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Abstract: The number of effective factors and their nonlinear behaviour—mainly the nonlinear effect
of the factors on concrete properties—has led researchers to employ complex models such as artificial
neural networks (ANNs). The compressive strength is certainly a prominent characteristic for design
and analysis of concrete structures. In this paper, 1030 concrete samples from literature are considered
to model accurately and efficiently the compressive strength. To this aim, a Feed-Forward (FF) neural
network is employed to model the compressive strength based on eight different factors. More in
detail, the parameters of the ANN are learned using the bat algorithm (BAT). The resulting optimized
model is thus validated by comparative analyses towards ANNs optimized with a genetic algorithm
(GA) and Teaching-Learning-Based-Optimization (TLBO), as well as a multi-linear regression model,
and four compressive strength models proposed in literature. The results indicate that the BAT-
optimized ANN is more accurate in estimating the compressive strength of concrete.

Keywords: compressive strength of concrete; artificial neural network (ANN); BAT algorithm (BAT);
genetic algorithm (GA); Teaching-Learning-Based-Optimization (TLBO); multi linear regression
(MLR) model

1. Introduction

Civil engineers have always been interested in estimating the properties of concrete
as a composite material by utilizing analytical models, as well as investigating the effect
of each component of the mix design on its properties. The first step in all rehabilitation
projects is to obtain information about the current conditions of the structure and its analysis.
In this regard, using field experiments to perform this evaluation is very important. In these
projects, destructive experiments are used to achieve more accurate results, which involve
high costs and structure destruction [1]. The application of artificial neural networks and
evolutionary optimization algorithms to determine concrete’s compressive strength has
received a lot of attention in recent years [2].

Many studies on the use of artificial neural networks (ANNs) to assess the compressive
strength of concrete (f’c) have been conducted in recent decades. Artificial neural network
models have proved to be superior for the determination of concrete compressive strength
in Alto Sulcis Thermal Power Station in Italy [3], in-place concrete strength estimation to
facilitate concrete form removal and scheduling for construction [4], prediction of com-
pressive strength of concrete subject to lasting sulfate attack [5], determination of low-,
medium-, and high-strength concrete strength [6], accurate assessment of compressive
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strength of large-volume fly ash concrete [7], approximating compressive strength of con-
crete based on weight and ultrasonic pulse velocity [8], compressive strength prediction of
high performance concrete [9], and compressive strength estimation of concrete containing
various amounts of furnace slag and fly ash [10].

Artificial neural networks are also utilized in modelling high-strength concrete speci-
mens due to the non-linearity of the parameters. Yeh [11,12] predicted high-performance
concrete compressive strength using ANNs by performing a series of tests. Artificial
neural networks have been more accurate than models based on regression analysis.
Öztaş et al. [13] determined the compressive strength of high-strength concrete using
ANNs and 187 samples for modelling. The parameters of cover, the water to binder
ratio, water content, fine aggregate ratio, fly ash content, air-entraining agent, super-
plasticizer, and silica fume replacement were employed as input parameters. The re-
sults confirmed that an ANN could forecast the compressive strength of high-strength
concretes satisfactorily.

Numerous articles have then been published on the use of optimization algorithms
with ANNs. In [14], an ANN combined with the metaheuristic Krill Herd algorithm was
used to provide satisfactory results in terms of estimation of the mechanical properties
of alkali-activated mortar mixes (AAMs). Behnood et al. [15] estimated the compressive
strength of silica fume concrete using an ANN as an optimization problem. To find a sim-
ple ANN model with acceptable error, they proposed a new multi-objective optimization
method called the Multi-Objective Grey Wolves Optimization (MOGWO) method. Sensitiv-
ity analysis was also performed to evaluate the final ANN model’s ability to predict silica
fume concrete compressive strength by changing the strength variables. Nazari et al. [16]
determined the compressive strength of concrete using titanium dioxide (TiO2) nanoparti-
cles. A genetic algorithm (GA) was used to adjust the weights of the network. The results
showed that optimization increases the accuracy of the model. Bui et al. [17] considered
the combination of ANNs with firefly algorithms to predict the compressive and tensile
strength of high-performance concrete. The results indicate the high performance and
accuracy of the proposed model. Sadowski et al. [18] used the colonial competition al-
gorithm to determine the compressive strength of concrete. Their study considered the
feasibility of using the algorithm to learn ANN parameters and compared the proposed
model with the GA-based ANN. The results confirmed that the ANN combined with
the colonial competition algorithm resulted in the least prediction error. Duan et al. [19]
used the colonial competition algorithm to determine the compressive strength of recycled
aggregate concrete. Zhou et al. [20] utilized ANNs and adaptive neuro-fuzzy inference
systems to estimate the compressive strength of hollow concrete block masonry prisms.
The analysis was based on 102 data points and showed that the proposed models have ex-
cellent prediction with negligible error rates. Armaghani et al. [21] developed neuro-fuzzy
systems to predict concrete compressive strength.

The current study concentrates on boosting the accuracy of an ANN model by ap-
plying the BAT optimization algorithm. To this aim, the dataset has been collected from
UCI (University California Irvine) machine learning repository which includes 1030 ex-
perimental results collected from peer-reviewed articles. Section 2 delivers the essential
background on ANNs and the BAT algorithm. The experimental model establishment and
training are described in Section 3. Section 4 presents detailed results and assesses the
efficiency of the model based on comparative analyses.

2. Background
2.1. Artificial Neural Networks

Artificial neural networks, a form of data processing systems, are algorithms that
simulate biological neurons’ function. ANNs improve their performance by learning from
data in the training step [22,23]. The main assumptions of an artificial neural network
model are as follows [24,25]:

1. Data are handled in specific entities called nodes.
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2. Links relay signals between nodes.
3. The weight assigned to each link indicates the strength of that link.
4. Nodes calculate their outputs by applying activation functions to input data.

The Feed-Forward network is an ANN model in which the connections of its con-
stituent units do not form a cycle. This network is different from a recurrent neural network,
given that data move only in one direction, the direction of which is forward. Data initially
starts from input nodes and passes through hidden layers to the output nodes [26]. Figure 1
shows an example of a feed-forward network. Typically, data in ANN are split into three
distinct subgroups [23]:

1. Training: this subgroup of data is used to train the ANN, and learning occurs through
examples, similar to the human brain. The training sessions are repeated until the
acceptable precision of the model is achieved.

2. Validation: this subset determines the extent of training of the model and estimates
model features such as classification errors, mean error for numerical predictions, etc.

3. Testing: This subgroup can confirm the performance of the training subset developed
in the ANN model.
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seven nodes in the first hidden layer, four nodes in the second hidden layer, and one node (f’c) in the output layer.

2.2. BAT Algorithm

By utilizing their sophisticated echolocation facilities, bats can avoid obstacles and
detect prey. Utilizing the time interval between a pulse emission and its echo, they develop
a three-dimensional depiction of their surrounding [27]. Inspired by this behaviour of bats,
Yang [28] developed the BAT algorithm. In the algorithm idealization it is assumed that:

• bats use echolocation, and they can discern between prey and surroundings;
• at any given location xi, they fly randomly with velocity vi and contingent upon the

location of prey they adjust their rate of pulse emission;
• the loudness of the emitted pulse ranges from A0 to a minimum value of Amin.
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Firstly, the BAT algorithm initializes a random population of bats, and then updates
their frequencies using Equation (1) [29]:

fi = fmin + ( fmax − fmin)β (1)

where f i is the i-th bat frequency, f min is the min frequency, f max is the max frequency, and
β is a random quantity between 0 and 1. The location and velocity of bats are revised
according to:

Vt+1
i = Vt

i +
(
xt

i − x∗
)

fi (2)

xt+1
i = xt

i + Vt+1
i (3)

where Vt
i is the i-th bat velocity at recurrence t, xi

t is the i-th bat position at recurrence t,
and x∗ is the global best position. Then, the procedure shifts some bats to a vicinity of the
top global location as:

xnew = xold + εAt (4)

where A denotes loudness and ε is a random quantity between 0 and 1. The criterion for
accepting the new position of each bat is a cost value less than the previous iteration. The
algorithm then revises the pulse rate and loudness using Equations (5) and (6):

At+1
i = αAt

i (5)

rt+1
i = r0

i (1− exp(−γt)) (6)

where α is a constant typically selected between zero and one, r0
i is the initial pulse rate

and γ is a constant.
This algorithm can be utilized to train an ANN. In the present application, the weights

and biases of the network are considered as the position vector of a bat, and therefore each
bat represents a vector of weights of an artificial neural network. The cost function is the
prediction error of the network. The final solution of the bat algorithm results in a trained
network [29].

3. Methods and Materials
3.1. Dataset

The dataset utilized in this study was used to follow the schematic procedural steps
proposed in Figure 2. More precisely, according to [12], it consists of 1030 concrete com-
pressive strength test results from various sources. The influencing parameters on the
concrete compressive strength are cement, blast furnace slag, fly ash, water, superplasti-
cizer, coarse aggregate, and fine aggregate age. Table 1 gives the descriptive statistics of
samples from [12]. The selected target value is the 28-day compressive strength of concrete.
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Table 1. Descriptive statistics of samples.

Statistical Index Unit Min Min Average Standard Deviation Mode Median

Cement Kg/m3 540 102 281.17 104.51 425 272.9
Blast Furnace Slag Kg/m3 359.4 0 73.90 86.28 0 22

Fly Ash Kg/m3 200.1 0 54.19 64.00 0 0
Water Kg/m3 247 121.75 181.57 21.36 192 185

Superplasticizer Kg/m3 32.2 0 6.20 5.97 0 6.35
Coarse Aggregate Kg/m3 1145 801 972.92 77.75 932 968

Fine Aggregate Kg/m3 992.6 594 773.58 80.18 594 779.51
Age day 365 1 45.66 63.17 28 28

Concrete compressive strength MPa 82.60 2.33 35.82 16.71 33.40 34.44

Following Figure 3, where the histogram for the 28-day compressive strength for
concrete specimens is proposed, it can be observed that 780 samples have compressive
strength values ranging from 10 to 50 MPa.
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If the ANN input variables have different ranges, the training process can suffer from
adverse impacts, such as the optimization divergence of algorithm and increased training
time [30]. Using Equation (7), each variable was hence normalized into the range from −1
to 1, that is [31]:

Yn =
2(Y−Ymin)

Ymax −Ymix
− 1 (7)

where Y is the original value of the variable, Yn is the normalized value, Ymax is the max,
and Ymin is its min value. Table 1 shows the minimum and maximum values and the target
values of concrete compressive strength used for each of the eight input parameters. It is
worth noting that the ANN will undergo training using the normalized data. Therefore,
it is essential to feed the network with normalized variables when using the ANN to predict
new values and un-normalize the data (i.e., transferring them into their original range,
the network outputs).

3.2. Performance Measures

Statistical measures are employed to determine the model accuracy. Using the statisti-
cal index helps choose the best model with the least error and select the model with the
most generalizability.



Infrastructures 2021, 6, 80 6 of 17

The statistical measures employed in evaluating the accuracy of different topologies
are Mean Error (ME), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE) [32]:

ME =
1
n

n

∑
i=1

(Pi −Oi) (8)

MAE =
1
n

n

∑
i=1
|Pi −Oi| (9)

MSE =
1
n

n

∑
i=1

(Pi −Oi)
2 (10)

RMSE =

[
1
n

n

∑
i=1

(Pi −Oi)
2

] 1
2

(11)

where Pi and Oi represent predicted and observational data, and n represents the number
of cases.

3.3. Experimental Model Generation Utilizing ANNs and BAT Algorithm

Eight input factors, influencing the concrete compressive strength, are used in the
suggested model. Thus, trained artificial neural networks have eight nodes in the input
layer and one node in the output layer (Figure 2). Networks with one or two hidden
layers have been used for modelling. A network can have a very high performance in the
training phase but may not show the same accuracy in the testing phase. Hence, it is better
to randomly bifurcate the data and with a suitable ratio for each stage [33]. To this end,
the data were randomly split into two groups to reduce overfitting effects. For training,
70% of data (721 samples) were used and the remaining 30% (309 pieces) were used to
test network performance. For an artificial neural network model, the number of hidden
layers and the total number of nodes in the hidden layers depends on the problem [34].
Accordingly, trial-and-error was used to obtain the ideal topology (i.e., the topology that
best represents the data). A common formula for the total number of nodes in an ANN is
given in Equation (12) [35]:

NH ≤ 2NI + 1 (12)

where NH is the number of neurons in the hidden layer and NI is the number of inputs to
the network. Since there are eight factors, the equation indicates that the number of hidden
layer nodes must be less than 17. Thus, different architectures have a maximum of two
hidden layers and a maximum of 17 trained neurons. In mode one, the network hidden
layer has a maximum of 17 neurons in the hidden layer. In mode two, the hidden layer
has one to nine neurons. A total of 89 different architectures were selected for training.
The topologies used are given in Table 2.

Table 2. Trained ANN topologies.

Num Topology Num Topology ... Num Topology Num Topology

1 1-1 9 2-1 ... 65 9-1 73 1
2 1-2 10 2-2 ... 66 9-2 74 2
3 1-3 11 2-3 ... 67 9-3 75 3
4 1-4 12 2-4 ... 68 9-4 76 4
... ... ... ... ... ... ... ... ...
7 1-7 15 2-7 ... 71 9-7 88 16
8 1-8 16 2-8 ... 72 9-8 89 17

Note: n1-n2 format for topologies denotes n1 neurons in the first hidden layer, and n2 neurons in the second
hidden layer.
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The tanh function was picked as the transfer function of the nodes in the hidden layer
in all the ANNs. Meanwhile, the identity relation was selected as the transfer function of
the nodes in the output layer. The bat algorithm was then used to refine the parameters of
the artificial neural network to result in the least predictive error. The bat algorithm and
ANNs were developed using MATLAB [36]. The hyperparameters of the bat algorithm
used for training the 89 ANN topologies are given in Table 3.

Table 3. Hyperparameters of the bat algorithm.

Hyperparameter Value Hyperparameter Value

Population Total 100 Max Generations 200
Loudness 0.9 Pulse Rate 0.5
Min Freq. 0 Max Freq. 2

Alpha 0.99 Gamma 0.01

4. Results
4.1. Experimental Model Assessment

The number of used models was set to 89. In addition, one-layer and two-layer
artificial neural networks were used. The bat optimization algorithm is used to refine the
weights of the network. The transfer function for all networks is the tanh function. Among
the models trained to determine concrete compressive strength, four models were selected
as the best models based on parameters presented in Section 3.2. The error metrics of these
models in the training phase are given in Table 4. The test results of the models are given
in Table 5.

Table 4. Error metrics of top four networks on training data.

Num
Network

Designation
Training

MSE ME MAE RMSE

1 ANN-BAT-1L (4) 28.471 0.000 3.989 5.336
2 ANN-BAT-2L (3-2) 28.543 0.000 4.018 5.343
3 ANN-BAT-2L (8-5) 10.928 0.000 2.448 3.306
4 ANN-BAT-2L (7-4) 16.001 0.000 2.895 4.000

Note: ANN-BAT-(m)L (n1-n2) format denotes m hidden layers, n1 neurons in the first hidden layer and n2 neurons
in second hidden layer.

Table 5. Error metrics of top four networks on testing data.

Num
Network

Designation
Testing

MSE ME MAE RMSE

1 ANN-BAT-1L (4) 37.146 −0.147 4.674 6.095
2 ANN-BAT-2L (3-2) 37.496 0.148 4.739 6.123
3 ANN-BAT-2L (8-5) 40.130 −0.546 3.828 6.335
4 ANN-BAT-2L (7-4) 27.624 −0.664 3.847 5.256

Note: ANN-BAT-(m)L (n1-n2) format denotes m hidden layers, n1 neurons in the first hidden layer and n2 neurons
in second hidden layer.

According to Tables 4 and 5, the ANN-BAT-2L (7-4) network has the lowest MSE, ME,
MAE, and RMSE indices. For this network, the R2 value in the training and testing phases
is equal to 0.9395 and 0.9134, respectively, supporting the model’s high precision. The test
phase values in MSE, ME, MAE, and RMSE indices are equal to 27.624, −0.664, 3.847
and 5.256, respectively, indicating high modelling precision in forecasting the concrete’s
compressive strength. Error metrics for samples are given based on the original range
of variables.

To visualize the accuracy of ANN-BAT-2L (7-4), the experimental model predicted
values versus their values from the experiment are shown in Figures 4 and 5 for the train
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and test data, respectively. The predictions of the network are near the identity function
values, which suggests that the network is highly accurate.
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4.2. Comparison with Other Methods

To assess the accuracy of the model trained using bat optimization, three models
have also been trained using other methods. Two models are ANNs trained with the
genetic algorithm (GA) and Teaching-Learning-Based-Optimization (TLBO). The third is
an MLR model.

The genetic algorithm is an optimization technique based on genetics and natural
selection theories. It commences by generating a population of individuals and evolves
them under specific selection, cross-over, and mutation rules to minimize the cost function.
In this paper, individuals were the parameters of the ANN, and the final solution was the
trained network.

Inspired by the teaching-learning process, the TLBO algorithm generates a population
of students and designates the one with least cost to be the teacher. The remaining students
then learn from the teacher, i.e., move toward the teacher’s position in solution space. In the
next phase, students learn by interacting with each other, i.e., a given student (solution)
interacts randomly with another student and if the second student has more knowledge
(has lower cost), the first student moves towards the second [37]. In the present study,
the parameters of ANN were designated as students, and the final iteration of the TLBO
algorithm resulted in a trained ANN.

4.2.1. Genetic Algorithm and Teaching-Learning-Based-Optimization Models

The 89 topologies presented in Table 2 were used to train ANNs using the GA and
TLBO to find the best ANN topology. The hyperparameters of these two algorithms are
listed in Table 6.

Table 6. GA and TLBO hyperparameters.

Name Parameter Value Parameter Value

Genetic Algorithm

Max generations 100 Crossover (%) 50
Recombination (%) 15 Crossover method single point

Lower Bound −1 Selection Mode 1
Upper Bound +1 Population Size 150

Teaching Learning
Base Optimization

Lower Bound −1 Max Interaction 50
Upper Bound +1 Population Size 150

The TLBO algorithm-trained ANN with 5-6 topologies and the GA-trained ANN with the 3-5 topologies have the
highest performance, as shown by the statistical indices in Table 7.

Table 7. Error metrics of GA and TLBO on training and testing data.

Topology
Train Test

ME MAE MSE RMSE ME MAE MSE RMSE

ANN-GA-2L (3-5) 0.04 4.13 30.35 5.51 0.25 4.17 28.44 5.33
ANN-TLBO-2L (5-6) 0.16 3.59 23.68 4.87 −0.14 4.02 31.87 5.65

Note: ANN-(A)-(m)L (n1-n2) format denotes algorithm A, m hidden layers, n1 neurons in the first hidden layer
and n2 neurons in second hidden layer.

The hyperparameters of these models were set by trial-and-error. Their values are
provided in Table 7. These two networks that are optimized using GA and TLBO algorithms
have a much higher prediction error compared to bat-trained neural networks. To visualize
the performance of GA and TLBO, the predicted values of the experimental model versus
their values from the experiments are shown in Figures 6 and 7 for test data.
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4.2.2. Multi Linear Regression Model

As suggested by Nikoo et al. [38], an MLR model was developed using the Minitab
software as an easy-to-use classical model [39]. According to the model, each factor
influence can be estimated by examining the regression coefficient values [40–42]. The
resulting regression equation is as follows:

f ′c = −23.2 + (0.11979×C) + (0.1038× BFS) + (0.0879× FA)− (0.1503×W) + (0.2907× S)+
(0.01803× CA) + (0.0202× FAg) + (0.11423× A)

(13)
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In Equation (13), the parameters are:

C: Cement W: Water
BFS: Blast Furnace Slag S: Superplasticizer

FA: Fly Ash CA: Coarse Aggregate
Fag: Fine Aggregate f’c: compressive strength

A: Age

The statistical metrics of the MLR model are given in Table 8, and Figure 8 depicts the
results obtained for observed versus predicted test data.

Table 8. MLR model error metrics for training and testing data.

Topology
Training Testing

ME MAE MSE RMSE ME MAE MSE RMSE

MLR 0.00 8.08 106.49 10.32 −0.02 8.52 108.91 10.44
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4.2.3. Comparison on All Data

The ANN-BAT-2L (7-4) is compared with the GA- and TLBO-based ANNs to validate
its accuracy on all data. The MLR model is also employed as a statistical model for
comparison. The results are given in Table 9.

Table 9. Statistics of ANN-BAT, ANN-GA, ANN-TLBO and MLR models.

Type Network Designation ME MAE MSE RMSE

All Data

ANN-BAT-2L(7-4) −0.199 3.181 19.488 4.414
ANN-GA-2L(3-5) 0.10 4.14 29.77 5.46

ANN-TLBO-2L(5-6) 0.07 3.72 26.13 5.11
MLR −0.01 8.22 107.21 10.35
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Table 9 highlights that the ANN-TLBO model performs better than the ANN-GA
model, and the MLR model has the weakest results. However, the ANN-BAT model offers
the highest accuracy in determining the compressive strength of concrete of all models.
The comparison between observed and predicted compressive strength of all models are
shown in Figures 9–12.
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4.2.4. Comparative Analysis with Models Proposed in Literature

The developed experimental model is compared to four proposed models in literature
using the same sample data. The comparison is over all data and is not divided into
training and testing groups. The description of models used is given in Table 10, and the
error metrics of various models are given in Table 11. As it can be seen from Table 11,
the ANN-BAT-2L (7-4) model outperforms the other four models proposed in literature.

Table 10. Description of models proposed in literature.

Author Model Reference

A.H. Gandomi et al. Genetic-Simulated Annealing [43]
J.-S. Chou et al. Support Vector Machines [44]
Jui-Sheng et al. Least Squares Support Vector Machines [45]
D.-K. Bui et al. Firefly Algorithm combined Artificial Neural Network [17]

Table 11. Error metrics of models proposed in literature, and bat-based ANN (ordered by R2).

Model R2 MAE

Present (ANN-BAT-2L (7-4)) 0.93 3.18
D.-K. Bui et al. (2018) 0.90 3.41
J.-S. Chou et al. (2013) 0.88 4.24
Jui-Sheng et al. (2016) 0.88 5.62

A.H. Gandomi et al. (2013) 0.81 5.48

4.3. Predictive Model and ANN Weights

The best model presented in this study is ANN-BAT-2L (7-4). To calculate the output
of this model manually, the matrices of network parameters are needed. The network input
must be scaled using Equation (7) into −1 to 1 range, and the predicted value must then
be unscaled into its original range. The input is an 8 × 1 vector called a1, where the eight
parameters are cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate,
and fine aggregate age respectively. The following equations can be utilized to produce the
ANN-BAT-2L (7-4) model predictions:

a2 = tan h
(

ϑT
1 × a1 + b1

)
(14)

a3 = tan h
(

ϑT
2 × a2 + b2

)
(15)

f predict(normalized)
c = tan h

(
ϑT

3 × a3 + b3

)
(16)

f predict
c =

f predict(normalized)
c + 1

2
× ( fmax − fmin) + fmin (17)

where aj and ϑj matrices represent the outputs and weights of layer j respectively and
bj vector represents its biases. tanh is the hyperbolic tangent function, and T superscript
represents transpose operator. fpredict is the predicted value of compressive strength, and
fmax and fmin are the min and max compressive strengths of data given in Table 1. Table 12
provides the weights and biases of the neural network.
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Table 12. Weight and bias values of the ANN-BAT-2L (7-4) model.

ϑ1 b1

−0.8061 −0.2178 −0.2297 −0.4198 −0.5889 −0.3034 −0.2999 −0.1035 −0.8156
0.2371 −0.6965 −0.1132 1.3410 1.5170 0.3782 0.0238 0.1807 0.6200
−6.3017 −2.6506 −2.4931 2.5263 2.0438 −0.8616 −4.4602 −1.1676 −1.1071
0.0226 −0.0670 −0.1191 0.0505 0.0342 0.0304 −0.0781 3.6208 4.6903
−6.9203 −18.4075 −3.0575 −27.3813 −10.0966 −11.8482 −7.9640 −1.1299 −16.3967
31.2215 −7.9121 −19.6231 −0.0551 14.0536 −15.0847 −12.6117 −2.1349 −4.3244
0.6362 −3.2611 4.4076 −5.9958 4.4666 −4.3309 −1.5010 −8.0783 1.1720

ϑ2 b2

−1.6512 −0.7434 0.3050 0.1381 0.1699 −0.1258 −0.1164 −2.0524
6.6296 2.6327 −1.7307 13.1062 −0.6463 −0.0506 1.1651 −9.5413
33.0428 23.3462 3.0604 −21.0571 −1.8540 0.2323 −19.2491 −12.8245
1.0129 0.6331 −0.6631 9.3516 −0.7377 0.4773 0.3696 −8.0055

ϑ3 b3

12.8658 0.4640 0.2489 0.4572 11.7091

5. Conclusions

The use of accurate models plays a vital role in the design and analysis of civil
engineering structural members and systems. In this regard, the present study focused
on the prediction of the compressive strength of concrete based on efficient and accurate
ANNs. The learning of the ANN parameters was done using the bat optimization algorithm
by using 1030 experimental results published literature. Several ANN models were in fact
trained (89 in total) using the bat algorithm. The top performing model was then compared
with networks trained using GA and TLBO algorithms, MLR model, and four proposed
compressive strength models published in literature. The main results can be summarized
as follows:

1. The top-performing bat-based ANN model, ANN-BAT-2L (7-4), yielded a mean
squared error of 27.624 on testing data.

2. Due to its simplicity, a classical MLR model was presented for predicting compressive
strength; however, it is less accurate than the proposed ANN-BAT model.

3. The top-performing bat algorithm-based ANN was compared with ANNs trained
using GA and TLBO algorithms. The top models based on these algorithms were
ANN-GA-2L (3-5) and ANN-TLBO 2L (5-6); however, they were less accurate than
the ANN-BAT-2L (7-4) model. The next best performing ANN was the TLBO-based,
followed by GA-based, and the MLR model.

4. The top-performing bat algorithm-based ANN was compared with four predictive
models proposed in literature for compressive strength of concrete. The bat-based
ANN outperformed all four.

5. The network parameters, i.e., weights and biased of the ANN-BAT-2L (7-4) model
were provided in tabular format for manual calculation of network prediction. Thus,
for desired and new concrete samples, the compressive strength can be estimated by
providing the presented formulas with sample inputs.
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