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THE QUEST FOR DIOPHANTINE FINITE-FOLD-NESS

D. CANTONE - A. CASAGRANDE - F. FABRIS - E. G. OMODEO

Dedicated to Martin Davis and Yuri Matiyasevich for
their respective 90th and 70th birthdays, and to the
memory of Julia Robinson, for her centennial.

The Davis-Putnam-Robinson theorem showed that every partially
computable m-ary function f (a1, . . . ,am) = c on the natural numbers can
be specified by means of an exponential Diophantine formula involving,
along with parameters a1, . . . ,am,c, some number κ of existentially quan-
tified variables. Yuri Matiyasevich improved this theorem in two ways:
on the one hand, he proved that the same goal can be achieved with no
recourse to exponentiation and, thereby, he provided a negative answer to
Hilbert’s 10th problem; on the other hand, he showed how to construct
an exponential Diophantine equation specifying f which, once a1, . . . ,am
have been fixed, is solved by at most one tuple 〈v0, . . . ,vκ〉 of values for
the remaining variables. This latter property is called single-foldness.
Whether there exists a single- (or, at worst, finite-) fold polynomial Dio-
phantine representation of any partially computable function on the natu-
ral numbers is as yet an open problem. This work surveys relevant results
on this subject and tries to draw a route towards a hoped-for positive an-
swer to the finite-fold-ness issue.
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1. Introduction

The celebrated Davis-Putnam-Robinson theorem of 1961 ensures that ev-
ery computable function F from a subset of Nm into N = {0,1,2, . . .}
can be specified as

F(a1, . . . ,am) = c ⇐⇒ (∃x1 · · ·∃xκ) ϕ(

p.w. distinct variables︷ ︸︸ ︷
a1, . . . ,am,c︸ ︷︷ ︸

parameters

, x1, . . . ,xκ︸ ︷︷ ︸
unknowns

) , (†)

for some formula ϕ that only involves:

• individual variables,1 including (as free variables) the shown ones;

• non-negative integer constants;

• addition, multiplication, and exponentiation operators;2

• the logical connectives & , ∨, ∃v, = .

Two major improvements to this result were achieved by Yuri Matiyasevich.
In [13] he showed that (†) can be set up without exponentiation; in [15], while
retaining exponentiation in it, he boiled ϕ down to the format

ϕ(a1, . . . ,am,c , x1, . . . ,xκ) :=

P′ (a1, . . . ,am,c, x2 , . . . ,xκ) = 4x1 + x1 +P′′(a1, . . . ,am,c, x2 , . . . ,xκ),

where κκκ > 0 and P′ and P′′ are polynomials with coefficients in N, devoid of
occurrences of x1 , such that no two tuples

〈aaa1, . . . ,aaam,vvv0,vvv1, . . . ,vvvκ〉 , 〈aaa1, . . . ,aaam,uuu0,uuu1, . . . ,uuuκ〉

on N exist satisfying ϕ( aaa1, . . . ,aaam , vvv0, . . . ,vvvκ) & ϕ( aaa1, . . . ,aaam , uuu0, . . . ,uuuκ).
Thus, every tuple 〈aaa1, . . . ,aaam〉 on N either admits no continuation 〈vvv0, . . . ,vvvκ〉
satisfying ϕ—and then 〈aaa1, . . . ,aaam〉 does not belong to the domain of F—or
exactly one, and then vvv0 is precisely the value F(aaa1, . . . ,aaam).

By introducing a little terminology—rather common in recursion theory, cf.
[6]—we will be better-off in what follows. A setR⊆Nm, with mmm > 0, is called

recursively enumerable (or, shortly, r.e.): when it is the domain of a partially
computable function F taking mmm arguments (see, e.g., [9, Sect. 2.4]);

1NB: Throughout this paper, individual variables are supposed to range over N.
2We name exponentiation the dyadic operation 〈r, p〉 7→ rp (occasionally, also p 7→ 2p).
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exponential Diophantine: when it can be specified as

R(a1, . . . ,am) ⇐⇒ (∃x1 · · ·∃xκ) ϕ(

variables︷ ︸︸ ︷
a1, . . . ,am︸ ︷︷ ︸
parameters

, x1, . . . ,xκ︸ ︷︷ ︸
unknowns

) , (∗)

for some formula ϕ involving the syntactic means listed at the beginning;

Diophantine: when it can be specified in the form (∗), with ϕ involving the
syntactic armory just recalled, save exponentiation.

Moreover, a representation ofR in the form (∗) is said to be

single-fold or univocal: when each tuple 〈aaa1, . . . ,aaam〉 of natural numbers has at
most one continuation 〈vvv1, . . . ,vvvκ〉 such that ϕ(aaa1, . . . ,aaam,vvv1, . . . ,vvvκ);

finite-fold: when each tuple 〈aaa1, . . . ,aaam〉 of natural numbers has only finitely
many continuations 〈vvv1, . . . ,vvvκ〉 such that ϕ(aaa1, . . . ,aaam,vvv1, . . . ,vvvκ) holds.

Let us sum up, in terms of these notions, the above-cited important results,
along with two open issues raised many years ago, which still motivate us here:

DPR61 [8], known as DPR: Every r.e. set is exponential Diophantine (and conversely).

Mat70 [13], known as DPRM: Every r.e. set is Diophantine (and conversely).

Mat74 [15]: Every r.e. set admits a univocal exponential Diophantine representation.

DMR76 [7]: Does every r.e. set admit a univocal Diophantine representation?

Mat10 [17]: Does every r.e. set admit a finite-fold Diophantine representation?

A positive answer to DMR76 would combine together both of Matiyasevich’s
improvements to DPR, namely Mat70 and Mat74; in [17], Matiyasevich argues
on the significance of this combination, and on the difficulty (as yet unsolved)
of this reconciliation. In [18, p. 50], after discussing the issue again, he ends up
by saying: “This relationship between undecidability and non-effectivizability is one
of the main stimuli to improve the DPRM-theorem to single-fold (or at least to finite-
fold) representations and thus establish the existence of non-effectivizable estimates for
genuine Diophantine equations”.

The derivation of DPRM from DPR required that exponentiation itself were
proved to be Diophantine. A result by Julia Robinson, which we recapitulate in
Sect. 3, played historically a key role in this arduous task: she had reduced the
task to the quest for a Diophantine relation of exponential growth (a notion to be
recalled soon here); and, indeed, Matiyasevich found a polynomial Diophantine
representation of a specific exponential-growth relation.

After Matiyasevich [17], we have some hope that a positive answer to Mat10
can likewise be obtained by proving two facts:
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• there exists a relation D(p,q), sharing with the relation 2p = q (seen as
the set {〈p , 2p〉 | p ∈ N}) a certain special property (see Fig. 13), that
admits a finite-fold Diophantine representation;

• consequently, via a reduction technique reminiscent of J. Robinson’s one,
exponentiation will have a finite-fold Diophantine representation. (Hence,
via Mat74, every r.e. set will inherit the finite-fold Diophantine repre-
sentability.)

Concerning the former goal, [1] and [2] propose four exponential-growth
relations as candidate D’s; moreover, [2] proves that one of them enjoys the
“special property” shown in Fig. 1. It is hard to establish whether any of these
candidates is Diophantine; clearly enough, though, if any of them is indeed
Diophantine, then it has a finite-fold representation.

Concerning the latter goal, in order to convince ourselves (as well as our
readers) that the sought “reduction technique reminiscent of J. Robinson’s one”
does exist, and to get closer to it, we undertake in this paper a comparison among
various published versions of Robinson’s technique, discussing how her idea
evolved over the years from its original formulation of 1952 towards simpler
implementations, one of which might fit our needs.

There exist integers α > 1 , β > 0 , γ > 0 ,δ > 0 such that to each
w∈N other than 0 there correspond p , q such thatD(p,q), p< γ wβ ,
and q > δ αw hold.

Figure 1: A property (elicited in [17]) which, if enjoyed by a relationD⊆N×N
admitting a finite-fold Diophantine representation, would ensure existence of a
finite-fold Diophantine representation of exponentiation.

In preparation for some conclusive answer to Mat10—be it positive or neg-
ative—, this paper brings together scattered notes on finite-fold Diophantine
representability. The forthcoming material is organized as follows.

Sect. 2 reports the construction of a univocal exponential Diophantine rep-
resentation of any given r.e. setR. Out of a formally specified register machine
that reaches termination on the tuples belonging toR—and only on those—, the
proposed construction technique generates a formula ϕ such that (∗) holds. By
and large, singlefold-ness results from the determinism of the device emulated
by the exponential constraints embodied into ϕ .

Then Sect. 3 discusses two ways of reducing exponentiation to any
exponential-growth dyadic relation J (p,q); both techniques are due to Julia

3Notice that in the case of the relation 2p = q we could take α = β = δ = γ/2 = 2 and then
p = w+2, q = 2w+2.
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Robinson, who proposed them in 1952 and 1969 respectively. They ensure that
if a (polynomial) Diophantine representation for J is found, then it can be con-
verted into a Diophantine representation of exponentiation, and hence of any
given r.e. set. Appendix A expounds the original correctness proof regarding
the result of 1969.

Sect. 4 reports three ways, devised by Davis, Matiyasevich, and J. Robin-
son, of reducing exponentiation to the sequence

〈
yyyi(a)

〉
i∈N of solutions to the

special-form Pell equation (a2−1) y2 +1 = � with a > 1.4 Appendices B and
C dwell upon the techniques by which those three reductions were obtained.

To end, Sect. 5 presents four candidate “rule-them-all equations”, and de-
votes some discussion to one of them. The prototype of those special equations
was devised by Martin Davis over forty years ago [4], and still resists attempts
to assess whether or not it has infinitely many integral solutions. Some hope
that each r.e. set admits a finite-fold Diophantine representation lies, notwith-
standing, in the expectation that a rule-them-all equation will be discovered to
have a finite overall number of solutions in rational integers.

Remark 1.1. Note that allowing the existential variables to range over the set Z of
signed integers (as would be closer to the habits of number theorists), or over N (as
we have preferred to do), amount to the same when exponentiation does not occur in
the above representation format (∗). In particular (see [19, p. 253]), it would suffice
to replace each of our N-valued xi’s by a sum X2

i +Y 2
i +Z2

i +Zi involving three new
Z-valued variables, to get a specification

(∃X1 · · ·∃Xκ)(∃Y1 · · ·∃Yκ)(∃Z1 · · ·∃Zκ)
ϕ(a1, . . . ,am , X2

1 +Y 2
1 +Z2

1 +Z1, . . . ,X2
κ +Y 2

κ +Z2
κ +Zκ ) ,

interchangeable with (∃x1 · · ·∃xκ) ϕ(a1, . . . ,am , x1, . . . ,xκ ) , of the sameR⊆ Nm.

2. Univocal exponential representation of any r.e. set

Where does singlefold-ness of the exponential representation of an r.e. set
R ⊆ Nm whatsoever stem from? In [15], where it was first achieved, such a
representation took the form

R(a1, . . . ,am) ⇐⇒ (∃x1 · · ·∃xκ∃y∃w)
[

2y = w &
D(a1, . . . ,am , x1, . . . ,xκ , y,w ) = 0

]
,

where D is a polynomial in the variables a1, . . . ,am , x1, . . . ,xκ , y,w with integral
coefficients; this was then rewritten, by exploiting an idea of Hilary Putnam, as

R(a1, . . . ,am) ⇐⇒ (∃x1 · · ·∃xκ∃y∃z∃u) 4u +u =[
y+(y+ z)2

] [
1−D2(a1, . . . ,am , x1, . . . ,xκ , y,y+ z )

]
.

4‘Q =�’ means that the value of Q must be a perfect square.



138 D. CANTONE - A. CASAGRANDE - F. FABRIS - E. G. OMODEO

This format is very elegant,5 but the proof of the associated representability
result less transparent than later single-fold-representability proofs where expo-
nentiation was employed more liberally. Various proofs referred to register ma-
chines, a popular model of abstract computing device, to which James P. Jones
and Yu. V. Matiyasevich resorted in three papers (see, e.g., [10]). We rely upon
Martin Davis’s account [6, Chapter 6] of the Jones-Matiysevich’s approach in
carrying out our considerations below.

A register machine π consists of a list ℑ0, . . . ,ℑ` of instructions; any execu-
tion of π begins with instruction ℑ0 and, unless it goes on forever, it terminates
with ℑ`. Finitely many program variables, R0,R1, . . . ,Rm, . . . ,Rr, called regis-
ters, occur in π ; of these, R0 will hold the result aaa0 of the computation upon
termination, if execution does reach ℑ`. At the outset, the registers R1, . . . ,Rm

must hold the respective input values aaa1, . . . ,aaam, while the values of all remain-
ing registers are supposed to be 0. Here, w.l.o.g., we shall require that aaa0 = 0.

There are instructions of five types:

R j ← R j +1 increment

R j ← R j−1 decrement

IF R j = 0 GOTO k conditional branch

GOTO k unconditional branch

STOP halt

Suitable programming rules enforce that: (0) STOP only appears at the end of
π , namely as ℑ`; (1) the number k that follows GOTO in a branch instruction
always belongs to the interval 0, . . . , `̀̀; (2) it never happens that a decrement
R j ← R j−1 is reached when the current value of its register R j is 0; (3) when—
if ever—the instruction ℑ` is reached, each one of (R0,) R1, . . . ,Rr has value 0.

The behavior of π when its execution is triggered with input values aaai

loaded in its input registers R1, . . . ,Rm should be readily grasped by any person
familiar with procedural programming. In order to describe that functioning, we
must specify by means of exponential Diophantine constraints how the values
of the registers evolve over time and which instruction is about being effected
at each of the discrete time instants beating the execution.

An unknown, s, representing the overall number of execution steps, will
play a crucial role; in fact, we are interested in the r.e. set R consisting of

5Notice that the polynomial y+(y+ z)2 belongs to Kosovskiı̆’s family of polynomials x1 +
(x1 +x2)

2 +(x1 +x2 +x3)
3 + · · ·+(x1 + · · ·+xn)

n defining, for each n ∈N, an injective function
of Nn into N—see [11].
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those tuples 〈aaa1, . . . ,aaam〉 which, when fed into π , lead π to termination. Unless
execution terminates, no natural number sss should be an acceptable value for s
under the constraints to be associated with π ; on the other hand, when a tuple
leads to termination, an acceptable value sss for s must exist and it must be unique,
because the abstract computing device which we are modeling is deterministic.
In the latter case, the course of values of each register R j ( j = 0, . . . ,rrr) can be
modeled as the sequence

〈
rrr j,0, . . . ,rrr j,s

〉
formed by its initial value rrr j,0 and by its

subsequent values rrr j,t with t > 0, where rrr j,t is the value held by R j right after the
execution of the t-th step. Notice that if execution terminates in sss computation
steps, no register will ever hold a value exceeding the quantity aaa1+ · · ·+aaam+sss;
therefore we can represent the course of values of each R j by a single unknown,
r j, designating the amount ∑

s
t=0rrr j,t QQQt , where QQQ > aaa1+ · · ·+aaam+sss is a base for

the positional encoding of numbers large-enough in order that every rrr j,t acts as a
digit. Since sss is a priori unknown, QQQ must in its turn show as an unknown, Q, in
the constraints specifying π . Out of practical concerns, it turns out convenient
to subject Q, along with a buddy unknown [, to the conditions

2[ 6 (2a1 + · · ·+2am +2s) max (`̀̀+1) < 2[ ·2 = Q ,

ensuring its uniqueness—and thus, thanks to the determinism of π , also the
uniqueness of r0, . . . ,rr.

Additional unknowns l0, . . . , l` are needed to describe which instruction is
executed at each instant: li designates the amount ∑

s
t=0 llli,t QQQt , where llli,t = 1 if

the instruction to be executed at time t is ℑi, and llli,t = 0 otherwise. One final
unknown, I, is required to satisfy the equations

1+(Q−1) I = Qs+1 =
`

∑
i=0

li ,

so that I designates ∑
s
t=0 QQQt . Thus, with respect to the bases Q and 2, I reads

1 . . .11︸ ︷︷ ︸
s+1

and 0 . . .0︸ ︷︷ ︸
[

1 . . .0 . . .0︸ ︷︷ ︸
[

1

︸ ︷︷ ︸
s+1

and the equation on the right reflects the fact that exactly one instruction is
executed at each step. Putting

∆ j,i =Def

{
0 when ℑi does not affect R j , else
±1 according to whether ℑi is R j← R j±1 ,

we must then require, for j = 0, . . . ,rrr that

r j =
(
r j +∑

`
i=0 ∆ j,i li

)
Q+

{
a j if 0 < j 6mmm ,
0 otherwise,
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to state how the course of values of each variable is ruled by the execution
steps.6

To perfect the constraint-based description of the execution of π , we shall
resort to the masking relation a v b that occurs between a = ∑

k
h=0 ah 2h and

b = ∑
k
h=0 bh 2h, with a0,b0, . . . ,ak,bk ∈ {0,1}, if and only if ah 6 bh holds for

h = 0,1, . . . ,k. Since
(0

1

)
= 0 and 1 =

(0
0

)
=
(1

0

)
=
(1

1

)
, the Lucas’s congruence(

∑
k
h=0 bh 2h

∑
k
h=0 ah 2h

)
≡

k

∏
h=0

(
bh

ah

)
( mod 2)

yields that a v b holds if and only if
(b

a

)
is odd. The masking relation hence is

exponential Diophantine; in fact, thanks to the binomial theorem, a v b holds
if and only if the remainder of the integer division of

⌊(
2b+1 +1

)b
/2ba+a

⌋
by 2b+1 is odd. The final constraints needed are, for j = 0,1, . . . ,rrr and i =
0,1, . . . , `̀̀:

• r j v bQ/2−1c I and li v I, 1v l0, l` v Qs;

• Q li v li+1 when ℑi is an incre-/decre-ment instruction;

• Q li v lk when ℑi is an unconditional branch instruction GOTO k;

• Q li v li+1 + lk and Q li v li+1 +QI− 2r j when ℑi is a conditional branch
instruction IF R j = 0 GOTO k.

Example 2.1 (Adapted from [7]). Goldbach’s conjecture, stating that every even
integer greater than 2 is the sum of two prime numbers, can be formulated in a
first-order arithmetic of natural numbers by the sentence

∀a∃ p∃q∀u∀v
((

( p = u ·v ∨ q = u ·v) =⇒ (u = 1⇐⇒ v 6= 1)
)

& a+a+4 = p+q
)
.

Thanks to DPR, the conjecture can also be formulated with no quantifier
alternations, by means of a sentence of the form

¬(∃x0 · · ·∃xκ) γ(0 , x0 , x1, . . . ,xκ ) ,
where γ is a quantifier-free exponential Diophantine formula enforcing that

G(a) = c ⇐⇒ (∃x1 · · ·∃xκ) γ(

variables︷ ︸︸ ︷
c , a︸︷︷︸

param’s

, x1, . . . ,xκ︸ ︷︷ ︸
unknowns

) ,

6Rather than presupposing that the value aaa0 of the output register be 0 at the end, here we could
have modified the condition associated with R0 into r0 =

(
r0 +∑

`
i=0 ∆0,i li

)
Q−Qs+1 a0 ,

thus capturing the graph 〈aaa0,aaa1, . . . ,aaam〉—an r.e. set on its own right—of the function computed
by π instead of its domain.
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holds, where

G(a) =Def


1 if there are prime numbers p, q

such that a+a+4 = p+q ,
0 otherwise.

Such a γ can be built by conjoining together all constraints that specify the
behavior of a register machine γ computing G , in the manner discussed above.7

3. Two admirable ways of specifying exponentiation in terms of a relation
of exponential growth

In her seminal paper [22] published in 1952, Julia Robinson discusses—among
many things—how to specify the graph of exponentiation, namely the triadic
relation bn = c, in the format

bn = c ⇐⇒ (∃x1 · · ·∃xκ) ϕ(

variables︷ ︸︸ ︷
b,n,c︸ ︷︷ ︸
param’s

, x1, . . . ,xκ︸ ︷︷ ︸
unknowns

) (‡)

closely analogous to (†), with permission to employ in the construction of ϕ ,
instead of exponentiation, a dyadic relation J which is of exponential growth in
the following sense:

i) J (p,q) implies q < pp ;

ii) for each `> 0, there are p and q such that J (p,q) and p` < q .

The essence of such a specification is best explained in terms of a polyno-
mial which, chronologically (see [20, p. 531]), made its first appearance long
after 1952:

Lemma 3.1. There is a polynomial Q in two variables with coefficients in N
such that (using τ =� as a short for ∃q (τ = q2 ) ):

• Q(w,h) =� =⇒ h > ww;

• to every w, there correspond h’s such that Q(w,h) =�.

Proof, just a clue. It suffices to take Q(w,h) := (w+2)3 (w+4) (h+1)2 +1. a

7Bear in mind, here, the remark made in the preceding footnote.
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Theorem 3.2. Let Q be as in Lemma 3.1. The following bi-implication then
holds if J meets the exponential-growth requirements i) and ii).

bn = c ⇐⇒ (∃w , h , a , d , ` , u , v , s , q)
[

(c−1)2 +b+n = 0 ∨

(c+b = 0 & n> 1) ∨(
b> 1 & c> 1 & d > ` & J (a,d) &

`2 =
(
a2−1

)[
n+(a−1)s

]2
+1 &

w > b maxn & Q(w , h) = q2 & a> hmax (c+1) &

u2 = (a2 b2−1) v2 +1 & c = bu/`c
) ]

.

This rule, if there exists a Diophantine relation J satisfying i) & ii), provides a
Diophantine representation of exponentiation.

Proof. Proving the stated bi-implication is not a simple matter: we refer the
interested reader to [2, Appendix A] for details on this.

Concerning the second part of the claim, we must show that certain relations
are Diophantine; namely: x > y ⇐⇒ ∃v(x = v+ y), x > y ⇐⇒ x > y+ 1,
x = y maxz ⇔ (x = y> z ∨ x = z> y), x = by/zc ⇔ ∃q

(
qz6 y < (q+1)z

)
.
a

In [23, p. 109 and p. 112], J. Robinson simplifies the above construction and
proof, getting:

Theorem 3.3. Suppose that J is an exponential-growth relation such that
J (p,q) implies p > 1, and let Q be as in the proof of Lemma 3.1. Then the
bi-implication

bn = c ⇐⇒ (∃a , d , ` , s ,x , h)
[

(c−1)2 +n = 0 ∨

(n> 1 & c+b = 0) ∨(
n> 1 & b> 1 & J (a,d) & d > ` & a > b+n &

`2 = (a2−1)
[
n+(a−1)s

]2
+1 & Q(b+n−2,h) = x2 &

2ab−b2−1>
[
(b+n+1) x

]
max

(
c+1

)
&

2ab−b2−1 | `−
(
a−b

)[
(a−1)s+n

]
− c

) ]
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holds, which gives us a Diophantine repr. of exponentiation if J is Diophantine.

Proof. A proof of the stated bi-implication is provided in Appendix A; clearly
divisibility is Diophantine, since x | y ⇐⇒ ∃v(y = vx). a

4. Three ways of specifying exponentiation in terms of the sequence of
solutions to a special-form Pell equation

Pell equations of the special form x2− (a2−1)y2 = 1, with a > 1, have peeped
in in the preceding section. Through one such equation we enforced a rela-
tionship between ` and r :=

(
n + (a− 1)s

)
in Theorems 3.2 and 3.3. Con-

straints involving the tricky polynomial Q(w,h) have also shown up; as one
sees, Q(w,h) = q2 can be put in the said Pell format, becoming q2−

[
(w+3)2−

1
] [
(w+2)(h+1)

]2
= 1.

Generally speaking, the Pell equation x2−d y2 = 1 in the unknowns x,y has
infinitely many solutions in N, provided that the parameter d (also in N) is not
a perfect square. In the special case when d = a2−1 with a > 1, the increasing
sequence

〈
〈xxxi(a) , yyyi(a)〉

〉
i∈N of its solutions satisfies the recurrences

yyy0(a) = 0 , yyy1(a) = 1 = xxx0(a) , a = xxx1(a) ,
yyyi+2(a) = 2ayyyi+1(a)−yyyi(a) ,
xxxi+2(a) = 2axxxi+1(a)−xxxi(a) .

We summarize in Fig. 2 the combinatorial interplay among items in this se-
quence yielded by their generating rules (see, e.g., [22, pp. 439–440] and [20,
pp. 527–528]).

Many of the facts in Fig. 2 are needed, of course, in order to detail the proofs
of Theorems 3.2 and 3.3. They also enter Davis’s proof [5] of the following:

Theorem 4.1. The bi-implication

bn = c ⇐⇒ (∃a , ` , r )
[

(c−1)2 +b+n+a+ `+ r = 0 ∨

(n> 1 & c+b+a+ `+ r = 0) ∨(
b> 1 & `= xxxn(a) & r = yyyn(a) &

a = xxxb+n(b+n+1) & b+n | yyyb+n(b+n+1) &

2ab−b2−1 > c &

c≡ `− (a−b)r ( mod 2ab−b2−1 )

) ]
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1. (2a)i > yyyi+1(a)> yyyi+1(a)/a > yyyi(a)> i and yyyi+1(a)> (2a−1)i;

2. xxxi+1(a)> xxxi+1(a)/a> xxxi(a)> ai > i and

a2 i+2 > (2a)i+1 > xxxi+1(a), xxxi+2(a)> ai+2;

3. xxxi(a)− (a−b)yyyi(a)≡ bi ( mod 2ab−b2−1);

4. yyyi(a)≡ i ( mod a−1);

5. (b> 1&a> bn)=⇒ [bn = c⇐⇒ cxxxn(a)6 xxxn(ab)< (c+1)xxxn(a) ];

6. (b> 1 & a > bn) =⇒
[

xxxn(a)6 xxxm(ab)< axxxn(a) ⇐⇒ m = n
]
;

7. yyyn(a) | yyy`(a) if and only if n | `; if yyy2
n(a) | yyy`(a), then yyyn(a) | `.

Figure 2: The wealth of interplay among solutions to the Pell equation x2−
(a2−1)y2 = 1.

holds, where a, `, and r are uniquely determined. This gives us a Diophan-
tine representation of exponentiation, whichever way we manage to get a Dio-
phantine representation of the triadic relation yyyi(a) = y (whose arguments are:
i,a,y).

Proof. A proof of the stated bi-implication results from Appendix B; clearly
congruency is Diophantine, since x≡ y ( mod z) ⇔ ∃v

(
v2 z2− (x− y)2 = 0

)
.
a

What we are seeing here is, in essence, a singlefold representation of ex-
ponentiation in terms of the triadic relation yyyi(a) = y.8 In fact, for any triple
b,n,c of natural numbers: if bn 6= c, the shown system in the unknowns a, `,r
etc. has no solution; if bn = c, then it has exactly one solution. Matters change
if we specify the relation yyyi(a) = y by polynomial Diophantine means (which is
doable—see, e.g., [5] and [20]); for, then, additional unknowns enter into play,
which lead to infinitely many solutions when any solution exists.

As stressed in [18, pp. 43–44], all today known methods of constructing
a polynomial Diophantine representation (‡) are in fact based on the study

8To see this more clearly, one should set aside various eliminable constructs. E.g.
‘|’, along with xxxb+n(b+n+1), can be eliminated by rewriting the fourth line of the
above specification as a constraint involving a new unknown w, as: (b + n)w =

yyyb+n(b+n+1) &
[
(b+n+1)2−1

] [
(b + n)w

]2
+ 1 = a2. Likewise, ` = xxxn(a) becomes

(a2−1)r2 +1 = `2, and three unknowns will result from elimination of >,>, and ≡.
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of the behavior of recurrent sequences like the famous Fibonacci progression
〈0,1,1,2,3,5,8, . . .〉, or a sequence 〈yyy0(a) ,yyy1(a) ,yyy2(a) , . . .〉, “taken some mod-
ulo; clearly, this behavior is periodic and as a consequence each known Diophantine
representation of exponentiation is infinite-fold”.9

The situation does not improve, as for the finite-fold-ness issue, even if
we resort to the elegant specification of exponentiation proposed in [16] by
Matiyasevich, who considers the sequence 〈mmm0(a),mmm1(a),mmm2(a), . . .〉 with a ∈
N\{0,1} characterized by the second-order recurrence

mmm0(a) = 0 , mmm1(a) = 1 , mmmi+2(a) = ammmi+1(a)−mmmi(a) .

The distinguished scholar achieves a singlefold representation of exponentiation
in terms of the triadic relation mmmi(a) = m. His result, as stated here, also refers
to the sequence

〈
yyyi(a)

〉
i∈N;10 it is explained, albeit briefly, in our Appendix C.

Theorem 4.2 ([16, pp. 31–32]). The bi-implications

bn = c ⇐⇒ c = bmmmn+1(16b(n+1)mmmn+1(2b+2)+4) /
mmmn+1(16 (n+1)mmmn+1(2b+2))c

⇐⇒ c = b yyyn+1(8b(n+1)yyyn+1(b+1)+2) /
yyyn+1(8 (n+1)yyyn+1(b+1))c

⇐⇒ (∃x , y , z , r , s)
(

z = cy+ r & 1+ r+ s = y &
z = yyyn+1(bx+2) &
y = yyyn+1(x) &
x = 8(n+1)yyyn+1(b+1)

)
.

hold, where x,y,z,r, and s are uniquely determined. This gives us a Diophantine
representation of exponentiation, whichever way we manage to get a Diophan-
tine representation of either one of the triadic relations mmmi(a) = m, yyyi(a) = y.

One slightly less slick, but nevertheless very elegant, reduction of exponen-
tiation to the sequence

〈
yyyi(a)

〉
i∈N also deserves being mentioned:

9k-TH ORDER LINEAR RECURRENCES (with k > 0) are defined to be sequences a0,a1,a2, . . .
in which an = bk−1 an−1 + · · ·+ b0 an−k holds for every n > k, where: the bi’s are integer coef-
ficients, b0 = ±1, and the polynomial λ k− bk−1λ k−1−·· ·−b1λ − b0 is irreducible over Q. A
Diophantine representation of exponentiation is most often associated with a second-order recur-
rence, but Maxim A. Vsemirnov showed that certain recurrent sequences of orders 3 and 4 can
also do the job (cf. [26]).

10An early reduction of exponentiation to an integer quotient that involves, besides Diophantine
functions, only the triadic relation yyyi(a) = y, appears in [15, p. 308].
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Theorem 4.3 ([20, pp. 534–535]). When b> 1 and n> 1, the bi-implication

bn = c ⇐⇒ (∃m , k , p , q)
[

k+n+1 = yyymb(n+1) &

m = 4n(c+1)+b+2 &
(m2−1) p2 +1 = q2 &
m−1 | p−n−1 &(

p2−4(k+n+1− pc)2
)

bcn > 0
]

holds (whence, trivially, the variable m can be eliminated).

5. Promising (Diophantine?) exponential-growth relations

In 1968, Martin Davis focused upon the subset

J7(p,q) ⇔Def ∃`
[
q = yyy2` & p> 2` & p > 16

]
of N2, where 〈yyyi〉i∈N is the increasing sequence 〈0,3,48,765, . . .〉 consisting of
the infinitely many non-negative integer solutions to the Pell equation 7y2 +
1 = �. In [4], he showed that J7 is a relation of exponential growth and
raised the question: Is J7 a Diophantine set? Davis showed that the answer
is affirmative—and then every r.e. set turns out to be Diophantine—provided
there exist only a finite number of integral solutions to the quaternary quartic
equation

9 ·
(
u2 +7v2

)2−7 ·
(
r2 +7s2

)2
= 2 ,

which (if finite-folded) would hence acquire the title of “rule-them all equa-
tion”.

By much the same treatment conceived by Davis, two of the authors of this
paper11 found a few more candidate rule-them-all equations (see [2]). They are:

2 ·
(
r2 +2 s2

)2−
(
u2 +2 v2

)2
= 1 ,

3 ·
(
r2 +3s2

)2−
(
u2 +3v2

)2
= 2 ,

11 ·
(
r2 + r s +3s2

)2−
(
v2 + vu+3u2

)2
= 2 .

In his treatment of J7, Davis took advantage of the fact that 7 is one of the
nine square-free rational integers d > 0 such that the integers of the imaginary
quadratic field Q(

√
−d ) form a unique-factorization integral domain.12 Our

11Thanks to clues given by Martin Davis and by Pietro Corvaja.
12Recall that the ring of integers of an algebraic number field K is the ring of all elements of K

which are roots of monic polynomials xn + cn−1 xn−1 + · · ·+ c0 with rational integer coefficients
ci .
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new equations correspond to the discriminants−2,−3,−11; four more discrim-
inants, corresponding to the values d ∈ {19,43,67,163}, might lead to further
candidate rule-them-all equations, but they remain as of today untreated.13

For each d ∈ {2,3,11}, we figured out an exponential-growth dyadic rela-
tion Jd which would turn to be Diophantine if one succeeded in proving that
the corresponding quaternary quartic equation has, in all, finitely many solu-
tions. The relations at stake are:

J2(p,q) ⇔Def∃`
[

q = yyy2` & p> 2`+1 & p | q
]
, where 〈yyyi〉i∈N is the endless,

strictly ascending, sequence 〈0,2,12,70,408, . . .〉 consisting of all non-
negative integer solutions to the Pell equation 2y2 +1 =�;

J3(p,q) ⇔Def ∃`
[

q = yyy22`+1 & 22`+2 | p & p | q
]
, where 〈yyyi〉i∈N is the as-

cending sequence 〈0,1,4,15,56,209, . . .〉 consisting of all distinct non-
negative integer solutions to the Pell equation 3y2 +1 =�;

J11(p,q) ⇔Def∃`
[

q = yyy22`+1 & p> 22`+2 & p | q & ` > 1
]
, where 〈yyyi〉i∈N is

the ascending sequence 〈0,3,60,1197, . . .〉 consisting of all distinct non-
negative integer solutions to the Pell equation 11y2 +1 =� .

In the ongoing, we will offer a bird’s-eye view of how to construct, directly
from the unproven assertion that the equation

2 ·
(
r2 +2 s2

)2−
(
u2 +2 v2

)2
= 1 (‡)

has only finitely many integral solutions, a finite-fold polynomial Diophantine
representation of the relation J2. As regards the other three candidate rule-
them-all equations: the ones corresponding to J7 and J3 are treated in detail,
respectively, in [4] and in [2] ([2] even shows that the property stated in Fig. 1
is satisfied by D = J3); the one corresponding to J11 is treated—albeit more
briefly—in [1].14

13Note added in proof. In Dec 2020, Luca Cuzziol obtained this candidate rule-them-all equa-
tion corresponding to d = 19:

171 ·
(
r2 + r s +5s2)2−169 ·

(
v2 + vu+5u2)2

= 2 .

In March 2021, he also associated a candidate rule-them-all equation to d = 43.
14Note added in proof. In Dec 2020, Luca Cuzziol found these non-trivial solutions to the

equation 171 ·
(
r2 + r s +5s2)2−169 ·

(
v2 + vu+5u2)2

= 2 associated with d = 11:

r = 8 , s = 9 , v = 30 , u = 7 , and
r = 8 , s = 9 , v = 13 , u = 17 .
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Along with the above-indicated sequence 〈yyyi〉i∈N of all solutions to the Pell
equation 2y2 + 1 = � in N, take also into account the associated sequence
〈xxxi〉i∈N = 〈1,3,17,99,577, . . .〉 with xxxi =

√
2y2 +1. Call a positive integer w

representable if there are non-negative integers u,v such that w= u2+2v2. Thus
we will have:

• A positive integer is representable if and only if in its factorization no
prime number p such that either p≡ 5 ( mod 8) or p≡ 7 ( mod 8) holds
appears with an odd exponent.

• Every number of the form yyy2` is representable. In fact, yyy20 =yyy1 = 2= 02+
2 ·12. If ` > 0, then we have yyy2` = 2`+1 ·3 ·∏0<i<` xxx2i , where xxx2i = xxx2

2i−1 +
2yyy2

2i−1 holds for each factor xxx2i ; hence yyy2` is representable, inasmuch as
the product of representable numbers.

• If yyy2`+1 (with `> 0) is representable, so are

coprime numbers︷ ︸︸ ︷
xxx`+2yyy` and xxx`+yyy` .

• If yyyn is representable for some n > 0 not a power of 2, then the system
X2−2Y 2 = 1 ,
X +2Y = u2 +2v2 ,
X + Y = r2 +2s2

has an integral solution for which Y 6= 0 ; consequently, the
equation (‡) has a non-trivial integral solution 〈r,s,u,v〉 such that[
2(r2 +2 s2) (u2 +2v2)

]
| yyyn, a solution being dubbed trivial when it sat-

isfies r =±1 & s = 0.

LetH stand for the assertion (whose truth, as of today, must be left open):

‖The equation (‡) has no solutions in integers except the trivial ones.

Moreover, letH′ stand for the weaker—and also open—assertion:

‖The equation (‡) admits, in all, finitely many solutions in integers.

Then the above-listed facts yield that:

Theorem 5.1. H implies that, for n > 0, yyyn is representable if and only if n is a
power of 2.

Corollary 5.2. H implies that {yyy2` | `= 0,1,2, . . .} is a Diophantine set.
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Lemma 5.3. H′ implies that {yyy2` | `= 0,1,2, . . .} is a Diophantine set.

The following bi-implication is plainly recognized to hold:

J2(p,q) ⇐⇒ (p = 2 & q = 2) ∨
(
q ∈ {yyy2` | ` > 0} &∃x [(2x+1) p = q]

)
.

Does the predicate q ∈ {yyy2` | ` > 0}—and, consequently, J2—admit a polyno-
mial Diophantine representation? It turns out that the following are necessary
and sufficient conditions in order for q ∈ {yyy2` | ` > 0} to hold:

(i) q > 2;

(ii) 2q2 +1 =� (i.e., q = yyyn holds for some n> 0);

(iii) (∃u, v)(y = u2 +2v2) (i.e., y is representable);

(iv) 2(u2 +2v2)(r2 +2s2) - q, for any non-trivial solution 〈u,v,r,s〉 to (‡).

Notice that (i)–(iii) are immediately expressible by existential Diophantine
equations. Moreover, if H′ is true, then also (iv) is expressible by an existential
Diophantine equation. Indeed, let 〈u0,v0,r0,s0〉 , . . . , 〈um,vm,rm,sm〉 be all of
the non-trivial solutions to (‡) in N. Then (iv) is easily seen to be equivalent to

(∃w0, . . . ,wm,z0, . . . ,zm, t0, . . . , tm)
m∧

i=0

[
q = 2(u2

i +2v2
i )(r

2
i +2s2

i ) ti +wi +1

& wi + zi +2 = 2(u2
i +2v2

i )(r
2
i +2s2

i )
]
.

This leads to a Diophantine specification of J2 if the number of solutions to (‡)
is finite ! (An issue that we are unable to answer.)

Notice that the only potential source of multiple solutions to the above rep-
resentation of J is condition (iii), which, anyhow, is finite-fold.

The issue as to whether our quaternary quartic equation (‡) has only finitely
many solutions in N can be recast as the analogous problem concerning the
system15 {

ξ 2−2η2 = −1
ξ η = t2 +2w2

over Z. The existence of finite-fold Diophantine representations for all r.e. sets
thus reduces to the finitude of the set of integral points lying on a specific sur-
face.

15In order to transform the solutions to this system into solutions to (‡), notice that ξ and η

turn out to be coprime numbers; consequently, the representability of their product implies the
representability of both of them.
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Conclusions: Potential outcomes

A striking consequence of the univocal exponential representability of any r.e.
set was noted in [15, p. 300 and p. 310]. One can find a concrete polynomial
B(a,x0,x1, . . . ,xκ ,y,w) with integral coefficients such that:

1) to each aaa ∈ N, there corresponds at most one kkk + 2 tuple 〈vvv0,vvv1, . . . ,vvvκ ,uuu〉
such that B(aaa,vvv0,vvv1, . . . ,vvvκ ,uuu,2u)> 0 holds;

2) to any monadic totally computable function C, there correspond (kkk + 3)-
length tuples 〈aaa,vvv0,vvv1, . . . ,vvvκ ,uuu〉 of natural numbers such that

B(aaa,vvv0,vvv1, . . . ,vvvκ ,uuu,2u)> 0 and max
{

vvv0,vvv1, . . . ,vvvκ ,uuu
}
> C(aaa) .

To see this, refer to an explicit enumeration fff 0, fff 1, fff 2, . . . of all monadic
partially computable functions (see [9, p. 73 ff]), so that both of

H = {〈a1 , a2〉 ∈ N2| fff a1(a1) = a2 } ,
K = {a ∈ N| 〈a , x〉 ∈ H holds for some x}

are r.e. sets, the complement N \K of the latter is not an r.e. set, and the for-
mer can be represented in the univocal form shown at the beginning of Sect. 2,
namely

fff a1(a1) = a2 ⇐⇒ (∃x1 · · ·∃xκ∃y∃w)
[

2y = w & D(a1,a2 , x1, . . . ,xκ , y,w ) = 0
]
,

where D is a polynomial with integral coefficients; then put

B(a,x0,x1, . . . ,xκ ,y,w) =Def 1−D2(a,x0 , x1, . . . ,xκ , y,w) ,

so that B(a,x0,x1, . . . ,xκ ,y,2y)> 0 holds if and only if fff a(a) = x0, and hence B
satisfies 1).

By way of contradiction, suppose that there is a monadic totally computable
function C∗ such that the inequalities vvv0 6 C∗(aaa), . . . ,vvvκ 6 C∗(aaa), and uuu6 C∗(aaa)
hold whenever a tuple 〈aaa,vvv0,vvv1, . . . ,vvvκ ,uuu〉 of natural numbers exists such that
B(aaa,vvv0,vvv1, . . . ,vvvκ ,uuu,2u) > 0 holds; that is, they hold when a pair 〈aaa , vvv0〉 ∈ H
exists (this happens, e.g., for the infinitely many aaa’s satisfying C∗ = fff a). In
particular, the said inequalities must hold when aaa∈K. But then this would offer
us a criterion for checking whether or not aaa∈K, by evaluating a bounded family
of expressions of the form B(aaa,v0,v1, . . . ,vκ ,u,2u); however, this would conflict
with the fact that N\K is not r.e. We conclude that B satisfies 2).

Summing up, we are in this situation: thanks to reductio ad absurdum,
we have found that the course of values of the concrete arithmetic expression
B(a,v0,v1, . . . ,vκ ,u,2u) exceeds zero at most once for each value aaa of a; it is
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unconceivable, though, that one can put an effective upper bound on the values
for v0,v1, . . . ,vκ ,u,2u in N which may enforce B(a,v0,v1, . . . ,vκ ,u,2u)> 0.

A proof that every r.e. set admits a finite-fold Diophantine polynomial rep-
resentation would yield analogous, equally striking consequences about ‘non-
effectivizable estimates’ (cf. [18]).

Other possible consequences affect the Diophantine characterization of the
probability of selecting by chance a program which terminates on every input
(see [3, 21]). For any model C of computation according to which the programs
are self-delimiting binary sequences, programs can be selected by chance by
flipping an unbiased coin until a valid program comes out. So, the probability
of selecting by chance a program which halts in the specific model C is

Ω =Def ∑
p halts in C

2−|p|

where |p| is the length of the binary sequence representing the program p.
Gregory Chaitin proved that Ω is an irrational number smaller than 1 for

any C and that no i-length prefix, Ωi, of the binary sequence representing Ω

can be compressed [3], i.e., the length of the shortest program pΩi that outputs
Ωi is greater than i itself. As a consequence, the sequence of bits representing
Ω, {Ω[k]}k∈N, is not r.e.; for, if this were the case, then there would exist a
program pΩ of length l = |pΩ| ∈ N such that pΩ would also generate Ωl+1, a
fact contradicting the incompressibility of Ωl+1.

Since {Ω[k]}k∈N is not r.e., it is not Diophantine either, by DPRM [7, 14].
However, Chaitin proved the following theorem:

Theorem 5.4 ([3]). There exists a family

χ(k,N,x1, . . . ,xκ) = 0 (§)

(indexed by the pairs k,N) of Diophantine equations such that, for each k, there
are infinitely many values of N for which equation (§) has a solution if Ω[k] = 1,
and only a finite number of values of N for which (§) admits solution if Ω[k] = 0.

From Theorem 5.4 and from the single-fold exponential Diophantine rep-
resentation of r.e. sets [15], it follows that there exists a family of exponential
Diophantine equations

χ
e(k,x0,x1, . . . ,xκ) = 0

which, for each k, has an overall finite number of solutions if and only if Ω[k] =
0.

So, either every r.e. set admits a finite-fold Diophantine representation, in
which case the above result can be strengthened and {Ω[k]}k∈N can be character-
ized by discriminating finite- from infinite-foldness of polynomial Diophantine
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equations, or {Ω[k]}k∈N could be unspecifiable via finite-foldness of polynomial
Diophantine equations, which would indicate a significantly different expressive
power between exponential and polynomial Diophantine equations.
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A. A quick account of the reduction, as proposed in [23], of exponentia-
tion to any exponential-growth relation

Suppose that Q ⊂ N×N and S ⊂ N×N are such that

i) Q(w,u) implies u> ww ,

ii) w > 1 & u> w2w implies Q(w,u) ;

iii) S (p,q) implies p > 1 & q6 pp ,

iv) for each k > 0, there are p and q such that S (p,q) and pk < q .

Then, as we will prove:

bn = c ⇐⇒ (∃a , d , ` , r , v , s , t)
[

(c−1)2 +n = 0 ∨

(n> 1 & c+b = 0) ∨(
n> 1 & b> 1 & S (a,d) & d > ` &

`2 = (a2−1)r2 +1 & r = (a−1)s+n &

Q(b+n+1 , v) & v = 2ab−b2−1 &

a > b+n & v > c &

` = (a−b) r + v t + c
) ]

.

(@)

Lemma A.1. The above bi-implication (@) holds if i), ii), iii), and iv) hold.

Proof. Assuming that n > 1 & b > 1, we must show that bn = c holds if and
only if: there are natural numbers a,d, `,r, and v = 2ab− b2− 1, such that
the conditions S (a,d), d > `, `2− (a2− 1) r2 = 1, Q(b+ n+ 1,v) hold and,
moreover, n is the remainder of the integer division of r by a− 1 and c is the
remainder of the division of `− (a−b) r by v.

(‘⇐=’): By means of i), we get v > (b+ n+ 1)b+n+1 > bn; by means of
iii), a > 1 and ` < aa. Thus, since n > 1 implies r > 0, we get ` = xxxi(a) and
r = yyyi(a) for some i such that 0 < i < a; therefore—taking the congruence
yyyi(a) ≡ i ( mod a−1) into account—i ≡ n ( mod a−1), and hence i = n is
the remainder of the division of r by a−1. Since `− (a−b) r ≡ bn ( mod v)—
thanks to the congruence xxx j(a)− (a−b)yyy j(a)≡ b j ( mod 2ab−b2−1) hold-
ing for all j—and, moreover, `− (a−b) r ≡ c ( mod v), c < v, bn < v, we
conclude that c = bn as desired.
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(‘=⇒’): Notice that iii) and iv) imply that for every k there exists an infinite
sequence

〈p0 , q0〉 ,〈p1 , q1〉 ,〈p2 , q2〉 , . . .

in N×N such that S (p j,q j), q j > pk
j, and p j+1 > p j hold for every j.16 Hence

we can choose an a so large that: for some d, S (a,d) and d > a2n holds;
a > n+ b; Q(b+ n+ 1 , 2ab− b2− 1) (to enforce this, by ii), it suffices to
pick an a such that 2ab−b2−1> (b+n+1)2(b+n+1)) and, in consequence of
i), 2ab− b2− 1 > bn. To satisfy all desired conditions, it will then suffice to
take ` = xxxn(a) and r = yyyn(a), thanks to the congruence xxxn(a)− (a−b)yyyn(a) ≡
bn ( mod 2ab−b2−1).

a

In order for Q to behave as wanted, it suffices to put:17

Q(w,u) =Def (∃x , y)
[

u> w x & x > 1 &

x2− (w2−1)(w−1)2 y2 = 1
]
.

Lemma A.2. As just defined, the Diophantine relation Q(w,u) satisfies i) & ii).

Proof. Suppose first that Q(w,u) holds. From x > 1 it follows that w /∈ {0,1};
hence x = xxxn(w) & (w− 1)y = yyyn(w) holds for some n > 0. Since yyyi(w) ≡
i ( mod w−1) holds for all i, we get n ≡ 0 ( mod w−1); therefore n > w−1
and, hence, u> wxxxw−1(w)> ww. This proves i).

Suppose next that w > 1. By taking x = xxxw−1(w) and y = yyyw−1(w)/(w−1),
we easily check that Q(w,u) holds for every u > w xxxw−1(w). Since xxxi(w) <
(2w)i 6 w2 i holds for every i > 0, we get wxxxw−1(w) < w w2w−2 < w2w; there-
fore, Q(w,u) holds for every u> w2w. This proves ii). a

From Lemma A.2 and Thm A.1, by taking the above implementation of
Q—where we replace y by h+1—into account, we get straightforwardly:

16To choose p0,q0 so that S (p0,q0) & q0 > pk
0, just rely on iv). Inductively, assuming

S (p j,q j) & q j > pk
j , notice that p j 6= 0 & pp j

j > q j holds by iii), hence p j > k follows;

therefore, by choosing p j+1 and q j+1 so that S (p j+1,q j+1) & q j+1 > pp j
j+1, we will enforce

q j+1 > pk
j+1; on the other hand, p j+1 6= 0 & pp j+1

j+1 > q j+1, and therefore p j+1 > p j.
17Notice that for w > 2 the inequality x > 1 amounts to the same as y > 0. Also notice that

if we put Q̂(w,y) := (w− 1)3 (w+ 1)y2 + 1, then the equation appearing inside the definiens of
Q can be shortened into Q̂(w,y) = x2, and the polynomial Q(w,h) as specified in the proof of
Lemma 3.1 can be rewritten as Q̂(w+3,h+1).
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Corollary A.3. If S is a Diophantine relation satisfying iii)& iv), the following
rule provides a Diophantine representation of exponentiation:

bn = c ⇐⇒ (∃a , d , ` , s ,x , h)
[

(c−1)2 +n = 0 ∨

(n> 1 & c+b = 0) ∨(
n> 1 & b> 1 & S (a,d) & d > ` &

`2 =
(
a2−1

)[
(a−1)s+n

]2
+1 &

x2 = (b+n)3 (b+n+2) (h+1)2 +1 &

2ab−b2−1> (b+n+1) x &

2ab−b2−1 > c & a > b+n &

2ab−b2−1 | `−
(
a−b

)[
(a−1)s+n

]
− c

) ]
.

(Besides a,d, `,s,x,h, one needs one additional existential variable in the right-
hand side of this bi-implication in order to eliminate each inequality, plus one
more to eliminate the divisibility relator ‘|’. Thanks to the inequality a−b > 0,
we can also get rid of `, thus reducing the number of existential variables to 12.)

B. Davis’s reduction of bn = c to the relation r = yyyn(a)

The following crucial link between exponentiation and the sequence 〈yyyi(a)〉i∈N
was pointed out in [5] and explained at length, again, in [6]:

b> 1 =⇒
[

bn = c ⇐⇒ (∃ t , a , ` , r , h)
(

r = yyyn(a) &

`2− (a2−1)r2 = 1 &

t > b & t > n &

(t2−1)(t−1)2 (h+1)2 +1 = a2 &

c < 2ab−b2−1 &

c≡ `− (a−b)r ( mod 2ab−b2−1 )

)]
.

Specifically, when b> 1 and bn = c, the constraints here appearing in the scope
of ∃ can be satisfied in infinitely many ways: for, corresponding to any t >
nmaxb, it suffices to put a = xxxt−1(t) in order to be able to determine the values
of ` ,r , and h uniquely (see Lemma B.1 below).
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In light of the above biimplication, if we now provided a Diophantine repre-
sentation of the relation r = yyyn(a), we would readily get that the relation bn = c
is also Diophantine.

Let us recall here the proof of the above-stated relationship between expo-
nentiation and the Pell equation. We begin with the proposition:

Lemma B.1. If b > 1 and bn = c, then to each number of the form a =
xxx(s+1)(t−1)(t) with t > b maxn there correspond uniquely values `,r,h such
that the following conditions are met: r = yyyn(a), ` = xxxn(a), c < 2ab−b2−1,
c≡ `− (a−b)r ( mod 2ab−b2−1), and a2− (t2−1)(t−1)2 (h+1)2 = 1.

Proof. Observe that, since t > b > 1, the Pell equation x2− (t2−1)y2 = 1 has
the usual infinite sequence 〈〈xxxi(t) , yyyi(t)〉〉i∈N of solutions; therefore, it makes
sense to put a := xxx(s+1)(t−1)(t). In its turn a > 1 holds, because xxx(s+1)(t−1)(t)>
xxx1(t)> 1; hence it makes sense to put r := yyyn(a) and ` := xxxn(a).

Plainly, a > xxxt−1(t) > tt−1 > bn; hence it is easy to see that the inequality
bn < 2ab−b2−1 is satisfied18 when n > 0. The same inequality holds when
n = 0, as it follows from a> tt−1 > t > b> 1.

The last two conditions in the claim simply state well-known congruences
that are satisfied (as recalled in Fig. 2) by the solutions of any Pell equation of
the special form being considered here. In particular,

c≡ `− (a−b)r ( mod 2ab−b2−1 )

states that

bn ≡ xxxn(a)− (a−b)yyyn(a) ( mod 2ab−b2−1 ). (◦)

As for a2− (t2−1)(t−1)2 (h+1)2 = 1, it merely expresses that yyy(s+1)(t−1)(t)
is a non-null multiple of t−1—; recall, in fact, that a= xxx(s+1)(t−1)(t) and t−1>
0, and that the congruence yyyi(t)≡ i ( mod t−1) holds in general, for every i. a

We next come to the converse of Lemma B.1:

Lemma B.2. Suppose that b> 1 and that the conditions

c 6 2ab−b2−1,
c≡ `− (a−b)r ( mod 2ab−b2−1 )
`2− (a2−1)r2 = 1
a2− (t2−1)(t−1)2 (h+1)2 = 1
t > b maxn,

18Here, as we will again do in the proof of Lemma B.2, we are making use of the following fact
(which gets easily proven even for a real number b): If n > 0, b> 1, and a > bn (with a,n ∈ N),
then 2ab−b2−1 > bn.
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are satisfied by a, `,r, t, and h, where n is the value ensuring that r = yyyn(a). Then
bn = c holds.

Proof. Since t > b > 1, the Pell equation x2 − (t2 − 1)y2 = 1 has the usual
infinite sequence 〈〈xxxi(t) , yyyi(t)〉〉i∈N of solutions; thus, since a2− (t2−1)y2 = 1
holds for some y > 0, we have a = xxx j(t) for some j, where j > 0—since a> t—
and `= xxxn(a), r = yyyn(a) holds for a suitable n. Consequently 2ab−b2−1> 2;
moreover, by the well-known congruence (◦) recalled above, we have

c≡ bn ( mod 2ab−b2−1 ),

whence the sought equality will follow if we manage to prove that the side
bn of this congruence is smaller than 2ab−b2−1 (for, c 6 2ab−b2−1 is an
explicit assumption and bn > 1). Since this is obvious when n = 0, we will
assume n > 0.

To see that bn < 2ab− b2− 1, we argue as follows. Clearly yyy j(t) = (t −
1)(h+1) holds, whence (t−1)(h+1)≡ j ( mod t−1), i.e. t−1 | j, follows.
Since j 6= 0, we get j > t − 1, and therefore a = xxx j(t) > t j > tt−1 > bn. The
sought inequality follows, which completes the proof. a a

Corollary B.3. Put Q(w,h) := (w+2)3 (w+4) (h+1)2 +1 . Then,

bn = c ⇐⇒(∃a , ` , r , j , h)
[

(c−1)2 +b+n = 0 ∨ (n> 1 & c+b = 0) ∨(
b> 1 & r = yyyn(a) &

`2 = (a2−1)r2 +1 & Q(b+ j−2,h) = a2 &

2ab−b2−1 > c & b+ j > n &

c≡ `− (a−b)r ( mod 2ab−b2−1 )

) ]
.

Proof. Suppose first that there are a, `,r, j,h satisfying the conditions in the
scope of ‘∃’, and that b > 1. By putting t := b + j + 1, we obviously get
t > bmaxn and a2− (t2−1)(t−1)2 (h+1)2 = 1, so that bn = c holds by
Lemma B.2.

Conversely, suppose that bn = c holds, where b> 1. Put t := b+n+1, j := n,
and a := xxxt−1(t). Then, by Lemma B.1, unique values `,r,h exist satisfying all
conditions that appear in the third disjunct of the scope of ‘∃’ in the claim. a a

C. Representing exponentiation as an integer quotient

In the ongoing, in order to prove that
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bn = c ⇐⇒ c =
⌊

yyyn+1( 8b(n+1) yyyn+1(b+1)+2 )

yyyn+1( 8 (n+1) yyyn+1(b+1) )

⌋
,

we will proceed to show, for b and n natural numbers, that

bn = limx→∞

yyyn+1(bx+2)
yyyn+1(x)

;

this, in the light of the corollary which follows, will give us

bn = byyyn+1(bx+2) / yyyn+1(x)c (*)

where x is a natural number sufficently large to reduce the distance between bn

and yyyn+1(bx+2) / yyyn+1(x) to an amount less than 1. We will carefully assess
how to take the value of x big enough. Our treatment adheres closely to [16,
pp. 31–32].

We begin by recalling, from fact 1 of Fig. 2:

Lemma C.1. For a> 2 and i ∈ N, the following inequalities hold:

(2a−1)i 6 yyyi+1(a) 6 (2a)i .

Here the increase on the left is strict when i > 0; on the other side, when i > 1.

Corollary C.2. For b,n,x ∈ N with x> 2,

yyyn+1(bx+2)
yyyn+1(x)

> bn .

Proof. Thanks to Lemma C.1, we have

yyyn+1(bx+2)
yyyn+1(x)

>
(2bx+3)n

(2x)n >
(2bx)n

(2x)n = bn .

a

Assessment of a value of x which fits our needs (cf. [16, p. 32]):

yyyn+1(bx+2)
yyyn+1(x)


= 1 for b = 0 and x> 2;

< 4n

(2x−1)n < 1 for b = 0 < n and x > 2;

6 bn
(
1+ 16n

2x

)
for b > 0 < n and x > 8n .

Thus (*) becomes true as soon as x > 8(n+ 1)(b+ 1)n; we can, e.g., enforce
it by putting x := 8(n+ 1)yyyn+1(b+1), thus getting the formulation of bn = c
shown at the beginning of this appendix.
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