Computational Materials Science xxx (xxxx) 110516

ELSEVIER

Contents lists available at ScienceDirect -

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Moiré patterns generated by stacked 2D lattices: A general algorithm to

identify primitive coincidence cells

V. Carnevali® !>+, S. Marcantoni® " 2, M. Peressi?

a Department of Physics, University of Trieste, via A. Valerio 2, 34127 Trieste, Italy

b National Institute for Nuclear Physics (INFN), Trieste Section, via A. Valerio 2, 34127 Trieste, Italy

ABSTRACT

Two-dimensional materials on metallic surfaces or stacked one on top of the other can form a variety of moiré superstructures depending on the possible para-
meter and symmetry mismatch and misorientation angle. In most cases, such as incommensurate lattices or identical lattices but with a small twist angle, the
common periodicity may be very large, thus making numerical simulations prohibitive. We propose here a general procedure to determine the minimal sim-
ulation cell which approximates, within a certain tolerance and a certain size, the primitive cell of the common superlattice, given the two interfacing lattices
and the relative orientation angle. As case studies to validate our procedure, we report two applications of particular interest: the case of misaligned hexago-
nal/hexagonal identical lattices, describing a twisted graphene bilayer or a graphene monolayer grown on Ni(111), and the case of hexagonal/square lattices,
describing for instance a graphene monolayer grown on Ni(100) surface. The first one, which has also analytic solutions, constitutes a solid benchmark for the
algorithm; the second one shows that a very nice description of the experimental observations can be obtained also using the resulting relatively small coinci-

dence cells.

1. Introduction

A moiré superstructure can be defined as the interference figure due
to the overlap of two or more patterns [1]. Such structures can be com-
monly observed in surface science when, for example, a layer of a ma-
terial is supported on a substrate having a different lattice periodicity
[2-6]. The issue of stacking different lattices is involved also in the for-
mation of novel materials through layer-by-layer combinations of 2D
systems [7-9], a field nowadays in rapid expansion after the discovery
of graphene [10]. The resulting heterostructures, possibly grown on
different substrates [11], are held together by weak Van der Waals
forces and can be easily manipulated at the level of each single layer
[12]. Due to their peculiar and tunable electronic properties, these het-
erostructures are new promising materials for the realization of ad-
vanced and innovative electronic devices, such as field-effect transis-
tors, light-emitting diodes, nonvolatile memory cells, and other small-
sized devices where interface properties are important [13-16].

A deep knowledge and characterization of these structures is in-
creasingly necessary both from an experimental and theoretical point
of view. Among the theoretical approaches, the first principle Density
Functional Theory (DFT) is one of the most accurate, but it strongly re-
lies on the possibility to adequately model the primitive cell of such sys-
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tems, that is usually a difficult task. Most of the state-of-the-art DFT
codes for extended systems make use of periodic boundary conditions
and are formulated in the reciprocal space. Therefore, it is necessary to
identify a primitive cell as close as possible to the real system structure,
and this is particular challenging for heterostructures where the under-
lying Bravais lattices of the 2D stacked materials are mismatched or
with a small twist orientation angle [17]. Implementing an appropri-
ate primitive cell for DFT simulations is really important: small varia-
tions in the cell size can have a significant impact in the final configura-
tion and description of the simulated system [2].

By looking at the recent literature, some solutions have been pro-
posed for a restricted subset of heterostructures, mostly regarding the
hexagonal lattice interfaced with others [18], or, even more specifi-
cally, with another hexagonal lattice [19] and in particular with the
same lattice parameter [20]. A general solution for two generic 2D
Bravais lattices has been formulated in the reciprocal space [21], or in
the real space only when experimental hints can be provided [22]. A
few number of open-source codes are available to build a primitive
cell of a moiré superstructure taking into account a strain condition of
one lattice with respect to the other, searching and sorting results
within given combinational spaces [23,24]. In this paper we are go-
ing to present a general deterministic algorithm that allows to iden-
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tify the primitive cell of a moiré superstructure generated by two
generic 2D Bravais lattices, given their misorientation angle. This is
done in a subspace of cells with limited size and a certain tolerance on
the coincidence condition by solving a set of equations in real space.
The proposed model is purely geometric, and does not take into ac-
count any interaction between the two lattices. We show that the
smallest tolerance threshold that allows solutions within a finite
space gives a quite realistic primitive cell of the system in comparison
to the experiment. A similar approach has been proposed in Ref.[25]
where it has been validated for 2D crystals and van der Waals-bonded
heterostructures. We describe here in detail our method, step by step,
and provide a simple code in Python that can be easily adapted and
generalized (see Supplementary data). Our method has been tested
for the specific cases of hexagonal/hexagonal misaligned identical
lattices, describing a twisted graphene bilayer or a graphene mono-
layer grown on Ni(111), and the case of hexagonal/square lattices,
representative of graphene grown on Ni(100) surface, finding in all
cases an excellent agreement with the specific literature [26,2,20].

2. Results and discussion

We consider two generic 2D Bravais lattices generated by the
primitive vectors (aol,an2 ) and (asl,as2 ), where o and s refer to

“overlayer” and “substrate” respectively, without any loss of general-
ity.

Since we are interested in identifying common lattice vectors, if
exist, it is useful to express the basis on one stacked lattice with re-
spect to the other. For the sake of definiteness we make a specific
choice: in particular, we write the primitive vectors of the overlayer
with respect to those of the substrate, since this corresponds to the
real situation where the overlayer adapts to the substrate, but we
could do the alternative choice as well. Therefore, we can always
write:

a,\ _[(a b\ [(a
<a02 T \c d)\a, 1)
with (a, b, ¢, d) real numbers, in general. The relative superposition of

the two stacked lattices can also be equivalently described using
physically meaningful parameters: the misorientation angle

¢, =z« (aal,asI ), two other angles related to it and to the two sets of

primitive vectors ( ¢y =< (aaz, a, ), 0=z (aol, aS2>) and the scaling
factors of the primitive vectors length
(p= lao, | 7] asy]|. p2=|ao] 7 |as,| ) (Fig. 1). With reference to Fig. 1
and Eq. (1), the scalar products s," %,, with u,v = 1,2, read as:

ag-a, = alag|? +blag|a,] cos (¢ +0)
= la, | la, | cos (¢)

51 “oy

(2a)

Fig. 1. Schematic representation of the basis vectors for two stacked generic
2D Bravais lattices, together with the geometrical parameters
@1, 7.0, p, andp,, related to the mismatch conditions.
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a,-a, =bla,| 24+4a lag, | la,,| cos (¢ +90) (2b)
= |ag | |a, | cos(6)
ag-a, =cla] 24d lag, | ay, | cos (¢ +0) 20
= lay | la,,| cos (¢ + ¢y +6)
a-a, =d|352|2+0|351| la,,| cos (¢1+0) 2d)

= la| la,,Icos (¢,)

The latter constitutes a linear system of four equations in the four un-
knowns (a, b, ¢,d) and one can easily show that the coefficient matrix
is full rank (because the angle ¢; + 6 cannot be a multiple of z). In
other words, given a pair of stacked 2D Bravais lattices with a certain
misorientation condition and thus knowing the quantities
¢1, P,,0,p,, andp,, the system of Eq. (2a) has always real solutions for
the parameters (a, b, ¢, d), that we refer to as (a, b, ¢, d)*“'.

Once defined the relationship between the two 2D Bravais lattices,
the existence of a common moiré superstructure has to be discussed. To

do that, we consider now the infinite sets of vectors {aamv } and {axmh }

(v, u = 1,2) generated by the primitive vectors of the stacked lattices:
1)) ) -
<aam2 0 a, k1 a,,
()= ()= (5 1) ()
axmz ¢ a.vz q r axz

with (i,j, k, 1) and (m, n, q,r) integers.

In case of commensurability, vectors common to the two sets and
corresponding common multiple cells can be found. Labelling the

moiré primitive vectors with ( a,,,8,, ), for proper values of the ma-

trices M, and M, the commensurability condition reads [22]:
A, _ a\ _ (i ] a,
() (@) -G
- ()-( 1) @)
s ag, q r ag,

Since the two primitive vectors ( a,,4,, ) cannot be parallel, both

matrices M, and M, have to be invertible (i/—jk # 0 and
mr—nq # 0). Eq. (4) implies a specific relationship between the two
stacked lattices, that, together with the generic Eq. (1), gives:

A\ _ -l A\ _(a b ag,
(i) e () = (2 9) (G2) =

where
_ Im—jq _ In—jr
T il-jk T il-jk (5b)
_ —km+iq _ —kn+ir
= il-jk T il-jk

In conclusion, Eq. (5b) shows that the four parameters (q, b, c, d), that
are real numbers in general in Egs. (1)—(2), are rational numbers when
the commensurability condition (Eq. (4)) is satisfied.

We want to face now the general problem of finding an approxi-
mate coincidence lattice even when the commensurability condition
is not perfectly satisfied. To do that, instead of starting from Egs. (1)
and (Eq 2a, 2b, 2¢ and 2d) expressing the exact relationship between
the two stacked lattices, we start from the commensurability condi-
tion, expressed by Egs. (4) and (Eq 5a and 5b5), and search for a set of
parameters (a, b, ¢, d) that are rational and are approximate solutions of
Eq. (Eq 2a, 2b, 2c and 2d), i.e, deviate from the exact real values
(a, b, ¢, d)®™*" within a certain tolerance t. More precisely, for any ratio-
nal 4-tuple (a, b, c,d) we define a distance § as follows

5 = max{‘a 7aexac,|*|b _ bex(wt' |c7cuxau' |didex(wr|}
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and require that §<z. From a physical point of view, such tolerance
can be interpreted as a strain on the overlayer to force the matching
with the substrate over a certain number of periods indicated by M,
and Mj, so that the equality between the first and the second row of
Eq. (4) holds. Therefore, the threshold on (a,b,c,d) is a threshold on
commensurability, and acceptable values have thus to be set on phys-
ical grounds, considering the elasticity of the overlayer.

As it can be easily seen from Eq. (5b), there is an infinite number of
combinations of the eight integers (i,/, k,/,m,n, q,r) that can give the
same value of parameters (a, b, ¢, d) equal or close to (a, b, ¢, d)*“". In or-
der to keep the computation finite, we constrain each of the eight inte-
gers to vary in the interval [-R, R]. The consequences of this restriction
and the rationale behind a good choice of the parameter R are discussed
in the next section. Given a certain value for the parameters t and R, we
call j#R c 78 the set of integers that ensure §<z. In the following discus-
sion, we always assume that t and R are fixed a priori and, therefore,
we commonly refer to j4R as I in order to ease the notation. For future
convenience, we are also interested in considering separately the first
four numbers and the last four in each element of I, therefore we define
the two sets I, = {G.j. k,DIG.j, k,l,m,n,q,r) € I} and
1, ={(m,n,q,n|(j,k,[,mn,q,r)€l}. Among such combinations, we
are looking for those solutions that give the smallest possible cells. The
area of a cell can be computed from the lattice vectors as follows

Al = |am] Xaxm2| = |masl X ras, + qas, ><nax1| = |mr—qn| |as] ><ax2|,

(6)

T T e P N N L

where the vectors 3sm;* sm,> 2om, > @om, have been defined in Eq. (3). In
case of perfect commensurability, as described in Eq. (4), there exists
a choice of those vectors that allows to define a moiré supercell and
its area is consistently given by Acu = |am, xam,| = A2, = A%, In the more
general setting we are interested in, one can nevertheless compute
separately 47, and 4}, given an element of I. Those areas will be dif-
ferent but sufficiently close if the commensurability threshold is
small. One can then minimize 47, over /, and 4 , over I in order to
find the primitive cells
o = (itiyr]g})nela lil = jk| lag, xa,,|,

. )

N in min  |mr —qn| |a51 Xa52| .

- (m,n,q.r)Elg

Again, for a resonable threshold, the two quantities 4°. and 47 . will

be approximately equal and the two minimizers will be consistent, i.e.
(@,,k, Din @and (m,n,q, 7)), will be such that (i,j,k, I, m,n,q,r) g, €1.
One the two cells is then conventionally chosen as the approximate
moiré supercell.

The system of equations Eq 5a and 5b, dubbed “moiré superlattice
relations” or “commensurability conditions”, relating the superlattice
parameters with the geometry of the system, together with Eq 2a, 2b,
2c and 2d and the minimization condition of Eq. (7) constitutes the
core of our systematic procedure to obtain the smallest moiré primi-
tive cell.

Different (i,j, k, 1, m,n, q,r) solutions of Eq. (7) identify moiré primi-
tive cells with different shape and orientation, but this corresponds to
the fact that the choice of the primitive vectors for a Bravais lattice is
not unique.

We report in the next section the details of the procedure.

2.1. Algorithm details
The procedure previously mentioned can be easily implemented in a

code, whose flowchart can be summarized in four main points, as
schematically reported in Fig. 2.
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Definition of the two stacked lattices

calculations of (a,b,c,d)*at

Mo | Ms

Generation of supercells of the two
stacked lattices

spanning
(1j.klmn,qr)— (ab,c,d)

Commensurability
threshold

Moiré relations resolution

selection of sets
(1,).k1m,n,q,r) giving (a,b,c,d)
close to (a,b,c,d)*a

Minimization of the
coincidence cell area

Primitive cell subset identification

. 7

Fig. 2. Flowchart of the algorithm for finding the primitive cell of a moiré
superstructure. (i): the two lattices together with their misorientation condi-
tion are defined, and the real parameters (a, b, ¢, d)*? giving exactly one
layer with respect to the other are calculated. (ii): through the matrix M,
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and M; (indexes (i,j,k,[,m, n, q,r) varying within a certain range) possible
supercells of the two stacked lattices are generated. The parameters
(a, b, c,d) are calculated. (iii): considering a commensurability threshold, a
subset of possible primitive cells is identified by comparing (a, b, ¢, d) with
(a, b, ¢, d)®™!; the corresponding sets of indexes (i, , k, [, m, n, q, r) is consid-
ered to describe a common coincidence cell. (iv): the minimization on the
area of the cells determined by the sets (i,/, k,[,m,n,q,r) selected in (iii)
provides the smallest primitive cells for the moiré superstructure compati-
ble with the fixed commensurability tolerance and size.

(1) Definition of the primitive cells of the two stacked lattices and their
relative orientation. First of all, the code reads from input the
two 2D Bravais lattices, i.e. their basis vectors, and the
misorientation angle. Through Eq. (2), the code computes the
exact value (q, b, ¢, d)**' of the parameters (a, b, ¢, d).

(ii) Generation of supercells for the two stacked lattices. The code
considers all the 8-tuples of integers (i,/, k,,m,n,q,r) spanning
over the range [—R, R] that has to be fixed; this corresponds to
consider supercells of the substrate (through (i,/, k,/)) and of the
overlayer (through (m,n,q,r)). For each 8-tuple, the
corresponding rational parameters (a,b,c,d) are calculated
according to Eq. (5b). This calculation is completely
independent of the specific problem considered and clever
methods should be implemented to perform it once and for all.

(iii) Moiré relations solution. The parameters (a,b,c,d) obtained in
step (ii) for each 8-tuple are used to check the condition 5<¢, for
a chosen t. If the inequality is satisfied, the corresponding 8-
tuple is included in the solution ensemble I.

(iv) Primitive cells subset identification. The last step is to identify
among the elements of I those associated with the smallest

cells A7, and 4;,, with 4%, ~A° .  defined through the
minimization procedure in Eq. (7). If the threshold t is
sufficiently small and the parameter R is sufficiently large, the
two resulting cells are very similar and one of the two can be
conveniently chosen as the moiré supercell. Following the
physical picture of substrate and overlayer, the reasonable
choice is the one defined by the substrate.

The algorithm we synthetically presented can be applied to any
choice of the substrate and overlayer, and it only requires as a physical
input the geometry of the problem (the primitive vectors of the two lat-
tices and their relative orientation). We notice, however, that a delicate
point is the choice of the two computational parameters, namely the in-
teger spanning range R and the commensurability threshold t. These
two parameters describe a tradeoff between accuracy of the result and
employed computational resources.

Indeed, a finite range R is needed in order to keep the computation
finite and, practically, one would like to have it small because the num-
ber of configurations to be checked grows as y8, with N = 2R + 1. Also,
one is not interested in a cell that is possibly too large to be used for ab
initio calculations, and the highest possible area in a fixed range is pro-
portional to 2g2 (see Eq. (6)). However, a large R is not automatically
associated with a large cell area, because for instance |il — jk|= 1 for
i=j=1and /=R, k=R- 1. Moreover, the wider is R, the higher is the
possibility of finding sets that describe a primitive cell close to the per-
fect coincidence moiré superstructure.

The closeness is controlled by the threshold t. If t is small, the ac-
cepted cells describe a very accurate moiré pattern, but if it is too small,
no solutions are reasonably expected when the geometry does not al-
low for perfect commensurability (see our case study n.2).

The discussion above is to clarify that a sensible and balanced
choice of the computational parameters is highly nontrivial and the
problem is general, namely it is not specific to our proposed algorithm.
In this respect, our proposal has the advantage of being suitable for
parallel computing, by fixing the amount of computations to be per-
formed once and for all. In any case, despite being case dependent, in
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order to start the computation we expect a good tradeoff to be
R =10,¢ = 0.05. This is because it excludes from the beginning too large
areas that are unwanted in any case and nevertheless it reasonably pro-
vides many possible solutions.

2.2. Case study n. 1: hexagonal/hexagonal misaligned identical lattices

For the sake of definiteness we refer here to the case of twisted
graphene bilayer, but the case of rotated graphene over Ni(111) could
be equivalently considered, if the very small mismatch of the lattice
parameters (smaller than 2%) is neglected. The twisted graphene bi-
layer presents different moiré superstructures according to the rela-
tive rotational angle between the two lattices. We consider the angle

between the primitive vectors of each lattice, L(asl,a52> and

ya (acl ,8,) ), equal to 120°. Dealing with two identical hexagonal lat-

tices we have |a;,| = |as,| = a0, | = |ao,| = L.¢» = ¢1 and ¢} + 0 = 120°. As a
result, Eq. (2a), give:

a = cos(¢;) + ? sin(¢,) (8a)
b= 2\3/5 sin(¢;) (8b)

=- ‘3/5 sin(¢h;) (80)
d = cos(¢,) — ? sin(¢;) (8d)

and the minimization of the possible moiré cell (Eq. (7)) reads:

4o _ 23

. = =—= min |i/ —jk|,
min 2 (i,/,k,z)eL,l JH 9
V3 (C)]
A5 . === min |mr—gqn|.
min 2 (mngrEl

Following Moon et al. [20], an analytic solution is possible for this sys-
tem. In particular, Eq. (2) of Ref. [20] identifies a set of rotational an-
gles ¢, ensuring a perfect commensurability between the two graphene
lattices. According to our model, this is equivalent to find a set of primi-
tive cells for the moiré superstructure where the threshold is set to 0. We
have solved Eq. (7) for two selected commensurate rotation angles,
¢; =21.8° and 9.43° with a threshold of 107, equal to the floating
point standard single precision, obtaining the same primitive cells
found by Moon et al. [20]. The results are reported in Table 1 and
shown in Fig. 3.

2.3. Case study n. 2: hexagonal/square

Also the graphene/Ni(100) system, prototype of hexagonal/square
lattice stacking, shows different moiré superstructures tuned by the
misorientation between the different interfacing lattices. As opposed to

Table 1

Summary of the results obtained for the coincidence lattice of the twisted
graphene bilayer for different misorientation angle ¢, with a coincidence
tolerance threshold ;= 10-7. The matrices M,. M, giving the unit cell of
the moiré superstructures and the number of elementary primitive cells
N;, N, of each graphene layer (substrate and overlayer) contained in the
moiré cell are reported. In this particular case, Ny =N, and M! = M, and
viceversa, since substrate and overlayer here are exactly the same lattice.

[ 21.8° 9.43°

" G ) ()
B (%) G 7)

N, 7 39
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21.80°

9.43°

Fig. 3. Schematic representation of the lattice stacking in the twisted
graphene bilayer for two different misorientation angles corresponding to
commensurate rotations, with the indication of the primitive cells of the
two interfacing lattices, the moiré pattern, and its relationship with them.

the case of the twisted graphene bilayer, graphene/Ni(100) does not
present any rotational angle that allows a perfect commensurability
between the interfacing lattices, as explained in more detail below.

The basis vectors of the graphene hexagonal lattice have the same
modulus and the same applies to the Ni(100) square lattice. The an-
gles between the primitive vectors of each lattice are <(a;.a;,) =90°
and 4(a,.a,,) =120°, so that one also has 6=90°-¢, and
¢, = ¢, +30°. Therefore, considering |a;,| = |a,,| = L and |ao, | = [ao,| = pL,
the Eq. (2a), read as follows:

a = pcos(¢p;), (10a)

b = psin(ey), (10b)

c=- (‘/73 sin(¢,) + % cos(d)l)) , (100

d=p <§ cos(¢hy) — %sin(qﬁ,)) , (10d)
o _ 72,2 3 . . .

A = Lp* - min, i~ k], (10e)
S = L? min |mr—qn|. (100)

m,n,q,relg

Given the lattice parameters of graphene and Ni(100), 2.46 A and
2.49 A respectively, the scaling factor of the system turns out to be
p = 0.988. From the equations above, one can prove by contradiction
that, contrary to the previous example, perfect commensurability is im-
possible in this case. Indeed, combining for instance Egs. (10a), (10b)
and (10d) one finds 24 + p = \/§a. Assuming a, b, c,d to be rational, and
a # 0, one arrives at a contradiction, because the left-hand side of the
equality 24 + b is rational, while the right-hand side is not, as the prod-
uct of a nonzero rational number a and an irrational one \/3 . If instead
a=0,onehas ;= _b\/g. Since a and b cannot vanish simultaneously,
a contradiction arises also in this case. Therefore a, b, c,d cannot be si-
multaneously rational and the commensurability conditions, Eq. (5b),
are never satisfied.

Note that for this heterostack the configuration with a rotational
angle of ¢, corresponds to that with 60° — ¢, up to a redefinition of the
primitive vectors. We use this fact in order to compare the theoretical
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results with the experimental observations. In particular, we compute
explicitly the moiré relations for three selected orientations, namely
¢ = 45.26° (14.74° in Ref. [26]), 48.7° (11.3° in Ref. [2]), and 54.71°
(5.29° in Ref. [26]).

For each angle ¢ we report in Table 2 and show in Fig. 4 the small-
est primitive cell obtained with the minimization procedure of our algo-
rithm using a threshold 7 = 0.04 on the («, b, ¢, d) parameters. In Table 2
we report the matrices M, and M;, the number of unitary elementary
cells of the substrate and of the overlayer, and, considering that in each
unit cell of graphene there are 2 carbon atoms, also the ratio between
the number of carbon atoms in the overlayer and the surface nickel
atoms of the substrate, C/Ni = 2N, /N,, to ease the comparison with
Ref. [26].

For ¢p; = 48.7° the moiré superstructure is a square network and the
smallest cell found by our algorithm describes very well the experimen-

Table 2

Summary of the results obtained for the coincidence lattice of graphene/
Ni(100) for different misorientation angle ¢;. The Table shows: the matri-
ces M,, M, corresponding to the smallest moiré cells corresponding to a
coincidence tolerance threshold ¢=0.04; the number of the elementary
cells of the nickel substrate (N,) and of the graphene overlayer (N,) per
moiré cell, as well as the ratio between the number of carbon atoms in
the overlayer and the surface nickel atoms of the substrate, C/Ni. The
quantities indicated with the asterisk in the last rows refer to the cells pro-
posed in [26].

54.71°
-2 6
305
-7 -1
-3 3

[ 45.26° 48.7°

M, 2 -5
-5 1

M 6 1
-4 —4

N, 23 15 28
N 20 13 24
C/Ni 2.30 2.31 2.33
Ny 59 - 55
N; 51 - 47
C/Ni* 2.34 - 2.34

45.26°

)

Yo
14,

70°

‘\v‘

Fig. 4. Schematic representation of the lattice stacking in graphene/Ni(100)
for three different misorientation angles corresponding to commensurate ro-
tations, with the indication of the primitive cells of the two interfacing lat-
tices, the moiré pattern, and its relationship with them.
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tal images [2]. For ¢p; = 45.26° and ¢, = 54.71°, we can compare our
results with the cells proposed in [26]. The latters are much wider than
ours, as we can see from the number of unitary elementary cells of the
substrate and of the overlayer in the moiré cells proposed there, taken
from Table 1 of [26] and reported in the last lines of our Table 2. How-
ever, we can appreciate that the ratio C/Ni from our small cells is very
similar to that corresponding to the large moiré cells of [26].

We comment that the tolerability threshold of 0.04 is acceptable for
this system. From Table 2 and Eq. (10e) and (10f) we can calculate
A;’nin/L2 obtaining 19.44, 12.68 and 23,67 for ¢, = 45.26°,48.7° and
54.71°, respectively, to be compared with 4; . /L? that is 20, 13 and 24
for the three angles. The relative difference between 47 /L? and
4 /L?, a quantity that somehow quantify the strain on the overlayer
for forcing the matching with the substrate over an approximately
common cell, is therefore only 2.8%, 2.5%, and 1.4% for the three an-
gles, compatible with the elasticity properties of graphene [27].

We remind that besides the smallest moiré cells for a given tolerance,
several other cells are given by our method. In particular, with refer-
ence to this example, also those proposed in [26] are found. However,
in most cases, even the smallest cells properly identified by our algo-
rithm can describe with good accuracy the relevant properties of the
physical systems, as shown for instance in [2].

3. Conclusions

We have developed a systematic procedure for determining primi-
tive cells of a moiré superstructure generated by two generic 2D Bra-
vais lattices with a given orientation angle, working in real space. The
purpose was to identify a coincidence cell of reasonable size to be
used for instance as input of ab initio simulations, in some cases at the
price of a certain tolerance for the coincidence conditions between
the two interfacing lattices and the moiré. In order to validate our
procedure, we have investigated two case studies already afforded in
the literature: the twisted graphene bilayer and the graphene/Ni
(100) system, representative of identical hexagonal/hexagonal and
hexagonal/square lattice stacking, respectively. Different rotational
angles have been investigated for both systems. In particular, in the
former case we have chosen rotational angles that allow a perfect
commensurability between the two lattices and checked that our pro-
cedure gives the correct result, pushing to zero the tolerance on the
commensurability condition. The second case, graphene/Ni(100), is
representative of a condition of only approximate commensurability.
In this case, we opted for rotational angles useful for a comparison
with experimental observations. We showed that in absence of perfect
commensurability conditions, the choice for the best simulation cell is
not always unique and straightforward, but the subset of the possible
simulation cells, resulting from our procedure with reasonable toler-
ance threshold and size range, provides satisfactory models. The final
choice will be guided by the precision required in the description of
the system and/or the available computational resources.
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