

Supplementary Figure 1. Tumor-infiltrating leukocytes and cDC1 profiling in KP bearing lungs.

a) Representative hematoxylin/eosin sections illustrating nodules in PBS injected mice (nLung), early and late KP-bearing lungs. Scale bar 1mm. **b)** Relative abundance of immune subsets (AM, Alveolar macrophages; Neu, neutrophils; Eo, eosinophils; Mono, monocytes) in nLung or late KP-bearing lung tumors. Data represent 2 independent experiments. nLung: AM n=4, Neu=17, Eo n=3, Mono n=3, T cells n=16 and DCs n=17. KP(l): AM n=10, Neu=17, Eo n=3, Mono n=3, T cells n=16 and DCs n=17. **c-d)** Gating strategy used for the identification of leukocytes populations in nLung (**c**) and KP-bearing lungs (**d**). **e)** Frequencies of lung resident cDC1, cDC2 and monocyte-derived DCs (moDCs) in nLung and late KP tumors. Absolute numbers of cDC1 and CD11b⁺ DCs in late KP tumors. Pooled data from 3 independent experiments. nLung n=20 or 11, KP(l) n=12 or 7. **f)** Representative histograms of lineage differentiation and maturation markers on cDC1 in nLung or late KP tumors. All data are expressed as mean \pm SEM and significance was assessed by two-ways ANOVA followed by Sidak's post-test. Raw data and statistical analysis are available in source data file.

С

d

Supplementary Figure 2. Uptake of apoptotic thymocytes and tumor cells by lung phagocytes along tumor progression.

a) Relative to Fig 1a. nLung, early and late KP tumor-bearing mice were inoculated i.t. with CTV-labeled apoptotic thymocytes. The amount of fluorescence associated to cDC2 and alveolar macrophages (AM) was evaluated 2hrs post injection. nLung n=8, KP(e) n=5, KP(l) n=4. Significance was assessed by two-ways ANOVA followed by Sidak's post-test. **b)** Relative to Fig 1b. Quantification of BFP fluorescence associated to cDC2 and AM in lungs bearing early or late KP-BFP tumors. Data are pooled from two experiments with n=8 mice/group, two-tailed unpaired *t*-test. **c)** Relative to Fig 1c. Low and high magnification images as examples of binding of apoptotic thymocytes to cDC1 from control, early or late tumors. **d)** Relative to Fig 1d. Representative high magnification micrographs of uptake of apoptotic cells after 2hrs of incubation. All data are expressed as mean \pm SEM. Raw data and statistical analysis are available in source data file.

Supplementary Figure 3. Characterization of KP-OVA tumors, controls for cross-presentation of KP-OVA *in vivo*, cytokine production and cross-presentation of soluble antigens delivered *ex vivo*.

a) KP cells were transduced with a lentiviral vector expressing HA-OVA. The population was subcloned and HA-OVA expression in individual clones was evaluated by intracellular flowcytometry. Clone G11 showing the lowest expression was selected for subsequent experiments. **b**) Hematoxylin/eosin staining of lung sections from KP-OVA early or late tumors. c) Mice were treated with anti CD8 depleting antibodies during challenge with KP-OVA tumors. Lungs were harvested two weeks after challenge for analysis of tumor burden. Representative hematoxylin/eosin staining shows nodules from isotype controls and CD8 depleted mice (5 mice/group). Quantification of nodules was calculated semi-automatically on 3 sections of the left lobe/animal. Significance was assessed by two-tailed unpaired *t*-test. **d**) Relative to Fig 1e. Controls of staining specificity by OVApeptide:MHC-I antibody 25D1.16. Representative histograms show labeling in cDC2 and AM in nLung, early and late KP-OVA tumor bearing lungs. Peaks are overlaid with the corresponding isotype control. e) Cross-presentation by phagocytes in KP-OVA tumors. cDC1, cDC2, AM and moDCs were sorted from KP-OVA tumors and plated with CFSE-labeled OT-I cells ex vivo. The extent of proliferation induced by each subset is plotted as percentage of cells undergoing at least two proliferation cycles. One representative of three independent experiments is plotted, cDC1 n=5, cDC2 n=5, AM n=6, moDC n=6. f) In vivo production of IL-12p40 by nLung cDC1 and late KP tumor cDC1 was assessed by intracellular cytokine detection. Significance was assessed by two-tailed unpaired *t*-test of two independent experiments, cDC1 n=6, KP(l)-cDC1 n=5. **g**, **h**) cDC1 from nLung or late KP-bearing lungs were isolated by cell sorting and stimulated ex vivo for 3 hrs with TLR9 (CpGB) and STING agonists (DMXAA). Transcript expression of *ll12a/ll12b* (g) and *lfna/lfnb* (h) were evaluated by qPCR. Data in g cDC1 n=8 and KP(l)-cDC1 n=5, data in h cDC1 n=7 and KP(l)cDC1 n=5, from 4 independent experiments each with pool of 3 mice/group. Significance was assessed by two-ways ANOVA followed by Sidak's post-test. i, i) cDC1 from nLung or KP late tumor bearing lungs were pulsed *ex vivo* with OVA class I peptide (i) or OVA protein (j) at different doses and co-incubated with OT-I. IL-2 was quantified by ELISA upon 16 hrs of co-culture. Each dot represents the pool of three mice from three independent experiments. Significance was assessed by two-ways ANOVA followed by Sidak's post-test. All data are expressed as mean \pm SEM. Raw data and statistical analysis are available in source data file.

Supplementary Figure 4. Expression of OVA antigen is maintained in late KP-OVA tumors.

a, **b**) OVA expression in early and late KP-OVA tumors. **a**) Intracellular flow cytometry using anti HA antibodies on total lung cell suspensions. Representative plots are gated on live CD45⁻ cells. **b**) Immunohistochemistry using anti HA antibodies on section of early or late KP-OVA tumors. Scale bar: 200 µm.

0.10

0.05

0.20

10

10

ÍΜ

мнсіі

CD11c

105

104

Supplementary Figure 5. Modulation of genes involved in antigen processing and inflammation and downregulation in other tumor models.

a) Volcano plot showing differentially expressed genes in cDC1 from nLung or KP late tumor bearing lungs. Genes with a q-value<5% and a fold change ≥ 2 or ≤ 2 are identified as significantly modulated (red and blue, respectably), **b)** Dot plot of the significantly enriched and depleted gene sets from Gene Set Enrichment Analysis of cDC1 sorted from lungs with established KP tumors and residing in healthy lung tissues (normalized enrichment score NES>0). Dot color indicates statistical significance of the enrichment; dot size represents the fraction of genes annotated to each term. Gene sets are ranked in decreasing order based on the NES value. FDR: false discovery rate; NES: normalized enrichment score. **c, d)** Expression levels of genes differentially expressed (FDR<10%, absolute fold change >1.5) and annotated as interferon-alpha pathway (**c**) and antigen processing (**d**) from gene ontology in cDC1 from healthy and KP tumor bearing mice. **e, f)** Gating strategy used for the identification of Interstitial Macrophages (IM, **e**) and Tumor-associated macrophages (TAM, **f**) in nLung and KP-bearing lungs. In **a** to **d** differentially expressed genes were identified using the Significance Analysis of Microarray (SAM) algorithm, with a false discovery rate (FDR) \leq 5% and absolute fold change larger than a selected threshold (e.g. \geq 2).

Supplementary Figure 6. Profile of TIM4 expression in DCs subsets and across tissues.

a) Specificity of TIM4 labeling evaluated on peritoneal macrophages from WT or Timd4^{-/-} mice. **b)** Analysis of TIM4 expression by all phagocytes in nLung cDC1, cDC2, AM, moDC, IM and Mono. Cells from Timd4^{-/-} lungs were used as control for specificity of labeling. **c)** Expression across the tissues and subsets, as indicated. Macrophages (Mac), conventional (cDCs) and plasmacytoid dendritic cells (pDC), Langerhans cells (LC) in spleen, BM, skin and liver. Representative histograms and quantification of the percentage of cells expressing TIM4 (on the FMO control) in organs of 10 individual mice. **d)** Flow cytometry analysis of TIM4 expression by subsets of dendritic cells in cervical, inguinal, mesenteric and mediastinal lymph nodes. Dendritic cell subsets analyzed: plasmacytoid DCs (pDC), resident conventional DC1 (rcDC1), resident conventional DC2 (rcDC2), migratory conventional DC1 (mcDC1) and migratory conventional DC2 (mcDC2). Representative histograms and quantification of the percentage of cells expressing TIM4 was calculated in organs of 10 individual mice. All data are expressed as mean \pm SEM.

f

g

Isotype α TIM4

Isotype α TIM4

Isotype α TIM4

Isotype αTIM4

а

Supplementary Figure 7. TIM4 down-regulation in different tumor models, expression of PS by cancer cells, specificity of TIM4 blockade.

a) KP cells or PBS were injected orthotopically in the left lung lobe of healthy mice. After 28 days from tumor challenge lungs were harvested and TIM4 expression was analyzed in both injected or uninjected lobes, n=3 mice/group. b) TIM4 expression in cDC1 in KP autochthonous tumors. Tumors were induced by AdenoCre (AdCre) administration in KP mice. as described in M&M (KP-AdCre). Lungs from not treated (KP) and AdCre treated mice (KP-AdCre) were harvested 10 weeks after tumor induction for evaluation of TIM4 expression on whole lung tissues, KP n=4, KP-AdCre n=10. Graph represents 2 independent experiments. Statistical significance was assessed by two-tailed unpaired *t*-test. Representative hematoxylin/eosin sections of KP naïve and KP-AdCre are shown. c) TIM4 downregulation in lungs transplanted with 3LL. Mice were injected i.v. with Lewis Lung Carcinoma cells (3LL) and the lungs were harvested at day 14 (early) or 28 (late) after tumor implantation. Expression was compared to that found in control not challenged animals, nLung n= 7, Early n=7 and Late n=3. Statistical significance was assessed by one-way ANOVA followed by Tukey's post-test. **d**) Representative histograms showing Annexin V staining on KP-BFP cells in culture (Cell line) and in lung tissues 7 days after challenge (Lung Tumor). Numbers in parenthesis indicate MFI. e) Lungs were harvested from mice treated with anti-TIM4 antibodies or isotype control. Histograms show the indicated markers against FMO control in conventional dendritic cells (cDCs), AM and moDC. Graphs below indicate absolute numbers of each cell subset, one representative of two independent experiments with n=3 mice/group is shown f) Relative to Fig 4a. Uptake of KP-BFP cells by each phagocytic subset upon TIM4 blockade. The uptake was quantified 5 days after tumor challenge. Dot plot and quantification of one representative of two experiment with n=3 mice/group are shown. Significance was determined by two-tailed unpaired t-test, n=3 mice/group, g) Relative to Fig 4b. Percentage of cDC2 and AM associated to fluorescence 2hrs after challenge with apoptotic CTV-labelled thymocytes in nLung and KP bearing tumor lungs, treated or not with TIM4 blockade. Representative plots and quantification of two independent experiments are shown. Isotype n=7, Isotype KP(1)=9, αTIM4 n=8, αTIM4-KP(l) n=3. Statistical significance was assessed by one-way ANOVA followed by Tukey's post-test. h) Proliferation of transferred OTI in the lung of animals carrying early KP-OVA tumors and treated with α -TIM4 or isotype control antibodies was evaluated by CTV dilution. Representative histogram and quantification show the absolute numbers of adoptively transferred OTI and proliferated OTI (at least one cycle of proliferation) accumulated in the lungs. Significance was determined two-tailed unpaired t-test, n=4 mice/group. All data are expressed as mean \pm SEM. Raw data and statistical analysis are available in source data file.

Supplementary Figure 8. Generation and validation of bone marrow chimeras.

a) Graphical representation of mixed bone marrow chimeras generation. Lethally irradiated CD45.1 recipient mice were transplanted with 1:1 ratio of WT;Batf3^{-/-} or Timd4^{-/-};Batf3^{-/-} BM. **b**, **c)** Flow cytometry analysis of TIM4 expression by lung cDC1 (**b**) and peritoneal macrophages (**c**) of BM chimeric mice.

Supplementary Table 1: Differentailly expressed genes in cCD1 cells from tumor-bearing and healthy mice					
Cone symbol	Description	EntrozID	Eold Change	n-value	a-value
leg15	ISC15 ubiquitin-like modifier	100038882	2 45	1 91F-04	0 0299
Gm26881	uncharacterized I OC105247101	105247120	2,73	2 85F-04	0,0299
Scamn1	2-hydrovyanthranilate 3 4-dioxygenase	107767	4 56	7 65E-05	0,0233
3010003L21Rik	ubiquitin_conjugating enzyme E20 family member 2	109163	2.76	2 01F-04	0 0299
Actn1	integrin alpha 1	109711	2,70	6 23E-05	0,0233
Alcam	alhumin	11658	-2.04	8 08F-05	0
Cd72	CD7 antigen	12517	2,01	2 91F-04	0 0299
Cfh	crinto FRI-1 cryntic family 1	12628	-2.84	1.73F-04	0.0299
Sors1	sunnressor of cytokine signaling 3	12703	2,71	6.58E-05	0,0200
CvcrA	chemoking (C-X-C motif) recentor 3	12767	-2 51	2 74F-04	0.0410
Gfra7	glial cell line derived neurotrophic factor family recentor alpha 1	14586	-2 34	2,740 01	0.0467
IfiA7	interforon activated gane 204	15953	2,34	3.05F-04	0.0467
lli4/	interferon alpha 11	15967	-2.03	2 04F-04	0.0410
Klra5	killer cell lectin-like recentor subfamily A member 4	16636	-2,03	2,04L-04	0,0410
L+h/r1	kiner ten lettin-inc receptor, subranniy A, member 4	16005	-3,+0	2,34L-04	0,0410
		170706	-2,00	3,00L-03	0.0467
C0209a	CD209e antigen	17212	-4,47	3,395-04	0,0407
Nigh	C-type lectin domain family 10, member A	1/313	-3,33	1,550-04	0,0299
Ctsa	S100 seleium binding protein A1	20104	0,45	4,020-03	0.0467
S100a10	S100 calcium binding protein A1	20194	-3,24	3,4UE-U4	0,0407
Serpinasg	serine (or cysteine) peptidase inhibitor, ciade A, member 5K	20/15	5,07	2,82E-04	0,0299
Stkiu	CAMP responsive element binding protein 3-like 3	20808	-2,40	3,24E-04	0,0410
Ттетьза	aurora kinase A	208/95	2,80	4,81E-05	0
Cd226	zinc binding alcohol dehydrogenase, domain containing 2	225825	-3,29	6,07E-05	0.0467
Nccrp1	sterile alpha motif domain containing 4B	233038	-2,48	3,86E-04	0,0467
Cd300lt	DnaJ heat shock protein family (Hsp40) member C28	246/46	3,86	7,92E-05	U
Timd4	olfactory receptor 1371	276891	-4,34	5,12E-05	U
Cass4	cancer susceptibility candidate 1	320664	-2,31	1,78E-04	0,0299
A530064D06Rik	RIKEN cDNA 9830107B12 gene	328830	2,93	6,90E-05	0
Scd4	polycystic kidney disease 2-like 1	329065	2,97	2,66E-04	0,0299
2610524H06Rik	potassium channel tetramerisation domain containing 10	330173	10,03	4,18E-05	0
Batf	basic leucine zipper transcription factor, ATF-like	53314	3,33	1,20E-04	0,0251
Bvht	braveheart long non-coding RNA	545261	5,25	8,24E-05	0
Cd200r1	CD200 receptor 1	57781	2,25	2,40E-04	0,0299
Ssr2	signal sequence receptor, beta	66256	2,41	1,18E-04	0,0251
Swsap1	SWIM type zinc finger 7 associated protein 1	66962	6,29	2,18E-04	0,0299
2610301B20Rik	RIKEN cDNA 2610301B20 gene	67157	-6,60	1,21E-04	0,0299
Lrrc18	leucine rich repeat containing 18	67580	-2,20	5,64E-05	0
1600010M07Rik	RIKEN cDNA 1600010M07 gene	69781	-3,73	6,74E-05	0
Arhgap19	Rho GTPase activating protein 19	71085	2,78	3,04E-04	0,0467
9130008F23Rik	RIKEN cDNA 9130008F23 gene	71583	-2,53	4,97E-05	0
Naalad2	N-acetylated alpha-linked acidic dipeptidase 2	72560	-2,91	8,39E-05	0
Plet1	placenta expressed transcript 1	76509	3,10	2,27E-04	0,0299
2810429104Rik	RIKEN cDNA 2810429104 gene	76937	-4,52	2,53E-04	0,0410

Significance Analysis of Microarray (SAM) algorithm, with a q-value false discovery rate (FDR) < 0.05 and absolute fold change >2.

Supplementary Table 2: Gene signatures used to identify immune subsets and correlation p values (relative ton Fig 7)

Gene signature	Genes in signature	Ref paper	Pearson Corr coeff		p values			
			all stages	stage I	stage II,III,IV	all stages	stage I	stage II,III,IV
cDC1	CLEC9A, XCR1, CLNK, BATF3	1	0,416	0,506	0,336	9,84E-23	2,47E-19	1,53E-07
cDC2	CD1A, CD1C, CD1E, CD207 ,FCER1A, IRF4	2	0,394	0,443	0,372	2,92E-20	1,05E-14	4,88E-09
effector CD8	CD8A, CD8B,CD3E,PRF1,GZMB, GZMK	1	0,335	0,418	0,259	7,89E-15	4,44E-13	6,41E-05
NK	NCR1, NCR3, KLRB1, PRF1	1	0,357	0,46	0,263	1,06E-16	7,85E-16	4,93E-05
Mono- macro	LYZ, MAFB,CSF1R, CSF1R,CD300E, CD1A	3	0,404	0,407	0,408	2,41E-21	1,83E-12	1,06E-10
Neutro	CXCL8, CXCR2, S100A8, FCGR3B,CSFR3,FFAR2	2	0,237	0,196	0,277	6,31E-08	0,0011	1,81E-05
ТАМ	CD68,CSFR1, PPARy,CD64, TREM2, APOE, MARCO	3	0,336	0,345	0,33	7,69E-15	4,09E-09	2,59E-07

Pearson correlation coefficient in the *cor.test* function of R *stats* package with *two.sided* as alternative hypothesis

Supplementary Table 3. Primer sequences

Oligonucleotides	Source	Identifiers
II12b reverse (ACAGGTGAGGTTCACTGTTTCT)	Integrated DNA technologies	N/A
II 12a forward (GGCATCCAGCAGCTCCTCTC)	Integrated DNA technologies	N/A
II 12a reverse (ACCCTGGCCAAACTGAGGTG)	Integrated DNA technologies	N/A
Ifna forward (GCA GAA GTC TGG AGA GCC CTC	Integrated DNA technologies	N/A
Ifna reverse (TGA GAT GCA GTG TTC TGG TCC)	Integrated DNA technologies	N/A
Ifnb forward (GCACTGGGTGGAATGAGTCT)	Integrated DNA technologies	N/A
Ifnb reverse (AGTGGAGAGCAGTTGAGGACA)	Integrated DNA technologies	N/A

Supplementary Table 4: List of antibodies

Flow Cytometry Antibodies	Dilution	Source	Identifiers
Purified anti-mouse CD16/32 Antibody (93)	1:100	BioLegend	Cat# 101302,
		-	RRID:AB_312801
7AAD	5 µl	BioLegend	Cat# 420404
Annexin-V BV421	5 µl	BioLegend	Cat# 640923,
	-	-	RRID:AB_2562965
Anti-mouse CD3e (145-2C11) A488	1:200	BioLegend	Cat# 100321,
			RRID:AB_389300
Anti-mouse CD3e (145-2C11) Biotin	1:100	BD Biosciences	Cat# 553060,
	4.000		RRID:AB_394593
Anti-mouse CD4 (GK1.5) BV785	1:200	BioLegend	Cat# 100453,
Anti mouso CD8a (53 6 7) APC	1:200	Biologond	Cot# 100711
Anti-mouse CDoa (55-6.7) AFC	1.200	BioLegenu	RRID·ΔB 312750
Anti-mouse CD11b (M1/70) BV421	1.200	BD Biosciences	Cat# 562605
	11000		RRID:AB 11152949
Anti-mouse CD11c (N418) A647	1:200	BioLegend	Cat# 117314,
		5	RRID:AB_492850
Anti-mouse CD19 (1D3) Biotin	1:100	BD Biosciences	Cat# 553784,
			RRID:AB_395048
Anti-mouse CD24 (M1/69) PE/Dazzle™594	1:800	BioLegend	Cat# 101837,
			RRID:AB_2566731
Anti-mouse CD31 (390) Biotin	1:100	BioLegend	Cat# 102404,
	4.000		RRID:AB_312899
Anti-mouse CD45 (30-F11) APC/Cy7	1:200	BioLegend	Cat# 103115,
Anti mouso CD45 1 (A20) PE	1.200	Thormo Fisher Scientific	Cot# 12 0453 81
Anti-mouse CD45.1 (A20) FE	1.200	Thermo Fisher Scientific	RRID'AB 465674
Anti-mouse CD45 1 (A20) APC	1.300	Biol egend	Cat# 110714
	11000	2102030114	RRID:AB 313503
Anti-mouse CD45.2 (104) FITC	1:100	Thermo Fisher Scientific	Cat# 11-0454-82,
			RRID:AB_465061
Anti-mouse CD45R/B220 (RA3-6B2) APC-	1:200	Thermo Fisher Scientific	Cat# 47-0452-82,
eFluor780			RRID:AB_1518810
Anti-mouse CD49b (DX5) APC	1:200	BioLegend	Cat# 108909,
		_	RRID:AB_313416
Anti-mouse CD64 (X54-5/7.1) BV711	1:200	BioLegend	Cat# 139311,
Anti mayoo CD102 (2E7) DE	1.200	Piel agond	RRID:AB_2563846
Anti-mouse CD103 (2E7) PE	1.200	BioLegena	DRID: AR 5350/8
Anti-mouse CD326/EnCAM (G8.8) BV/605	1.200	Biol egend	Cat# 118227
	1.200	DioLegena	RRID AB 2563984
Anti-mouse F4/80 (T45-2342) PE-CF594	1:100	BD Biosciences	Cat# 565613.
			RRID:AB 2734770
Anti-mouse H-2Kb bound to SIINFEKL (25-	1:200	BioLegend	Cat#141603,
D1.16) PE			RRID:AB_10897938
Anti-mouse IFN-γ (XMG1.2) PE	1:100	BioLegend	Cat# 505808,
			RRID:AB_315402
Anti-mouse IL-12p40 (C15.6)	1:100	BD Biosciences	Cat# 554479,
			RRID:AB 395420

Anti-mouse Ly-6G/Ly-6C (RB6-8C5) Biotin	1:200	BD Biosciences	Cat# 553124,
			RRID:AB_394640
Anti-mouse Ly6C (HK1.4) A488	1:100	BioLegend	Cat# 128022, RRID:AB 10639728
Anti-mouse Lv6G (1A8) PE	1:50	BioLegend	Cat# 127608.
· · · · · · · · · · · · · · · · · · ·			RRID:AB 1186099
Anti-mouse MerTK (DS5MMER) PE-Cv7	1:200	Thermo Fisher Scientific	Cat# 25-5751-82.
			RRID:AB 2573466
Anti-mouse MHCII (I-A/I-E) (M5/114.15.2)	1:200	BD Biosciences	Cat# 563414,
BV711			RRID:AB 2738191
Anti-mouse MHCII (I-Ab) (AF6-120.1) A488	1:200	BioLegend	Cat# 116410,
		°,	RRID:AB_493140
Anti-mouse NK1.1 (PK136) FITC	1:200	Thermo Fisher Scientific	Cat# 11-5941-82,
			RRID:AB_465318
Anti-mouse NKp46 (29A1.4) eFluor450	1:100	Thermo Fisher Scientific	Cat# 48-3351-82,
			RRID:AB_10557245
Anti-mouse SiglecF (E50-2440) BB515	1:200	BD Biosciences	Cat# 564514,
			RRID:AB_2738833
Anti-mouse SiglecF (IRNM44N) PerCP-eFluor	1:200	Thermo Fisher Scientific	Cat# 46-1702-82,
710, eBioscience™			RRID:AB_2573724
Anti-mouse SiglecH (551) PercP-Cy5.5	1:200	BioLegend	Cat# 129614,
			RRID:AB_10643995
Anti-mouse TER-119 (TER-119) Biotin	1:200	BioLegend	Cat# 116203,
			RRID:AB_313704
Anti-mouse TIM4 (F31-5G3) PE	1:400	BioLegend	Cat# 129905,
			RRID:AB_1227799
Anti-mouse TCR V α 2 (B20.1)	1:200	BioLegend	Cat# 127814,
PerCP/Cyanine5.5			RRID:AB_1186116
Anti-mouse TCR V beta 5.1/5.2 (MR9-4)	1:200	Thermo Fisher Scientific	Cat# 48-5796-82,
eFluor 450, eBioscience™			RRID:AB_2574075
Anti-mouse XCR1 (ZET) BV650	1:200	BioLegend	Cat# 148220,
			RRID:AB_2566410
Pro5® MHC H- 2KbPentamers PE	5 µl	Proimmune	Cat# F093-2A-E
Streptavidin APC-Cy7	1:200	BioLegend	Cat#405208
Anti-HA High Affinity (3F10)	1:50	Roche	Cat# 11867423001,
			RRID:AB_10094468
Goat anti-Rat IgG (H+L) Cross-Adsorbed	1:200	Thermo Fisher Scientific	Cat# A-21247,
Secondary Antibody, Alexa Fluor 647			RRID:AB_141778
Depleting/blocking antibodies			
Anti-mouse TIM4 (RMT4-53)		BioXCell	Cat# BE0171,
			RRID:AB_2687695
Anti-mouse CD8 (YTS 169.4)		BioXCell	Cat# BE0117,
			RRID:AB_10950145
Rat IgG2a Isotype control (2A3)		BioXCell	Cat# BE0089,
	ļ		RRID:AB_1107769
Antibodies for immunohistochemistry			
Anti-mouse CD8 (4SM15)	1:100	Thermo Fisher Scientific	Cat# 14-0808-82,
· · · · · · · · · · · · · · · · · · ·			RRID:AB_2572861
Anti-HA High Affinity (3F10)	1:50	Roche	Cat# 11867423001,
			RRID:AB_10094468

Tim4 expression in myeloid cells					
CD45	APCCy7				
CD11c	APC				
MHCII	AF700				
SiglecF	PerCPCy5.5				
CD64	BV605				
CD11b	BV421				
CD24	PEDazzle				
XCR1	BV650				
F4/80	AF488				
TIM4	PE				
Live/Dead fixable	Aqua				
TIM4 expression in	lung (Neu/Mono/Eo)				
CD45	APCCv7				
CD11b	BV421				
SiglecF	PerCPCv5.5				
Lv6G	FITC				
Lv6C	BV570				
CD11c	APC				
TIM4	PE				
Live/Dead fixable	Agua				
TIM4 expression in lung (T cell)					
CD45	APCCv7				
CD3	FITC				
CD4	BV785				
	PF				
Live/Dead fixable					
TIM2 expression in peritoneum					
E4/80	ΔF488				
MHCII	AF700				
	PerCPCv5 5				
	BV605				
	DV000				
	Aqua				
CDTIC					
	BV605				
	BV650				
F4/80 AF488					
Uptake of cell associated tumor antigens					
CD45	APCCy7				
CD11c	APC				

Supplementary Table 5: Flow cytometry panels identification

	-			
MHCII	AF488			
SiglecF	PerCPCy5.5			
XCR1	BV650			
	CTV/BFP			
Live/Dead fixable	Aqua			
In-vivo cross	-presentation			
CD11c	APC			
MHCII	AF488			
SiglecF	PerCPCy5.5			
CD103	BV421			
XCR1	BV650			
25D.1	PE			
Live/Dead fixable	Aqua			
In-vivo T ce	ell activation			
CD45	APCCy7			
CD3	PerCPCy5.5			
CD8	APC			
Pentamers	PE			
Live/Dead fixable	Aqua			
OTI T cell proliferation assav				
CD8	APC			
	CFSE			
Live/Dead fixable	Aqua			
Proliferation of transferred CD45.1 OT-I T cell				
CD3	AF488			
CD8	APC			
CD45.1	PE			
	CTV			
Live/Dead fixable	Aqua			
$IFN-\gamma$ production by endogenous CD8 T cell				
CD45	APCCv7			
CD3	AF488			
CD8	APC			
Vß5	BV421			
Va2	PerCPCv5.5			
IEN-v	PF			
Live/Dead fixable	Aqua			
IEN-v production by transferred OTLT cell				
CD8 AF488				
CD45.1	APC			
IFN-v	PE			
Live/Dead fixable	Aqua			

Supplementary References (relative to Supplementary Table 2)

- 1 Bottcher, J. P. *et al.* NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. *Cell* **172**, 1022-1037 e1014, doi:10.1016/j.cell.2018.01.004 (2018).
- 2 Zilionis, R. *et al.* Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations across Individuals and Species. *Immunity* **50**, 1317-1334 e1310, doi:10.1016/j.immuni.2019.03.009 (2019).
- 3 Lavin, Y. *et al.* Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. *Cell* **169**, 750-765 e717, doi:10.1016/j.cell.2017.04.014 (2017).