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Abstract—The paper deals with the identification of nonlinear
systems with adaptive filters. In particular, adaptive filters for
functional link polynomial (FLiP) filters, a broad class of linear-
in-the-parameters (LIP) nonlinear filters, are considered. FLiP
filters include many popular LIP filters, as the Volterra filters,
the Wiener nonlinear filters, and many others. Given the large
number of coefficients of these filters modeling real systems,
especially for high orders, the solution is often very sparse. Thus,
an adaptive filter exploiting sparsity is considered, the improved
proportionate NLMS algorithm (IPNLMS), and an optimal step-
size is obtained for the filter. The optimal step-size alters the
characteristics of the IPNLMS algorithm and provides a novel
gradient descent adaptive filter. Simulation results involving the
identification of a real nonlinear device illustrate the achievable
performance in comparison with competing similar approaches.

Index Terms—Adaptive filters, linear-in-the-parameters non-
linear filters, functional link polynomial filters, optimal step-size.

I. INTRODUCTION

The identification of nonlinear systems is a common prob-
lem in many areas, such as in image and speech/audio pro-
cessing [1], [2], in devices using amplifiers and loudspeak-
ers [3]–[5], in biological systems [6], [7], in wireless sensor
networks [8], to name just a few examples.

Nonlinear adaptive filters are frequently used to identify
unknown nonlinear systems. Very often the adaptive filter
belongs to the class of functional link polynomial (FLiP) filters
[9], [10]. This is a broad class of linear-in-the-parameters (LIP)
nonlinear filters that encompasses many popular nonlinear
filters like the well known Volterra filters, the Wiener nonlinear
filters that derive from the truncation of the Wiener series
[11], the Legendre nonlinear filters, the even mirror Fourier
nonlinear filters, among many others [10]. The number of
coefficients of FLiP filters increases exponentially with the
filter order and geometrically with the memory length. Even
though only small orders (typically 2 and sometimes 3) are
normally used, already with moderate memory lengths the
filter has a large number of coefficients, which limits the
achievable convergence speed of the adaptive filter. However,

in most real systems, many of these coefficients assume zero
or almost zero value, since the nonlinear system input-output
response is usually sparse [12].

Adaptive algorithms that exploit sparsity can improve the
convergence performance, i.e., the convergence speed and/or
the steady-state mean square error. Many algorithms exploiting
sparsity have been proposed in the literature [13]. A first
approach has been that of the proportionate normalized least
mean square algorithm (PNLMS), where the coefficients are
adapted on the basis of their magnitude [14]. The algorithm is
capable of improving convergence in case of sparse filters,
but worst performance is observed in case of non-sparse
systems. Different approaches have been proposed to improve
the performance of the PNLMS algorithm. One of the most
effective solutions has been that of the Improved PNLMS
(IPNLMS) algorithm [15], which in practice implements a
linear combination of the adaptation rules of NLMS and
PNLMS algorithms. An alternative to the proportional-update
approach is the addition of a sparsity-promoting regularization
to the cost function related to a given algorithm. In this second
approach, the `1-norm of the coefficient vector [16]–[18],
or even better, an `0-norm approximation of the coefficient
vector [12], [13], [19], [20] are the most widely used regular-
izations.

A common problem in most adaptive filters, and in particu-
lar in nonlinear adaptive filters, is the choice of the step-sizes
used in the adaptation. Very often this choice involves a tedious
trial and error procedure that produce only suboptimal results.
A successful trend in linear adaptive filters has been that of
the variable step-sizes, where the step-size is estimated online
sample by sample to guarantee optimal convergence, even
in time-varying conditions. Among the various solutions, the
optimal NLMS step-size has obtained great success in acoustic
echo cancellation applications [21]. Attempts have been made
to apply these variable step-sizes also to nonlinear filters. An
effective variable step-size has been proposed by Kuech and
Kellerman for LMS second order Volterra filters in [22]. In
[22], the authors first develop a theoretical optimal step-size



depending on expectations and non-observable quantities, and
then obtain an implementable step-size under the hypothesis
that the input signal is a zero-mean independent and identically
distributed (iid) process and the coefficient errors are mu-
tually orthogonal. Some strong but effective approximations
are applied to the squared values of the coefficient errors.
By properly choosing some of the approximating constants,
the authors were also able to obtain a PNLMS algorithm.
Other variable step-size approaches have been proposed in
the literature. In [23], a variable step-size for Volterra filters
is proposed, which requires some a priori knowledge of the
system to be modeled and is not effective in case of abrupt
changes in the unknown system. In [24], an error-dependent
step-size control for second order Volterra filters is proposed.
The algorithms in [23] and [24] are not able to exploit the
sparsity in the nonlinear system and for this reason will not
be further considered in the following.

In this paper, motivated by the desire of identifying FLiP
filters, exploiting their sparsity and tuning automatically the
step-sizes, the IPNLMS algorithm is considered in a nonlinear
scenario and an optimal step-size is developed without resort-
ing to any iid assumption on the input signal. It is shown
in the paper that the resulting optimal step-size alters the
characteristics (the normalization and the PNLMS weight) of
the original IPNLMS algorithm, obtaining an original self-
tuned adaptive filter. Experimental results considering the
identification of a real device with stochastic signals illustrate
the achievable performance in comparison with competing
approaches.

The rest of the paper is organized as follows: Section
II reviews FLiP filters. Section III introduces the optimal
step-size for IPNLMS algorithm. Section IV provides some
experimental results. Eventually, conclusion is reported in
Section V.

The following notation is used throughout the paper. R1 is
the unit interval [−1,+1], I is an identity matrix of appropriate
dimensions, u is a vector of all ones of appropriate dimensions,
diag[A,B,C] is a block diagonal matrix with matrices A, B
and C on its main diagonal, diag[v] is a diagonal matrix with
the elements of vector v on the main diagonal, |v| is the vector
formed by the absolute value of the elements of v, ‖v‖1 is
the `1-norm of v (the sum of the coefficients’ absolute value).

II. FLIP FILTERS

FLiP filters are a broad class of LIP nonlinear filters. Their
basis functions are formed starting from an ordered set of
univariate functions satisfying all requirements of the Stone-
Weierstass theorem [25] on R1,

{g0[ξ], g1[ξ], g2[ξ], ...} , (1)

where g0[ξ] is a function of order 0, usually the constant 1,
g2i+1[ξ] for any i ∈ N is an odd function of order 2i+1, and
g2i[ξ] for any i ∈ N is an even function of order 2i. By writing
the functions in (1) for ξ ∈ {x(n), x(n−1), . . . , x(n−N+1)}
and multiplying the terms of different variable in all pos-
sible manners, taking care of avoiding repetitions, a set of

FLiP basis functions is obtained. Since the basis functions
so developed form an algebra that satisfies all requirements
of the Stone-Weierstass theorem, the linear combination of
these basis functions can arbitrarily well approximate any
discrete-time, time invariant, finite memory, causal, continuous
nonlinear system

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (2)

where f : RN1 → R is a continuous function [9].
By definition, the order of a FLiP basis function is the sum

of the orders of its factors gi[ξ]. The basis function diagonal
number is the maximum time difference between the involved
input samples. A FLiP filter of order K, memory N , diagonal
number D is given by the linear combination of all FLiP basis
functions having order, memory and diagonal number up to K,
N , D, respectively.

Any choice of the univariate functions in (1) takes to a
different class of FLiP filters. In the experimental results, the
popular class of Volterra filters, where gi(ξ) = ξi, will be
considered, but the theory that follows is applicable to any
FLiP filter.

FLiP filters are particularly appealing since they can be
implemented in the form of a filter bank:

y(n) =

R−1∑
p=0

Np−1∑
m=0

hp(m)fp(n−m), (3)

where fp(n) are the zero lag basis functions, i.e., f0(n) =
1, f1(n) = g1[x(n)], f2(n) = g2[x(n)], f3(n) =
g1[x(n)]g1[x(n − 1)], . . ., f2+D(n) = g1[x(n)]g1[x(n −
D)],f3+D(n) = g3[x(n)], and so on, Np is the memory length
for the basis function fp(n), which is N minus the diagonal
number of fp(n); R is the total number of zero lag basis
functions. As for any LIP filter, they can also be expressed in
vector form as the product of a coefficient vector h(n) and an
input data vector x(n) collecting all basis functions:

y(n) = hT (n)x(n). (4)

In what follows, the constant basis function f0(n) will be
neglected and the vectors h(n) and x(n) will be decomposed
as follows,

h(n) = [hT1 (n),h
T
2 (n), . . . ,h

T
K(n)]T , (5)

x(n) = [xT1 (n),x
T
2 (n), . . . ,x

T
K(n)]T , (6)

where hi(n) is the collection of coefficients of order i, and
xi(n) is the collection of the corresponding basis functions,
with i = 1, . . . ,K.

III. IPNLMS ALGORITHM AND ITS OPTIMAL STEP-SIZE

Let us assume we want to identify a LIP nonlinear filter
with input signal x(n) and output signal d(n) using a FLiP
adaptive filter of order K, memory N , diagonal number D.
The error signal is

e(n) = d(n)− hT (n)x(n), (7)

and the unknown system is assumed to be representable with
that FLiP filter, i.e.,

d(n) = hTo (n)x(n) + ν(n), (8)



where ho(n) = [hT1,o(n),h
T
2,o(n), . . . ,h

T
K,o(n)]

T is the un-
known system coefficient vector and ν(n) is an additive noise,
uncorrelated with all other signals.

The FLiP filter is adapted according to the following rule

h(n+ 1) = h(n) + µ(n)
K(n)x(n)

xT (n)K(n)x(n) + ε
e(n), (9)

where µ(n) is a diagonal matrix comprised of the individual
variable step-sizes, K(n) is a diagonal weight matrix and ε is
a small constant used to avoid divisions by zero.

For µ(n) = I and ε = 0, the adaptation rule in (9) is the
exact solution of the following optimization problem [26]:

Minimize [h(n+ 1)− h(n)]TK−1(n)[h(n+ 1)− h(n)]
subject to d(n)− hT (n+ 1)x(n) = 0.

In what follows, the different nonlinear kernels are sepa-
rately weighted considering K(n) = diag[K1(n), . . .KK(n)],
with Ki(n) a diagonal matrix having size compatible with
hi(n). In the IPNLMS algorithm,

Ki(n) = diag
[
1− α
2Li

u+
(1 + α)hi(n)

2||hi(n)||1 + δ

]
, (10)

with Li the number of elements of hi(n), −1 ≤ α ≤ +1, and
δ is a small constant to avoid divisions by zero. In (10), the
different kernels are separately weighted as proposed in [27].
For α = −1, (9) reduces to the classical NLMS algorithm.
For α = 1, (9) gives the proportionate NLMS (PNLMS),
neglecting the additional constants used by PNLMS to avoid
computational problems. In [15], to obtain a good convergence
speed both in case of sparse and non-sparse systems, the value
of α = −0.5 or α = 0 is suggested.

An optimal step-size matrix (9) is now developed. Let us
consider m(n) = ho(n)− h(n) and the weighted norm

||m(n)||2K−1(n) = mT (n)K−1(n)m(n). (11)

At each iteration we choose the step-size matrix µ(n) such
that

||m(n+ 1)||2K−1(n) − ||m(n)||2K−1(n) < 0. (12)
Considering that

m(n+ 1) = mi(n)− µ(n)K(n)x(n)D−1(n)e(n), (13)
with D(n) = xT (n)K(n)x(n)+ ε, and replacing (13) in (12)
we have

−2e(n)D−1(n)mT (n)µ(n)x(n) +

+e2(n)D−2(n)xT (n)µ2(n)K(n)x(n) < 0. (14)
In what follows, we consider hi,j the j-th element of hi(n),
mi,j(n), xi,j(n), ki,j(n) and µi,j the corresponding error
coefficient, basis function, weight in K(n), and step-size,
respectively.

Equation (14) can be equivalently written as

sign[e(n)]
[
− 2mT (n)µ(n)x(n) +

+e(n)D−1(n)xT (n)µ2(n)K(n)x(n)
]
< 0. (15)

Considering expectation and setting to zero the derivative
of the left-hand side of (15) with respect to each µi,j , the
following optimal step-size is obtained

µi,j =
E [mi,j(n)xi,j(n)sign[e(n)]]

E
[
x2i,j(n)ki,j(n)e(n)sign[e(n)]D−1(n)

] . (16)

In (16), the denominator can be easily estimated with a time
average, while the numerator depends on the unknown quantity
mi,j(n). The sign and the magnitude of mi,j(n) are separately
approximated in the following. As for the sign of mi,j(n),
it is reasonable to assume sign[mi,j(n)] = sign[hi,j,o(n) −
hi,j(n)(n)] ' sign[hi,j(n+1)−hi,j(n)] = sign[xi,j(n)e(n)].
This is equivalent to approximate mi,j(n)xi,j(n)sign[e(n)]
with |mi,j(n)||xi,j(n)|. As for the magnitude of mi,j(n) it
is reasonable to assume it depends on the average magnitude
of the kernel i coefficients and on the magnitude of the hi,j(n),
since the largest coefficients are always affected by the largest
errors. Thus, |mi,j(n)| is here approximated with

|mi,j(n)| ' γ [||hi||1/Li + β|hi,j(n)|] , (17)

where γ is an unknown constant, whose knowledge it will
be shown to be immaterial, and β is a constant that gives
larger or smaller weight to the coefficient hi,j(n) magnitude.
It should be noted that in [22] a similar approximation was
imposed on the squared magnitude of mi,j(n). The approxi-
mation appears better fitted to the magnitude |mi,j(n)|. Since
e(n) =

∑
s,tms,t(n)xs,t(n) + ν(n) with ν(n) uncorrelated

with the other signals, µi,j in (16) can be written as

µi,j =
E [|mi,j(n)||xi,j(n)|]

E
[
(
∑
s,t |ms,t(n)||xs,t(n)|)x2i,j(n)ki,j(n)D−1(n)

] .
(18)

Inserting (17) in (18), the unknown constant γ simplifies and
the expectations can be computed with time averages. The
optimal step-size deriving from (18) has general validity. It
can be simplified considering that D(n) and ki,j(n) are slowly
varying and can be taken out of expectation. In this case,
simplifying ki,j(n), and D(n) in (9) and (18), the following
adaptation rule is obtained:

hi,j(n+ 1) = hi,j(n) + µi,j(n)xi,j(n)e(n), (19)

with

µi,j =
E [|mi,j(n)||xi,j(n)|]

E
[
(
∑
s,t |ms,t(n)||xs,t(n)|)x2i,j(n)

] , (20)

with all expectations computed by time averages and |mi,j(n)|
given by (17).

Starting from an IPNLMS algorithm, the optimal step-size
has eliminated both the IPNLMS weight matrix K(n) and
the normalization term D(n). The normalization in reality
is performed by (20), while the improved proportionate part
promoting sparsity in the solution is performed by (17).

IV. EXPERIMENTAL RESULTS

We consider some experiments involving the identification
of a real device, a Behringer Mic 100 Vacuum Tube Preampli-
fier, using a Volterra filter. The device has a potentiometer that
allows us to control the distortion level on the output signal.
Two stochastic signals with the same power and sampling
frequency 16 kHz were generated: 1) a signal with eigenvalue
spread about 20 obtained by filtering a white noise with an
IIR filter having the following poles and zeros,
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Fig. 1. Learning curves without additional noise: (a) stochastic input 1), (b)
stochastic input 2).

poles = [0.5ei·π/4, 0.5e−i·π/4, 0.55e3i·pi/4, 0.55e−3i·pi/4];

zeros = [0.95i,−0.95i];
2) a white noise filtered with a first order all-poles filter with
single pole at 0.95. The input signals at 16 kHz were up-
sampled in Matlab at 48 kHz to allow playback and recording
on the Focusrite Scarlett 2i2 audio interface and the recorded
signals were downsampled back at 16 kHz. Thus, in the
experiment a chain composed by the upsampler, the Scarlett
digital to analog converter (DAC), the MIC100 preamplifier,
the Scarlett analog to digital (ADC), and the downsampler,
is identified. At the maximum used amplitude on a sinusoidal
signal at 1 kHz having the same power of the stochastic inputs
the second, third, and total harmonic distortion are 3.5%,
0.6%, and 4.3%, respectively, and the signal to noise ratio
(SNR) is larger than 60 dB. The system was identified with
a Volterra filter of order 3, memory 30, and with diagonal
number 7 for the second order kernel and 4 for the third order
kernel, and 652 coefficients in total. To give an indication
of the system sparsity, the filter identified with the proposed
approach on stochastic input 1) after 106 samples has 160
coefficients with magnitude greater than 1/50 of the maximum
coefficient. In order to simulate some abrupt changes in the
unknown system to be modelled, at iteration L, the input signal
is attenuated by a factor 4 and the output signal is time shifted
by two samples; at iteration 2L, the input signal is attenuated
by a factor 2 (amplified by a factor 2 with respect to the
previous segment), the output signal is amplified by a factor 2
and the time shift is removed; at iteration 3L, the input signal
resumes the original amplitude, the output signal is attenuated
by a factor 2 (4 with respect to the previous segment) and time

shifted by two samples. Both L = 100, 000 and L = 10, 000
are considered in the following. Different noise conditions are
simulated by adding to the output a white Gaussian noise, as
detailed in the following. The adaptive filter equipped with the
proposed variable step-size is compared with NLMS, IPNLMS
Volterra filters with α = −0.5, and α = 0.0, having constant
step-size, and with the variable step-size of [22], implemented
as detailed in [28]. It should be noted that the variable step-
size of [22] was developed for a second order Volterra filter
in an acoustic echo scenario, while here it is used for the
identification of a third order Volterra filter using different
stochastic signals. In the proposed approach, β = 1 and all
expectations were estimated with exponential time averages
with forgetting factor 0.8. The same forgetting factor was
considered for the method of [22].

Figure 1 compares the performance of the proposed ap-
proach, with the algorithm of [22], the NLMS and IPNLMS
algorithm for L = 100, 000 without adding any additional
noise at the output and for the two kinds of stochastic
input considered. The learning curves are ensemble averages
obtained over 200 runs of the algorithms, filtered with a box-
filter of length 100. The curves of NLMS and IPNLMS are
those that overall gave the best convergence performance,
with the corresponding step-size detailed in the legend. With
the first stochastic input, both variable step-sizes provide
similar convergence results, which are far superior than the
constant step-size algorithms. With the second input, which
is much more correlated, the algorithm of [22] provides poor
convergence and its learning curve overlaps with that of the
constant step-size algorithms, while the proposed approach
exhibits superior results.

Figure 2 shows a more detailed comparison of the proposed
method with that of [22] for different SNRs considering
L = 10, 000. It can be appreciated that, for high SNR with
both inputs the proposed method gives better performance in
terms of convergence speed and similar or better steady-state
MSE. When the SNR decreases, the convergence speed and the
steady-state performance become comparable in both methods,
with the method of [22] that provides slightly better steady-
state MSE. In reality, the improved performance of [22] is due
to a step-size factor 0.5 introduced to take into account the
effect of noise as suggested in [28]. By reducing the proposed
step-size by a factor 0.5, both algorithms provide the same
steady-state MSE for high SNR.

V. CONCLUSION

The paper has derived an optimal variable step-size for the
IPNLMS algorithm applied to FLiP filters. The variable step-
size has been obtained without resorting to iid hypothesis on
the input signal, or to the orthogonality of the coefficients’
errors. It has been shown that the variable step-size has
drastically altered the characteristics of the resulting adaptive
filter, eliminating both the normalization and the coefficient
weighing performed by IPNLMS. The performance of the
resulting algorithm equipped with the variable step-size has
been compared with NLMS, IPNLMS, and with the variable-
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Fig. 2. Learning curves with different noise conditions: (a) and (e) 30 dB SNR, (b) and (f) 20 dB SNR, (c) and (g) 10 dB SNR, (d) and (e) 0 dB SNR, for
(a)-(d) stochastic input 1), (e)-(h) stochastic input 2).

step size of [22], considering different inputs and noise condi-
tions. The good performance of the proposed variable step-size
makes it a good candidate for nonlinear system identification
especially in case of highly correlated signal.
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