 16.9 %, 15.5 % for SpecCSP, SPoC, FBCSP, respectively. 

 

Table 5.2. Mean ± SD values and 95% confidence intervals of obtained accuracies 
 Accuracy 

BCI Approach Mean ± SD [%] 95% CI 

SpecCSP 83.8 ± 2.0 79.7 - 87.8 
SPoC 83.0 ± 1.9 79.2 - 86.9 

FBCSP 85.1 ± 1.9 81.3 - 89.0 
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Table 5.3. Average accuracy (%) over 15 sessions calculated for each subject. The highest for each subject 
was highlighted in bold. 

Subject SpecCSP [%] SPoC [%] FBCSP [%] 

1 75.2 77.3 78.3 

2 94.5 92.1 95.1 

3 97.1 96.1 97.6 

4 92.3 91.2 92.4 

5 57.8 56.7 60.7 

5.3.4 Discussion 

The MI-BCI neurorehabilitation consists of the closed-loop detection of MI 

induced ERD/S that is further processed and presented back to the subject in the 

form of a combination of a visual, auditory or tactile stimulus. With a practice, 

reinforcement, and with different types of feedback and neurorehabilitation para-

digms [146], [291] targeting different sensory modalities, subjects can learn to 

modulate their neural activity voluntarily. The controlled modulation of neural 

activity via MI-BCI has been shown to positively affect cognitive capabilities and 

motor planning and execution in a healthy and clinical population affected by 

Parkinson's disease [14], [15], Attention Deficit Hyperactivity Disorder [342], Au-

tism spectrum disorder [16], etc.  

The MI-BCI in stroke patients has been previously studied [254], [334], [335]. 

However, the studies that apply MI-BCI from a week to two from a stroke are 

rare or non-existent. A window of time after a stroke is critical to have effective 

rehabilitation [322]. Still, the patients' physical conditions after stroke prevent 

them from performing a full set of motor exercises, and when they are physically 

ready, it is most likely that the stroke passed in the chronic stage. Therefore, it is 

important to exploit the aforementioned time window, during which the brain 

dynamics as a response to an injury is enhanced and when the MI-BCI, might be 

particularly useful. Nevertheless, there are no yet standardized procedures for 

BCI in general [8]. A similar demonstration of the performance of different spa-

tial-filtering preprocessing BCI techniques on patients' strategies is quite rare 

[18], [22].  

Hence, the study aims to investigate the performance MI-BCI approaches on 

stroke patients in the early post-stroke phase and to report a comparison of three 

selected approaches. In particular, this study focused on SpecCSP, SPoC, and 

FBCSP BCI approaches tested on five patients in the early post-stroke phase. 

The main finding of the study is that FBCSP showed better overall performances 

then SPoC and SpecCSP approaches. 

The FBCSP showed significantly better performance than SPoC, while it 

presented a slightly higher accuracy than SpecCSP. The same objective function 

can explain the similar average accuracy between FBCSP and SpecCSP to opti-

mize the interaction of specific frequency bands with relation to the scalp loca-
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tion, which in fact happens in the case of the MI, where the mu/alpha power is 

expected to decrease and beta increase (beta rebound) [248]. The possible reason 

for lower SPoC performance might be explained with the fact that the algorithm 

is designed to maximize components subspace. Since in post-Stroke period, noises 

(i.e., involuntary muscular activity) can happen simultaneously with the task, the 

approach might misinterpret such activity as a signal, which leads to poorer per-

formance. 

In addition to the classification accuracy, we have also investigated type I 

and type II errors. The performance of BCI systems is also reflected by False pos-

itives (type I error), which is defined as the existence of feedback without a sub-

ject's will. On the contrary, the False negatives (type II error) is less important 

to some extent, since the subject can voluntary try multiple times to perform the 

task to move the object on the screen, whilst the False positive gives the impres-

sion that the system works without their control, and can lead to a reduction of 

the motivation for participation in the rehabilitation. 

Furthermore, we observe that the post-stroke patients were capable of con-

trolling MI-BCI with higher accuracy in comparison to Parkinson's [22], where 

the mean accuracies were around 65%. The higher accuracy in post-stroke pa-

tients can be explained by the fact that there is no activation inhibition of the 

movement's execution for paretic limbs, as the subject could not move them. 

Therefore, the lack of inhibition mechanism makes the MI ERD/S more promi-

nent and very similar to the actual movement [343] concerning the MI in other 

patients. Moreover, we can also argue that the MI task in stroke patients is clear-

er to comprehend since, in contrast to healthy individuals or Parkinson's disease, 

the "imagination" task in MI is vaguer [344].  
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5.4 PERFORMANCE OF BCI SPATIAL-FILTERING METHODS 

ON PARKINSON’S DISEASE PATIENTS6 

5.4.1 Introduction 

BCI neurorehabilitation, also known as Neurofeedback, refers to the closed-

loop utilization of real-time acquisition of neural data that's then transformed 

and prepared for the extraction of relevant features. The final outcome of ma-

chine-learning is then presented back to the subject in the form of visual, audito-

ry, or tactile feedback. Hence, with practice, reinforcement, and feedback, sub-

jects can learn to volitionally control neural activity that has been shown to posi-

tively affect cognitive capabilities, motor execution, and coordination, in healthy 

individuals, as well as in patients, such as post-Stroke and Parkinson's disease 

[14], [15], Autism spectrum disorders [16], [232] etc. The most common motor 

symptoms in Parkinson's Disease (PD) are tremors, rigidity and gait disorders, 

such as freezing of gait (FOG) and festination [176]. In particular, the literature 

[14], [146] reports that Motor-Imagery (MI) based BCI (MI-BCI) results in acti-

vation of the visual, motor and premotor cortex and as a consequence in an im-

provement in the individual's locomotor ability, and reduction of the PD symp-

toms, such as bradykinesia, FOG episodes and rigidity [6]. Besides, real-time 

feedback also allows a more controlled rehabilitation process since it reveals di-

rectly whether the patient performs the given task correctly. Common Spatial 

Pattern (CSP) [248]  filters are one of the most used approaches in the BCI do-

main, particularly in the context of the MI oscillatory paradigm. This data-driven 

approach assigns weights to each channel, and it is designed to maximize and 

minimize the variance for the MI task and rest, respectively. In the past decade 

different extension of the basic CSP has been proposed, and most commonly used 

are Filter Bank CSP (FBCSP) [254], in which a series of CSP filters are imple-

mented for different frequency subbands creating frequency-specific task-related 

model, Spectrally Weighted CSP (SpecCSP) [300] that exploits interactions be-

tween frequency bands by assigning a weight to each frequency band, and finally, 

Source Power Co-Modulation (SPoC) [306] in which the variance is maximized on 

the component space, instead of on the raw EEG sensor space, as in the case of 

previous. The average reported accuracy of mention approaches exceeds 70% 

[328], [329], [345] and, in some cases, reaches 85% [331]. The most significant dis-

advantage is that most of the approaches have been tested on healthy individu-

als, whereas the tests on clinical populations, similar to the one reported in [18], 

are quite rare. It is not to neglect that apart from BCI illiteracy present in 

healthy individuals, the clinical population is additionally characterized by cogni-

 
6 Miladinović, A., Ajčević, M., Busan, P., Jarmolowska, J., Silveri, G., Deodato, M., Mezzarobba, S., Battaglini, P. P. Accardo, A. (2020). Evaluation of Motor Image-

ry-Based BCI methods in neurorehabilitation of Parkinson’s Disease patients. 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society 
(EMBC), 2020-July, 3058–3061. https://doi.org/10.1109/EMBC44109.2020.9176651 
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tive decline [15], especially evident in the domain of executive functions, and 

therefore, may present different BCI performance.  

This study aims to investigate the performance BCI approaches on Parkin-

son's disease patients and to report a comparison of three selected approaches. 

The results of the study are published and are also available in [22]. 

5.4.2 Materials and Methods 

5.4.2.1 Study population 

The experiment was conducted on 7 patients (4 males and 3 females) with a 

mean age of 72 years old (standard deviation = 4.5). All patients had a history of 

gait's disturbance, namely experiencing freezing of gate episodes (FOG), Hoehn 

and Yahr score lower than 3, whereas, the cognitive capabilities were evaluated 

by the Mini-Mental State Examination (MMSE). Moreover, all of them had a 

stable pharmacological treatment for at least two months prior to the neurofeed-

back treatment. 

The recruited patients gave their signed consent before the start of treat-

ment, and the experimental protocol was pre-approved by the Local Ethical 

Committee and was conducted according to the principles of the Declaration of 

Helsinki. 

5.4.2.2 BCI protocol 

The BCI protocol consisted of a total of 14 neurofeedback sessions targeting 

lower extremities with a duration of 1.5-2 hours each repeated 2-3 times per 

week. The session was split into two parts, the initial calibration phase where the 

patients had to perform feet MI on a given written instruction "start" shown on 

the pc monitor for 35 to 40 times, and the online phase where they had to control 

the stimulus on the screen (feedback) actively. In order to investigate the perfor-

mance of BCI approaches, this study focused on calibration phase dataset. The 

EEG signals were acquired from 11 electrodes placed at standard 10-20 locations 

(F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4). All electrodes were referenced to 

AFz and grounded to POz, and the acquisition has been performed with a sam-

pling frequency rate of 256 Hz and impedances were kept below 5kΩ. In addition, 

two electromyography electrodes were added to exclude any possible limb move-

ment. 

5.4.2.3 EEG processing 

The processing of EEG data was carried out using MATLAB (The Math-

Works Inc., Natick, MA). All channels were filtered from 6 to 32 Hz with the 2nd 

order Butterworth bandpass filter and resampled to 128Hz. The BCI models were 



79 

 

produced with the BCILAB [337] framework applying three selected BCI classifi-

cation approaches. 

5.4.2.4 BCI Approaches 

The selection of the approaches was based on their performance on healthy 

individuals. In the case of SpecCSP the reported accuracy varies from 70-80% 

[338], [345], for the SPoC 76% [329], and up to 90% [328], [329], [345] in the case 

of FBCSP. SpecCSP is an advanced paradigm for oscillatory processes using the 

spectrally weighted CSP algorithm (see Chapter 5.2 for more detail description).  

For each band, log-variance (power) features are extracted and concatenated 

and fed to the Fisher's LDA classifier with automatic shrinkage parameter esti-

mation [346]. 

Finally, the classification accuracy was estimated using 10-fold chronologi-

cal/blockwise cross-validation with 5 trials margin. Apart from accuracy, type I 

and type II error parameters were extracted for each session. During the ap-

proach selection process, we included only algorithms that do not require special-

ized hardware (such as computer clusters or GPU), nor tedious tune-up of vari-

ous parameters; therefore, the model can be produced on standard portable com-

puters, in a reasonable time of 5-10min, allowing equipment mobility and ap-

plicability in different environments. 

5.4.2.5 Statistical analysis 

Differences in classification accuracy and related model performance parame-

ters (True positive ration - TP; False Positives - FP, TPR- True positives ratio; 

TNR - True negatives ratio; FPR - False positives ratio; FN - False negatives ra-

tio) among evaluated approaches were tested by repeated‐measure analysis of 

variance (ANOVA). Bonferroni corrections were used for post‐hoc multiple com-

parisons. 

5.4.3 Results 

Classification accuracy obtained by models produced by SpecCSP, SPoC and 

FBCSP methods is reported in Table 5.4 for each of the 7 subjects observed in 

over 14 BCI sessions. Classification accuracy resulted significantly higher for 

FBCSP (65.2±11.3) and SPoC (63.4±10.3) compared to SpecCSP (60.7±11.5) 

(p-value <0.001 and 0.015, respectively). No significant difference in total accura-

cy was found between FBCSP and SPoC (p-value 0.219), although FBCSP pre-

sented a slightly higher overall average accuracy and resulted in the lowest error 

in 5 of 7 PD subjects.  
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Table 5.5 reports mean ± SD values of TNR TPR, FPR, and FNR observed 

on our sample for each of the three methods applied. FPR was significantly low-

er, and TNR was significantly higher for FBCSP than those observed in SpecCSP 

(p-value <0.046) and SPoC (p-value 0.015). TPR was significantly higher, and 

FNR was significantly lower for FBCSP and SpecCSP compared to SPoC (p-

value <0.001 and =0.001, respectively).  

Table 5.4 - Classification accuracy (%) obtained by the SpecCSP, SPoC and FBCSP methods, respective-
ly, for 7 PD patients over 14 BCI sessions performed for each subject 

 Approaches 

Subjects SpecCSP SPoC FBCSP 

1 50.4 ± 9.1 54.1±6.8 62.4±10.3 

2 50.9±7.7 55.1±6.9 53.3±10.3 

3 63.7±6.8 67.1±4.6 64.5±8.9 

4 57.6±8.2 62.7±7.2 70.0±6.1 

5 59.1±11.3 63.5±4.4 65.6±11.2 

6 58.2±7.2 58.4±7.1 63.9± 7.4 

7 73.9±13.7 74.9±11.6 75.2±10.6 

Average 60.7±11.5 63.4 ± 10.4 65.2±11.3 

 

Table 5.5 Comparing the performance of the SpecCSP, SpoC and FBCSP methods. TPR- True positives 
ratio; TNR - True negatives ratio; FPR - False positives ratio; FN - False negatives ratio 

5.4.4 Discussion 

 Motor-Imagery BCI can improve locomotor ability and alleviate some symp-

toms in PD patients. The ability of the BCI-naïve Parkinson's patients to use 

BCI based Motor-Imagery neurorehabilitation and choice of appropriate classifi-

cation method is still debated. This study investigated the performance of these 

subjects to use this advanced neurorehabilitation strategy, and furthermore, 

which among the selected approaches is more appropriate for the aforementioned 

population. In particular, we tested SpecCSP, SPoC and FBCSP on 7 Parkin-

son's disease patients performing feet MI task over 14 sessions. The reason for 

low SpoC performance might be explained with the fact that the algorithm max-

imizes components subspace, and since in PD’s, noises (i.e. muscular activity due 

 Approaches 

SpecCSP SpoC  FBCSP 

TPR (%) 59.9±13.9 64.6±12.8 65.2±12.9 

TNR (%) 61.4±12.1 61.9±12.5 65.0±13.0 

FPR (%) 38.6±12.1 38.1±12.5 35.0±13.0 

FNR (%) 40.1±13.9 35.4±12.8 34.8±12.9 
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to tremors) can co-occur with the task, the approach misinterprets the noise with 

the signal. Regarding SpecCSP and FBCSP, there are no significant differences 

among them, and both approaches seem to be more appropriate when the task 

elicits changes in power band ratios at the particular scalp locations, such as 

mu/alpha power decrease and beta increase (beta rebound) [159]. 

In addition to accuracy, we have also investigated type I and type II errors. 

The robustness of the BCI approach is reflected by False positives (type I error), 

which is defined as the existence of relative feedback without a subject’s partici-

pation which gives the impression that the system is not working, reducing the 

motivation for participation. Also, in this case, the FBCSP demonstrates superior 

results. 

The study also demonstrated that PD patients were capable of operating MI-

BCI, although with lower accuracy. A possible explanation is the existence of 

possible EEG alternation due to condition progression and medical treatment 

[135]. Furthermore, a possible cause of their lower performance might be the cog-

nitive decline that is one of the most comorbidity in PD’s. A high accuracy 

method, such as FBCSP, may be used as a tool to instruct subjects to properly 

perform MI in the initial phases of the standard physiotherapeutic procedures. 

The results obtained and clinical efficacy of this type of rehabilitation should be 

confirmed in a larger clinical study. 
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5.5 SUMMARY 

As highlighted in this section, there are numerous applications of the BCI 

systems. The identified type of BCI used for motor rehabilitation, known as Mo-

tor-Imagery BCI has been described, followed by the BCI pipeline. The imposed 

constrains on BCI systems, allowing only a subgroup of classifiers, made the most 

the feature extraction the most relevant step in the pipeline. In the context of 

MI-BCI, the spatial-filtering is directly linked to the feature extraction steps. The 

spatial filters have been shown to reduce the noise [295] and decrease feature 

space's dimension, allowing the even simple classifiers, such as LDA, to improve 

performance drastically. The most significant disadvantage is that most of the 

approaches have been tested on healthy individuals, whereas clinical populations' 

tests are quite rare. 

Therefore, during the PhD project, the performance of the BCI spatial filter-

ing methods was studied on stroke and PD patients. 

The first study demonstrates that the stroke patients could control MI-BCI, 

with high accuracy and that FBCSP may be used as the MI-BCI approach for 

complementary neurorehabilitation during early stroke phases. In the second 

study, we demonstrated that FBCSP provides the best performance in PD sub-

jects among selected approaches and that PD patients as in the case of stroke can 

perform BCI-based MI neurorehabilitation with relatively high accuracy. 

In conclusion, in both studies, FBCSP proves to be the most robust ap-

proach to classify the EEG correlates of MI. However, during the studies we en-

countered some of the issues in applying the BCI in neurorehabilitation. The fol-

lowing Chapter 6 explains the encountered issues and proposes some solutions to 

improve MI-BCI paradigms. 
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Chapter 6. IMPROVING MI-BCI PARA-

DIGMS  

6.1 INTRODUCTION 

The use of noninvasive EEG brain-computer interfaces (BCI) application has 

increased in the last few years. Due to advanced techniques of signal processing 

and hardware accessibility, we can create more reliable systems that open space 

for the development of innovative clinical and non-clinical BCI procedures [19], 

[347]–[349]. However, BCI treatment's effectiveness is also related to the system's 

technical realization, and its capability to detect EEG sensorimotor rhythms 

(SMR) generated during Motor-Imagery (MI) used as a feedback signal.  

The correct interpretation of the neural information extracted from electro-

encephalogram (EEG) is a cornerstone of the sensorimotor BCI. Therefore, is of 

great importance, enhancing sensitivity to particular brain sources, improving 

source localization and suppressing artefacts [296]. The proper channel selection 

realized by applying spatial filtering plays a pivotal role in making a system more 

sensitive to SMR, and less sensitive to other non-related brain activities and nois-

es. As we saw in the previous chapters, spatial filters can achieve moderately high 

performance in the clinical population. However, to obtain a good BCI model ca-

pable of accurately classifying MI states, we need a high number of task repeti-

tion and enough EEG data. Considering the possible psychological state and oth-

er comorbidities such as mild cognitive decline, the initial calibration session can 

very long. A long initial phase can be demotivational for patients and can have a 

negative impact on the rehabilitation procedure. The transfer-learning approaches 

can be applied to overcome these issues by using the data from previous sessions 

or other subjects. This chapter investigates how the transfer learning approach 

improves the classification performance in Parkinson's disease patients. 

In addition, we have also identified some of the issues with the current tech-

niques and performance evaluation methods. Namely, most BCI studies related to 

spatial filtering techniques do not take the calibration (training) data and test 

data from different recordings. The EEG data is characterized by nonstationari-

ties [272], [350] that can affect the BCI systems' overall performance. 

The origin of EEG power feature nonstationarities may be caused by various 

events, such as changes in the participant's attention, fatigue due to electrode 

placement [351]. Furthermore, the nonstationarity is also related to the change in 

neural assemblies that are related to the requested cognitive task [352]. Due to 

nonstationarity based covariate shifts, the input data distributions of EEG-based 
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BCI systems change during inter- and intra-session transitions, which poses great 

difficulty for developments of online adaptive data-driven systems [353]. Although 

the aforementioned causes of EEG nonstationarity that could contribute to per-

formance deterioration over time are well known, there is little data on how dif-

ferent spatial filtering techniques behave in response to it. In that regard, apart 

from exploring how transfer-learning improves the classification accuracy in Park-

inson's patients [23], the second part of the chapter studies the effect of the EEG 

nonstationarity on the BCI spatial filters and proposes how the issues can be re-

solved [30], and how can be used in the domain of the transfer-learning. 
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6.2 TRANSFER LEARNING IMPROVES MI-BCI MODELS 

CLASSIFICATION ACCURACY IN PARKINSON'S DISEASE 

PATIENTS7 

In the classical MI BCI approach, a control system is set up to exploit a spe-

cific EEG feature which is known to be susceptible to subject's volitional control, 

such as, characteristic changes in sensorimotor rhythms (SMR) during MI [159]. 

The initial part of each BCI session, also known as the calibration phase, is used 

to train and produce personalized BCI models that meet the subjects' current 

brain signals' specificities. The step is achieved by applying data-driven prepro-

cessing steps and machine learning approaches to create BCI models. For the BCI 

participants, this initial calibration phase is the most tedious part of the BCI ses-

sion, and it can last from 10min up to 30-40min for healthy BCI naïve partici-

pants and even longer for PD patients. Besides, Parkinson's disease patients, of-

ten characterized by cognitive decline, especially evident in the domain of execu-

tive functions [15], may also present a lower BCI performance with respect to the 

healthy subjects what have seen in Chapter 2 imposing additional challenges for 

the creation of accurate BCI model during the calibration. 

To overcome the issue of long calibration procedures and in general to in-

crease the accuracy of the BCI model in this study we propose a transfer learning 

approach that exploits the data from the previous sessions and in combination 

with the current calibration data learn most of the calibration parameters. Thus, 

we aimed to investigate the accuracy performance of the proposed transfer learn-

ing approach for creating MI BCI models in PD patients. 

6.2.1 Materials and Methods 

6.2.1.1 Study population  

The experiment was conducted on 7 Parkinson's disease patients (4M/3F, 

mean age 72 ± 4.5 years). All patients had a history of gait's disturbance, namely 

experiencing freezing of gate episodes (FOG), Hoehn and Yahr [127] score lower 

than 3, whereas, the cognitive capabilities were evaluated by the Mini-Mental 

State Examination (MMSE) [354]. Moreover, all of them had a stable pharmaco-

logical treatment for at least two months prior to the BCI-MI treatment. 

All the patients gave their signed consent before the start of treatment, and 

the experimental protocol was pre-approved by the Local Ethical Committee and 

was conducted according to the principles of the Declaration of Helsinki. 

 
7 Miladinovic, A., Ajcevic, M., Busan, P., Jarmolowska, J., Silveri, G., Mezzarobba, S., Battaglini, P. P., & Accardo, A. (2021). Transfer Learning improves MI BCI 

models classification accuracy in Parkinson’s disease patients. 2020 28th European Signal Processing Conference (EUSIPCO), 2021-Janua, 1353–1356. 
https://doi.org/10.23919/Eusipco47968.2020.9287391 
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6.2.1.2 BCI-MI sessions 

The BCI-MI protocol consisted of a total of 14 neurofeedback sessions target-

ing lower extremities (i.e. feet Motor-Imagery). The session duration was from 

1.5-2 hours repeated 2-3 times per week. The session was split into two parts, ini-

tial calibration phase where the patients had to perform feet MI on a given in-

struction for 35 to 40 times, and the online neurorehabilitation phase where they 

had to control the stimulus on the screen (feedback) actively. During both phas-

es, the EEG signals were acquired from 11 EEG electrodes placed at standard 10-

20 locations (F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4). All electrodes were 

referenced to AFz and grounded to POz, and the acquisition has been performed 

with a sampling frequency rate of 256 Hz, and impedances were kept below 5kΩ. 

In addition, two electromyography (EMG) electrodes were added and placed at 

the level of the feet, to exclude any possible limb movement. 

 

Figure 6.1. Visual stimulus design during the calibration phase. 

Visual stimulus design during the calibration phase is depicted in Figure 6.1. 

The subjects were seated in front of a pc monitor where the text "cammina" 

(eng. "walk") and a blank grey screen (for rest) appeared interchangeably. The 

duration of the appearance of the stimulus was for 5 seconds, and the MI stimu-

lus was repeated for 35-40times. 

 

Figure 6.2. Block diagram of Multi-session FBCSP (msFBCSP) approach based on inter-session (S) 
transfer learning. 

6.2.1.3 EEG preprocessing and classical FBCSP 

EEG data processing was carried out using MATLAB (The MathWorks Inc., 

Natick, MA). All channels were filtered from 6 to 32 Hz with the 2nd order But-

terworth bandpass filter. The BCI models were produced with the BCILAB [337] 
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framework applying Filter-Bank Common Spatial Filter (FBCSP) approach [355], 

producing 3 spatial patterns per class. The classification was performed with 

Fisher Linear Discriminant Analysis (LDA) classifier with automatic shrinkage 

regularization [270]. The EEG spectra from 6 to 32Hz were subdivided by a series 

of filter-banks yielding 7 sub-bands of 6Hz bandwidth and 2Hz overlap for three 

different time windows (Figure 5.1). The time-frequency windows were considered 

for the CSP modelling and subsequently fed to train LDA classifier (Figure 5.1). 

The output Pn of the LDA classifier is provided in the form of a discrete proba-

bility distribution, providing class belonging probability formatted as [Nx2], 

where the N is the number of input trials, and 2 columns correspond to the two 

classes "walk" and "rest". 

6.2.1.4 Transfer learning Multi-session FBCSP  

In this study we propose a Multi-session FBCSP (msFBCSP) based on inter-

session transfer learning. It represents an extension of the standard afore-

described FBCSP approach, which in this case also includes data from previous 

calibration sessions to improve model performance. The msFBCSP is designed to 

produce two separate models, one standard, as is in classical FBCSP considering 

only data from the current calibration phase producing the class-belonging prob-

ability Pn the second utilizing a merge of calibration data of max 4 previous ses-

sions outputting Pp. The msFBCSP model for 5 consecutive sessions is depicted 

in Figure 6.2. Note that the integration of 4 previous sessions are applied in the 

cases where it was possible (starting from 5th session).  

The final decision is expressed with: 

𝑃𝑜𝑢𝑡 = ቊ
       𝑃𝑛,        𝑘 = 1

     
ା

ଶ
,   𝑘 > 1

                         (6.1) 

where the Pout, Pn, Pp, Pn ∈ ℝே௫ଶ and represent discrete probability distribu-

tion, providing class belonging probability (each column for a class), where the N 

is the number of trials fed into the classifier and k (1≤ 𝑘 ≤ 14) denotes the num-

ber of the session. A class with Pout > 0.5 has been selected as the final output of 

the classification process. 

Table 6.1 - The accuracy [%] of models produced using multi-session FBCSP (msFBCSP) 

Session Sb.1 Sb. 2 Sb.3 Sb.4 Sb. 5 Sb.6 Sb.7 

1 52.9 41.2 72.2 62.5 82.4 82.4 63.2 

2 87.5 93.8 88.9 93.8 88.2 100.0 91.3 

3 94.1 88.2 89.5 81.8 75.0 93.8 87.5 

4 76.5 84.2 93.8 90.0 72.2 76.5 66.7 

5 75.0 94.1 95.7 75.0 76.5 76.5 94.1 

6 77.8 93.8 68.8 93.8 95.0 68.8 76.5 
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7 77.8 94.1 87.5 81.3 82.4 93.8 82.6 

8 70.6 75.0 64.7 76.5 68.8 81.3 77.8 

9 75.0 85.0 100.0 75.0 81.3 76.5 82.4 

10 68.8 100.0 62.5 87.5 93.8 81.3 61.3 

11 87.5 77.8 68.8 75.0 90.0 76.5 75.0 

12 62.5 81.3 82.6 93.8 89.5 75.0 58.8 

13 76.5 82.4 92.6 93.8 75.0 88.2 62.5 

14 64.7 75.0 68.8 87.5 84.2 62.5 73.7 

Median 
(range) 

75.7 
(52.9-
94.1) 

84.6 (41.2-
100.0) 

85.1 (62.5-
100.0) 

84.7 (62.5-
93.8) 

82.4 
(68.8-
95.0) 

78.9 
(62.5-
100.0) 

75.7 (58.8-
94.1) 

* Sb. denotes subject. 

6.2.1.5 Model validation and metrics 

Both classical and msFBCSP were evaluated on 7-13 (30%) randomly select-

ed trials of the current calibration session. The remaining 24-28 trials (70%) were 

used to train the whole BCI model in the case of the standard approach, and part 

of the model in the case of msFBCSP. All the evaluation has been performed of-

fline. Accuracy was used for the evaluation metrics, resembling the number of 

correctly classified trials.  

6.2.1.6 Statistical analysis 

Variables were presented with mean and standard deviation or median and 

range depending on the distribution. Kolmogorov-Smirnov test was used to eval-

uate the normal distribution of variables. The difference between accuracy ob-

tained using the FBSCP on single-session data, and the proposed msFBCSP ap-

proach was assessed by the two-sided Wilcoxon signed-rank test. 

6.2.2 Results 

The accuracy of models produced using the FBSCP on single-session data 

and proposed msFBCSP approach for each patient and session are reported in 

Table 6.1 and Table 6.2, respectively. The difference in accuracy between the two 

methods over sessions is shown in Figure 6.3. It can be observed that there is a 

clear improvement in most of the cases. Indeed, the msFBCSP approach showed 

a statistically higher accuracy compared to single-session based FBCSP (81.3% 

range 41.2-100.0 vs 61.1% range 25.0-100.0, respectively; p<0.001). 

6.2.3 Discussion 

Advanced Motor-Imagery BCI methods are needed to allow the application 

of these neurorehabilitation strategies to the real clinical scenarios. MI BCI-based 

neurorehabilitation can improve locomotor ability and alleviate some symptoms 
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in PD patients. This study proposed a Multi-session FBCSP (msFBCSP) based 

on inter-session transfer learning to improve calibration performance. 

 

Table 6.2 - The accuracy [%] of models produced using single-session FBCSP 

Session Sb.1 Sb. 2 Sb.3 Sb.4 Sb. 5 Sb.6 Sb.7 

1 52.9 41.2 72.2 62.5 82.4 82.4 63.2 

2 43.8 62.5 61.1 81.3 70.6 82.4 47.8 

3 35.3 58.8 73.7 54.5 62.5 56.3 56.3 

4 47.1 52.6 81.3 80.0 72.2 52.9 61.1 

5 46.4 52.9 65.2 68.8 52.9 58.8 52.9 

6 61.1 68.8 43.8 68.8 65.0 75.0 52.9 

7 44.4 64.7 87.5 75.0 70.6 43.8 69.6 

8 41.2 56.3 41.2 64.7 56.3 56.3 50.0 

9 37.5 65.0 56.3 87.5 50.0 82.4 52.9 

10 56.3 80.0 50.0 81.3 68.8 68.8 54.8 

11 37.5 61.1 50.0 56.3 50.0 52.9 62.5 

12 25.0 75.0 65.2 100.0 68.4 50.0 47.1 

13 29.4 76.5 74.1 68.8 68.8 64.7 62.5 

14 58.8 62.5 53.1 56.3 57.9 68.8 73.7 

Median 

(range) 

44.1 

(25.0- 

61.1) 

62.5 

(41.2-

80.0) 

63.2(41.2-

87.5) 

68.8(54.5-

100.0) 

66.7 

(50.0-

82.4) 

61.8(43.8-

82.4) 

55.5(47.1-

73.7) 

* Sb. denotes subject. 

The main result of this study is the improved accuracy obtained by proposed 

msFBCSP compared to single-session based FBCSP in PD patients. We showed 

that msFBCSP with a simple data integration together with merged class belong-

ing probabilities could improve classification accuracy significantly. This is the 

first study that proposes a multi-session transfer learning in MI BCI based neu-

rorehabilitation of PD patients. 

The improved accuracy of BCI models built with msFBCSP is likely due to 

better identification of discriminative features, rather than features related to a 

single session, leading to higher generalisation of the model. 

The proposed strategy besides the improved classification accuracy may have 

a future implication in developing multi-session strategies that could also reduce 

the calibration time or even eliminate it as in [356]. 
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Figure 6.3. Graphical representation of the accuracy [%] of msFBCSP (session to session transfer learn-
ing) and single-session FBCSP (no transfer-learning) 

These improved MI-BCI performances may make it more applicable in the 

domain of neurorehabilitation, helping to improve locomotor ability and alleviate 

some symptoms in PD patients. 

Furthermore, in future work, we plan to consider multiple cross-validation 

techniques for model evaluation, as well as transfer learning between PDs sub-

jects. In this preliminary work, the number of previous sessions utilized for the 

session-to-session transfer was arbitrary fixed to 4, and it is yet to be examined 

how the further increase or decrease of previous sessions will affect the perfor-

mance of the BCI model. 

Future studies on a larger sample are needed to confirm these results and to 

assess to what extent the calibration session can be reduced or even eliminated 

starting from Nth session. Finally, the future work, especially in subject data in-

tegration, needs to consider an adaptive weighting, not necessarily on the level of 

the final probability, but also on the model training level. It is yet to be exam-

ined how stationary or even nonstationarity in the session and subject space af-

fect the final classifier performance. 

In conclusion, this study proposes a transfer learning-based multi-session 

based FBCSP approach that significantly improves calibration accuracy in MI 

BCI performed on PD patients. 
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6.3  EFFECT OF POWER FEATURE COVARIANCE SHIFT ON 

BCI SPATIAL-FILTERING TECHNIQUES: A COMPARA-

TIVE STUDY8 

6.3.1 Introduction 

Spatial filters and their application in BCI were studied mainly [247], [297]–

[300], [314]. Data-independent spatial filters like Surface Laplacian with fixed 

weights [247], [285], [301] were largely used due to its simplicity, but it was found 

sensitive to anatomical differences and cross-subject variability [303], [304]. Data-

driven filters spatial such as CSP and its variants were designed to overcome the 

aforementioned limits. On the other side, it is also reported [314], that CSP is 

sensitive towards noisy training data [357], nonstationarities [358] and small da-

tasets [331], [340]. Most BCI studies related to spatial filtering techniques were 

based only on the evaluation performed on calibration (training) and test set de-

rived from the same EEG recording. In real-life BCI applications, the online ses-

sion is performed about 20 minutes after the initial calibration session and there-

fore disregard a time-varying feature's distribution, such as intrinsic signal non-

stationarity characteristic for EEG, caused by power feature covariance shifts 

[272], [350], that compromise BCI performance. 

Therefore, the aim of our study was to identify the most robust spatial filter-

ing approach, among most used methods, in the real BCI procedure testing them 

on data deriving from two different recording sessions in order to test how non-

stationarity affects their performance. In addition, we also investigated if their 

performance improved after application of stationary subspace analysis. 

6.3.2 Materials and Methods 

6.3.2.1 Study population 

Twenty healthy subjects have participated in the study (age range 19–26 

years, mean±1SD = 22 ± 1.9). All subjects were right-handed, BCI naïve sub-

jects and with no history of neurological disorders, in particular without impaired 

motor functions. 

The study was conducted within the MEMORI-net Interreg V-A ITS-SLO 

project. All recruited subjects gave their signed informed consent to participate in 

the study. The study protocol was approved by the Regional Ethical Committee 

CEUR (Comitato Etico Unico Regionale, FVG, Italy) with approval number 

 
8 Miladinović, A., Ajčević, M., Jarmolowska, J., Marusic, U., Colussi, M., Silveri, G., Battaglini, P. P., & Accardo, A. (2021). Effect of power feature covariance shift 

on BCI spatial-filtering techniques: A comparative study. Computer Methods and Programs in Biomedicine, 198, 105808. https://doi.org/10.1016/j.cmpb.2020.105808 
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118/2018. The research was conducted according to the principles of the Declara-

tion of Helsinki. 

6.3.2.2 Study design and BCI protocol 

To emphasize the real-life Motor-Imagery BCI (MI-BCI) scenarios, we have 

recorded training and testing set separately.  The training set had been collected 

at the beginning of the experiment, whereas, the test set subsequently has been 

acquired 30min afterwards, as in Figure 6.4A. During the break, the participants 

were resting in a chair. 

 

Figure 6.4 - A) Graphical representation of the experimental design; B) Time-sequence of stimuli presen-
tation; C) BCI modelling block diagram ; D) Block-diagram of applied BCI processing steps. Dark pink colour 

and shadow green represent the processing pipeline of calibration data and test data, respectively. Both the cali-
bration and test data were preprocessed, and the produced models on the calibration set were additionally evalu-
ated on a test set. The same procedure was performed with and without stationary subset analysis (SSA) pre-

processing step. 
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For both calibration and test dataset, subjects had to perform 70 tasks (35 

repetitions of right-hand MI task and 35 reparations of rest task, randomly), as in 

Figure 6.4B. The stimulus consisted of the fixation cross on the screen to draw 

participant attention for two seconds, followed by the instruction to imagine the 

right hand (MI) or stay in "rest", and it was presented for 5 seconds. The inter-

trial period was from 1 to 2 seconds. The adopted single right-hand vs "rest" de-

sign was chosen considering the applications of BCI techniques in neurorehabili-

tation to target a specific motor area during a specific rehabilitation task, as re-

ported previously [19], [295], [336]. Both conditions (MI and "rest") had the same 

size of 5 seconds, as shown in Figure 6.4B). For the MI task, the still image of 

the right hand was presented, while for the "rest" condition, the green circle was 

displayed. 

The experiment was performed, and data were acquired by locally designed 

software "NeuroTS" available at https://github.com/miladinovic/NeuroTS. The 

NeuroTS allows both stimulus presentation for calibration and feedback for online 

sessions. In this study, we used only the stimuli presentation feature, both during 

calibration and test sessions. 

The acquisition of 12 channel EEG was performed using SAM 32FO amplifi-

er (Micromed S.p.A., Italy) and Ag/AgCl electrodes (FC3, FC4, C4, C3, CP3, 

CP4, C2, C4, C6, C5, O1, O2). The signals were recorded with 256 Hz sample 

frequency and subsequently preprocessed with the 6-32Hz 4th order Butterworth 

bandpass filter and resampled to 128Hz. The signal was epoched from 0.5 to 4.5 

seconds relative to the presentation of the cue on the screen.   

The signal preprocessing step after initial resampling and filtering has been 

split into two parts: (1) where the BCI modelling that includes spatial filtering, 

feature extraction and classification has been performed on the EEG sensor space, 

and (2) where the Stationary Subspace Analysis (SSA) has been performed, and 

further modelling has been performed on the new stationary subspace. The BCI 

modelling has been performed on the selected approaches, and their performances 

have been estimated using cross-validation. Finally, for the real model perfor-

mances have been evaluated on the separate EEG test set. The graphical repre-

sentation of the described procedure is reported in Figure 6.4B. 

Stationary Subspace Analysis  

The additional preprocessing of factorization of the multivariate EEG data 

into its stationary and nonstationary components has been performed with the 

analytical Stationary Subspace Analysis algorithm presented in [353], [359]. In 

particular, we assume that the system with D sources consists of d stationary 

source signals 𝑠𝕤(𝑡) = [𝑠ଵ(𝑡), 𝑠ଶ(𝑡), . . . , 𝑠ௗ(𝑡)]ୃ(named 𝕤-sources) and D - d nonsta-

tionary source signals 𝑠𝕟(𝑡) = [𝑠ௗାଵ(𝑡), 𝑠ௗାଶ(𝑡), . . . , 𝑠(𝑡)]ୃ(also named 𝕟-sources).  
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The observed signals 𝑥(𝑡)  can be expressed as a linear superposition of the 

sources that are non-necessary independent, and A is an invertible matrix  

𝑥(𝑡) = 𝐴𝑠(𝑡) = [𝐴𝕤   𝐴𝕟][𝑠𝕤(𝑡) 𝑠𝕟(𝑡)]் ,   (6.2) 

The spaces spanned by 𝐴𝕤  and   𝐴𝕟are called 𝕤- and 𝕟-space, respectively. 

The goal is to find a linear transformation Âିଵthat separates the𝕤-sources from 

the 𝕟-sources, factorizing 𝑥(𝑡) according to Eq. (1). Therefore, we write the es-

timated demixing matrix as Âିଵ=B̂W where 𝑊 = 𝐶𝑜𝑣(𝑥)ିଵ/ଶis a whitening ma-

trix and B̂ is an orthogonal matrix. 

An optimization procedure [353], [359] was used to determine the rotation 

part of B̂ during which the first d components of estimated sources ŝ(𝑥) =

𝐵̂𝑊𝑥(𝑡), are as stationary as possible. 

Therefore, we divided the data into N consecutive epochs 𝑋ଵ, . . . , 𝑋ே ⊂ ℜand 

selected estimated sources as stationary if their joint distribution did not change 

over all epochs.  The detailed explanation of the algorithm can be found in [353], 

[359].  

In our work, the SSA preprocessing has been performed as an additional step 

before applying spatial filtering, as proposed in [308]. Before applying the SSA, 

EEG was epoched to MI and "rest" tasks, to ensure that differences between 

"rest" and MI are not counted as nonstationarity. Finally, the algorithm outputs 

the set of ranked twelve sources according to their stationarity, and 70% of them 

have been selected for further BCI modelling, whereas 30% marked as nonsta-

tionary were discarded. The 70-30% cut-off, which was fixed for all participants 

and methods, was considered the best tradeoff between the model's discriminato-

ry power and the maintenance of the performance (accuracy) over time. 

6.3.2.3 BCI approaches 

In this study the following approaches were included: Surface Laplacian  

(SLap) [285], Common Spatial Pattern (CSP), Filter Bank Common Spatial Pat-

tern (FBCSP), Filter Bank Common Spatial Pattern Time (FBCSPT) [355], 

Source Power Co-modulation (SPoC) [306], [307], Spectrally Weighted Common 

Spatial Patterns (SpecCSP) [299], [300],  Spectrally Weighted Regularized Com-

mon Spatial Patterns (SpecRCSP) [312]. For the BCI modelling block diagram, 

see Figure 6.4C. The aforelisted approaches fulfilled the following inclusion crite-

ria: 1) noise robustness,  2) reported resilience to nonstationarity between calibra-

tion data and online data 3) processing delay (the maximal real-time cannot ex-

ceed 300ms), 4)  required a number of channels (up to 16), 4)  required para-

metrization and 5) required time for calibration (not exceeding 15min). 
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6.3.2.4 Performance evaluation and Statistical analysis 

The classification accuracy on the calibration set was estimated using 10-fold 

chronological/blockwise cross-validation with 5 trials margin. In 10-fold cross-

validation, the calibration dataset containing in total 70 task repetitions was par-

titioned into ten subsamples. The 9 of 10 subsamples were used to train the mod-

el, while the remaining tasks were considered for validation in each run. The pro-

cess was then repeated 10 times, using each of the subsamples only once as the 

validation data.  Therefore, the overall cross-validation accuracy was calculated 

as a mean of all 10 validation folds (i.e., including the whole 20 min period). Sub-

sequently, the accuracy of created models was calculated on the unseen data test 

set and compared to those obtained by 10-fold cross-validation on the calibration 

set. 

The aforementioned evaluation procedure was performed firstly without SSA 

preprocessing, as a standard procedure, and secondly, with SSA preprocessing, see 

Figure 6.4D. The difference between the estimated calibration set and real accu-

racy on tests were assessed by using the Wilcoxon signed-rank test. 

6.3.3 Results 

Median and interquartile range (IQR) values of accuracies observed for each 

BCI approach, with and without SSA, on calibration and test dataset, as well as 

their comparison, are reported in Table 6.3. Figure 6.4 reports a comparison be-

tween the accuracies obtained on the calibration and test data without SSA 

(Figure 6.4A), the same comparison obtained with SSA preprocessing (Figure 

6.4B), as well as comparison of performance on the test set with and without SSA 

(Figure 6.4C).  

In Figure 6.4A it can be observed a large dispersion around the identity line 

with a trend of lower accuracy on the test dataset, especially in CSP, SPoC and 

SpecRCSP. Indeed, classification accuracy resulted significantly lower on test da-

taset compared to calibration in CSP, SPoC and SpecRCSP (p-value = 0.028, 

0.035 and 0.016, respectively). For SLap, SpecCSP only a slightly decreasing 

trend was observed, while FBCSP and FBCSPT maintained moderately high 

median accuracy >70% (Table 6.3). In the case of application of SSA prepro-

cessing, the differences between accuracy observed on calibration and test dataset 

were reduced for all methods except SLap approach (Table 6.3, Figure 6.4B). In 

addition, accuracy values both on calibration and test set were slightly higher in 

case of SSA preprocessing (Figure 6.4C, Table 6.3) and also in this case FBCSP 

and FBCSPT presented slightly better performance compared to other methods. 
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Table 6.3 - Median and IQR values of accuracies calculated for each BCI approach, with and without SSA 
preprocessing, on calibration and test dataset, as well as their comparison. IQR- interquartile range; * p-
value<0.05. 

  SLap CSP FBCSP FBCSPT SPoC SpecCSP SpecRCSP  

Accuracy (%) 
calib - Medi-
an (IQR) 

69.2 
(61.3-76.9) 

74.2  
(68.1-85.4) 

72.5 
(62.3-80.6) 

74.2 
(62.3-82.5) 

74.2 
(67.5-85.4) 

69.2  
(61.7-77.7) 

71.7 
(58.1- 77.5) 

Accuracy (%) 
test - Median 
(IQR) 

64.1 

(55.8-72.5) 

66.7 

(57.7-82.1) 

70.2 

(58.4-87.8) 

74.1 

(58.4-80.8) 

66.7 

(57.7-80.1) 

66.7 

(53.2-74.4) 

59.0 

(51.3-71.8) 

calib vs test 
(p-value) 

0.381 0.028* 0.636 0.813 0.035* 0.356 0.017* 

 +SSA preprocessing 

 SSA+ 
SLap 

SSA+ 
CSP 

SSA+ 
FBCSP 

SSA+ 
FBCSPT 

SSA+ 
SPoC 

SSA+ 
SpecCSP 

SSA+ 
SpecRCSP 

Accuracy (%) 
calib - Medi-
an (IQR) 

72.0 
(61.5-78.9) 

75.7 
(66.0-82.9) 

76.0 
(70.0-81.4) 

74.3 
(69.6-81.1) 

75.7 
(66.0-82.9) 

72.9 
(60.0-82.1) 

70.0 
(54.2-81.1) 

Accuracy (%) 
test - Median 
(IQR) 

64.3 

(57.4-72.9) 

71.4 

(63.6-81.6) 

74.3 

(70.0-80.7) 

75.7 

(62.1-82.2) 

71.4 

(62.7-84.8) 

68.6 

(63.6-81.6) 

67.1 

(60.4-76.3) 

calib vs test 

(p-value) 

0.085 0.158 0.486 0.408 0.140 0.772 0.938 

 

Figure 6.5 - A) Comparison between accuracy obtained on calibration and test data for each BCI ap-
proach. (B) Comparison between accuracy obtained on calibration and test data for each BCI approach after 
the Stationary-Subspace Analysis (SSA) preprocessing (C) Comparison of accuracy obtained on test data be-
tween before and after applying SSA preprocessing for each BCI approach. 
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6.3.4 Discussion 

In everyday practice, BCI online sessions are performed at least 20 minutes 

after the initial calibration session, and therefore intrinsic signal nonstationarity 

characteristic for extracted EEG features may compromise BCI performance. 

This study evaluated the performance of several spatial-filtering approaches on 

calibration and test set acquired 30 min after the calibration, mimicking the real 

BCI scenarios. 

The main finding of this study is that EEG extracted feature nonstationari-

ties lead to the BCI model accuracy deterioration, even after 30 minutes of a 

break. These feature changes had a different impact on the selected spatial filter-

ing approaches. CSP, SPoC and SpecRCSP showed significantly lower accuracy 

on the test set compared to estimated accuracy on the calibration set. On the 

other hand, FBCSP and FBSCPT showed to be more robust to feature covari-

ance shift largely maintaining the original performance characterized by moder-

ately high accuracy. Furthermore, we showed that the models produced after SSA 

preprocessing better maintained the classification performance and, thus, reduced 

the gap between calibration and test set accuracies. The effect of the SSA prepro-

cessing confirms the existence of nonstationarity caused by covariance shift which 

violates Machine-Learning basic assumptions of invariant feature distribution be-

tween calibration and test.  

In this study, we quantified the performance decline of widely used spatial 

filtering methods on the dedicated 30min delayed experimental dataset. The as-

sessed decline points out the importance of a more appropriate evaluation frame-

work in order to evaluate the real-life BCI performance. The results also suggest 

the use of methods which are intrinsically more robust to the EEG nonstationari-

ties, as well as the preprocessing techniques as SSA. The improvement obtained 

after the application of the SSA confirmed the covariance shift presence and its 

impact on the observed performance decline. 

The overall better performance of FBCSP can be explained by its mechanism 

that allows capturing interactions between frequency subbands and in the case of 

FBCSPT additional interaction of temporal dynamics in defined time-frequency 

windows. At least at the level of the spatial-filter design, these interactions are 

not captured by SLap, SPoC and CSP.  Although that data-driven spatial-

filtering techniques discard a part of nonstationarity by optimizing the variance 

only in relation to the experimental task, this process is not guaranteed. We can 

observe that FBCSP and FBCSPT are less prone to the time-varying effect due 

to intrinsic data-driving mechanisms operating on small frequency subbands. De-

spite their moderately higher performance, the FBCSP objective function is de-

fined to optimize variance (power) and not to eliminate feature covariance shifts, 
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as in the case of SSA. Figure 6.5 demonstrates the effect of SSA preprocessing 
applied before spatial filtering. We can observe that the covariance of the features 

are less prominent and that nonstationarities are reduced. 

 

Figure 6.6 - Feature covariance shift of FBCSP (right panel) and with SSA preprocessing (left panel). 
The blue lines depict the LDA class separation boundary produced on the calibration set, whilst the red line rep-
resents the LDA boundary fit on the test set. 

The nonstationarity cannot always be treated as undesirable, since it might 

also represent positive changes in biological systems, such as learning neuroplas-

ticity, improvement of motor-imagination skills, an increase of attention during 

the experimental time, etc. As a proof-of-concept in our study, we fixed the por-

tion of nonstationarity sources, but we believe that carefully selected proportion 

as a tradeoff of BCI discriminatory power and neurophysiological goal (i.e. motor 
rehabilitation, an increase of attention, etc.) for each approach and subject will 

yield to better performance. Therefore, the development and use of BCI models 

must often balance various competing objectives. 

The study shows that there are considerable differences between estimated 
accuracy using cross-validation and the accuracy obtained on the separate test 

set. This implies that the standardization of the BCI validation framework is re-

quired. Establishing a clear validation framework is even more important for the 

evaluation of BCI approaches on clinical populations where due neurophysiologi-

cal pathologies alternation of oscillatory activity might be present [61].  

Furthermore, it is worth mentioning that certain regularisation types usually 

sacrifice train accuracy for generalization, and hypothetically reduces the gap be-

tween estimated and real performance of a BCI model. Therefore, the regulariza-

tion on the level of the classifier, as suggested in a recent review, should always 
be prefered [267]. Additionally, the introduction of some a priori knowledge can 

increase model performance on unseen test data and create more robust BCI 

models. Penalizing the channels that are irrelevant for the task proposed in 
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(Stragapede et al., 2019), increases overall model accuracy. A selection of the 

temporal aspect (i.e. the starting points of the time windows of MI task for both 

training and testing samples) as proposed in [360], [361] can further improve 

model accuracy and possibly make BCI models less affected by the power feature 

covariance shift. 

This study's limitation is that each participant has performed only one BCI 

session, preventing us from investigating how SSA preprocessing and spatial fil-

tering techniques behave during the transfer learning. 

6.3.5 Conclusions 

The results of this study showed that intrinsic signal nonstationarity charac-

teristics, caused by covariance shifts of power features, reduce the accuracy of 

BCI model on the data acquired 30 minutes after the BCI calibration, suggesting 

that this evaluation framework should be considered for testing simulating real-

life performance. FBCSP and FBSCPT approaches showed to be more robust to 

feature covariance shift, mainly maintaining the original performance character-

ized by moderately high accuracy. Stationary Subspace Analysis preprocessing 

can improve the models' performance and reduce accuracy decline from calibra-

tion to test set. 

6.4 SUMMARY 

This chapter has highlighted some of the current issues with the MI-based 

BCI system. To achieve higher BCI performance and to build a more robust 

model for classification of the neurophysiological signal produced by MI, we need 

more data. We have seen that the transfer learning-based multi-session FBCSP 

approach significantly improves calibration accuracy in on PD patients. The re-

sults of the second study show that the non-stationarity of the signal and the 

shift in the power covariance reduce the accuracy of the BCI models. The results 

of the second study show that signal non-stationarity and covariance shifts reduce 

the accuracy of BCI models. It is also found that, as in the previous study, the 

FBCSP and FBCSPT approaches are better able to deal with the effect of feature 

covariance shift. However, the introduction of the Stationary Subspace Analysis 

(SSA) preprocessing can facilitate session-to-session or subject-to-subject transfer 

learning by increasing the calibration dataset and reducing the time spent on the 

initial calibration set before the experiment and can further improve the models' 

performance. 
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Chapter 7. CONCLUSIONS  

The PhD manuscript describes the work we carried to achieve three concep-

tual objectives: the study of EEG alterations and neurophysiological of stroke and 

PD, presented in Chapter 2; the study of the neurorehabilitation Action Observa-

tion (AO) and Motor Imagery (MI) paradigms and their effect on the resting-

state brain oscillatory activity, and finally the study of BCI modelling, in particu-

lar spatial filtering, required for personalized neurorehabilitation of stroke and 

Parkinson's disease patients, and proposal of their improvement (Chapters 4, 5 

and 6).  

To achieve these objectives, we first proposed the contribution to the correla-

tion between EEG and neurophysiological deficits. Understanding the pathology-

induced changes helps us to better diagnose and monitor diseases and to design 

efficient neurorehabilitation and therapeutic protocols based on BCI. With that 

in regard, in section 2.4, we assessed the relation between EEG alterations in the 

earliest phase of ischemic stroke and hypoperfused volume assessed by neural hy-

poperfusion (CTP), and neurological deficit at admission. We found that EEG 

behaviour varies depending on the extent of hypoperfused tissue and that EEG 

and CTP may better depict the impairment level than the neuroimaging assess-

ment at admission alone. EEG confirmed to be a sensitive measure for brain 

functions in the earliest phase of cerebral ischemia. These results highlighted the 

added value of EEG as complementary in the evaluation of stroke severity and as 

a potentially useful tool in monitoring and mapping of longitudinal changes in 

acute stroke patient in the hyper-acute phase. The study on stroke patients re-

sults showed the larger CTP volumes are related to a bilateral linear increase of 

delta, DAR and DTBAR parameters and inverse power law decrease of alpha 

waves in the early phase. Furthermore, our results showed that higher delta pow-

er was associated with higher neurological impairment at admission, while higher 

alpha power corresponded to extremely low NIHSS values at admission. These 

EEG related new early prognostic factors may support personalized therapeutic 

interventions to improve patients' recovery. 

In line with the research on stroke patients, in section 2.6, we presented a 

study that identified the association between EEG changes and different motor 

deficit domains measured by specific motor scales in PD’s. The significant corre-

lation between the slowing of EEG and symptom-specific motor decline indicates 

that EEG assessment may be a useful biomarker for objective monitoring of pro-

gression and neurophysiological effect of PD's rehabilitation approaches. In the 

case of PD, however, this remains to be confirmed in further study.  
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In both cases, how and whether novel therapeutic interventions, including 

BCI neurorehabilitation, affect the changes in these EEG parameters needs to be 

investigated. 

The second objective of the thesis concerns the neurorehabilitation paradigms Ac-

tion Observation (AO) and Motor Imagery (MI) and their effect on the resting 

state EEG. To reach this objective, we have performed a pilot study on healthy 

individuals. The study demonstrated a direct and rapid effect of cortical modula-

tion induced by MI on the EEG resting-state, and therefore, provided support for 

further development of Motor Imagery based BCI (MI-BCI), with respect to the 

AO alone. The study also showed substantial differences between MI and AO, 

and such information may be used to improve clinical protocols of AO and MI 

and to perform further studies on the topic. 

The third thesis contribution was in the domain of EEG signal processing 

and feature extraction, in particular spatial-filtering methods. I proposed a study 

on spatial filters on stroke and PD patients. 

The study on stroke showed that these patients could control MI-BCI with 

high accuracy and that FBCSP may be used as the MI-BCI approach for com-

plementary neurorehabilitation during early stroke phases. Furthermore, we 

demonstrated that FBCSP provides the best performance in PD subjects among 

selected approaches and that PD patients, as in the case of stroke, can perform 

BCI-based MI neurorehabilitation with relatively high accuracy. 

In conclusion, in both studies, FBCSP showed to be the most robust ap-

proach for classification of the EEG correlates of MI. However, during the stud-

ies, I noted some of the issues in applying the BCI in neurorehabilitation.  

Finally, I proposed improvements to the existing BCI approaches and stud-

ied their effect on clinical and healthy populations. Namely, to achieve a higher 

BCI performance and to produce a more robust model for classification of the 

neurophysiological signal produced by MI, we need enough data. We are talking 

about more than 40 repetitions of the MI just for the BCI modelling purposes. I 

proposed and tested the transfer learning-based multi-session extension FBCSP 

approach that significantly improves PD patients' calibration accuracy. However, 

transfer-learning does not completely eliminate the intrinsic nonstationarities 

from the EEG data.  

The last study results I carried out showed that the signal nonstationarity 

and power covariance shifts significantly reduce BCI models' accuracy. It has 

been also demonstrated that the FBCSP is the most robust among selected ap-

proaches. However, only after introducing the Stationary Subspace Analysis 

(SSA) preprocessing the classifier's performance is significantly increased. 
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Further investigations are needed to confirm the FBCSP approach's neuro-

physiological plausibility in stroke and PD patients and in particular, the correla-

tion of the automatically obtained features and the outcome EEG spectral fea-

tures (see Chapter 2). Furthermore, I proposed the method that eliminates the 

nonstationarities from EEG spectral features (see section 6.3).  

The abovementioned main findings of this thesis may contribute to improve 

the current BCI systems and subsequently enhance the diffusion and beneficial 

aspects of MI-BCI neurorehabilitation for PD and stroke patients. 
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