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Emergent dual topology in the three-dimensional Kane-Mele Pt2HgSe3
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Recently, the very first large-gap Kane-Mele quantum spin Hall insulator was predicted to be monolayer
jacutingaite (Pt2HgSe3), a naturally occurring exfoliable mineral discovered in Brazil in 2008. The stacking of
quantum spin Hall monolayers into a van-der-Waals layered crystal typically leads to a (0;001) weak topological
phase, which does not protect the existence of surface states on the (001) surface. Unexpectedly, recent angle-
resolved photoemission spectroscopy experiments revealed the presence of surface states dispersing over large
areas of the 001-surface Brillouin zone of jacutingaite single crystals. The 001-surface states have been shown
to be topologically protected by a mirror Chern number CM = −2, associated with a nodal line gapped by spin-
orbit interactions. Here, we extend the two-dimensional Kane-Mele model to bulk jacutingaite and unveil the
microscopic origin of the gapped nodal line and the emerging crystalline topological order. By using maximally
localized Wannier functions, we identify a large nontrivial second nearest-layer hopping term that breaks the
standard paradigm of weak topological insulators. Complemented by this term, the predictions of the Kane-
Mele model are in remarkable agreement with recent experiments and first-principles simulations, providing an
appealing conceptual framework also relevant for other layered materials made of stacked honeycomb lattices.
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Graphene crystal and electronic structure has been fun-
damental for the development of the theory of topological
insulators (TIs). The very first model of a TI ever proposed,
namely the Chern (or quantum anomalous Hall) insulator by
Haldane, is essentially a two-band tight-binding model for
graphene in the presence of a staggered magnetic field [1].
The experimental isolation of graphene [2] inspired Kane and
Mele to assert that by doubling Haldane’s model and intro-
ducing spins one could describe intrinsic spin-orbit coupling
(SOC) in graphene, leading to a novel gapped topological
phase [3,4]. Such phase, identified by a Z2 topological in-
variant, is named quantum spin Hall insulator (QSHI) and it
is protected by time-reversal symmetry. Nowadays, graphene
and the Kane-Mele (KM) model stand as one of the archetypal
time-reversal invariant TIs, although negligible relativistic
effects in carbon open only a vanishingly small band gap in
graphene [5].

Notably, the KM model still applies to all Xenes [6],
i.e., the two-dimensional (2D) unary honeycomb materials
made of group IV elements (e.g., silicene, germanene, and
stanene), where the presence of heavier atoms should lead to
sizable band gaps [6–8]. Recently, monolayers of jacutingaite
(Pt2HgSe3) have also been proposed as novel QSHIs that
display the KM physics, and at a much larger energy scale
than in Xenes, with a band gap estimated to be around
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∼0.5 eV [9]. Jacutingaite is a naturally occurring layered
mineral first discovered in 2008 [10] in a Brazilian mine
and then synthesized in 2012 [11]. Although jacutingaite is
a ternary material with several differences with respect to the
Xenes, it shares a (buckled) honeycomb structure of mercury
atoms [see Fig. 1(a)], which is ultimately responsible for
the KM physics in monolayers [9] that sparked experimental
[12–14] and theoretical [14–17] interest in this material.

Being a stack of 2D QSHIs, bulk jacutingaite is expected
to be a 3D weak TI with indices (0; 001), and thus with no
surface states on the (001) surface [18]. Recent first-principles
simulations confirmed this weak topological classification
[14–16], but at the same time surprisingly predicted the
presence of basal surface states associated with a nontrivial
mirror Chern number CM , thus promoting bulk jacutingaite to
a dual topological material [19,20] with both weak and crys-
talline topological properties. Such (001) surface states have
now been demonstrated independently through angle-resolved
photoemission spectroscopy (ARPES) experiments on syn-
thetic jacutingaite single crystals [14]. The unexpected dual
topology of bulk jacutingaite cannot be understood through
the standard paradigm of weak TIs [18] and its interpretation
opens interesting perspectives on nontrivial extensions of the
KM model to describe 3D stacks of honeycomb layers.

Here we show that the nontrivial topology in bulk ja-
cutingaite emerges from a strong interlayer hybridization that
leads to a 3D generalization of the KM model including
a large peculiar second nearest-layer hopping term, while
nearest layers are almost decoupled. Within this picture, even
and odd layers are approximately independent and can be
separately described by a 3D KM model where the novel
hopping term drives a band inversion, giving rise to a nodal
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FIG. 1. (a) Top and lateral views of jacutingaite crystal structure, where the threefold symmetric mirror planes are highlighted in blue.
Mercury, platinum, and selenium atoms are represented in green, grey, and yellow, respectively. [(b) and (c)] Band structure of monolayer
(b) and bulk (c) jacutingaite obtained using DFT with (green) and without (orange) SOC. The inset shows the bulk and surface Brillouin zone.

line that is gapped by SOC and a nonzero CM . Remarkably,
when a coupling between even and odd layers is restored,
the Chern numbers add up to a nontrivial value while the
Z2 classification becomes weak, thus providing a microscopic
understanding for the emergent dual topology of this material.

We first shortly review the band structure of monolayer
Pt2HgSe3 [shown in Fig. 1(b)] and its relation to the KM
model. When SOC is neglected, the valence and conduction
bands form Dirac cones located at the corners K/K

′
of the

2D Brillouin zone (BZ). In a basis of maximally localized
Wannier functions (MLWFs) [21] centered on mercury atoms
[9], the linear dispersions arise from a hopping term between
nearest neighbors (NNs) on the (buckled) honeycomb Hg
(sub)lattice, similarly to graphene. The inclusion of SOC
opens a substantial gap (0.15 eV with density-functional
theory and ∼0.5 eV at the G0W0 level), turning the system
into a QSHI. The gap mainly stems from a complex-valued
second-nearest-neighbor (second-NN) hopping [9], exactly as
proposed by Kane and Mele, so that all qualitative features
of the band structure can be understood in terms of the KM
model [3,4,22]:

HKM = − t
∑

〈i j〉α
c†

iαc jα + i"
∑

〈〈i j〉〉αβ

vi j sz
αβc†

iαc jβ

+ i"′
∑

〈〈i j〉〉αβ

ui j
(
s × d0

i j

)z
αβ

c†
iαc jβ , (1)

where the sums are restricted to pairs 〈i j〉 (〈〈i j〉〉) of first-
(second-) nearest-neighbor sites i and j, vi j , ui j , and d0

i j are
geometrical parameters [23], and s = (sx, sy, sz ) are spin Pauli
matrices. Here, in addition to the original KM hopping ampli-
tudes t and " associated respectively with the NN hopping
and the KM SOC, we are adding a second-NN “in-plane”
SOC term with amplitude "′, which is not present in planar
honeycomb lattices such as graphene, but that appears when
horizontal mirror symmetry is broken [22] as in this case.

Extending naively the analogy between graphene KM
model and monolayer jacutingaite to 3D, one would expect the
electronic properties of bulk jacutingaite to be almost identical
to its 2D form, as in the case of graphene and graphite. In
Fig. 1(c), we report the band structure of bulk jacutingaite
computed along a high-symmetry path by density-functional

theory (DFT) [24]. Without SOC, a linear dispersion is ob-
served close to the K and H points, which is indeed reminis-
cent of the 2D Dirac cones. Still, the linear behavior extends
over a much larger energy range than in 2D and a remarkable
energy dispersion appears along the vertical direction between
H and K . Even more compelling, SOC opens a gap between
valence and conduction bands at K (and H) as in 2D, but the
magnitude of the splitting is 1–2 orders of magnitude smaller.
Overall, these features suggest a significant coupling between
layers, which is consistent with the non-negligible interlayer
binding energy reported in Refs. [9,25] that sets jacutingaite
as “potentially exfoliable” [25].

To show that this significant interlayer coupling is respon-
sible for the unexpected bulk dual topology, we first develop
a minimal tight-binding model that captures all the relevant
physics by extracting the most important hopping terms from
the complexity of the full electronic structure. We first build a
four-band model (including spin) using Hg-centered MLWFs
that reproduces the main features of the band structure around
the Fermi level [24]. The corresponding Wannier functions are
plotted in Fig. 2(a): they clearly resemble the ones obtained
for the monolayer in Ref. [9], but a notable difference is due to
the spatial extension of the MLWFs; those of bulk jacutingaite
spread over a neighboring layer, so that they are effectively
localized on two layers.

The strongest hopping term in the MLWF Hamiltonian is
the intralayer NN hopping t that is responsible for the linear
dispersion close to K and H , with a small gap opened by a
very weak KM SOC. The fact that for bulk jacutingaite the
effective KM and in-plane SOC are strongly renormalized
with respect to the monolayer can be understood by looking
at the geometry of the MLWFs. Indeed, as shown in Fig. 2(a),
in bulk Pt2HgSe3 the overlap between MLWFs allows two
alternative paths to hop to second-NNs within the same layer:
one identical to monolayer jacutingaite (solid line) and one
extending through the closest layer (dashed line). Owing to
the different sign of the geometrical parameter vi j (and ui j) in
Eq. (1), the two paths give opposite contributions and, being
very similar in magnitude, result in a very weak KM (and
in-plane) SOC compared to the monolayer.

Remarkably, the second strongest hopping term connects
MLWFs localized in second-nearest layers as shown in
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FIG. 2. (a) Lateral and top views of the MLWFs underlying the
tight-binding model for bulk jacutingaite. A reference MLWF is
shown together with two additional ones (with lighter colors) to
highlight the initial and final states of two relevant hopping terms:
an intralayer second-nearest-neighbor hopping process (with two
possible paths marked with solid or dashed lines) and a second-
nearest-layer hopping term (dash-dotted line). (b) Schematic of the
effective 1D model describing bulk jacutingaite at fixed parallel
momentum k‖ = (kx, ky ), involving an intralayer t̃ (k‖), a second-
nearest layer t̃2(k‖), and an almost negligible nearest layer t̃1(k‖)
hopping term. Even and odd layers are thus almost decoupled and
behave as a k‖-dependent Su-Schrieffer-Heeger-like chain with a
doubled unit cell (orange dashed line) with respect to the primitive
one (black solid line).

Fig. 2(a) (dash-dotted line). Although the MLWFs that are
involved are relatively far apart, the large amplitude (t2 (
−0.7t) stems from the partial delocalization of the MLWFs
over the neighboring layer, which gives rise to a large overlap
between MLWF that are two layers apart through the interme-
diate layer. The strong overlap takes place between a reference
MLWF and three others located two layers above (or below) in
the opposite sublattice, thus mimicking NN hopping but with
a doubled in-plane separation [24].

We now show that this interlayer coupling is crucial for
the emergence of the bulk topology by building the following
tight-binding model:

HJ3KM = HKM + λH̃2ndNL (2)

where HKM is the 2D KM model of Eq. (1), H̃2ndNL is the
second nearest-layer hopping just mentioned that makes the
model essentially 3D, and λ is a dimensionless coupling
constant that interpolates between monolayer (λ = 0) and
bulk (λ = 1) jacutingaite. This model is a generalization of
the Kane-Mele model to 3D jacutingaite and hereafter we will
call it J3KM model. As shown in Fig. 2(b), at this level even
and odd layers are completely decoupled, so it is natural to
choose a unit cell that is doubled along the stacking axis and
to describe separately even and odd layers through Eq. (2).
In this way, H̃2ndNL becomes a first-nearest layer term in the
even/odd subspace, and the BZ is halved along kz.

We start by considering the J3KM model without SOC,
corresponding to an Hamiltonian with only two terms: first
nearest-neighbor (as in graphene) and inter-layer hopping.
The band structure for a 30-layer slab is reported in Fig. 3(a)
for different values of λ, where states localized at the (001)
surface are colored in red [27]. For λ = 1 (bulk jacutin-
gaite), in addition to the graphenelike Dirac states at K , such
simple model accounts for the presence of additional linear
crossings between valence and conduction bands (e.g., at a
low-symmetry point between % and M), in perfect agreement
with current ARPES measurements [14]. Notably, the model
also exhibits 001-surface states that roughly span the same
BZ region as observed in experiments [14], thus providing
a remarkably realistic qualitative description of the system,
despite its simplicity.

An interesting feature of the J3KM model that helps to
rationalize the presence of surface states is that, at a given
parallel momentum k‖ = (kx, ky), it is equivalent to a k‖-
dependent 1D tight-binding Hamiltonian analogous to the Su-
Schrieffer-Heeger (SSH) one, where the alternating hopping
energies, t̃ (k‖) and t̃2(k‖), depend parametrically on k‖ (see
Fig. 2(b) and [24]). The topological properties of this effective
1D chain can be expressed in terms of the Zak phase [28,29]:

γ (k‖) = −i
∮ 〈

u(k‖, kz )|∂kz u(k‖, kz )
〉
dkz, (3)

where u(k‖, kz ) is the periodic part of the occupied eigenstate.
The combination of time-reversal and inversion symmetry
dictates that γ (k‖) can only assume two topologically distinct
values: γ (k‖) = π and γ (k‖) = 0, depending on the relative
strength of t̃ (k‖) and t̃2(k‖) as in the SSH model. According
to Refs. [30,31], we then expect surface states for all values of
k‖ for which γ (k‖) = π , which is indeed the case in Figs. 3(a)
and 3(b).

The analogy with the SSH model also reveals that, along
the lines that separate topologically distinct regions of the BZ,
we need to have |t̃ (k‖)| = |t̃2(k‖)|, so that the gap closes for
some value of kz. Indeed, by computing the energy bands of
the J3KM model without SOC we uncover the presence of
a nodal line [see Fig. 3(c)] dispersing across the border of
the reduced BZ, also predicted by first-principles simulations
[14,16]. Its projection on the (kx, ky) plane is consistent with
the boundary between regions with topologically distinct Zak
phases where |t̃ (k‖)| = |t̃2(k‖)| [32].

To understand the emergence of surface states and nodal
lines, in Figs. 3(a) and 3(b), we show the predictions of the
J3KM model as a function of the interlayer coupling λ. For
small λ, the band structure is essentially graphenelike, with no
surface states and a trivial Zak phase over the full BZ. With
increasing λ, a band inversion occurs at the time-reversal-
invariant point L of the reduced BZ (corresponding to M in
2D), creating three inequivalent nodal lines whose projections
separate regions with different Zak phases. Correspondingly,
surface states appear in the slab calculation wherever γ (k‖) =
π . With a further increase in λ, the three nodal lines merge
into a single one, as shown in Fig. 3(c) for bulk jacutingaite
(λ = 1). The interlayer coupling thus plays a crucial role in
driving the expected electronic structure of weakly coupled
layers into the rich physics of bulk jacutingaite [38].
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FIG. 3. [(a) and (b)] Evolution of the J3KM model at zero SOC for different values of the interlayer coupling λ in Eq. (2): (a) 30-layer
slab band structure, with surface states colored in red and (b) Zak phase (3) over the 2D BZ. (c) Nodal lines in the J3KM model without SOC.
The primitive BZ (black solid line) is shown together with the reduced one (orange dashed line) associated with the doubling of the unit cell.
[(d) and (e)] J3KM model with SOC: (d) calculation of the mirror Chern number CM as the winding of the Wilson loop phase θ (restricted to
states with a definite ±i mirror eigenvalue) as a function of the parallel momentum in a mirror-invariant plane [26]. The evolution of CM with
λ is also reported in (b). (e) 30-layer slab band structure as in (a) for λ = 1 but with SOC included. (f) 60-layer slab band structure for the full
MLWF model with SOC. Band energies have been rescaled by the nearest-neighbor hopping amplitude t (=0.27 eV in bulk jacutingaite) by
setting the following parameters t2/t = −0.7 and "/t = "′/t = 0.02 in Eqs. (1) and (2) [24].

We now include SOC to show the robustness of sur-
face states and their topological protection within the J3KM
model. The KM SOC [3,4] gaps the nodal line almost every-
where, but not at the intersections with the vertical mirror-
symmetric planes. The inclusion of also the in-plane SOC
[6,22] fully gaps the residual Dirac points and the system be-
comes a topological crystalline insulator, as supported by cal-
culations of the mirror Chern number [see Fig. 3(d)] providing
CM = −1. As shown in Fig. 3(e), the nontrivial Chern number
protects the presence of 001-surface states even when SOC is
included, with a Dirac-like dispersion close to the M point.

Further calculations of the strong Z2 invariant ν show that
the J3KM model for the even/odd subspace actually describes
a strong Z2 TI, in agreement with the fact that ν ≡ CM mod 2
[40]. When considering together even and odd layers, the Z2
invariant of the two subspaces is summed and becomes trivial
(1 + 1 ≡ 0 mod 2), while CM adds up to −2. On one side, this
means that the weak Z2 topology of bulk jacutingaite does
not fit the standard paradigm of weakly coupled QSHI, but it
is intimately related to the double band inversion (one for each
even/odd subspace) driven by the strong interlayer coupling.
On the other, we expect the mirror Chern number to protect
the surface states also when both subspaces are considered
together.

In order to support this conclusion and at the same time
to provide further evidence that the above predictions are not
protected by some extra symmetries (e.g., particle-hole) of
the simple J3KM model, we finally consider the full MLWF
Hamiltonian, which includes in particular additional terms to
Eq. (2) that (i) restore the coupling between even and odd
layers; (ii) introduce a finite dispersion along the K-H line
as in DFT [Fig. 1(c)]; and (iii) break particle-hole symmetry,

making the system a compensated semimetal. Still, the topo-
logical classification of bulk jacutingaite is not affected. The
corresponding band structure for a 60-layer slab is reported
in Fig. 3(f). Consistently with CM = −2, two pairs of surface
states are present, slightly split by the coupling between even
and odd layers. Remarkably, these bands are very similar to
what is observed in ARPES experiments [14].

In conclusion, we provide a microscopic insight on how
symmetry-protected topological order in layered jacutingaite
emerges from a nontrivial coupling between Kane-Mele-type
QSHI monolayers. The essential physical features can be
captured by a simple generalization of the Kane-Mele model
to account for interlayer hopping. This J3KM model predicts
the presence of surface states and nodal lines gapped by
spin-orbit interactions, in remarkable agreement with recent
ARPES measurements and first-principles simulations, pro-
viding an appealing strategy to break the standard paradigm
of weak topological insulators that becomes relevant for
all other layered materials made of stacked honeycomb
lattices.
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S1. FIRST-PRINCIPLES SIMULATIONS

Density-functional theory calculations are performed with the Quantum ESPRESSO distribution [1, 2], Wannier
functions are obtained using WANNIER90 [3]. Structural optimization is performed by using the experimental
lattice parameters as obtained from X-ray di↵raction and relaxing the atomic coordinates with a non-local van der
Waals functional, namely the vdW-DF2 functional [4] with C09 exchange (DF2-C09) [5], and the SSSP precision
pseudopotential library v1.0 [6] with 100 Ry of wavefunction cuto↵ and a dual of 8. Further calculations on the
optimized crystal structure (band structures and Wannier functions) are performed using the PBE functional [7] and
ONCV [8] scalar and fully relativistic pseudopotentials from the PseudoDojo library [9] with 80 Ry of wavefunction
cuto↵ and a dual of 4. All calculation are perfomed with k-point density of 0.09 Å�1, that corresponds to a k�point
grid of 12 ⇥ 12 ⇥ 14, and Marzari-Vanderbilt smearing [10] of 0.015 Ry. Wannier functions are constructed from a
k�point grid of 6⇥6⇥6. Part of the calculations are powered by the AiiDA [11] materials’ informatics infrastructure.

S2. 4-BAND MODEL FOR BULK JACUTINGAITE

In order to construct a minimal tight-binding model for bulk jacutingaite, we follow a similar strategy as for
the monolayer [12] by mapping first-principles calculations onto a set of maximally-localized Wannier functions (ML-
WFs) [13], constructed from an initial projection on Hg-centred s-like orbitals. This results in a 4-band (including spin
and relativistic e↵ects) tight-binding model on a lattice made of buckled honeycomb layers directly stacked on top of
each other (AA stacking). We denote the lattice vectors of the unit cell with a1 = (a, 0, 0), a2 = (�a/2,

p
3a/2, 0), and

a3 = (0, 0, c), with the two inequivalent sublattices centered at ⌧A = 2/3a1+1/3a2+�a3 and ⌧B = 1/3a1+2/3a2��a3.
The band structure obtained from this 4-band model is compared to the original first-principles results in Fig. S1.
Although a perfect quantitative agreement is not attainable, the model reproduces all qualitative features around the
Fermi energy, including in particular the extended linear dispersion and the very small band gap between valence and
conduction bands at K and H.

FIG. S1. Band structure of bulk jacutingaite along a high-symmetry path as obtained from first-principles calculations (green
dots) and from the MLWF 4-band model (red line).
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S3. SECOND-NEAREST-LAYER HOPPING TERM

Within the 4-band model, the largest hopping term involves MLWFs that are centered on neighboring sites in the
same layer, with amplitude t = 0.27 eV. As mentioned in the main text, the next largest contribution is a second-
nearest layer hopping term with amplitude t2 = �0.18 eV ' �0.7 t. This hopping process involves a reference
Wannier function on the A (B) sublattice and one of three B (A) sites that lie 2 layers above (below) in unit cells
identified by the lattice vectors

R1 = ±(a1 � a2 + 2a3), R2 = ±(�a1 � a2 + 2a3), R3 = ±(a1 + a2 + 2a3). (S1)

In Fig. S2 we sketch the sites involved in this hopping process, starting either from the A sublattice (red solid arrows,
upper signs in Eq. (S1)) or the B sublattice (blue dashed arrows, lower signs in Eq. (S1)). This hopping term has
been adopted in the main text to construct a minimal extension of the 2D Kane-Mele model that is able to describe
the emergent topology in bulk jacutingaite.

a
2

a
1

a
3

a
1

A
B

AB

FIG. S2. Schematic representation of the buckled honeycomb lattice formed by Hg atoms on which the 4-band MLWF tight-
binding model is defined. The A (B) sublattice is denoted with dark (light) green circles. The shaded yellow area shows the
primitive unit cell, with lattice vectors a1, a2, and a3. Arrows connect sites involved in the second-nearest layer hopping
process responsible for the non-trivial topological properties of bulk jacutingaite, starting from either the A sublattice (red
solid arrows, corresponding to the vectors ⌧B +R1,2,3 � ⌧A with the upper sign in Eq. (S1)) or the B sublattice (blue dashed
arrows, corresponding to the vectors ⌧A +R1,2,3 � ⌧B with the lower sign in Eq. (S1)).

S4. CONNECTION WITH THE SU-SCHRIEFFER-HEEGER MODEL

In the absence of spin-orbit coupling, the J3KM model reduces to a 2-band model with a corresponding 2 ⇥ 2
Hamiltonian in Fourier space that can be written

H(kk, kz) =

✓
0 tf(kk) + t2g(kk)e

i2kzc

tf⇤(kk) + t2g⇤(kk)e
�i2kzc 0

◆
(S2)

where kk = (kx, ky) and according to Sec. S3 we have

f(kk) = 1 + eikk·a1 + e�ikk·a2 = ei(kx�
p
3ky)a/2


1 + 2ei

p
3kya/2 cos

✓
kxa

2

◆�
(S3)

g(kk) = eikk·(a1+a2) + eikk·(a1�a2) + e�ikk·(a1+a2) = eikk·(a1�a2)f⇤(2kk) = ei(kx�
p
3ky)a/2

h
ei

p
3kya + 2 cos(kxa)

i

(S4)

If we now write f(kk) = |f(kk)|e
i�(kk), we thus have that g(kk) = |f(2kk)|e

�i�(2kk)+ikk·(a1�a2) and the Hamiltonian
can be written as

H(kk, kz) =

✓
0 t|f(kk)|e

i�(kk) + t2|f(2kk)|e
i2kzc�i�(2kk)+ikk·(a1�a2)

t|f(kk)|e
�i�(kk) + t2|f(2kk)|e

�i2kzc+i�(2kk)�ikk·(a1�a2) 0

◆

=

✓
1 0
0 e�i�(kk)

◆✓
0 t|f(kk)|+ t2|f(2kk)|e

i[2kzc�↵(kk)]

t|f(kk)|+ t2|f(2kk)|e
�i[2kzc�↵(kk)] 0

◆✓
1 0
0 ei�(kk)

◆

(S5)



3

where ↵(kk) =
⇥
�(kk) + �(2kk)� kk · (a1 � a2)

⇤
. This is Hamiltonian is unitarily equivalent to the Hamiltonian of

the Su-Schri↵er-Heger (SSH) model, where the hopping energies depend parametrically on the in-plane wave vector
kk and the e↵ect of the extra phase ↵(kk) in one of the hopping amplitudes is simply to shift the dispersion of the
energy bands as a function of kz for a given value of kk. The e↵ective SSH hopping amplitudes become

t̃(kk) = t|f(kk)| and t̃2(kk) = t2|f(2kk)|e
�i↵(kk) . (S6)

The condition for the gap to close reads |t̃(kk)| = |t̃2(kk)|, which has non-trivial solutions only when |t2/t| > 1/3. At
the values of kk for which this condition is satisfied there must exist a value of kz (which depends on ↵(kk)) at which
the gap closes, thus giving rise to a nodal line. We have verified that, as expected, the projection of the nodal line on
the (kx, ky)-plane (as identified by the solution of |t̃(kk)| = |t̃2(kk)|) coincides with the line separating regions where
the Zak phase (computed from the eigenstates of (S2)) is trivial and regions where it is non-trivial.
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