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The μþ → eþX decay, where X is a dark sector boson, provides one of the strongest available bounds on
the scale of dark sector interactions. The X boson can be an axion or a dark photon. We show that the
concurrent determination of the antimuon and positron polarizations makes it possible to distinguish with a
confidence level of 99% between the two dark sector portals with as few as 6 observed events in the case of
the massless dark photon. Instead, the massive spin-1, dimension 4 dark portal cannot be distinguished
from the axionlike case. We also discuss the possibility that the X boson be a massive spin-2 particle.
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I. MOTIVATIONS

The experimental search for the two-body decay μþ →
eþX can provide a direct window on the hypothetical dark
sector [1], at least as long as this sector contains flavor
changing interactions. New experiments are now under
way to reach branching rates (BR) of the order of Oð10−8Þ
[2] at Mu3e [3] and Oð10−7Þ [4] at MEG-II [5]. Given the
high sensitiveness involved, they might even turn the limit
into a discovery. If this turns out to be the case, it will be
imperative to identify what kind of particle is the dark
sector X boson. The two main candidates are an axionlike
particle (ALP) and a dark photon. As we show below, these
two particles give rise to decay widths that are rather similar
(identical in the massless case) if the positron polarization
is not measured. On the contrary, the measurement of the
positron polarization provides a very efficient way to
determine the nature of the X boson and decide what kind
of portal to the dark sector has been discovered.

II. THE DIFFERENTIAL PROBABILITIES

The decay of antimuons into positrons in the Standard
Model (SM) represents the background of any search for
the decay μþ → eþX. It is a three-body decay with the
corresponding two neutrinos and the positron in the final
states. The differential probability for emitting a positron,
with a reduced energy xe ¼ 2mμEe=ðm2

μ þm2
eÞ ≃ 2Ee=mμ

and a momentum with an angle θ to the muon spin axis, is
given by [6,7]

dΓðμþ → eþν̄μνeÞ
dxed cos θ

¼ G2
Fm

5
μ

192π3
x2e

ð1þ λeÞ
2

× ½3 − 2xe þ Pμð2xe − 1Þ cos θ� ð1Þ

where the mass of the positron is neglected; Pμ ¼ jP⃗μj and
λe are the polarization vector of the antimuon and the
helicity of the positron, respectively.
For polarized antimuons, the SM differential width in

Eq. (1) is suppressed for certain values of cos θ at the
spectrum endpoint (see Fig. 1). This feature has been
exploited by some of the experimental searches. For
positronswith helicity λe ¼ −1 thewidth in Eq. (1) vanishes
(we neglect terms proportional to the positron mass and
transverse polarizations) because of the chiral structure of
the SM charged currents. This feature too can be used to
control the SM background contribution to the events.
Axionlike particles [8,9] are pseudoscalar bosons that

can mediate the two-body antimuon decay into positron
μþ → eþX with an interaction Lagrangian given by

LALP ¼
cLμe
fa

μ̄Rγ
μeR∂μaþ cRμe

fa
μ̄Lγ

μeL∂μaþ H:c:; ð2Þ

where L and R indicate the respective chiral spinors. We do
not consider the vectorlike structure and only retain the
chiral couplings (see [4] for a recent discussion of all
possible coupling structures).
The dark photon [10] is a vector boson, massless or

massive, that provides the same two-body decay with a
gauge-invariant interaction Lagrangian given by
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LDP ¼
dLμe
2Λ

μ̄RσμνeLFμν þ dRμe
2Λ

μ̄LσμνeRFμν þ H:c:; ð3Þ

where σμν ¼ ði=2Þ½γμ; γν� and Fμν is the dark photon fields
strength.
The dipole interaction in the form of Eq. (3) is the

leading interaction between the SM states and the massless
dark photon for flavor changing neutral current (FCNC)
processes, which is also the same for the massive dark-
photon. In the massive case, because the Uð1ÞD gauge
symmetry is broken, tree-level FCNC interactions mediated
by dimension 4 operators can arise, namely

Ltree
MDP ¼ d̄Lμeμ̄LγμeLAμ þ d̄Rμeμ̄RγμeLAμ þ H:c:; ð4Þ

where Aμ is the massive dark-photon field.

For the FCNC dipole interaction in Eq. (3), the massless
limit mX → 0 of the corresponding massive dark-photon
amplitude is smooth for the process μ → eX and going
into the amplitude for the massless case. The only mass
discontinuity between massive and massless scenarios
arises in the flavor conserving processes for which there
is a direct interaction to the SM current for the massive case
whereas the dipole operator remains the only interaction to
SM fermions in the massless scenario [11]. On the other
hand, for the case of Eq. (4), since the longitudinal
component of massive dark-photon does not decouple in
mX → 0, there is no corresponding massless limit.
The interactions in Eqs. (2) and (3) or Eq. (4) provide a

two-body channel for the muon to decay into and a
characteristic signal of fixed-energy positrons at the end-
point of the SM spectrum (see Fig. 1) at xe ¼ 1 for massless
X boson. If the dark photon or the ALP are massive the
contribution is shifted to values xe < 1. The positron
momentum pe ¼ jp⃗ej and energy Ee are given by

pe ¼
1

2mμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmμ þmeÞ2 −m2

X�½ðmμ −meÞ2 −m2
X�

q
;

Ee ¼
1

2mμ
ðm2

μ þm2
e −m2

XÞ: ð5Þ

where mX stands for the mass of the dark boson X.
We assume that the X boson is stable or decays outside
the detector (see [12] for a discussion that also includes the
case in which it decays inside the detector).

The corresponding differential probabilities are

dΓ
d cos θ

����
DP

¼ m3
μ

Λ2

ð1 − rÞ2
64π

�
jdRμej2ð1 − λeÞ

�
1þ Pμ cos θ þ

r
2
ð1 − Pμ cos θÞ

�
:

þ jdLμej2ð1þ λeÞ
�
1 − Pμ cos θ þ

r
2
ð1þ Pμ cos θÞ

��
ð6Þ

dΓ
d cos θ

����
ALP

¼ m3
μ

f2a

ð1 − rÞ2
128π

fjcLμej2ð1 − λeÞð1 − Pμ cos θÞ þ jcRμej2ð1þ λeÞð1þ Pμ cos θÞg; ð7Þ

dΓ
d cos θ

����
tree

MDP
¼ m3

μ

m2
X

ð1 − rÞ2
64π

fjd̄Rμej2ð1 − λeÞ½1 − Pμ cos θ þ 2rð1þ Pμ cos θÞ�:

þ jd̄Lμej2ð1þ λeÞ½1þ Pμ cos θ þ 2rð1 − Pμ cos θÞ�g ð8Þ

where r ¼ m2
X=m

2
μ and we neglect the mass of the positron.

While the width for the massive dark photon mediated by
dipole interaction contains a term proportional to the dark-
photon mass due to the contribution of the longitudinal
component (which behaves as a scalar field) the scalar case
has no mass corrections and the massive and massless

scalar cases have the same angular distribution. As we can
see, in the case of the FCNC tree-level interaction in
Eq. (4), the massive dark-photon behaves as the ALP in the
mX ≪ mμ limit, as far as polarizations and angular dis-
tributions are concerned, provided a redefinition of the
couplings cLμe ↔ d̄Rμe; cRμe ↔ d̄Lμe is adopted. Indeed, in this

FIG. 1. Dependence of the differential width for the μþ →
eþν̄μνe decay in the SM on the reduced energy xe for an averaged
muon polarization of 90%. Three choices for cos θ are shown.
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case only the longitudinal polarization of massive dark-
photon field dominates, with an effective coupling
inversely proportional to the dark-photon mass. Then, since
we will restrict to the small mass scenario mX ≪ mμ, we
will not consider the analysis of the massive dark-photon
contribution mediated by tree-level FCNC, this case being
included into the ALP one. That said, one should bear in
mind that the massive dark photon coupled through the
currents in Eq. (4) is indistinguishable from the ALP.
For the massless case, the widths in Eqs. (6) and (7)

become the same if the positron helicity is summed over,
with the left-handed interaction exchanged with the right-
handed in going from ALP to dark photons. For a massive
dark photon, making no assumptions on the coefficients,
the two widths are different and the difference is controlled
by the value of mX. This difference is too small to be very
efficient in telling the spin of the dark sector boson. Even
for sizable values of the massmX, the discriminating power
is not optimal—as we show in the following. To distinguish
between the spin 0 and 1 option in an efficient manner, we
need to measure the polarization of the positrons. Since we
do not expect to have many events to use in the analysis—
given the rarity of these branching ratios—it is important to
be able to discriminate the two spin hypotheses with as few
events as possible.
The simultaneous measurement of the positron polari-

zation and angular distribution of the photon momentum
always allows us to disentangle the spin-0 ALP from the
massless spin-1 dark-photon, regardless of the relative
weights of left-handed and right-handed couplings appear-
ing in the interaction vertices. Indeed, the measurement of
the positron polarization uniquely selects the specific chiral
couplings in the ALP and dark-photon in a correlated way,
thus selecting the corresponding angular distributions in the
spin-0 ALP and spin-1 sectors. This correlation is a
consequence of angular momentum conservation in the
μ → eX decay.
The simultaneous measurement of the positron polari-

zation and angular distribution of photon is also useful for
controlling the SM background. It makes possible to select
the suppressed SM backgrounds by means of the choice of
positron polarization λe. For example, the request of having
λe ¼ −1 in the final positron states can strongly suppress
the leading SM contribution, which is mainly associated to
the λe ¼ 1 polarization, as it is evident from Eq. (2), where
only the leading contribution in the me → 0 limit is
retained.

III. EXPERIMENTAL RESULTS

Limits for the decay μþ → eþX are currently based on
two experiments, both based at the TRIUMF laboratory.
They use different experimental strategies.
The older one [13] exploits the reduction in the SM rate

for polarized antimuons for angles close to cos θe ¼ −1
(see Fig. 1) in the region xe ¼ 1. Antimuons are almost

fully polarized, with Pμ ¼ 0.9. The SM background is very
suppressed at the endpoint of the positron. For a massless
boson X, this is also the region of the monochromatic
contribution. They find

BRðμþ → eþXÞ ≤ 2.6 × 10−6 90%CL ð9Þ

for an assumed familon particle [14] that has a vectorlike
coupling. The limit in Eq. (9) has been reinterpreted [4] in
terms of chiral ALP to give

BRðμþ → eþXÞ ≤ 2.5 × 10−6 90%CL ð10Þ

for the right-handed chirality. The re-interpretation of the
corresponding limit for the left-handed chirality is much
weaker [4].
The bound on the branching ratio in Eq. (10) implies a

very strong limit on the scale of both the right-handed ALP
and the dark photon, namely

����
fa
cRμe

���� and

����
Λffiffiffi
2

p
dRμe

���� ≥ 3.9 × 106 TeV; ð11Þ

in agreement with the analysis in [4] as far as the massless
ALP is concerned. For massive ALP or dark photons, the
limit in Eq. (10) can be applied as long as mX < 10 MeV.
The more recent experiment by the TWIST collaboration

[15] does not exploit the polarization of the antimuons. The
SM background is larger and they use a positron endpoint
spectrum calibration; they provide a limit for left-handed
chiral ALP

BRðμþ → eþXÞ ≤ 5.8 × 10−5 90%CL ð12Þ

as well as for the right-handed one:

BRðμþ → eþXÞ ≤ 1.0 × 10−5 90%CL ð13Þ

These limits are valid for masses 13MeV<mX<80MeV.
A bound weaker than the one from Eq. (10) is obtained for
the opposite chirality. Recently, a comparable limit has
been provided in the region 87.0 MeV < mX < 95.1 MeV
in [16]. Weaker limits are obtained for mX < 13 eV, which
includes the massless case.
The limit in Eq. (12) on the branching ratio implies a

limit, valid for mX ≪ mμ, on the scale of the left-handed
ALP and the dark photon

����
fa
cLμe

���� and

����
Λffiffiffi
2

p
dLμe

���� ≥ 0.9 × 106 ð14Þ

again, in agreement with the analysis in [4].
The limits above are among the strongest available on

the dark sector scale. They are stronger than those obtained
from bounds on stellar cooling [9,10] which are the
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strongest available constraints on the flavor conserving
interactions.
The limits in the case of the massless dark photon

requires some caution. If an UV completion is envisaged,
the same diagram giving rise to the effective interaction in
μþ → eþX also enters in μ → eγ—which brings in the very
strong limit for that BR. While our discussion is at the level
of the effective operators in Eq. (3), if the underlying UV
model needs to be addressed, we must assume a cancella-
tion mechanism for the loop diagram with the photon to use
the bounds in Eqs. (11) and (14).
A possible mechanism to suppress the new physics

contribution to μ → eγ decay amplitude induced at one-
loop with respect to the amplitude for μ → eγ̄, is the one
proposed in [17]. It is based on an underlying global (dark)
SUð2Þ symmetry whose generators are commuting with the
EM charge operator, but not with the dark charge operator
associated to Uð1ÞD. Due to the different group factors of
the photon and dark-photon couplings of the new particles
running in the loop, with respect to the dark SUð2Þ group,
the new physics contribution to the μ → eγ amplitude at
one-loop turns out to be vanishing with respect to the
corresponding amplitude in μ → eγ̄ [17].
Concerning the constraints μ → eγ on the ALP contri-

butions, this is not an issue since μ → eγ is always loop
suppressed with respect to μ → eX, for X an ALP.

IV. DISTINGUISHING THE SPIN

If the dark sector boson does couple off-diagonal flavor
states, the μþ → eþX decay is a most sensitive process and
one where a signal of the dark sector may first emerge. Yet
the nature of such a state remains undetermined: it can be a
spin 0, or a spin 1 or, even, a spin 2 particle. To find out in
an efficient way which of these possibilities is realized, we
need to measure the positron polarization.
The polarization of the positron has been measured at

SIN [18] for both polarized and unpolarized muons. More
recently, both the longitudinal [19–21] and transverse [22]
positron polarizations have been measured in antimuon
decay. For our purposes, both the momentum and polari-
zation of the positrons need to be measured as in the setup
in [21]. The measure of the positron momentum comes
from a spectrometer, that of the polarization relies on a
polarimeter utilizing the spin dependence in the Bhabha
scattering and in-flight annihilation of the positrons.
Assuming that a signal has been observed, how many

events do we need in order to distinguish the spin of the
dark sector boson? The widths in Eqs. (6)–(7) show the
dependence on the positron helicity. Let us take fully
polarized antimuons with Pμ ¼ 1 and consider the kin-
ematical region where the SM background is suppressed. If
the measured helicity of the positron is λe ¼ −1, only the
right-handed dark photon and ALP couplings contribute
and they have clearly distinguishable distribution in the
variable z≡ cos θ, namely 1þ z and 1 − z.

The choice of the positron polarization λe ¼ −1 is
particularly favorable inasmuch as the SM background is
strongly suppressed, as shown by Eq. (2).
The spin of the dark boson X is determined by compar-

ing the distribution in z of the collected events. A likelihood
analysis provides the means to find how many events we
need in order to distinguish the spin with the desired
confidence level (CL).
The probability distribution functions (pdf) for the

different spin hypotheses can be extracted directly by the
dependence on cos θ in Eqs. (6)–(7). They are well
separated, at least in the massless case.
Let us takeNðJÞ

obs spin-J signal events generated according

to the corresponding pdf as well as NðbkgÞ
obs background

events. Each event i is characterized by the value of z. The
likelihood function for the spin hypothesis J0 is given by

Lspin−J0 ¼ e−N
ðJÞ
obs−N

ðbkgÞ
obs

×
YNðJÞ

obsþNðbkgÞ
obs

i

½NðJÞ
obs ×pdfJ0 ðziÞþNðbkgÞ

obs ×pdfbkgðziÞ�;

ð15Þ

where the events zi are taken from the spin J population.
In this way, it is possible to randomly generate Nobs
events and compute the log of the likelihood ratio (LLR)
defined by

LLR ¼ 2 log
Lspin−0

Lspin−1
: ð16Þ

By repeating this pseudoexperiment Nps times, we con-
struct a sample that can be used to compute the statistical
distribution of the two spin hypotheses. We takeNps ¼ 103.
We construct two statistical samples for the LLR, the first

one with events characterized by the value of zi generated
according to the spin-0 population, the second one with zi
generated according to the spin-1 population. In Fig. 2 we
show our results for the LLR analysis. To quantify the
difference in terms of statistical significance, we compute
the value (indicated by the red vertical line in Fig. 2) for
which the integral under the curve for the spin 0 from −∞
to that value is equal to the integral under the curve for the
spin 1 from that value to ∞. Let us call the value of these
two identical integrals p. The significance is defined as
Z ¼ Φ−1ð1 − pÞ where ΦðxÞ ¼ ½1þ erfðx= ffiffiffi

2
p Þ�=2. The

value ofZ assigns a statistical significance to the separation
between the two LLR distributions. We can take 2Z as the
number of σ’s, in the approximation in which the distri-
bution is assumed to be Gaussian, and translates the
number of σ’s into a CL.
As shown in Fig. 2, we reach a CL of 99% with just

N ¼ 6 events in the massless case, and N ¼ 9 for the
massive one. We have assumed a conservative 20% of
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background events due to the SM and taken their angular
distribution (in the region xe ≃ 1) to be that of a spin 0
particle, as predicted by Eq. (1).
This choice is suitable only for events having λe ¼ −1

positron polarization—for which the SM background is
strongly suppressed. Indeed, the residual background events
for λe ¼ −1, not shown in Eq. (2), come from corrections
proportional to the positron mass and transverse polar-
izations, thus strongly suppressed. On the other hand,
selecting events with opposite helicity λe ¼ 1—for which
the leading SM contribution is dominant—a larger percent-
age of background should be assumed, since assuming 20%
background events would be too optimistic in this case.
The use of the positron helicity is much more efficient

in separating the events than the small difference in the
widths due to the mass correction. As an example, we run
the same LLR using as pdf’s those in Eqs. (6) and (7) after
summing over the positron polarizations and comparing the

left-handed with the right-handed interactions. We take
mX ¼ mμ=2 and find (Fig. 3) with N ¼ 30 events only
68% CL in this case. Smaller values of mX leads to even
more events being required in order to reach a given CL.

V. THE SPIN-2 CASE

Even though less plausible, we cannot exclude that the
dark boson be a massive spin-2 fundamental particle, with
gravitonlike couplings, that is universally coupled to the
energy-momentum tensor of all SM fields.
Fundamental massive spin-2 fields have been predicted

by several extensions of gravity theories, like the massive
Kaluza-Klein excitations of the massless graviton in
theories with large extra-dimensions [23,24] as well as
the massive graviton in the bimetric theories [25].
We stress that, although we consider a spin-2 particle

universally coupled to the energy-momentum tensor of all
SM fields as for massive gravitons, this scenario has
nothing to do with massive quantum gravity theory, since
our spin-2 field (that could be also a composite particle)
does not include tree-level self interactions as predicted by
massive quantum gravity theories. We have introduced this
scenario for merely phenomenological purposes, to just
account for a massive X spin-2 particle in the angular
distributions of the μ → eX process. Moreover, the request
of universal coupling to all SM fields guarantees, by means
of Ward identities, that no 1=mX mass term singularities
appear in the scattering processes with external spin-2
fields, extending the validity of the effective theory up to
energies of the order of the scale of the spin-2ΛS2 coupling.
Although we do not make any particular assumption on

the spin-2 mass mX, one should bear in mind that its value
is constrained to the mass range 1 eV≲mX ≲mμ in order

FIG. 3. Hypothesis test for spin 0 vs spin 1 with 1000 pseu-
doexperiments without the use of the positron polarization for
mX ¼ mμ=2. The histograms correspond to 30 signal events and
20% SM background. The test distinguishes the two spin
hypotheses with a 68% CL. Many more events are required to
reach a 99% CL. The red vertical line separates equal areas under
the LLR curves.

FIG. 2. Hypothesis test for spin 0 vs spin 1 with 1000 pseu-
doexperiments. The positron helicity λe ¼ −1 case. Above:
massless case: The histograms correspond to 6 signal events
and 20% SM background. The test distinguishes the two spin
hypothesis with a 99% CL. Below: massive case for mX ≃mμ=2:
The histograms correspond to 9 signal events and 20% SM
background. The test distinguishes the two spin hypothesis with a
99% CL. The red vertical line separates equal areas under the
LLR curves.
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to avoid the strong constraints from searches on the Newton
law deviations at short distance [26] (lower bound) and the
requirement of decaying outside the detector (upper
bound). For masses in this range, a viable scale ΛS2 for
the spin-2 can be Oð1Þ TeV [27].
As shown in [28], as a consequence of Ward identities,

a spin-2 field effectively coupled to matter fields at tree-
level with universal coupling can develop finite contribu-
tions to the flavor changing couplings, via one-loop
electroweak corrections to the quark energy-momentum
tensor. Following the results of [28], the amplitude at low
energy for the transitions μ → eX, where X is now a spin-2
gravitonlike particle, can be then parametrized as

Mðμ→ eXÞ ¼ 1

Λ3
S2

fgLμe½ēðp2ÞVμν
L ðp;qÞμðp1Þ�

þ gRμe½ējðp2ÞVμν
R ðp;qÞμiðp1Þ�gϵμνðqÞ; ð17Þ

where q ¼ p1 − p2, p ¼ p1 þ p2, and ϵμνðqÞ is the polari-
zation vector of the massive spin-2 particle of momentum

q; gL;Rμe are some coefficients that arise at 1-loop. In Eq. (17)
we have reabsorbed the mass-scales ΛL;R

μe arising from the
1-loop computation of the off-diagonal matrix element of
energy-momentum tensor (which are independent by ΛS2)
into the definition of the dimensionless couplings, that mod-
ulo a sign are gL;Rμe ≡ Λ2

S2=ðΛL;R
μe Þ2. The tensors Vμν

L;Rðp; qÞ
for the on-shell fields are given by

Vμν
L;Rðp; qÞ ¼ ðγμpν þ γνpμÞm2

G
ð1� γ5Þ

2
: ð18Þ

Due to the angular momentum conservation, the ampli-
tude in Eq. (17) with a strictly massless spin-2 particle like
the Einstein graviton (mX ¼ 0) is vanishing. On the other
hand, in the case of a massive spin-2, a nonvanishing limit
mX → 0 survives due to the presence of spin-2 longitudinal
polarizations.
The differential decay width for the massive spin 2

particle (S2) is given by

dΓ
d cos θ

����
S2

¼ m7
μ

Λ6
S2

ð1 − rÞ4
48π

�
jgRμej2ð1 − λeÞ

�
ð1 − Pμ cos θÞ þ

3

2
rð1þ Pμ cos θÞ

�
:

þ jgLμej2ð1þ λeÞ
�
1þ Pμ cos θ þ

3

2
rð1 − Pμ cos θÞ

��
; ð19Þ

corresponding, for X massless, to an unpolarized BRðμþ →
eþXÞ ¼ 2.6 × 10−8 ðTeV=ΛS2Þ6 for gLμe ¼ gRμe ¼ 1.
The differential width in Eq. (19), for positron helicity

λe ¼ −1, has the same angular dependence as in the ALP
case at fixed positron polarization, in the limit of vanishing
dark boson mass.

Measuring the positron polarization could be very
efficient in distinguishing spin-1 versus spin-2, due to
the different angular dependence in the mX independent
part, as in the spin-0 versus the spin-1. Moreover, it can still
be distinguished from the spin-0 and spin-2, but only for
sizable values of the mass mX. In this case, we find (see
Fig. 4) that at least N ¼ 30 events are required (for
mX ¼ mμ=2) to reach a 95% CL.

VI. THE μ− → e− CONVERSION
IN MUONIC ATOMS

Muon conversionμ− → e−X is another promising process
where to look for the dark sector. The results of
the SINDRUM II collaboration [29] can be used to set a
limit [30] BRðμ → eXÞ < 3 × 10−3 and ongoing experi-
ments of theMu2e [31] andCOMET [32] collaborationswill
push this limit further. Assuming a discovery, the electron
helicity could be used to distinguish the nature of theX boson
in an efficient manner—which can be compared to an
analysis [33] based only on the differences in the energy
spectrum—but Eqs. (6) and (7) need to be adapted to take
into account the wave-functions of the bounded muons.

VII. THE τ → μX AND τ → eX DECAYS

The same expressions in Eqs. (6) and (7) apply, mutatis
mutandis, in the case of the decays of the τ into a muon or

FIG. 4. Hypothesis test for spin 2 vs spin 0 with 1000 pseudo-
experiments. The positron helicity λe ¼ −1 case for mX ¼ mμ=2.
The histograms correspond to 30 signal events and 20% SM
background. The test distinguishes the two spin hypothesis with a
95% CL. The red vertical line separates equal areas under the
LLR curves.
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an electron. Limits for these processes have been set by the
ARGUS collaboration [34] and Belle [35] to branching
ratios of the order of Oð10−3Þ. Even though these bounds
are less stringent than those for the antimuon decay, they
are expected (see [4]) to be improved by two ðτ → μXÞ and
three ðτ → eXÞ orders of magnitude. Though the same
argument for using the helicity of the final lepton to reduce
the SM background and distinguish the spin of the particle
X might be applied also to these decays, the problem of the
full reconstruction of the τ boost necessary to define the τ
rest frame makes the analysis more complicated.

VIII. CONCLUSIONS

The μþ → eþX decay, where X is a dark sector boson,
provides one of the most stringent bounds on the scale of
dark sector interactions. We have shown that—in the
presence of a signal—the simultaneous measurement of

the positron polarization and angular distribution of the
photon momentum makes possible to disentangle the
nature of the dark sector portal in the case of the spin-0
ALP and the massless spin-1 dark photon. Instead, the
massive spin-1, dimension 4 dark portal remains undis-
tinguishable from the axionlike case. The simultaneous
measurement of the positron polarization and angular
distribution of photon is also useful for controlling the
SM background.
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