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Abstract

Ultrafast spectroscopy techniques, which employ ultrashort laser pulses, are a
formidable tool to investigate the fundamental mechanisms in complex materials
at their typical femtosecond timescale. Improving these methodologies is crucial to
extract more information from the experiments and reveal new and deeper insights
about the examined samples. In this doctoral thesis, we develop a novel experimen-
tal methodology to perform ultrafast optical pump&probe studies of samples out
of equilibrium. We design and commission Time-resolved Multimode Heterodyne
Detection and we employ it to investigate light-matter interactions in transparent
quartz and complex materials such as the transition metal antiferromagnet TiOCl
and the cuprate superconductor YBCO. We focus, in particular, in the study of co-
herent vibrational excitations.
The pump&probe approach consists in driving the sample under examination out of
equilibrium with an intense pulse, the pump, and measure at a controlled delay the
scattered light of a second pulse, the probe. The goal of the developed heterodyne
technique is to maximize the amount of information which can be extracted from the
experiment. Indeed, while the standard approach consists in measuring the average
intensity of the probe pulse, the presented method allows for the full reconstruction
of the quantum state of ultrashort pulses and in turn explores new multimode pho-
ton observables which are usually neglected in time-domain experiments. Precisely,
thanks to heterodyne interferential amplification and single-pulse detection, we gain
sensitivity to amplitude, phase and to the statistical distribution of the quadrature
of each spectral component of the multimode probe field.
We report that we are able to discriminate the quantum limited multimode statis-
tics of the probe pulse and disentangle the amplitude and phase responses in the
ultrafast dynamics of the examined samples. We show that amplitude and phase
dynamics are in general different and carry distinct information about the interac-
tion processes.
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Chapter 1

Introduction

In our daily life, we rely on our senses to have experience and understanding of
the objects around us. While investigating materials we do more or less the same,
even though we rely on sophisticated experimental techniques which enhance our
senses. Following the analogy, spectroscopy is the science which uses the ‘sight’ in
order to look into matter. Indeed, at the fundamental level they both consists in
collecting and reading the information carried by the photons scattered by the light-
matter interactions. Hence, the better we can read these photons, the deeper is the
knowledge we get about the observed object.
In the Q4Q (quantum spectroscopies for quantum materials) laboratory, run by Univer-
sity of Trieste and Elettra Sincrotrone, we perform ultrafast spectroscopy experi-
ments using ultrashort laser pulses, which allow us to look at materials with an
extremely high temporal resolution on the femtosecond scale. We exploit this to
study the vibrational and electronic dynamics in complex materials, as for instance
transition metal oxides.
In this thesis, our goal is to further enhance the capabilities of ultrafast spectroscopy,
revealing information about the samples which is hidden in the most intimate de-
grees of freedom of the photons employed.

Ultrafast spectroscopy

Ultrashort light pulses are electromagnetic pulses with a duration shorter than
picoseconds, down to the attosecond regime, used to study ultrafast phenomena in
atoms, molecules and solids [1]. The most common approach adopted in ultrafast
experiments is the pump&probe one. It consists in using a first intense pump pulse
to excite the system under analysis and trigger a non-equilibrium dynamics. The
ultrafast response is then monitored measuring the light from a subsequent, not per-
turbative, probe pulse impinging the sample at a tunable delay with respect to the
pump.
The pump&probe approach is widely and importantly applied in the context of
quantum materials to reveal their governing mechanisms and potentialities [2]. These
systems are ruled by a complex interplay between electronic, vibrational, spin and
charge degrees of freedom. The analysis of the ultrafast dynamics is useful to study
the interaction between the fundamental characters at play, disentangling their typ-
ical relaxation times. Moreover, the impulsive excitation is able to create photoin-
duced states and phases of the material away from the ones accessible in the ther-
modynamic limit, which can be used to achieve new functionalities.
From the technical point of view, standard optical pump&probe experiments rely
on measuring the intensity of the probe pulse averaged over many repeated acqui-
sitions. However, we highlight that this detection method is only partially sensitive
to the information written in the collected probe photons. Therefore, in this thesis
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we discuss how to improve the capability of measuring the probe. In detail, we aim
to reconstruct its full multimode quantum state.

Exploring the full quantum state of light

The probe light is ultimately characterized by the dual wave-particle nature which
is not completely revealed while measuring the mean intensity of the electromag-
netic field. The probe pulse is a field with a peculiar phase structure, but at the same
time it is an ensemble of quantized particles, the photons, which behave according
to the quantum statistics. We are interested in revealing the information contained
in these additional degrees of freedom in the ultrafast experiments. In particular, we
plan to monitor the modulations due to the non-equilibrium dynamics of the per-
turbed material.
Interferometric techniques which mix the probe with a reference field are suitable
to access the spectral phase degree of freedom and reconstruct the relative temporal
dynamics [3, 4, 5]. Nevertheless, in order to get a description comprehensive of the
statistical behavior we need to consider the more fundamental quantum formalism.
In a quantum framework, the best knowledge of the system under consideration is
represented by the quantum state. In the case of the optical probe, we can obtain the
measurement of its state performing quantum state tomography [6]. The procedure
is based on the heterodyne detection of the light state. It consists in mixing in an in-
terferometer the, in general weak, probe field with an intense Local Oscillator which
acts both as amplifier and phase reference. The heterodyne output is acquired pulse
by pulse for a set of equally prepared repetitions. In this way, the statistical distribu-
tion is recorded. The measurement of the heterodyne trace statistics for the different
interference phases forms an ensemble of observables, also defined quorum, which
completely characterizes the quantum state.
In order to implement the time-resolved analysis of the full optical state in the ul-
trafast setting, we develop the pump&probe heterodyne detection scheme [7, 8, 9],
which consists in performing the quantum state measurement of the femtosecond
probe pulse as a function of the pump delay.
We complete the discussion highlighting that, due to their short temporal duration,
the femtosecond pulses employed have a broad spectral bandwidth. Therefore, the
optical state is a multimode system formed by the superposition of different fre-
quency components [10]. Remarkably, every quantum mode can be considered as
an individual quantum degree of freedom, which can carry specific information. The
separated characterization of the modes can reveal peculiar attributes which vanish
in the integrated analysis. Furthermore, the various components can be coupled to
each other, for example as a consequence of non-linear interactions. In particular, it
is possible to retrieve this link between modes at the statistical level studying their
correlation.

In summary, we propose Time-resolved Multimode Heterodyne Detection [9] to
explore the degrees of freedom accessible in the multimode quantum state of the ul-
trashort probe.
In this work, we employ this methodology to study the ultrafast response in crys-
talline solids. We set a peculiar focus in investigating coherent vibrational excita-
tions, which we model and characterize in a benchmark material as quartz.
In the end, we challenge the capabilities of the technique in the analysis of complex
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transition metal oxides.
The thesis is structured in the following way.

• In the first part of the dissertation, we introduce the multimode formalism suit-
able for ultrafast quantum optical state reconstruction and we report the exper-
imental implementation. We analyze the probe pulse attributes, with peculiar
focus on the characterization of the optical noise of the employed radiation.

• After the setup commissioning, the central part of the thesis is dedicated to the
study of non-linear light-phonon interactions in transparent quartz. In detail,
we investigate the coherent phonon response induced by Impulsive Stimu-
lated Raman Scattering processes. Thanks to phase sensitivity, we show that
in general the amplitude and phase non-equilibrium dynamics are different
and representative of two distinct interactions. Indeed, the phase response
is dependent on the modulation of the refractive properties mediated by the
atomic position, while the amplitude response is relative to probe-sample en-
ergy exchanges mediated by the atomic momentum.

• The last part of the research extends the application of Time-resolved Multi-
mode Heterodyne in the exploration of complex materials. At first, we ex-
amine the ultrafast orbital response in the quantum magnet TiOCl. We study
the non-equilibrium dynamics dependent on selective resonant absorption of
d-band orbital transitions. We observe qualitatively distinct responses for am-
plitude and phase and reveal orbital-phonon coupling features.
In the end, we perform Time-resolved Heterodyne measurements in the high-
temperature superconductor YBCO. We address the coherent phonon response
and also in this case we obtain disentangled and sample specific amplitude and
phase dynamics.

• In conclusion, we resume the main results obtained in this work with the pro-
posed Time-resolved Multimode Heterodyne Detection. We highlight the in-
formation revealed in the novel degrees of freedom considered and discuss the
further perspectives for the study of complex materials.
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Part I

Time-resolved Multimode
Heterodyne Detection
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We present and characterize the Time-resolved Multimode Heterodyne Detec-
tion developed in this thesis work. The proposed technique aims to improve the
information extracted from ultrafast optical pump&probe experiments.
This goal is pursued analyzing the probe light-pulse with methodologies proper of
quantum optics. The probe radiation is indeed a quantum system described by pho-
tons and its full state can be reconstructed exploiting the optical state tomography.
This approach allows us to access further degrees of freedom in addition to the probe
intensity measured with standard detection. In particular, we are able to study the
phase structure of the probe electric field and the photon statistical distribution.

We introduce in Chapter 2 the elements of quantum optics which are at the basis
of the proposed scheme. We adopt the quantization of the electromagnetic field and
report the state reconstruction method.
Chapter 3 describes the experimental implementation and in Chapter 4 we perform
its characterization with the coherent states produced by the laser source.
In Chapter 5 we test the statistical sensitivity analyzing the non-gaussian distribu-
tion which arises from phase randomized superposition of coherent states.
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Chapter 2

Measuring quantum states of light

The quantum mechanical description of light is the formal synthesis between the
wave and particle nature of the electromagnetic radiation. The effects resulting from
interference and photon discretization are both taken into account.
From the classical point of view, an optical mode is an electromagnetic plane wave
which can be associated to an harmonic oscillator with a certain frequency ω. Its
evolution is conveniently described as a function of its conjugated position q and
momentum p in the phase-space, as illustrated in Fig. 2.1. The classical oscillator
system is displayed as a point in the phase-space, which explores the different evo-
lution phases ϕ along a circular trajectory centered around the origin (Fig. 2.1a), the
radius of which indicates the oscillation amplitude. When generalizing this repre-
sentation to the quantum setting (Fig. 2.1b) the conjugated variable of position and
momentum are non-commuting operators. Therefore, the point-like model has to
be replaced with an uncertainty region satisfying the Heisenberg indetermination
principle (σpσq ≥ h̄/2).

ϕ

Classical Quantum

p

q

p

q

ϕ

a) b)

𝜎𝑞

𝜎𝑝

Figure 2.1: Phase-space evolution of the harmonic oscillator. a) Point-like
classical state. b) Quantum state with intrinsic statistical uncertainty.

Indeed, quantum theory tells us that the knowledge achievable about a quantum
system has at best a statistical character. While the outcome of a single measurement
performed on the system cannot in general be determined, the statistical distribution
of a set of equally prepared experiments can be defined.
The concept of measuring a quantum state should be distinguished from perform-
ing measurements on a quantum state. While the performance of a measurement is
defined solely at a statistical level, we say we measure the quantum state when we
have enough information to predict the statistical distribution of the measurements
of the expectation value of any operator on this state [1, 2].
In detail, collecting the amount of information required to measure the state relies in
measuring the statistical distribution of a minimal ensemble of observables, which is
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defined quorum. The measurement of the quantum state consists then in measuring
the statistics of the quorum observables and use them to calculate the state and the
expectation value of any operator.

In this chapter, we report on the quantum state measurement method we adopt
to characterize the probe light-pulses. In detail, we discuss Optical Tomography
reconstruction [2, 3, 4, 5] of the Wigner function, which relies on the experimental
implementation of a heterodyne1 detection scheme.
We start by introducing the quantization of the electromagnetic field and we specify
the quantum harmonic oscillator formalism in terms of field quadrature operators.
We then focus on the quantum state, which we reference adopting the density matrix
formalism. In particular, basing on the density approach, it is insightful to charac-
terize the system defining the Wigner quasi-probability distribution. The Wigner
function is defined in a phase-space which is built with respect to the field quadra-
ture operators. Precisely, we show that the marginals of the Wigner function are
equivalent to the statistical distributions of the quadrature operators. Hence, the
quadratures obtained for the different phases of the evolution can be used to calcu-
late the Wigner function and are therefore a suitable quorum to measure the full state.
In order to experimentally record the field quadratures, we present the balanced het-
erodyne detection scheme. In the end, we extend the heterodyne state reconstruction
to multimode light pulses.

2.1 Quantization of the electromagnetic field

In quantum mechanics observables are described in terms of hermitian opera-
tors. In the quantum theory of light, fundamental observables are the electric (E)
and magnetic (B) field operators. Their expression for a monochromatic plane wave
of frequency ω and polarization λ reads

Êλ,ω(x⃗, t) = i
√

ω

2Vϵ0

(⃗
eλ âe−i(ωt−⃗k·⃗x) − e⃗∗λ â†ei(ωt−⃗k·⃗x)

)
, (2.1)

B̂λ,ω(x⃗, t) = i

√
1

2Vωϵ0
k⃗ ×

(⃗
eλ âe−i(ωt−⃗k·⃗x) − e⃗∗λ â†ei(ωt−⃗k·⃗x)

)
(2.2)

where k⃗ is the wavevector, e⃗λ the polarization vector and V the quantization volume.
The operator character is defined by the photon ladder operators â and â†, which
follow the commutation relation [â , â†] = 1.
The energy stored in the electromagnetic field mode is calculated as

U =
ϵ0

2

∫
V

dx⃗(|E|2 + |B|2) (2.3)

which, translating it in the quantum formalism, corresponds to the hamiltonian of
the optical system. If we insert the field operators in the previous this results

Ĥ = h̄ω(â† â +
1
2
) (2.4)

1In the literature, quantum state tomography is usually discussed in terms of homodyne
detection. Hereby we adopt the more general heterodyne definition. We discuss the details in
sec. 2.4.



2.2. The quantum state 11

which is indeed the hamiltonian of a quantum harmonic oscillator. In this setting, it
is insightful to define the conjugate variables

X̂ =
â + â†
√

2
and Ŷ =

â − â†
√

2i
(2.5)

also called quadrature fields, which represent the optical analogous of position and
momentum of the harmonic oscillator. It will also be convenient to explore the full
phase-space defining the generalized quadrature

X̂ϕ =
1√
2
(âe−iϕ + â†eiϕ). (2.6)

In this section, we presented the operators relevant in the discussion. In the follow-
ing, we focus on the state on which these operators act.

2.2 The quantum state

The quantum state of a system is the object which includes the knowledge re-
garding the statistical expectation of a general observable.
In case an experiment exists, at least in principle, whose outcome is unique and pre-
dictable with certainty when performed on a system prepared in a specific state,
such state is defined a pure state [1].
Pure states are the fundamental elements of the general quantum state description.
They are formally represented as normalized vectors |Ψ⟩ in the Hilbert space of the
system. The general expectation value of an observable Ô can be calculated on a
pure state as

⟨Ô⟩ = ⟨Ψ| Ô |Ψ⟩ = Tr[Ô |Ψ⟩ ⟨Ψ|], (2.7)

where the formulation in terms of the trace operator suggests that the state can be
identified by the projector |Ψ⟩ ⟨Ψ|.
However, systems occur for which no experiment gives a unique outcome predictable
with certainty and the pure state formalism is not sufficient. The more general de-
scription accounts for the statistical mixtures of different states, which can not be
associated to a single vector in the Hilbert space. In order to characterize them, we
introduce the density matrix. It is an hermitian, non-negative operator of unit trace

ρ̂ = ∑
n

cn |Ψn⟩ ⟨Ψn| (2.8)

which accounts for the statistical superposition of different pure states |Ψn⟩.
The sub-states are normalized ⟨Ψn|Ψn⟩ = 1 and the coefficients cn are such that

∑
n

cn = 1, cn > 0. (2.9)

If we have that only one cn is different from zero and equal to one we retrieve the
case in which the system is in a pure state, otherwise the state is mixed. We also note
that the same density matrix can have different representations and the choice of the
set |Ψn⟩ is not unique.
Remarkably, with the general density formalism the expectation value of an observ-
able reads

⟨Ô⟩ = ∑
n

cn ⟨Ψn| Ô |Ψn⟩ = Tr[ρ̂Ô] (2.10)
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which states that the knowledge about the quantum state is conveniently included
in the density operator.

2.2.1 The Wigner function

Considering the analogy with the quantum harmonic oscillator found in eq. (2.4),
a phase-space representation is useful to describe the electromagnetic radiation. The
quantum state has an insightful phase-space representation by means of the Wigner-
Weyl transform of the density operator

Wρ(q, p) =
1

2πh̄

∫
R

dy ⟨q + y
2
| ρ̂ |q − y

2
⟩ e−iyp/h̄, (2.11)

which is dubbed the Wigner function and is dependent on the conjugate phase-space
variables p and q.
The expectation values of the system observables are calculated as

⟨Ô⟩ = 2πh̄
∫

R2
dqdpWρ(q, p)WO(q, p), (2.12)

where WO is the Wigner transform of the operator Ô, which describes the opera-
tor values as a function of the phase-space variables. From the latter expression, we
note that the Wigner function weights the possible outcomes of the observable while
calculating the average over the phase-space. However, the Wigner function is not a
proper probability distribution because it is not positive definite. As a consequence
of this, it is considered a quasi-probability distribution.
The presence of negative values assumed by regions in the Wigner is a result which
cannot be obtained in a classical setting and thus an indication of a purely quantum
mechanical state. Nevertheless, even when dealing with negativities the statisti-
cal predictions are well-defined. In detail, the marginal distributions of the Wigner
function are positive defined. Calculating the marginals we can for example obtain
the statistical distribution of the q and p probability distributions as

w(q) = ⟨q| ρ̂ |q⟩ =
∫

R
dpWρ(q, p),

w(p) = ⟨p| ρ̂ |p⟩ =
∫

R
dqWρ(q, p).

(2.13)

Moreover, the marginal distribution can be defined along an arbitrary orientation of
the phase space as

w(q, ϕ) = ⟨qϕ| ρ̂ |qϕ⟩ =
∫

R
dpWρ(q cos ϕ − p sin ϕ, q sin ϕ + p cos ϕ). (2.14)

We will see in a while that the previously defined marginals are fundamental objects
in order to perform the state reconstruction, but before moving to the measurement
method, we introduce some of the typical states which are proper of quantum optical
systems.

Coherent states

The formal quantum description of classical electromagnetic waves, as for in-
stance the radiation produced by a laser source, is expressed by coherent states. The
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classical point in the phase-space is generalized in the quantum setting with a gaus-
sian distribution satisfying the minimal uncertainty provided by the Heisenberg in-
determination principle.

σ2
q σ2

p ≥ 1
4

(2.15)

The vacuum state is the particular case in which the distribution has null expectation
value and is centered around the origin (Fig. 2.2a). The optical wave oscillating

0.2

0.1

0.0

0.3

0.2

0.1

0.0

0.3

a) b)p

q

p

q

Figure 2.2: Wigner function of coherent states [6]. a) Vacuum state. b) Dis-
placed coherent state with ∼2 photons.

with a non-zero amplitude is instead obtained as a displacement from the origin
(Fig. 2.2b). A coherent state |α⟩ is built as an eigenstate of the ladder operators

â |α⟩ = α |α⟩ . (2.16)

It can be obtained acting on the vacuum |0⟩ with the displacement operator

|α⟩ = eαâ†−α∗ â |0⟩ . (2.17)

The complex eigenvalue α = |α|eiφ is representative of the amplitude and phase of
the electromagnetic wave. Its squared modulus accounts for the mean number of
photons in the examined optical mode (i.e. the field intensity)

⟨N̂⟩ = ⟨â† â⟩ = |α|2. (2.18)

Moreover, the coherent states are characterized by a poissonian photon number dis-
tribution. Hence the number variance reads

σ2
N = ⟨N̂2⟩ − ⟨N̂⟩2

= ⟨N̂⟩ . (2.19)

In Chapter 4 we will refer to these elements in order to test the coherent nature of
the laser radiation employed in our experiments.

Quantum states

Beyond coherent states, in quantum optics other typologies of light states are
widely studied and exploited for their non-classical properties. A convenient rep-
resentation of quantum states of the optical radiation is provided by their Wigner
function. We present in Fig. 2.3 some relevant examples of Wigner distributions [6].
The first example is relative to the squeezed states [7]. These are coherent states in
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Figure 2.3: Wigner function of quantum states [6] a) Squeezed state. b) Pho-
ton number Fock state with 3 photons. c) Incoherent superposition of coherent
state with opposite phase. d) Schrödinger-Cat state.

which the Heisenberg indetermination region is no longer isotropic (Fig. 2.3a). Re-
markably, the width of the distribution on a phase-space marginal projection can
be reduced below the vacuum level at the expense of increased uncertainty in the
conjugated variable. This capability to control the statistics is of great importance,
in particular exploiting the noise reduction below the vacuum level is of paramount
importance in metrology [8].
Another striking example of non-classical statistics is the one of photon number
states. These describe systems where in every repeated measurement a constant
number of photons is detected. On the other hand the phase of the field is com-
pletely randomized. Formally these objects are described as elements of the Fock
basis. In Fig. 2.3b we show for instance the Fock state |3⟩ with 3 photons in the field.
The strictly quantum character of the considered state is signaled by the negative
values in the Wigner distribution.
In the end, we discuss the interference effects between states. We compare a classical
incoherent superposition of coherent states with opposite phase (Fig. 2.3c) and their
coherent quantum superposition (Fig. 2.3d), which is also known as Schrödinger cat
state. We appreciate that while the classical case is the sum of the two initial distri-
butions, in the quantum superposition the interference effect is represented by the
presence of fringes in the Wigner function [9].
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2.3 Optical Tomography

In this section we present the methodology employed to measure the quantum
state. It consists in a tomographic procedure, which calculates the full Wigner func-
tion 2-D map basing on an ensemble of 1-D projections. The employed projections
are the marginal phase-space distributions of the Wigner function, which can be
measured acquiring the statistics of the phase-space variables in repeated experi-
ments.
Adapting the expression in eq. (2.14) specifying the general q, p phase-space vari-
ables as the X, Y field quadratures of the light harmonic oscillator, we get the ex-
pression for the marginal projections for the quadrature along the ϕ direction.

w(X, ϕ) = ⟨Xϕ| ρ̂ |Xϕ⟩ =
∫

R
dYWρ(X cos ϕ − Y sin ϕ, X sin ϕ + Y cos ϕ). (2.20)

We visualize in Fig. 2.4 the calculation of marginal distribution in the case of a gaus-
sian coherent state.

φ

q

Figure 2.4: Representation of the marginal Wigner distribution calculation
for the generalized quadrature Xϕ. The full state is characterized collecting the
different projections around the phase-space. In the example we show a displaced
coherent state.

We now discuss the strategies to retrieve the full quantum state information starting
from the ensemble of quadrature projections. Firstly, we report the algorithm to re-
construct the state Wigner function from the input distributions. Then, we describe
the pattern tomography approach, which aims at obtaining the expectation values
of a general observable without performing the explicit calculation of the Wigner
function.

2.3.1 Wigner function reconstruction

From the mathematical perspective, the calculation in eq. (2.20) represents a
Radon transform of the Wigner function. In order to reconstruct it we invert such
relation and apply an Inverse-Radon transform algorithm [4]. Defining the polar
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coordinates (r, ϕ) in the phase-space, the Wigner distribution is obtained as

Wρ(q, p) =
1

4π2

∫ π

0
dϕ
∫

R
dX

∫
R

dr|r|eir(q cos ϕ+p sin ϕ−X)w(X, ϕ). (2.21)

From the practical point of view, the measured quantities are the amplitude and
phase of the quadrature experimental realizations [Xi, ϕi], where i labels the M ac-
quired repetitions. Therefore, the Wigner function can be approximated by an esti-
mator acting on the dataset as

Wρ ≃ Wρ
(M) =

1
M

M

∑
i=1

KXi ,ϕi(q, p) (2.22)

which is an average on the outcomes of the kernel function K. The explicit expres-
sion of the employed kernel [10] is given by

Kη,h
Xi ,ϕi

(q, p) =
∫ + 1

h

− 1
h

dr
|r|
4π

e−ir(q cos ϕi+p sin ϕi−
Xi√

η )+r2 1−η
4η . (2.23)

which also takes into account a truncation parameter h to approximate the full inte-
gration and the detection efficiency η to include the effect of losses [11].

2.3.2 Pattern tomography

The Wigner function reconstruction with the inverse-Radon algorithm is useful
to obtain a complete description of the full state, but the quantitative calculation of
the system observables is affected by the presence of some artifacts linked to the
sampling of the phase-space points and the truncated integration. For many ap-
plications it is possible to avoid the explicit calculation of the Wigner function and
perform a direct calculation of the observable of interest adopting pattern tomog-
raphy [5, 12]. The expectation value of a general observable can be calculated as a
function of the quadrature distributions w(X, ϕ) with

⟨Ô⟩ = 1
π

∫ π

0
dϕ
∫

R
dX w(X, ϕ)R[Ô](X, ϕ) (2.24)

where the kernel function R is formally defined as

R[Ô](X, ϕ) =
∫

R
dr|r|Tr[Ôeir(X̂ϕ−X)]. (2.25)

For a general combination of ladder operators the latter can be expressed as

R[(â†)n âm](X; ϕ) =
ei(m−n)ϕHm+n(X)√

2m+n(n+m
m )

(2.26)

where Hn(X) are Hermite polynomials.
If we include also the quantum efficiency η contribution to the measurement, eq. (2.26)
becomes

Rη [(â†)n âm](X; ϕ) =
ei(m−n)ϕHm+n(

√
ηX)√

(2η)m+n(n+m
m )

(2.27)

The explicit expression obtained from eq. (2.27) for some common observable is re-
ported in Tab. 2.1. In particular, in our experiments we will focus on mean value



2.4. Balanced homodyne detection 17

Ô Rη [Ô](X, ϕ)

â
√

2eiϕX

â2 e2iϕ
(

2X2 − 1
η

)
X̂θ 2X cos(ϕ − θ)

X̂2
θ

1
2

{
1 +

(
2X2 − 1

η

)
[4 cos2(ϕ − θ)− 1]

}
â† â X2 − 1

2η

(â† â)2 2
3

X4 − X2
(

2 − η

η

)
+

1 − η

2η2

Table 2.1: Patter tomography estimators of some useful operators.

and variance of the photon number, which are calculated as ⟨N̂⟩ = ⟨â† â⟩ and σ2
N =

⟨N̂2⟩ − ⟨N̂⟩2 exploiting the kernels R[N̂] = R[â† â] and R[N̂2] = R[(â† â)2].

In summary, in this section we discussed how to obtain the information con-
tained in the quantum state starting from the measurement of the distribution of
phase-space quadratures. In the following, we discuss how to experimentally mea-
sure the quadrature of the optical field by means of heterodyne detection.

2.4 Balanced homodyne detection

The fundamental objects to perform the quantum state tomography are the phase-
space projections representing the probability distribution of the field quadratures,
w(X, ϕ). In order to calculate these we need a detection system able to measure the
statistics of the quadrature operator X̂ϕ. The suitable configuration to do so is the
balanced homodyne detection [3, 13]. It is an interferential technique which consists
in mixing the weak quantum probe field under examination with an intense refer-
ence field dubbed Local Oscillator (LO). The LO acts both as amplifier and phase
reference for the probe field.
The term homodyne refers precisely to a setting in which probe and LO have the same
spectral content. In our complete discussion, we adopt the more general heterodyne
definition. We do it in order to better describe the multimode structure of the ultra-
short pulses and also to reduce confusion between discordant definitions. Indeed, as
noted by S. Mukamel [14, 15], in quantum optics the homodyne/heterodyne signal
is interferometric detection with a local oscillator with the same/different frequency
than the signal, otherwise in spectroscopy the term homodyne/heterodyne implies
detection without/with a local oscillator. Therefore, the heterodyne definition al-
lows us to satisfy both the two languages. We require a multi-frequency setting
since in our experiments with multimode spectrum pulses we are in principle sensi-
tive to light emitted, scattered or frequency-converted from the sample. Moreover,
from the spectroscopy point of view, we clarify the use of the LO.

In this paragraph, we introduce the methodology starting from the simpler single-
mode framework, where the quantum optical homodyne setting is appropriate. In
Fig. 2.5 we display the structure of the homodyne detection scheme. We consider
the probe under investigation described by the field operator â. The LO is expressed
with ẑ and we can control its phase with the shift factor eiϕ (for example changing the
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LO path). Probe and LO are then mixed together in a four-port 50:50 beam-splitter.
The two outputs d̂1, d̂2 of the beam-splitter will be a mixture of the input fields. The

LO

probe

-

𝑎̂ 

 𝑧

መ𝑑1

መ𝑑2

𝑒𝑖𝜙

෨𝑋𝜙

Figure 2.5: Balanced homodyne detection scheme. The probe under examina-
tion is mixed at a 50:50 beam splitter with an intense Local Oscillator reference.
The phase of the LO can be controlled with a tunable delay. The outputs of the
beam splitter, with opposite interference condition are collected by two diodes
and subtracted to obtain the homodyne trace.

beam-splitter action is calculated with the matrix operation(
d̂1

d̂2

)
=

1√
2

(
1 −1
1 1

)(
â

ẑeiϕ

)
(2.28)

which results in ⎧⎨⎩d̂1 = 1√
2
(â + ẑeiϕ)

d̂2 = 1√
2
(â − ẑeiϕ).

(2.29)

The two outputs present opposite interferential condition and are detected by two
photodiodes which measure their intensity d̂†d̂. Finally, the homodyne trace ˆ̃X is
obtained subtracting the signals from the two diodes

ˆ̃X = γ(d̂†
1 d̂1 − d̂†

2 d̂2) (2.30)

where γ is the proportionality factor which accounts for the adopted measurement
units. We highlight that this measurement is acquired repeatedly on equally pre-
pared states in order to collect the full statistics. The balanced differential scheme is
crucial in order to cancel classical instabilities and retain only the intrinsic quantum
fluctuations.
From the previous equation we make explicit

ˆ̃X(ϕ) = γ(âẑ†e−iϕ + â† ẑeiϕ). (2.31)

If we assume that the LO is a coherent state ẑ |ζ⟩ = ζ |ζ⟩ we can collect its amplitude
when calculating the homodyne expectation value

⟨ ˆ̃X(ϕ)⟩ = γ
√

2|ζ| ⟨X̂(ϕ)⟩ , (2.32)
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which proves that the homodyne trace is proportional to the field quadrature. How-
ever, in order to completely demonstrate that the homodyne output allows us to
measure the entire statistical distribution of the quadrature operator, we need to ver-
ify the proportionality at every order. This is a good approximation if the following
hold {

⟨ẑ† ẑ⟩ ≫ 1
⟨ẑ† ẑ⟩ ≫ ⟨â† â⟩

(2.33)

The first condition grants that the homodyne output has a continuous spectrum of
values, the second that the corrections to

⟨ ˆ̃X
n
(ϕ)⟩ = (γ

√
2|ζ|)n ⟨X̂n(ϕ)⟩+ o

(
⟨â† â⟩
⟨ẑ† ẑ⟩

)
(2.34)

are negligible.
In summary, the balanced homodyne detection scheme is a suitable configuration
to measure the statistical distribution of the quadrature operators. Scanning the
quadrature phase we can acquire the marginal projections around the entire phase-
space and reconstruct the single-mode quantum state with a tomographic algorithm.
The measured quantity is proportional to the amplitude of the intense LO oscilla-
tor, which means that the homodyne process amplifies the features of the quantum
probe. For instance we highlight that vacuum state fluctuations of the probe field
[16] are mapped through the LO statistics

σ2
X̃
|0⟩

= 2γ2|ζ|2σ2
X
|0⟩

= γ2|ζ|2 (2.35)

where we used the Heisenberg limit σ2
X
|0⟩

= 1/2.
Importantly, the measurement of the vacuum noise level is a key reference to derive
the absolute calibration of the probe quadrature units.

2.5 Multimode heterodyne for ultrashort pulses

In the homodyne formalism developed so far, we discussed the study of a single
mode of the radiation with polarization λ and frequency ω. Nevertheless, the com-
plete analysis of the optical field requires to consider the sum over all the possible
modes

Ê(x⃗, t) = i ∑
λ

∑
ω

√
ω

2Vϵ0

(⃗
eλ âλωe−i(ωt−⃗kω ·⃗x) − e⃗∗λ â†

λωei(ωt−⃗kω ·⃗x)
)

(2.36)

with a more general heterodyne approach. Taking care of the multimode charac-
ter is particularly relevant when dealing with short duration pulses, because owing
to the time-energy formulation of the Heisemberg principle they present a broad
frequency bandwidth. We will observe this in detail employing femtosecond laser
pulses in ultrafast experiments.
The extension to a multimode setting enlarges the degrees of freedom available and
the information processable in the system. In quantum optics this approach gen-
erates many applications in quantum computation and communication [17]. Re-
markably, intriguing features arise as a consequence of the entanglement between
different modes [18, 19].
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From our spectroscopic point of view, the capabilities of the frequency-resolved for-
malism open the possibility to reveal spectral effects and intraband interactions due
to light-matter interaction processes.

In this section, we discuss the polarization and frequency degrees of freedom of
the radiation modes. We extend the previous description to a multimode heterodyne
scheme and discuss the approach to reveal correlations between modes.
In detail, we approach the analysis describing the laser light in terms of multimode
coherent states. These are built with independent coherent modes as

|α⟩ = ⊗λ,j |αλ,j⟩ = exp
(

∑
λ,j

αλ,j â†
λ,j − α∗

λ,j âλ,j

)
|0⟩ . (2.37)

The annihilation and creation operators âλj and â†
λj are such that [âλj , â†

λ′ j′ ] = δjj′δλλ′ ,
where λ, j are the polarization and frequency indices, respectively. In particular, we
consider a set of modes with frequency spacing δ and offset ω0 (≤ δ), such that
ωj = jδ + ω0, with j ∈ N. The available polarization modes are the two transverse
λ = x, y.
Considering the analogy with classical waves, from the field operator expectation
value

⟨âλ,j⟩ = |αλ,j|eiφλ,j (2.38)

we can identify the spectral amplitude |αλ,j| and phase φλ,j.
We define as well the quantities relative to the LO field.

⟨ẑλ,j⟩ = |ζλ,j|eiφ′
λ,j . (2.39)

We note that in general the LO spectral phase can be different by the probe one and
for simplicity we will assume a LO with a flat phase (φ′

λ,j = 0).

2.5.1 Multimode heterodyne detection

In order to characterize the spectral features of the multimode optical state, we
develop a frequency-resolved approach by means of balanced heterodyne detection.
The heterodyne trace is calculated as the differential signal between the intensities
of the fields Ê1, Ê2 measured on the two photodiodes

ˆ̃X = γ̃
∫

dt(|Ê1|2 − |Ê2|2) = γ ∑
λ,j
(d̂†

1,λjd̂1,λj − d̂†
2,λjd̂2,λj). (2.40)

The interference is effective only among modes with the same polarization and fre-
quency. Orthogonal polarizations do not interfere. The frequency selection is a con-
sequence of the long temporal integration of the detector with respect to the pulse
durations2, which averages to zero the contribution from mixed terms. The pro-
portionality factors γ̃, γ account for the proper measurement units. Expressing the
output fields d̂1 and d̂2, obtained in analogy with the beam-splitter action in (2.28),
we get

ˆ̃X(ϕ) = γ ∑
λ,j
(âλj ẑ†

λje
−iϕ − â†

λj ẑλjeiϕ). (2.41)

2The integration time is on the order of the photodiode rise/fall times (µs) while the con-
volution between probe and LO lasts at most tens of ps (when 0.1 THz resolution is em-
ployed).
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We assume that the external phase control ϕ is equal for each component.
The mode resolution is obtained selecting a specific component. We discuss in the
next chapter how to practically implement the selection from the experimental point
of view. The formal mode-resolved heterodyne output is then

ˆ̃Xλj(ϕ) = γ(âλj ẑ†
λje

−iϕ − â†
λj ẑλjeiϕ). (2.42)

The expectation value calculated on a multimode coherent state can be expressed as

⟨ ˆ̃Xλj(ϕ)⟩ = γ
√

2|ζλj| ⟨ ˆ̃Xλj(ϕ)⟩ = γ2|ζλj||αλj| cos (ϕ − φλj) (2.43)

from which we can retrieve the probe amplitude and phase spectra.

2.5.2 Multimode correlation

The multimode coherent states we used to introduce the multimode formalism
are the result of a combination of independent components. Nevertheless, the more
general characterization of a multimode state requires not only the description of
the individual subsystems, but also of their interdependence or correlation. These
effects are usually the result of the interaction between different modes and are of
interest both to investigate the generating process and the exotic attributes imparted
on the output state.
The general density matrix of a separable (non-entangled) state is the direct product
of the individual subsystems of the N considered modes.

ρ̂ = ⊗N
n=1ρ̂n. (2.44)

In this case, there is no relation between the single states and the measurement of
arbitrary observables Â, B̂ in different n and n′ subsystems are independent

⟨ÂnB̂n′⟩ = ⟨Ân⟩ ⟨B̂n′⟩ . (2.45)

When the expectation value of the composite system is different from the product
of the individual ones the previous equation does not hold anymore. This because
the expression for the density matrix is no more factorizable, ρ̂ ̸= ⊗N

n=1ρ̂n [20] in the
specific basis of modes considered. However, adopting a different basis can result
in a density matrix representation with a separable structure [17]. If it does not exist
any choice of modes such that the density matrix is separable, then the multimode
state is defined purely entangled.
Nonetheless, even in the absence of pure entanglement it can result more convenient
to describe the system of interest in a basis with a non separable density matrix. For
instance, it can be more significant to choose the mode basis according to the detec-
tion system than with respect to an indirect abstract representation.
Remarkably, in the entangled representations we can retrieve signatures of the cor-
relation between parts imprinted in the joint statistics. Considering the violation of
the relation in eq. (2.45), a useful estimator of the degree of correlation is given by
the covariance

Cov[Ân, B̂n′ ] = ⟨ÂnB̂n′⟩ − ⟨Ân⟩ ⟨B̂n′⟩ (2.46)

In the optical framework, we know that the fundamental quantities are the quadra-
ture operators and we calculate the covariance among them. In particular, we can
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analyze both the polarization and frequency correlation

Cov[X̂λj(ϕ), X̂λ′ j′(ϕ
′)] = ⟨X̂λj(ϕ)X̂λ′ j′(ϕ

′)⟩ − ⟨X̂λj(ϕ)⟩ ⟨X̂λ′ j′(ϕ
′)⟩ . (2.47)

In conclusion, in this chapter we introduced the analysis of the quantum state
of a multimode optical system via optical heterodyne tomography. In the next we
describe the experimental implementation of the multimode heterodyne approach
in the ultrafast pump&probe context.
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Chapter 3

The experimental technique

The Time-resolved Multimode Heterodyne Detection approach is the result of
the combination between the ultrafast pump&probe scheme and the balanced het-
erodyne detection. The goal of the technique is to monitor the full state of the probe
light scattered from a sample driven impulsively out of equilibrium. We illustrate
the concept of the experimental scheme in Fig. 3.1. In a standard pump&probe ex-
periment, the intensity of the probe pulse is measured as a function of the relative
delay ∆t with which the two pulses reach the sample. The adoption of the hetero-
dyne scheme improves the standard detection of the probe radiation. The mixing
with an intense Local Oscillator (LO) field in the heterodyne interferometer both op-
tically amplifies the probe field and provides a phase reference. In this way, it allows
us to study weak probes in the quantum regime and access the field degree of free-
dom.

LO

sample

Pump

-

sample

Pump & probe

-

Δt

+ probeΔt

LO

probe

Balanced
heterodyne
detection

Time-resolved
Multimode Heterodyne Detection

Figure 3.1: Time-resolved Multimode Heterodyne Detection results from the
combination of ultrafast pump&probe experiment with a heterodyne detection
interferential scheme.

In this chapter, we report the experimental details of the technique implementation.
We start with an overview of the ultrafast setup and discuss the shaping capabilities
of the ultrashort pulses employed. Then, we focus on the features of the multimode



24 Chapter 3. The experimental technique

approach, presenting the different optical schemes adopted to achieve frequency-
resolved and correlation sensitive detection.

3.1 Overview of the pump&probe heterodyne setup

The time-resolved multimode heterodyne setup is sketched in Fig. 3.2 and it con-
sists in a pulsed laser source which generates the ultrashort pulse repetitions em-
ployed in the pump&probe experiment, an optical interferometer, equipped with a
double-pulse shaper, and a balanced differential detection.

SIG͌

IDL 

LO

sample

pump

-

probe

Δt

Double
Pulse 

Shaper

Pulsed laser

OPA

chopper

Δφ

detection

Figure 3.2: Layout of the experimental setup. Detailed description in text.

The laser system is made up of an Optical Parametric Amplifier (Orpheus-F by Light
Conversion) pumped on the Light Conversion Pharos Laser. The laser source produces
100 µJ pulses with 1.2 eV photon energy and a duration <200 fs. The maximum
repetition rate available is 200 kHz, but in our measurements we work at reduced
sub-multiples to fit the detection speed. The two outputs of the OPA are a Signal
and a Idler beam. The signal has a duration <50 fs and a tunable wavelength in the
range of 650–900 nm (1.90-1.37 eV ). The Idler is shorter than 100 fs, its energy is de-
pendent on the Signal one (Sig+Idl = 2.4 eV) and spans the 1200–2500 nm (1.03-0.50
eV) range.
The Signal and Idler outputs are employed respectively to probe and pump the sam-
ple under examination. The Signal is split in a Local Oscillator and probe beams
which are mixed in a Mach-Zehnder interferometer. The two arms of the interfer-
ometer are shaped independently in their amplitude and phase with a diffraction-
based programmable shaper. The relative phase between LO and probe is controlled
modifying the insertion of a pair of wedged windows.
The probe is transmitted1 through the sample and combined with the LO in a bal-
anced heterodyne detection scheme. Both probe and pump are focused at the sample
and the respective spots have a diameter of 30 µm and 50 µm. The relative delay be-
tween pump and probe is instead tuned controlling the length of the pump path
with a translation stage. On the pump path a chopper blade, rotating at a frequency
sub-multiple of the laser rate in use, is employed to constantly reference the equilib-
rium response distinguishing the probe repetitions in pumped and unpumped dataset.

1In this thesis we treat transmission experiments, but in principle the setup can be adapted
to a reflection configuration.
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In the end, the probe transmitted through the sample is examined through the bal-
anced heterodyne detection. In the most simple description the probe and LO are
mixed on a non-polarizing 50:50 beam-splitter and equally divided between the two
outputs, which are collected by the two channels of the differential detector. In our
setup, we consider some more elaborated implementation scheme of the heterodyne
measurement in order to fully exploit the multimode features and achieve frequency
and polarization resolution. We will discuss a fast parallel acquisition of the various
components with multi-channel arrays and a low-noise single-channel acquisition.
In particular, we rely on the combination of heterodyne detection with pulse-shaping
to frequency-resolve in the low-noise scheme. We dedicate specific sections in the
following to illustrate the details of the developed detection configurations.

3.2 Optical pulse-shaping

A fundamental tool to improve the capabilities and versatility of the heterodyne
setup is the pulse-shaper, which is used to tailor the probe and LO beams. In this
section, we briefly introduce the diffraction-based programmable shaping of spec-
tral amplitude and phase of the ultrashort pulses employed.
The spectral properties of a multimode pulse can indeed be manipulated by means
of pulse-shaping techniques [21, 22, 23, 24]. A widely employed shaping scheme is
the one relying on the spatial dispersion of the various spectral components. As ex-
emplified in Fig. 3.3, the broad frequency bandwidth can be dispersed on the differ-
ent frequency components, controlled and recombined in a 4 f -scheme. The different
modes are horizontally focused in the Fourier plane by a cylindrical lens with focal
length f . The modulation of the spectral attributes is obtained by the application of
a spatial mask M in the focusing plane, which rules the propagation of the different
modes of frequency ω as a function of the position in the Fourier plane. For instance,
modulations in the mask absorption can be used to regulate the field amplitude or
changes in the refractive index to induce phase shifts. In the end, the pulse band-
width is reassembled following the reversed combination of optical elements.

f f f f

Input 
pulse

Shaped
pulse

M(ω)

Figure 3.3: Pulse shaping scheme. The spectral components of the optical
pulse are dispersed, focused on the Fourier plane and recombined in a 4f-scheme.
The spatial mask M in the Fourier plane independently modifies the attributes
of the various frequencies.

The characteristics of the output ‘shaped’ pulse are therefore dependent on the spe-
cific features of the adopted mask. Thus, tunable and programmable masks are re-
quired to gain control and variety of the shaping conditions. A suitable device to
achieve this task is a Liquid-Crystal Spatial Light Modulator (LC-SLM).
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The LC-SLM consists of a bi-dimensional screen composed by a pair of electrodes
with a thin layer of nematic2 liquid crystals placed between them. In particular, they
are disposed in such a way that their director is parallel to the plane when no volt-
age is applied between them. The shaping capabilities of the device are based on the
crystals birefringence. Owing to the anisotropic refractive index of the crystals, the
phase of the light fields propagating through the liquid layer depends on the orien-
tation of the nematic order (Fig. 3.4a), which can be controlled as a function of the
applied voltage. In order to modulate the crystal orientation independently on dif-
ferent regions of the screen, the latter is formed by many pixel electrodes (Fig. 3.4b).
In our setup we use the Santec SLM-100 which is 1.5x1 cm wide with 1440x1050 pix-
els.

𝑛𝑒

𝑛𝑜

a) b)
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Ground
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crystals
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Electrode
Glass

Figure 3.4: Operating principle of a Liquid-crystal based Spatial Light Modu-
lator. The anisotropic refractive index of the nematic crystals (a) is employed to
control the phase of the radiation. b) The nematic crystals are placed in between
electrodes and their orientation is set as a function of the applied voltage.

In summary, the SLM is capable of building programmable 2D phase-masks. We
now see how this ability can be exploited to shape not only the spectral phase, but
also the amplitude.

Diffraction-based pulse-shaping

Contemporary shaping of spectral amplitude and phase of the optical pulse is
achieved employing a 2D phase-mask in a diffraction-based configuration [22]. The
intensity and the phase of the light diffracted from a grating are dependent on the
spatial parameters of the periodic structure (Fig. 3.5a). The length of the diffraction
period d rules the diffraction angle θm following the grating equation

d(sinθm − sinθi) = mλ, (3.1)

where λ is the optical wavelength, θi the incidence angle and we consider the first
order of diffraction m = 1. The optical phase of the diffracted beam can be tuned
varying the phase of the periodic modulation, while the amplitude is dependent on
the grating depth. Therefore, if we are able to regulate the grating profile, we can
thus control the attributes of the diffracted light. In Fig. 3.5b, we represent how
we can achieve this using the 2D SLM to produce programmable gratings. We can

2Liquid crystals are said to be in a nematic phase when their molecules have no positional
order but tend to point in the same direction, identified as director.



3.2. Optical pulse-shaping 27
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Figure 3.5: Diffraction-based pulse shaping. a) First-order diffraction from a
grating is determined by the attribute of the periodic pattern (see text) b) Pulse
shaper implementing a diffraction-based folded scheme consisting in a diffraction
grating, cylindrical lens and a programmable LC-SLM screen.

indeed impart periodic modulations of the liquid crystal orientations, resulting in
refractive index gratings. When employing a cylindrical lens, while along the x-
axis the components are dispersed and focused, along the y-axis we can create a
periodic phase grating. Moreover, we can set a different diffraction pattern for every
frequency component. The frequency resolution will be limited by the SLM pixel
size and the focus dimension along the x-axis.
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Figure 3.6: Examples of diffraction patterns for different shaping conditions.
a) Unshaped condition. Spectral amplitude and phase are not modified with
respect to the input pulse. b) Amplitude shaping. The spectral content is
modified applying the grating only to selected components. c) Phase shaping.
The shift of the grating phase modulates accordingly the spectral phase.

The spectral amplitude and phase of the output diffracted light can be shaped as
a function of the gratings applied to each component. In Fig. 3.6 we report some
example of 2D patterns visualized3 in the SLM screen in order to achieve specific

3Precisely, we display only a reduced number of periods. On the SLM screen are actually
present hundreds of them.
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shaping conditions. In (a) we report the unshaped condition in which the relative
amplitude and phase between spectral modes is not modified. In (b) we show the
modulation of the spectral content by changing the grating depth. In particular,
the blazed profile is applied only in three narrow regions of the spectrum, selecting
three specific frequency components. In (c) we act instead on the spectral phase.
The grating modulation is shifted in space quadratically as a function of the mode
frequency. The resulting spectral phase follows the imparted trend and rules the
temporal structure of the pulse. In particular, a quadratic modulation of the spectral
phase results in a linear modification of the pulse chirp.

In the following sections, we will discuss the specific application of pulse-shaping
in the multimode heterodyne detection experiment.

3.3 Multimode heterodyne detection

In section 2.5 we discussed the relevance of the multimode description [17] in the
case of ultrashort laser pulses and introduced the formalism suitable for the mul-
timode heterodyne measurement. Hereby, we present the experimental solutions
adopted to implement the multimode heterodyne detection.
We employ two different acquisition schemes: a fast parallel acquisition of the spec-
tral components with multichannel arrays of photodiodes and a low-noise detection
with single-channel diodes combined with pulse-shaping. In addition, we introduce
a polarization dependent optical design for the probe and LO recombination, which
allow us to optimize the balanced detection and the correlation analysis.

3.3.1 Parallel array heterodyne detection

The simultaneous acquisition of many different spectral components in parallel
is performed employing two multi-channel arrays of photodiodes. The full spectra

probe

LO

sample

Full
spectral
content

-

ω

ω

detection with
photodiode arrays

Figure 3.7: Parallel array detection scheme. The combined probe and LO
beams are dispersed by prisms on a pair of multichannel arrays of photodiode
detectors.

of the two heterodyne outputs are indeed equally dispersed by diffraction prisms
and collected separately on the two arrays (Fig. 3.7). The acquisition is performed
pulse-by-pulse and the resulting heterodyne trace is then the difference between the
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separated array measurements.
The employed arrays are provided with 256 photodiodes (Hamamatsu) each and the
home-built electronics permit to read the laser pulses at a maximum rate of 5 kHz.
The energy resolution is limited by the optical spectral dispersion and focusing con-
ditions and it is better than 2 meV.

3.3.2 Low-noise shaped heterodyne detection

As we discussed in Chapter 2, measuring the full quantum state of light means
to characterize also the statistical properties of the radiation. Therefore, we need a
detection system capable of measuring at best the optical noise, reducing instead the
detrimental one coming from other sources. A useful scheme to improve this point
consists in performing the subtraction between the two heterodyne outputs before
the electrical amplification (Fig. 3.9a). In this way, the sum of the noise generated
from two independent amplifiers is avoided. Adapting this solution to the multi-
channel setting is up to date still technically difficult. Therefore, in order to exploit
the multimode frequency resolution in the low-noise single-channel configuration,
we alternatively exploit pulse-shaping. As represented in Fig. 3.8, we select the de-
sired frequency component to examine by shaping the LO content [19]. Hence, the
amplification of the probe is effective only for the frequency corresponding to the
selected LO mode.

probe

LO
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LO
spectral
shaping

ω

ω

detection with
single-channel diodes

-

Figure 3.8: Low-noise shaped detection scheme. Frequency-resolved mea-
surements are obtained with a low-noise single-channel detection by performing
a mode selective heterodyne detection with a shaped Local Oscillator.

In the next paragraphs we report the details about the detector and double-shaper
employed in our setup.

Low-noise differential detector

As mentioned, the single-channel heterodyne acquisition is performed by a low-
noise differential detector. The currents produced by the illuminated photodiodes,
which are connected in reverse bias, are directly subtracted prior to electronic ampli-
fication (Fig. 3.9a). We employ custom made detectors provided by CAEN, mount-
ing Hamamtsu S3883 Silicon photodiodes. The detector response (Fig. 3.9b) is then
an analogic signal lasting ∼ 1µs which is digitized with 30 MHz sampling and 16
bit dynamical range (Spectrum M2i.exp). The final acquired and saved output of the
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measurement is the sum of the digitized point, weighted by the profile of the detec-
tor response. The maximum repetition rate of the laser pulses supported is 1 kHz,
which is limited by the discharge time of the specific electronic components in use.

- V
a) b)

Low-noise
differential detector

+ V

amplifier

PD1

PD2

Figure 3.9: Low-noise differential detection. a) The currents produced by
two photodiodes with opposite bias are directly subtracted before amplification.
b) For every pulse repetition the detector produces a response curve which is
digitized and integrated.

Double-pulse shaper

Our heterodyne setup is equipped with a double-pulse shaper able to control
independently amplitude and phase of both probe and LO beams. The shaping ca-
pability is crucial in order to obtain frequency-resolution when dealing with single-
channel detectors, but it is also very useful to control the temporal structure and
compression of both the two pulses.
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Figure 3.10: Double shaping scheme applied to the low-noise heterodyne
detection. Probe and Local Oscillator are aligned on top of each other and
shaped independently on different portions of same spatial light-modulator. The
probe maintains its full spectral content, while in the LO is selected a narrow
bandwidth.

As showed in Fig. 3.10, the double-shaping scheme is implemented aligning probe
and LO one on top of the other and dividing the SLM screen in two parts.
In the specific case of frequency-resolved heterodyne with single-channel detection,
the LO is shaped to a narrow spectral band which determines the examined probe
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frequency. The shaper resolution in our setup is better than 0.4 meV. The probe
pulse instead is not spectrally filtered, but the phase pattern is properly modulated
in order to compress the pulse at the sample.

3.3.3 Balanced detection with tunable polarization splitting

The balanced subtraction of the two heterodyne outputs is a crucial parameter
in order to properly cancel the classical noise and access the quantum fluctuations
regime. However, from the practical point of view, the real specifications of com-
mercial 50:50 non-polarizing beam splitter can deviate consistently (2-4 %) from the
ideal splitting ratio. This issue can be improved adopting a polarization sensitive
scheme [25, 26] as the one illustrated in Fig. 3.11. Indeed, the use of polarizing beam
splitters and rotating waveplate allows us to finely tune the splitting ratio. In de-
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Figure 3.11: Tunable polarization splitting scheme. Polarization control op-
tics (half-wave plates, polarizer and polarizing beam splitters) are exploited to
developed an alternative scheme to the use of a single 50:50 beam splitter.

tail, polarizing beam-splitters (PBS) are objects which reflect the vertically polarized
light and transmit the horizontal one. If we prepare probe and LO in two orthogo-
nal states we can align them together on a single beam after PBS1. At this point, the
polarization of both fields is rotated of 45◦ so that they are equally divided by PBS2.
Remarkably, the polarization rotation can be tuned in order to get probe-LO with
same intensity ratio on the the two channels. Furthermore, in order to balance the
absolute amount of light in the two channels tunable attenuators can be employed.
In addition to the balancing optimization, we highlight that this scheme is very use-
ful also to implement more sophisticated detection schemes. Indeed, the recombina-
tion of probe and LO on a single beam increases the versatility of the optical design.
Moreover, the polarization resolution enables the study of the polarization modes.
In the following we see that these potentialities are particularly important for the
study of correlations between modes.
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3.4 Multimode correlation detection

In section 2.5.2 we discussed that a multimode state in general is not described
by the sum of the individual subsystems, but information is contained also in the sta-
tistical correlations between them. We also defined the covariance between modes
as a useful estimator of their interdependence.
We now describe the experimental measurement of the covariance between quadra-
ture modes. In particular, we report both the analysis of frequency and polarization
correlations.

3.4.1 Frequency correlation

Frequency-resolved measurements of the spectral bandwidth of optical pulses
can be employed to reconstruct the covariance map of the multimode spectrum [18,
19, 27, 28]. Hereby, we show that sensitivity to statistical correlations can be ob-
tained in both the parallel array and single-channel shaped detection schemes. The
fundamental requirement is the contemporary pulse-by-pulse measurement of the
two modes considered.

Parallel array detection

The parallel acquisition with the photodiode arrays is the fastest method to re-
construct the full covariance map. Indeed, measuring simultaneously 256 channels,
recording a single train of pulse repetitions is sufficient to build the 256x256 sym-
metric covariance matrix between the outputs of the different components. Never-
theless, the noise performance of our array detectors is not high enough to measure
the quantum fluctuations with high-quality, and it is relevant to implement the cor-
relation detection also with the low-noise configuration.

Single-detector scheme

The low-noise detection permits to measure the covariance with high sensitivity,
but it implies a point by point reconstruction of the covariance map, measuring a
pair of modes at a time. While using the low-noise single-channel detection the role
of pulse-shaping is crucial, because it is employed to shape in the LO the modes
of the pair of frequencies under examination. Hence, with the setup depicted in
Fig. 3.12 the statistics of the sum between the two considered quadrature modes is
acquired.
In order to calculate the covariance is necessary to measure also the statistics of the
individual modes. Then the covariance is given as a function of the variance of the
different datasets as

Cov[X̂ω1 , X̂ω1 ] =
1
2

(
σ2

X̂ω1+X̂ω2
− σ2

X̂ω1
− σ2

X̂ω2

)
. (3.2)

Double-detector scheme

The polarization dependent splitting scheme proposed in Fig. 3.11 can be ex-
ploited, together with the use of a second single-channel detector, to speed up the
acquisition time of the pair correlation in the low-noise setting. Designing the setup
in Fig. 3.13 it is possible to record simultaneously and separately the two modes in
analysis. In this way, it is possible to save the time required to reference the individ-
ual systems.
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Figure 3.12: Frequency correlation detection scheme with a single-channel
differential detector. The combined statistics of the state of a pair of modes is
obtained shaping a double frequency spectrum in the LO.
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Figure 3.13: Double-detector frequency correlation detection scheme. The
use of a pair of differential detectors allows for the contemporary low-noise
acquisition of two separated frequency modes.
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3.4.2 Polarization correlation

In addition to the multimode structure associated to the different frequency com-
ponents, the optical fields also present two orthogonal polarization modes, which
can carry different information and be correlated. The polarization dependent split-
ting in Fig. 3.11 can thus be conveniently adapted to reveal the full polarization state
with the setup showed in Fig. 3.14. Precisely, the two outputs of PBS1 can be used
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Figure 3.14: The polarization dependent splitting scheme allows for the con-
temporary acquisition of the two polarization modes with a pair of low-noise
detectors.

to separate the x and y polarization components. In order to send LO light in both
the polarization channels the linear polarization of the LO is oriented at 45◦ before
PBS1. Finally, the separate heterodyne detection of the two polarization modes can
be performed simultaneously with two detectors.
We highlight that this setup can be used to study the ellipticity of the probe polar-
ization, which is important for instance when dealing with probes scattered from
birefringent systems.

In the end we also underline that the frequency and polarization schemes de-
scribed in this section, even if discussed separately, are not exclusive and can be
implemented together.
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Chapter 4

Characterization of the probe
coherent state

In this chapter, we present the fundamental attributes of the ultrafast probe pulses
employed in our multimode heterodyne detection experiments. Precisely, we test
them in order to verify the consistency of their description in terms of coherent mul-
timode states.
We report the results of typical frequency-resolved quadrature measurements attain-
able with the parallel array and low-noise detector acquisition schemes illustrated
in the previous chapter. The single-pulse resolution is exploited to analyze the sta-
tistical distribution of repeated acquisitions and check the capability to work in the
optical shot noise regime. The calibrated noise levels are then employed to perform
a quantitative tomography reconstruction of the optical state.

4.1 Frequency-resolved quadrature map

Multimode heterodyne detection collects the field quadrature of different spec-
tral components. Hence, the relevant degrees of freedom are the quadrature phase
(i.e. the delay between probe and LO) and the mode frequency. The output of a
measurement can therefore be pictured as a 2-D map, where the heterodyne spectral
response is represented as a function of the LO delay.
In the following, we show and compare the frequency-resolved quadrature map ac-
quired with the two detection schemes described in Chapter 3. At first we perform
the simultaneous acquisition of the spectral components with multichannel array
detectors. Then, we measure the frequency modes separately with the low-noise
single-channel detectors exploiting pulse shaping of the LO.

Parallel detection

In the parallel detection configuration described in Fig. 3.7 in the previous chap-
ter, the two output beams exiting the last beam-splitter are frequency dispersed and
separately recorded by two multichannel array detectors with 256 pixels. The rel-
ative spectra are shown in Fig. 4.1a and are obtained averaging a thousand repeti-
tions. Most of the observed intensity is relative to the LO light because in the exam-
ined case the probe intensity (105 photons/pulse) is 103 times weaker than the LO
(108 photons/pulse). The probe induced interferential modulation (opposite in the
two channels) is revealed by the difference of the two spectra, which is the hetero-
dyne spectral response depicted in Fig. 4.1b. The heterodyne signal depends on the
phase of the interference between probe and LO. The different responses reported
describe the dependence of the spectral interference with respect to the probe-LO
delay. In the present case of a Fourier-Transform-limited pulse, at the overlap all
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the modes have the same interferential conditions and same sign of the heterodyne
modulation, while fringes are observed if probe and LO are separated in time. This
is a consequence of the frequency mismatch between different components, which
acquire different phases for the same temporal probe-LO delay.

a)

c)

b)

d)

e) f)

Figure 4.1: Quadrature map with parallel detection. a) Intensity spectra of the
two photodiode arrays. b) Heterodyne differential signal obtained subtracting the
two array spectra. The spectral profile of the interference fringes is dependent
on the delay between probe and LO. c) Frequency-resolved quadrature map,
measured for the different interference phases scanning the probe-LO delay.
d) Frequency-integrated quadrature, obtained summing the map in (c), reveals
the temporal convolution between probe and LO. e,f) Details of frequency-
resolved and integrated quadrature in the central probe-LO overlap range.

The various heterodyne spectral traces acquired scanning the LO delay are collected
to obtain the full frequency-resolved interferogram in Fig. 4.1c. The pulsed nature
of the radiation employed is revealed by integration of the latter map along the fre-
quency axis, which leads to the quadrature in Fig. 4.1d. The profile of its amplitude
modulation, indeed, results from the convolution of the ∼50 fs long probe and LO
pulses.
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From the practical point of view, our measurements will generally limit the focus
on few quadrature periods at the overlap, as detailed in Fig. 4.1e-f. There the phase
mismatch between the different frequencies in the pulse bandwidth is still negligi-
ble. Thus, the relative phase between the mode quadratures in the overlap range is
indicative of the difference between probe and LO spectral phases. If the two have
the same spectral phase, the quadrature map has a flat phase profile. Otherwise, the
phase trend depends on the relative chirp between the two. In the present example,
both probe and LO are optimally compressed (Fourier-transform-limited). The ab-
sence of relative chirp is confirmed by the phase match between the quadratures of
the spectral components.

Low-noise detection

The implementation of a low-noise differential detector, with the configuration
shown in Fig. 3.8, allows us to improve the signal-to noise ratio of the measurement
to the detriment of the capability to collect simultaneously many spectral modes.
The spectral resolution is preserved thanks to the frequency selective amplification
of the probe with a shaped LO and we build the frequency-resolved quadrature map
(Fig. 4.2a) with subsequent acquisitions with different single-mode LOs (Fig. 4.2b).

a)

c)

b)

d)

Figure 4.2: Multimode heterodyne measurement with low-noise detection.
a) Frequency-resolved quadrature map, obtained combining low-noise single-
mode acquisitions with various narrow LOs as a function of the probe-LO delay.
b) Intensity spectra of the different single-mode shaped LOs employed. In red
we highlight the single-mode LO used to measure the data in (c). c) Low-noise
heterodyne trace of the central mode with about 10 photons per pulse in the
signal beam. d) Quadrature of the central mode with 10 photons per pulse
acquired with parallel array detection for comparison with (c).

The better quality of the measurement attained with the low-noise configuration
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with respect to the parallel array acquisition can be appreciated comparing them
in the same illumination condition. We consider a probe with ∼ 10 photons/pulse
in the central mode and acquire 800 repetitions per point in the low-noise scheme
(Fig. 4.2c) and 3000 repetitions with the arrays (Fig. 4.2d). The uncertainty is esti-
mated as standard deviation (σ) of independent acquisitions and it reveals a signal-
to-noise ratio 10 times better with the low-noise detection in this intensity regime.

4.2 Multimode noise characterization

The single-pulse detection methods used allow for the description of the ex-
periment in terms of repeated measurements on equally prepared quantum states.
Hence, we are able to collect the pulses statistical distribution, which is representa-
tive of the physical state of the examined light. Moreover, the balanced differential
scheme adopted for the heterodyne detection removes classical-related instabilities
and permits a discrimination of the intrinsic quantum fluctuations. In particular,
performing a heterodyne measurement with the LO only, i.e. in the probe vacuum
state, characterizes the quantum limited Shot Noise.
In order to verify our sensitivity to the quantum statistical properties of light, we
need to distinguish the Shot Noise level from the electronic and laser instabilities. In
this section, we quantify the different contributions and check the linear poissonian
Shot Noise dependence on the photon number in comparison to the excess noise of
super-poissonian classical sources.

4.2.1 Laser noise

At first, we analyze the spectral attributes of the laser radiation considering the
multi-channel array acquisition of the LO light, shown in Fig. 4.3. In order to have
a quantitative reference we calibrate the array readout units measuring the power
of the incoming light. The repeated acquisition of the pulse spectrum forms a train
of successive records at the laser rate (Fig. 4.3b). Thanks to this regular temporal
spacing, we can apply a Fourier-Transform analysis in order to filter the frequency
components linked to slow drifts and periodic noises.
We evaluate the spectral dependent variance of the datasets as a function of the
incoming intensity. We observe that both original (Fig. 4.3c) and FT-filtered data
(Fig. 4.3d) have a variance about 100 times bigger than the impinging intensity,
signaling the presence of classical fluctuations exceeding the shot-noise level. We
also note that the FT-filter is effective in reducing the random fluctuations and this
smooths the spectral intensity dependence. The distribution is peaked at the spectral
saddle points, suggesting a dominant contribution of frequency-jitter instabilities.
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a)

c)

b)

d)

Figure 4.3: Intensity dependent spectral noise of the laser source. a) Intensity
spectrum b) Raw and filtered set of pulses (top) with corresponding Fourier-
Transform spectra (bottom). c) Raw data variance. d) FT-filtered variance.
The FT-analysis reduces the noise removing periodic fluctuations and slow drifts.
The variance peaked at the saddle points suggests the presence of frequency-
jitter instabilities.

4.2.2 Shot Noise

The fundamental element to discriminate the intrinsic quantum noise from the
environmental instabilities is the balanced differential scheme, through which clas-
sical fluctuations are canceled.

Parallel detection

In the case of multichannel detection, the subtraction is performed between the
spectra acquired by the two photodiode arrays. We see in Fig. 4.4a that the differ-
ential acquisition strongly reduces the measured variance with respect to the one
measured in Fig. 4.3. However, the dominant contribution is associated to the back-
ground response, which is representative of the detector Electronic Noise (EN) level.
Considering the latter as an additive term, we discriminate the Shot Noise by sub-
tracting the EN level to the full FT-filtered variance. The result is plotted in Fig. 4.4b,
where the comparison with the LO intensity spectrum confirms the Shot Noise vari-
ance to be equal to the LO number of photons. In Fig. 4.4c the Shot Noise spectrum
as a function of intensity is reported, highlighting the intensity dependent improve-
ment of the Shot-to-Electronic noise ratio.
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a)

b)

c)

Figure 4.4: Shot Noise characterization with parallel detection. a) Full vari-
ance of the differential detection output. b) Shot Noise (SN) spectrum obtained
subtracting the Electronic Noise (EN) to the full variance, compared with the LO
intensity. c) Intensity dependent shot noise (shifted). The Shot Noise variance
increases linearly with the optical intensity, improving the SN/EN ratio.

Low-noise detection

The Shot-to-Electronic Noise ratio, which estimates the quality of the quantum
fluctuations measurement, is greatly increased by employing the low-noise differen-
tial detector. We characterize the Shot Noise response of our two low-noise detec-
tors in the same measurement, exploiting the double-differential detector setup in
Fig. 3.13. Thanks to a frequency splitting scheme, each detector collects a different
side of the spectrum. As previously performed for the arrays, the detector outputs
are calibrated in photon units.
The results in Fig. 4.5a show that the EN level is about two orders of magnitude
smaller than with the photodiode array configuration, while the amount of em-
ployed LO light is comparable1. The Shot Noise (full variance-EN) dependence on
LO intensity is displayed in Fig. 4.5b and the linear relation is highlighted for two
selected modes in Fig. 4.5c. We highlight that the variance is equal to the number of
LO photons.

1The direct subtraction prior to amplification in the low-noise scheme preserves the detec-
tor from saturating its differential response and permits to employ relatively high intensity
LO even with a very sensitive detector.
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a)

b)

c)

Figure 4.5: Shot Noise characterization with low-noise detection. The two
sides of the probe spectrum are acquired by two separate detectors like in
Fig. 3.13. a) Balanced heterodyne spectral noise. b) Spectral Shot Noise for
different LO intensities. c) Linear dependence of the Shot Noise with respect to
the LO intensity for selected frequency modes.

4.3 Probe state tomography

After having analyzed the properties of the LO and thus referenced the probe
vacuum state, we focus on obtaining the full characterization of the probe field
through heterodyne detection. In particular, in this section we present the analysis
to achieve the optical tomography of the coherent probe state in the photon phase
space.
Experimentally, we collect in the frequency-resolved quadrature map the hetero-
dyne trace output X̃ which is generally proportional to the field quadrature X, ex-
pressed in phase space units (see derivation of eq. 2.32),

X̃ω(ϕ
LO) = γ

√
2|zω|Xω(ϕ

LO) (4.1)

where z, X are expressed in photon field units and γ is the unit conversion factor for
the arbitrary X̃ units. In order to perform quantitative estimations in phase space
units, we need to renormalize the output with

Xω =
X̃ω

γ
√

2|zω|
. (4.2)

The required factors can be obtained with calibrated intensity measurements. If it is
not possible to externally calibrate the acquisition units or to quantify the LO compo-
nents in terms of number of photons, we can exploit the absolute intrinsic reference
given by the LO Shot Noise, which maps the vacuum noise. Indeed, the quadrature
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operator variance for the vacuum state in phase space units is

σ2|0⟩
X = ⟨0| X2 − X̄2 |0⟩ = 1

2
(4.3)

while the measured variance reads

σ2|0⟩
X̃ = γ2|z|2. (4.4)

Therefore, with this reference we get an evaluation of the factor γ|z| and the mea-
sured trace can be renormalized to photon phase space units as

X =
X̃√

2σ2|0⟩
X̃

. (4.5)

Actually, in the presence of electronic noise (EN) [10, 11], the measured variance
would be overestimated, σ2|0⟩

X̃ = γ2|z|2 + EN, and the normalization must be cor-
rected as

X =
X̃√

2(σ2|0⟩
X̃ − EN)

. (4.6)

We present an example of normalized heterodyne trace in Fig. 4.6, showing its quadra-
ture mean value and variance. We select a narrow frequency mode in the spectrum
(1.64 eV, 0.5 meV bandwidth). In order to have an independent test on the ampli-
tude of the quadrature measured, we record the probe intensity with a power meter.
Precisely, since we perform the experiments with a beam too weak to be directly de-
tected, we measure it before attenuation with a calibrated filter. The intensity of the
considered probe mode is about 1 photon/pulse.

a) b)

Figure 4.6: Quadrature normalized in photon phase space units. a) Mean-
value data and relative fit. b) Normalized variance and reference noise levels.

Recalling that for a coherent state |αω⟩ we have

⟨Xω(ϕ
LO)⟩ = 1√

2
⟨aωe−iϕLO

+ a†
ωeiϕLO⟩ =

√
2|aω| cos(ωt + ϕω + ϕLO), (4.7)

it is insightful to perform a sinusoidal fit f = A cos(ω(t + ∆tLO) + ϕω) with respect
to the LO delay ∆tLO (Fig. 4.6a). Considering that the mean photon number can be
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expressed as ⟨I⟩ = |α|2 we can estimate it from the fit as ⟨I⟩ = A2

2 . In the present
example we have ⟨I⟩ = 0.69 ± 0.06 photons/pulse (fit error, uncertainty on calibra-
tion neglected). We underline that the result agrees with the expected value from
the intensity estimation with power meter and calibrated filter.
Regarding the variance, we see in Fig. 4.6b that, as expected for a coherent state,
there is no evident dependence on the quadrature phase and that quantitatively it
is set at the vacuum level defined by the sum of the Shot (=1/2) and Electronic Noise.

In order to obtain a more complete representation of the optical state in analysis,
we perform the tomography reconstruction of the phase space Wigner function, as
previously presented in section 2.3. Loading as input of the reconstruction algorithm
the quadrature and phase (Xi, ϕi) of every single-pulse experimental realization, we
calculate as output the quasi-probability Wigner distribution. In Fig. 4.7 we display
the results retrieved for the reference vacuum state (a) and for the considered probe
with a mean photon number ∼ 1 (b).

a) b)
p

q

p

q

Figure 4.7: Measured probe Wigner function. a) Vacuum state b) Coherent
state of the probe mode with a mean photon number of about 1 photon/pulse.

We observe that the vacuum state is a gaussian state centered at the phase space
origin, while the probe state is displaced due to its coherent amplitude. From the
quantitative point of view, we calculate the expectation value for the number op-
erator and its variance employing the pattern tomography estimators presented in
eq. (2.27). The inefficiency introduced by the electronic noise can be corrected by
setting the estimator efficiency parameter [10, 11] to

η =
SN

SN + EN
. (4.8)

We report the results in Tab. 4.1 and we comment that the obtained values are in
agreement with the expected intensity and with the poissonian statistics (N = σ2

N)
proper of a coherent state.
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Table 4.1: Result of the pattern tomography reconstruction of the considered
optical mode for the photon number operator and its variance.

N [#photons] σ2
N [#photons2]

probe (fit) 0.69 ± .0.06 -
probe 0.67 ± 0.03 0.74 ± 0.10

vacuum 0.00 ± 0.01 0.01 ± 0.03

4.4 Frequency correlation

As introduced in section 2.5.2, the multimode nature of the ultrashort pulses
employed allows us to explore the correlation and entanglement between different
components. The multimode structure of the considered coherent state description
is built as a tensor product of the single-frequency components, |α⟩ = ⊗ω |αω⟩.
Therefore, in this framework the spectral modes are independent and correlation
among them should not arise.
We verify the uncorrelated character of the probe light measuring the experimental
covariance between modes. In order to discuss our setup sensitivity to the attributes
of the quantum limited Shot Noise, we discriminate the contributions associated to
the detector noise and to the classical fluctuations of the laser source.

4.4.1 Environmental setup correlations

While the quantum fluctuation of the coherent state are independent for the var-
ious spectral modes, some extrinsic correlation can be introduced by other noise
sources in the setup.
The parallel multichannel acquisition is well-suited to simultaneously acquire the
covariance map for a large number of components. As a drawback, though, we al-
ready observed in Fig. 4.4 that our array detectors are affected by a non-negligible
readout noise. Moreover, in Fig. 4.8a we record the covariance map of the empty
detector and we note some stripes out of the diagonal. These modulations signal the
correlation set by a cross-talk effect between the array diodes and limit the perfor-
mance of the detection scheme.
In comparison, we underline that the low-noise detection configuration avoids this
issue because the differential detector is realized with separated diodes and in the
double-detector scheme two modes are analyzed by two distinct devices.
Another noise contribution in the experiment arises from the instabilities of the laser
system. We characterize them by acquiring the covariance map of the LO spectrum
with an array detector (Fig. 4.8b). In Fig. 4.4 we showed the features of the variance,
which we now equivalently retrieve along the diagonal of the covariance map. The
checkered structure of the map describes fluctuations of the same sign for modes
on the same side of the frequency spectrum, while anti-correlated deviations for
modes at the opposite side. This result is representative of instabilities dominated
by frequency-jitters of the pulse spectral content.
Since the latter statistical features are proper of the laser source, they affect the ex-
periment whatever the detection device we adopt. Nevertheless, the balanced dif-
ferential heterodyne subtraction is effective in canceling the undesired classical fluc-
tuations and discriminating the quantum statistics.
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a) b)

Figure 4.8: Setup correlations. a) Array electronic noise covariance map.
b) Laser fluctuations covariance map.

4.4.2 Shot Noise correlations

The intrinsic Shot Noise statistics is examined with a balanced heterodyne mea-
surement of the LO light, i.e. the vacuum state. In Fig. 4.9a we show the covariance
map obtained with the parallel detection. We observe that thanks to the differen-
tial acquisition the laser correlations are removed and the remaining features are the
ones due to the detection.

a) b)

Figure 4.9: Shot Noise covariance. a) Covariance map acquired with paral-
lel detection. b) Selected details of covariance map measured with low-noise
detection and comparison with array acquisition.

The low-noise configuration is less affected by the detection artifacts and in Fig. 4.9b
we present the relative results in comparison with the array map. We display the
diagonal trace (red), which is representative of the shot noise variance, and a covari-
ance profile for one fixed frequency component (purple), which is compared to the
corresponding data in the array map (green). We see that the measurement is greatly
improved ignoring the array response and that no correlation is distinguished out
of the low-noise uncertainty. A reference parameter to quantify the signal-to noise
ratio is the proportion between standard deviation of covariance and the shot noise
variance (diagonal covariance terms), which in our condition is set to 2%.
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Chapter 5

Non-gaussian statistical features of
pulsed second-harmonic light

The phase space statistics of an optical mode in a coherent state is a two dimen-
sional normal distribution which has the width limited by the Heisenberg princi-
ple. When we measure the corresponding mode quadrature, we are evaluating a
marginal of such distribution, which is in turn characterized by a gaussian statistics
centered around its expectation value. Nevertheless, in the following we highlight
that in a pulsed multimode approach this description requires a more careful treat-
ment comprehensive of the absolute phase of the optical field.
We discuss the absolute phase of a pulse introducing the Carrier-Envelope Phase
(CEP) description. In general the CEP takes a random value pulse by pulse, while the
coherent state is described with reference to a well-defined phase. We note that, de-
spite this fact, in the previous chapter we correctly characterize the employed probe
in terms of coherent states, but the equivalence there holds thanks to the locked rel-
ative phase between probe and Local Oscillator, which makes heterodyne detection
insensitive to the absolute phase. However, the latter condition is not generally true.
For instance, the CEP role needs an explicit consideration in the case of frequency
conversion experiments [29], where we will indeed reveal a non-gaussian behavior
for the quadrature statistics.
In this chapter we investigate the multimode heterodyne detection of Second Har-
monic Generation light. The setup capability to collect the optical state statistics
is exploited to analyze the emerging non-gaussian features. We perform quanti-
tative tomography reconstruction and discuss the results with reference to phase-
randomized coherent states.

5.1 Carrier-Envelope Phase

When dealing with pulsed electric fields it is possible to reference the absolute
phase of the optical pulse introducing the Carrier-Envelope Phase (CEP) [30].
The temporal dependence of the field can be described as a fast oscillating carrier
wave, evolving at frequency ωc, which is multiplied by a slowly varying envelope
function f (t).

E(t) = f (t)ei(ωct+ψ) + c.c. (5.1)

The CEP phase is defined as the difference between the maximum of the envelope
and the maximum of the field, which is expressed by the factor ψ.
We depict the time domain representation of the periodic train of pulses in Fig. 5.1a.
Successive pulses are generated at a fixed repetition rate from a mode-locked laser.
However, they are not pulse to-pulse CEP-stable because a relative phase shift be-
tween carrier and envelope occurs. If the shift ∆ψ is not a multiple of 2π, successive
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pulses present a different CEP phase.
The origin of the instability is twofold. On one hand the difference between group
and phase velocity due to the propagation in the cavity medium introduces a phase
slippage with respect to the envelope. On the other hand, it is not constant, due to
the unavoidable mechanical nanometric instability of the cavity parameters, which
also adds a certain degree of randomness to the phase jump.

Δψa) Time domain

b) Frequency domain

t

ω

ω0

δ

ωj = jδ +ω0

τ = 2π/δ

ω0 = (Δψ/2π) δ

E(t)

I(ω)

Figure 5.1: Carrier-Envelope Phase. a) Time domain representation. The
absolute phase of the electric field is characterized as the difference between
the maximum of the envelope and the maximum of the field. In general the
CEP phase changes pulse-to-pulse. Successive pulse are periodically separated
by a period τ (rep.rate δ). b) Pulse spectrum in the frequency domain. The
frequency modes of the field are spaced by the repetition rate δ and the CEP
instability determines the frequency offset ω0.

Since we are dealing with a periodic sequence of pulses, it is insightful to analyze
them also in the frequency domain.
The pulse envelope is a periodic function such that f (t + τ) = f (t). Conversely, the
carrier is not in general the same after the interval τ between two pulses. If we label
the repetition rate as δ = 2π/τ, we indeed have that the carrier frequency is not
always an integer multiple of δ but it can present a frequency offset ω0 < δ.

ωc = ncδ + ω0 (5.2)

We can exploit the latter expression to rewrite the field separating the factors with
periodicity τ from the one accounting for the CEP shift.

E(t) = ( f (t)eincδt)eiω0t + c.c. = f̃ (t)eiω0t + c.c. (5.3)

From the previous equation we can define the CEP shift between two subsequent
pulses as ∆ψ = ω0τ. This expression signals the link between the CEP time-shift
and its representation in the frequency domain. Indeed, the periodic function f̃ can
be represented with a Fourier sum of modes spaced by the repetition rate δ, so that
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the field reads

E(t) =
∞

∑
j=0

f̃ jeijδteiω0t + c.c. =
∞

∑
j=0

f̃ jei(jδ+ω0)t + c.c. (5.4)

Therefore, as shown in Fig. 5.1b we have that the field spectrum is characterized by
a multimode comb of modes with frequency

ωj = jδ + ω0, j ∈ N. (5.5)

where the offset ω0 is indicative of the CEP evolution.
As a consequence of this, frequency conversion processes can be sensitive to the CEP
offset. For example, the frequency doubling in second harmonic generation

ωSH j = 2ωj = jδ + 2ω0 (5.6)

implies a doubling of the CEP offset and a change of the absolute phase with respect
to the one of the fundamental.

5.2 Heterodyne of the pump second-harmonic

In order to highlight the role of the absolute phase of the field we adapt our
pump&probe heterodyne scheme presented in Fig. 3.1 implementing a Second Har-
monic Generation (SHG) experiment.
The pump and probe/LO beams employed are produced respectively as Idler and
Signal outputs of an Optical Parametric Amplifier. Our OPA is seeded with a white-
light continuum generated by the laser fundamental and pumped by the laser sec-
ond harmonic. With this typology of OPA implementation, as pointed out it in [31],
the relative phase between Idler and Signal, i.e. pump and probe, is fixed.

LO

SHBBO/quartz

NIR 
pump

𝜔
𝜔 2𝜔

SHG

-

Figure 5.2: Heterodyne detection of Second Harmonic Generation. The Near-
Infrared pump is frequency converted in a non-linear sample (BBO or quartz)
and detected with the visible LO.

We now consider the heterodyne detection experiment. We have that also the phase
between probe and LO is locked, being obtained from the same OPA-Signal beam,
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and the measured quadrature expresses a well-defined phase. This description com-
plicates if we include in the experiment frequency-conversion processes, like SHG.
Actually, in the latter case the absolute phase of the generated light is twice the input
one, ψSH = 2ψi. To recap, we have LO and pump (Sig/Idl) with the same phase ψi
and the Second Harmonic (SH) light with phase 2ψi. Therefore, the phase difference
between the SH and the reference LO would result in the almost random initial CEP
phase ψi = ψSH − ψi.
Exploiting SHG we can thus design an absolute phase sensitive experiment. In de-
tail, recalling that the pump (Idler) and LO (Signal) have the same absolute phase,
we can apply the previous reasoning to perform an heterodyne detection of the
pump Second Harmonic (SH). In order to detect an effective interference between
SH and LO we implement a configuration (Fig. 5.2) in which the pump SH gener-
ated at a non-linear sample (BBO or quartz) is resonant to the LO (ωLO = 2ωpump).
In detail we tune in the range ωpump ∼ 0.8 eV = 1550 nm and ωLO ∼ 1.65 eV = 750
nm.
We underline that a requirement to get the heterodyne interference is also to match
the SH and LO k-vectors. We fulfill it by aligning the pump collinear to the probe.
We note that after the sample we dump the pump and select the SH with prisms and
low-pass filters, in order to avoid spurious effect on the detector.

5.2.1 Frequency-resolved single pulse measurements

For a first experimental test we employ a Barium Borate (BBO) sample to gen-
erate with high efficiency the pump Second Harmonic. We acquire the heterodyne
response with the parallel array scheme (described in Fig. 3.7) and thanks to the ef-
ficient SHG we show in Fig. 5.3a that we are able to discriminate the interferential
modulation already in the single-pulse response. At the same time, the heterodyne
signal strongly changes pulse by pulse and the average response on many repetitions
is null. This behavior is the result of the completely randomized phase difference be-
tween SH and LO due to the laser absolute phase. The average output is indeed the
integral on all quadrature phases.

In this framework, then, the empty mean value of the pulse distribution is not

a) b)

Figure 5.3: a) Single pulse heterodyne spectra of SH light generated in BBO.
Each pulse presents randomly a different interference fringe pattern, which cancel
on the average response. b) Reference intensity spectra of LO and Second
Harmonic Generated light.
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representative of the state of the system. On the other hand, fundamental informa-
tion is inferable from the higher order statistics. In the following, we investigate the
distribution features proper of the optical state under examination.

5.3 Low-noise study of second-harmonic statistics

The characterization of the pump Second Harmonic heterodyne experiment re-
quires a detailed study of the optical statistics. In order to analyze it quantitatively
with reference to the quantum shot noise regime, we adopt the low-noise detection
scheme (Fig. 3.8). Since the amount of light detectable in this configuration is limited
(the detector response would eventually saturate), we reduce the SHG efficiency by
employing a non phase matched quartz sample and detuning the pump-LO reso-
nance. We explore the effects on the pulse distribution as a function of the various
degrees of frequency, LO phase and pump intensity.

5.3.1 Frequency response

We start by measuring the dependence on the different spectral components of
the multimode configuration.
The first step of our quantitative analysis is the calibration of the LO shot noise for
the different spectral components. The observable descriptive of the statistical dis-
tribution is the histogram of the values taken by each single-pulse acquisition. We
display in Fig. 5.4a the relative map as a function of the LO frequency. We note

a)

c)

b)

d)

Figure 5.4: Histogram representation of the vacuum state gaussian distri-
bution. a) Raw LO shot noise distribution map, b) LO modes have different
distribution histograms. c) Normalized vacuum distribution map in absolute
phase space units, d) rescaled LO modes have the same histogram distribution.
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the expected gaussian shape and the width of the distribution enlarges in agree-
ment with the LO spectrum intensity. We compensate the effect of the different LO
strengths normalizing every component to the vacuum response in absolute phase
space units. Precisely, we follow the procedure described in section 4.3. We require
that the rescaled vacuum quadrature variance reads σ2

Xvac
ω

= 1/2 and show the result
in Fig. 5.4c.
We now test the SH heterodyne response in absolute units. The measurement out-
put is reported in Fig. 5.5. We observe a bi-modal feature rising on the low energy
part of the spectrum, which is the spectral range where the LO is resonant to the tail
of the pump generated SH (Fig. 5.5c). Therefore, we deduce that the non-gaussian
shape revealed (Fig. 5.5c) is a signature of the generated SH state.

b)

a)

c)

Figure 5.5: Frequency-resolved response of Second Harmonic light.
a) Frequency dependent distribution of the heterodyne measurement. b) Distri-
bution histograms at selected frequencies. c) Reference intensity spectra of LO
and pump pulses.

5.3.2 LO phase dependence

We now examine the quadrature phase dependence of the SH state. In order to
do it, we select a spectral mode at 1.64 eV, where we distinguish the SH bi-modal
feature, and scan the LO phase delay. In Fig. 5.6 we see that the SH distribution (b)
is phase independent as it is the vacuum one (a).
In addition, we also consider the distribution measured with a probe coherent state
together with the SH state. We obtain that the mean value oscillation proper of
the coherent state harmonic oscillator (c) is modulating the shift of the bi-modal
distribution (d). We can describe this setting as a system formed by a stochastic
phase oscillator on top of an harmonic oscillator.
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a)

c)

b)

d)

Figure 5.6: Phase dependence of the quadrature distribution. a) Vacuum
state b) SH state c) Probe state d) Probe+SH.

5.3.3 Pump-intensity dependence

We evaluate the non-gaussian response as a function of the pump intensity to
obtain a trend insightful of the considered effect. We clarify in Fig. 5.7a that the
separation between the two peaks of the bi-modal distribution is an increasing func-
tion of the pump fluence. In particular, in Fig. 5.7b we quantify this dependence
calculating the distribution variance with respect to the fluence and we find a good
agreement with a third-order polynomial fit.

a) b)

Figure 5.7: Pump-intensity dependence of SH distribution. a) Histogram of
the SH distribution for different pump fluences. b) Trend of the distribution
variance as a function of pump fluence.
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5.4 Phase-randomized states

In this section we rationalize the previously collected evidences of a non-gaussian
statistics with focus to the absolute phase of the optical state.
We introduce a description in terms of phase-randomized states [32, 33]. This class
of states, also known as phase-averaged states (PHAVs), is characterized by a non-
gaussian distribution and it is used in quantum communication protocol applica-
tions. Their peculiarity is the absence of a well-defined phase in the optical phase
space. In particular, as depicted in Fig. 5.8 the Wigner distribution of a phase-
averaged coherent state can be formally built rotating isotropically around the origin
the coherent state one. Hence, the obtained ring-like distribution describes a com-
pletely undetermined phase, while the Poisson statistics of the number operator is
preserved.

p

q

vacuum

displaced

phase-averaged

p

q

Figure 5.8: Phase space distribution of coherent states. The phase-averaged
coherent state distribution is obtained integrating the displaced coherent state
over all the phase angles.

Taking into account the absolute phase sensitivity of the Second Harmonic het-
erodyne configuration and the random Carrier-Envelope Phase of the laser pulses,
we associate the measured SH light to a phase-randomized state. In order to verify
the consistency of our data with this description we perform two analysis.
From the experimental point of view, we exploit the peculiar absolute phase stabi-
lization device of our laser system to test its effect on the output.
In the end, we reconstruct the Wigner function and obtain quantitative estimation of
photon number observables by means of optical tomography.

5.4.1 CEP stabilization

The absolute phase of a pulsed field, described with the Carrier-Envelope Phase
(CEP), usually takes an almost random value for each repetition in a train of pulses
emitted by a mode-locked laser source. This fluctuations result while propagating
through a medium owing to the mismatch between the group and phase velocities,
which rule the envelope and carrier propagation respectively.
Nevertheless, several schemes have been proposed in order to stabilize the CEP [34,
30]. Our laser source is indeed equipped with a CEP stabilization option (MENLO
Systems XPS800). With some similarities to the SH experiment under consideration,
its operating principle consists in referencing the CEP value with a f − 2 f interfer-
ometer, which realizes the interaction between the laser fundamental and its second
harmonic, and then employing a feedback opto-electronics to adjust the absolute
phase to the selected value.
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Since we claim that the non-gaussian feature observed is due to the randomized
absolute phase of the employed laser pulses, it is insightful to test the consequence
of the CEP stabilization. In Fig. 5.9 we show the different outputs obtained with ran-
dom CEP (a) or with active phase stabilization (b). We verify a strong dependence on

a) b)

Figure 5.9: Carrier-Envelope Phase stabilization of the Second Harmonic
Heterodyne. a) CEP not stable. b) CEP stable.

the absolute phase behavior. The bimodal character of the histogram profile disap-
pears and the distribution narrows. The quadrature mean value shift also suggests
the appearance of a coherent oscillation. However, the phase stabilization perfor-
mance is limited (few hundreds of mrad in the ms-scale) and the residual phase
noise doesn’t permit a clear discrimination of this expected feature.

5.4.2 Optical state tomography

We now resort to optical tomography techniques to characterize the full SH state
and check whether it respects the attributes of a phase-randomized system.

Wigner function reconstruction

We reconstruct the Wigner function in the optical phase space for different pump
intensities, for a selected LO mode (i.e. 1.64 eV). The results are displayed in Fig. 5.10.
In (a) we reference the vacuum state (pump = 0). In (b,c) we analyze the state dis-
tribution with increasing pump power, to which corresponds a bigger amount of
generated SH light.
We observe the ring-shaped Wigner function proper of phase-averaged states, the
radius of which increases with the pump fluence. We also note that the width of
the distribution ring enlarges while the SH light rises. We quantify this qualitative
survey with pattern tomography analysis. We report the result for the considered
Wigner plots in Tab.5.1. They signal a deviation from a coherent state behavior,
involving a modification of the photon number statistics in the second harmonic
generation process. We discuss the origin of this photon noise modulation in the
following by modeling the second harmonic interaction.

Quantitative model for number statistics analysis

The optical tomography of the second harmonic light state indicates a super-
poissonian statistics of the number operator (σ2

N > N). In order to discuss this
evidence, we model the second harmonic interaction and compare with the experi-
mental data the predicted photon number statistics dependence as a function of the
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a) b) c)vp
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Figure 5.10: Wigner function of measured phase randomized state. a) vac-
uum state b) Phase averaged state (few photons) c) Phase averaged state (many
photons).

Table 5.1: Result of the pattern tomography reconstruction of the considered
Second Harmonic light mode for the photon number operator and its variance.

N [#photons] σ2
N [#photons2]

vacuum 0.00 ± 0.01 0.01 ± 0.03
low pump 5.3 ± 0.1 14 ± 2
high pump 41.5 ± 0.7 568 ± 72

pump intensity.
Non-linear interaction processes are described with the high-order terms of the op-
tical susceptibility χ, which rule the polarization field as

P = χE = χ(1)E + χ(2)EE + χ(3)EEE + χ(4)EEEE + ... . (5.7)

With this we can express the matter-radiation interaction energy and employ it as
evolution hamiltonian of the system

H = −P · E. (5.8)

The second harmonic generation is due to the 2nd-order susceptibility χ(2), and we
can represent it with the hamiltonian1

H(SH) = igχ(2)(a†a†s − aas†) (5.9)

where we expressed the involved pump and SH electric fields with their ladder op-
erators a and s, respectively, and g is a proportionality coupling factor. Moreover,
since the pump field is very intense and negligibly depleted by the low-efficiency of
the SH conversion in quartz, we can express it as a classical field α

H(SH) = igχ(2)|α|2(s − s†). (5.10)

The evolution of an arbitrary operator O after the interaction time τ can be calcu-
lated integrating the action of the hamiltonian for the considered time interval. The

1We express only the energy conserving terms associated to χ(2) and limit the discussion
to a single-mode formalism.
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result is expressed as a function of the commutator between the observable and the
hamiltonian as

O(τ) = O(0) + i
∫ τ

0
dt[H, O(t)]. (5.11)

The expected number of second harmonic generated photons, calculated perturba-
tively up to second order in the susceptibility reads

N = s†s(τ) = s†s(0)− τgχ(2)|α|2(s(0) + s†(0)) + τ2(gχ(2))2|α|4. (5.12)

Therefore, the average number of the generated SH light calculated in the initial state
(⟨s(0)⟩ = 0) is

⟨N⟩ = +τ2(gχ(2))2|α|4 = +τ2(gχ(2))2 I2, (5.13)

and it is proportional to the square of the pump intensity I.
In Fig. 5.11a we fit the experimental data with the expected quadratic trend. How-
ever, we observe the fit agreement is not good and, as also suggested by the third-
order fit in Fig. 5.7b, we reason about higher-order contributions.
Since the inversion symmetry is only weakly broken in quartz (i.e. small χ2) and
the pump electric field is very intense due to both ultrashort pulse duration and
focusing condition (size = (50µm)2), also the quadrupole second harmonic genera-
tion gives a relevant contribution. This process is ruled by the 4th-order non-linear
susceptibility, with hamiltonian

H(q−SH) = ig′χ(4)((a†)3as − a3a†s†) = ig′χ(4)|α|4(s − s†) (5.14)

where we also considered a classical pump field.
The expected intensity dependence for the quadrupole effect is

⟨N(4)⟩ = τ2(g′χ(4))2 I4 (5.15)

which would overestimate the experimental trend power. However, we need to
consider the combined evolution of the hamiltonian H = H(SH) + H(q−SH) which
leads to the operator expression

N = s†s − τ|α|2(gχ(2) + g′χ(4)|α|2)(s + s†) + τ2|α|4(gχ(2) + g′χ(4)|α|2)2. (5.16)

and corresponding initial state mean value

⟨N⟩ = τ2(gχ(2))2 I2 + 2τ2gχ(2)g′χ(4) I3 + τ2(g′χ(4))2 I4. (5.17)

In Fig. 5.11a we confirm that a fit function of the form in eq. 5.17 correctly matches
the measurement data.

We now consider the photon number variance

σ2
N = ⟨N2⟩ − ⟨N⟩2 (5.18)

and calculate its evolution using the dipole+quadrupole number operator in eq. 5.16

σ2
N = τ2|α|4(gχ(2) + g′χ(4)|α|2)2 = ⟨N⟩ . (5.19)

The photon number variance equal to the mean number of photons is an attribute
of the poissonian statistics, therefore we would expect a coherent statistics for the
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b)a)

Figure 5.11: Quantitative analysis of pump dependent second harmonic num-
ber statistics. a) Photon number, fit of experimental data with 2nd and 4th-order
non-linear susceptibility models. b) Variance, data comparison with model esti-
mations obtained with mean-value fit parameters.

second harmonic light according to the previous equation. However, we see in
Fig. 5.11b that this prediction does not agree with the experiment, where an im-
portant amount of excess noise is detected.
We consider this discrepancy due to the classical pump approximation, which ne-
glects the relative statistics. The model is suitable in the case of a coherent pump
input, which has negligible signal-to-noise ratio in the high intensity regime. It fails,
instead, if other fluctuations (i.e. the laser source noise) are present [35, 36]. In order
to take them into account we consider the intensity as a classical random variable
and propagate its noise. We sum this contribution to the coherent one and obtain

σ2
N =

⏐⏐⏐dN
dI

⏐⏐⏐2σ2
I + ⟨N⟩ (5.20)

which, considering intensity dependent fluctuations (σI = kI), has an intensity de-
pendence of the form

σ2
N = k2τ2 I2

(
2(gχ(2))2 I + 6gχ(2)g′χ(4) I2 + 4(g′χ(4))2 I3

)2
+ ⟨N⟩ . (5.21)

We successfully fit this expression in Fig. 5.11b keeping fixed the parameters gχ(2)

and g′χ(4), which were obtained from the mean value analysis.
In conclusion, we address the excess noise to classical pump fluctuations, likely due
to the small fraction of environmental noise which is not eliminated by the balanced
differential scheme.

5.5 Multimode correlations

In the previous sections, we considered the statistical properties of each optical
mode independently. Hereafter, we focus instead on the correlation between dif-
ferent components which emerge owing to the phase-randomized character of the
investigated Second Harmonic light. In detail, we reveal a response which depends
on the interference between the SH and LO pulses and we study it shifting the tem-
poral overlap between the two pulses.
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Time-dependent interference response

As already described in Fig. 4.1b, changing by several optical cycles the temporal
LO overlap modifies the phase relation between the different components, owing to
their frequency mismatch. The spectrum of the multimode heterodyne trace is in-
deed characterized by interference fringes.
We display the single-pulse spectrum2 measured for SH light at two different LO
delays in Fig. 5.12a,b. The fringe frequency is set by the temporal LO delay, it ap-
proaches zero at the overlap (when all modes have the same interference condition)
while fast oscillations rise moving away. On the other hand, the phase of the modu-
lation is fluctuating as it is ruled by the absolute CEP of the pulse.

a)

c)

b)

d)

Figure 5.12: Second Harmonic interference dependence on the LO-pump
overlap. a) Spectrally uniform single-pulse response at the overlap. b) Modu-
lated single-pulse spectral response with separated pulses. c) Time-dependent
distribution map. d) Distribution histograms at selected LO delays.

In Fig. 5.12c,d we report the peculiar bimodal distribution of the phase-randomized
quadrature for a selected mode, describing its temporal behavior. The SH non-
gaussian signal is optimized at the LO overlap, while it decreases on a ps-scale ac-
cordingly to the THz-scale resolution of the frequency-resolved detection system.

Time-dependent correlation map

We now study the correlations of the multimode state by calculating the Pearson
correlator for the frequency-dependent quadrature as a function of the LO-pump

2The experiment is performed in the BBO sample configuration to improve the signal and
get a distinguishable single-pulse response.
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delay. The Pearson correlation map for two quadrature modes is defined as

ρ(Xω, Xω′) =
Cov[Xω, Xω′ ]

σXω σXω′
(5.22)

where the covariance is normalized by the standard deviations of the considered
modes. We show the relative maps for some selected delay in Fig. 5.13 and we re-
veal a strong and time-dependent response. We rationalize the observed correlation
fringes in view of the delay dependent profile of the heterodyne spectrum, which
sets a phase relation between modes and gets randomized by the CEP.

Figure 5.13: Second Harmonic correlation map dependent on the temporal
LO overlap. Correlation fringes appear as a consequence of the LO overlap
dependent spectral modulation.

We note that the correlations are revealed as a consequence of the interference with
the LO and are not a feature of the SH state considered alone. Nevertheless, in this
phase-randomized framework, especially if the single-pulse response is noisy and
unresolvable, this statistical feature can be exploited to retrieve the temporal struc-
ture of the pulse. For instance, the analysis of the correlation fringe frequency could
supply the information regarding temporal shifts of the pulse in non-equilibrium
experiments even if there is no fixed phase relation between probe and LO.
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Part II

Dissecting coherent phonon
dynamics in quartz
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Unveiling and controlling the time evolution at the atomic and ultrafast scale of
low energy excitations is the key to attain coherently driven new functionalities of
materials. The associated Raman response is commonly measured in pump&probe
experiments. It relies on the fact that impulsive photo-excitation (i.e. the interac-
tion with light pulses on a timescale shorter than the period of the excitation in the
material) triggers coherent non-equilibrium states of low energy excitations, such as
phonons [1, 2], magnons [3], or electronic excitations [4, 5, 6], whose time evolution
can be subsequently characterized by the ultrashort probe pulse.

The energy transfer between the optical pulse and the material depends on the
nature of the examined sample. Transparent systems are the ideal playground to
study coherent vibrational excitations. Indeed, in these materials dissipative elec-
tron dynamics is small and can be in first approximation neglected. In this condi-
tion, the interaction can be described effectively as a direct coupling between the
ultrashort pulses and the low-energy modes.
In this framework, the dominating process is dubbed Impulsive Stimulated Raman
Scattering (ISRS). ISRS takes place in Raman-active media owing to the interaction
between two photon fields whose energy difference matches the energy of a low-
energy mode. The overall process results in the creation (Stokes) or annihilation
(anti-Stokes) of an excitation in the system.
ISRS has been historically introduced and discussed treating only the high inten-
sity limit where both the coherent vibrational state in matter, which is often dubbed
coherent phonon1, and the interacting electric field are described in a classical formal-
ism [7, 8, 9]. However, more recently ISRS processes have emerged as a powerful
tool for quantum information and it has been shown that ISRS can be at play even
with relatively weak pulses and be used to store/retrieve single photons in/from the
elastic field of materials [10, 11] as well as frequency convert single photons through
non-linear processes which can occur in probe pulses containing only a few photons
[12]. In this context, a growing interest in studying coherent non-equilibrium Raman
dynamics with low intensity pulses is emerging.

Time-resolved Multimode Heterodyne Detection is a tool designed to explore the
low-energy excitations in the mentioned quantum regime. The following chapters
of the thesis are dedicated to characterize the ISRS light-phonon interaction dynam-
ical response mapped on the various optical degrees of freedom available thanks to
Multimode Heterodyne.
In Chapter 6 we introduce a theoretical description of ISRS in a fully quantum for-
malism, suitable for the description of the interaction with low intensity optical
probes [13].
Chapter 7 validates the model predictions reporting the results of coherent control
experiments in the benchmark α-quartz sample [14]. We highlight the capability of
discriminating the spectrally resolved ultrafast dynamics separately for the quadra-
ture amplitude and phase, which turn out to be related to the atomic momentum
and position respectively.
In the end, we discuss the statistical features introduced by the non-linear ISRS inter-
action in Chapter 8. In detail, we focus on the correlations imparted by the exchange
of quanta of vibrational excitations among interacting spectral components [15].

1The phrase is a synthesis of the more complete expression ‘coherent state of the vibra-
tional elastic field’.
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Chapter 6

Quantum Model for Impulsive
Stimulated Raman Scattering

The interaction between ultrashort light pulses and non-absorbing materials is
dominated by Impulsive Stimulated Raman Scattering (ISRS). This effect is funda-
mental in the description of light-matter energy exchanges, in particular in the exci-
tation of coherent vibrational states.
The description of ISRS in the context of pump&probe experiments is based on effec-
tive classical models accounting for the interaction between the phonon and pulsed
electromagnetic fields [7, 8, 9]. These are well representative of the physical system
in the classical spectroscopy framework, where the number of involved photons is
huge and a mean-field representation is appropriate. However, they are no longer
suitable when dealing with quantum spectroscopies, which reveal the nature of the
interaction at its fundamental quantum scale.
Since the proposed Multimode Heterodyne Detection aims to exploit optical probes
with quantum character, we require a suitable tool to account for the attributes spe-
cific of this setting. In particular, a quantum mechanical formalism would unfold
the statistical information proper of the system state.

In this chapter, we develop a theoretical description of ISRS where, without mak-
ing any semi-classical approximation, we treat both photon and phonon degrees of
freedom at the quantum level [13]. Precisely, we model the system hamiltonian on
the basis of the dipole interaction energy. We distinguish two distinct light-matter
interaction terms and analyze the relative effects on the phonon and photon degrees
of freedom. We achieve this by calculating the evolution of the relevant observables,
with focus on the quadrature measured in the Multimode Heterodyne experiment.

6.1 Light-phonon interaction

A dielectric medium is polarized by an electromagnetic wave propagating through
it. The components of the polarization field P are expressed in terms of the imping-
ing electric field E and the material susceptibility tensor χ:

Pλ = ϵ0 ∑
λ′

χλλ′Eλ′ , (6.1)

where λ is the polarization index and ϵ0 is the electric permittivity of the vacuum.
In our model, we limit the discussion to the case of lossless materials, which are de-
scribed with an hermitian susceptibility. In particular, we consider that the optical
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range of interest is away from absorption regions and we assume the susceptibil-
ity is a constant function of the optical energy. One of the fundamental ingredi-
ents of the whole discussion is the susceptibility tensor dependence on the lattice
deformations, i.e. those caused by excited vibrational modes. Considering tiny dis-
placements out of the equilibrium position, the susceptibility can be perturbatively
expanded around its initial value χ(0) as a function of the lattice normal modes co-
ordinates qn, also referred to as phonon positions (n labels the mode) [16, 17]:

χλλ′(q1, . . . , qN) = χ
(0)
λλ′ + ∑

n
χ
(1)
λλ′(n)qn. (6.2)

where we defined χ
(1)
λλ′(n) :=

(
δχ/δqn

)
λλ′

⏐⏐⏐
qn=0

the components of the rank three

non-linear susceptibility tensor χ(1). In order to simplify the notation, in the follow-
ing we neglect the summation over n and discuss the interaction of a single phonon
mode with light. We note that the refractive index depends on the susceptibility,
n =

√
1 + χ. Therefore, eq. (6.2) implies a modulation of the material refractive

properties as a function of the phonon position operator1.
In order to study the non-dissipative2 light-matter interaction we obtain the bulk

hamiltonian from the energy density required to establish the polarization P in a
dielectric sample, which is given by [18]

U(x⃗, t) =− P(x⃗, t) · E(x⃗, t)

=− ϵ0 ∑
λλ′

χλλ′Eλ′(x⃗, t)Eλ(x⃗, t). (6.3)

We proceed to quantize the previous expression, where we remind that the suscepti-
bility is phonon modulated as in eq. (6.2). The elastic field q describing the vibration
in the crystal, together with its momentum p, and the electric field Eλ polarized
along λ can be quantized as follows

Eλ(x⃗, t) = i ∑
j

√
ωj

2Vϵ0

(
aλje−i(ωjt−⃗k j ·⃗x) − a†

λje
i(ωjt−⃗k j ·⃗x)

)
, (6.4)

q(x⃗, t) =
1√

2mΩVS

(
b†ei(Ωt−u⃗·⃗x) + be−i(Ωt−u⃗·⃗x)

)
, (6.5)

p(x⃗, t) = i

√
mΩ
2VS

(
b†ei(Ωt−u⃗·⃗x) − be−i(Ωt−u⃗·⃗x)

)
. (6.6)

In writing the previous expressions we used u⃗, k⃗ j for the vibration and electric field
wave vectors, respectively, Ω, ωj are the frequencies of the lattice vibration and elec-
tric field, m is the effective mass of the mode, V is the quantization volume of the
electric field and VS is the volume of the sample. The annihilation and creation op-
erators of photonic modes aλj and a†

λj are such that [aλj , a†
λ′k] = δjkδλλ′ , where λ, j

1In this discussion we only take into account the refractive effects involving the transmit-
ted light fields. We note that extending the presented formalism to the reflective degrees of
freedom also their response can be treated.

2We note that in the presence of absorption the imaginary part of the susceptibility would
generate the issue of a non-hermitian hamiltonian. Thus, a complete description of the dy-
namics in dissipative materials would require an extension of the model, following for in-
stance an approach based on open quantum system theory [19].
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are the polarization and frequency indices, respectively. In particular, we consider
a set of modes with offset frequency ω0 and spaced by δ: ωj = jδ + ω0, j ∈ N. The
phononic degree of freedom are described with b and b†, satisfying the commutation
relation [b, b†] = 1.
The interaction Hamiltonian without any approximation is therefore obtained inte-
grating U(x⃗) over the volume of the sample and reads

Hint =
∫

VS

dx⃗ϵ0 ∑
λλ′

[
χ
(0)
λλ′ + ∑ χ

(1)
λλ′

1√
2mΩVS

(
b†ei(Ωt−u⃗·⃗x) + be−i(Ωt−u⃗·⃗x)

)]
×

× ∑
jℓ

√
ωjωℓ

2Vϵ0

(
aλje−i(ωjt−⃗k j ·⃗x) − a†

λje
i(ωjt−⃗k j ·⃗x)

) (
aλ′ℓe−i(ωℓt−⃗kℓ ·⃗x) − a†

λ′ℓe
i(ωℓt−⃗kℓ ·⃗x)

)
.

(6.7)

The effects of the hamiltonian in the system operators are obtained applying the uni-
tary evolution operator U = e−itHint . For a general observable O in the Heisenberg
picture it holds

O(t) = U†(t)OU(t) (6.8)

which leads to

dO
dt

= i[H, O] and O(t) = O(t0) + i
∫ t

t0

dt′[H, O(t′)]. (6.9)

Therefore, we have that the integration accounting for a τ lasting interaction reads

O(t + τ) = O(t) + i
∫ t+τ

t
dt′[H(t′), O(t′)] (6.10)

In order to simplify the spatial and temporal integration, which will account for mo-
mentum and energy conservation respectively, we consider that the phonon energy
is usually much smaller than the optical frequencies involved. As a consequence of
this we can assume k j − kl ≃ u ≃ 0. Therefore, we can simplify the evolution defin-
ing the hamiltonian Hint(t) as the sum of the terms which do not vanish through the
integrations

Hint = HRe f + HRam. (6.11)

The first term, which we dub refractive, is given by:

HRe f = − VS

2V ∑
λλ′,j

ωjχ
(0)
λλ′

(
a†

λj aλ′ j + aλj a†
λ′ j

)
(6.12)

where VS and V are the sample and quantization volumes and ωj the photon fre-
quencies indexed by j. HRe f describes the redistribution of photons between the two
polarizations which is mediated by the static birefringence (χ(0)).

The second term contributing to the hamiltonian, dubbed Raman, is phonon de-
pendent and given by:

HRam = −
√

VS

2V
√

2mΩ
∑

λλ′,j
ωj χ

(1)
λλ′

[(
a†

λjaλ′ j+Ω
δ

)
b† +

(
aλja†

λ′ j+Ω
δ

)
b
]

, (6.13)

where Ω is the phonon frequency and m its effective mass. The two terms of
HRam represent the Stokes and Anti-Stokes processes. Photons with energy ωj and
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polarization λ are destroyed by aλj and photons of energy ωj ± Ω and polarization
λ′ are created by a†

λ′ j±Ω
δ

, together with the emission (b†) and annihilation (b) of a

phonon, respectively.
We stress that HRe f and HRam are representative of the major effects observed in

experiments. Importantly, HRe f acts as a beamsplitter relocating photons at a fixed
frequency between the two polarizations, that does not imply an effective transfer
of energy between the light and the sample. We will thus refer to it as Linear Re-
fractive Modulation (LRM). Conversely, HRam rules the actual Impulsive Stimulated
Raman Scattering (ISRS), which involves the exchange of a quantum of the elastic
energy between the probe light pulse and the crystal, resulting in a transfer of spec-
tral weight between different spectral components.
Using this notation, in the following we discuss separately the two different ef-
fects, LRM and ISRS, commenting on how they modify the transmitted light and
the phonon phase-space.

6.1.1 Linear Refractive Modulation

HRe f , (6.12), describes the redistribution of photons between the two optical po-
larizations. The χ(0) equilibrium susceptibility, that is without phonon excitation,
describes static refractive effects like birefringence and dichroism. In particular, we
consider the case of an isotropic sample with an hermitean susceptibility of the form

χ(0) =

(
u −i|w|eiξ

i|w|e−iξ u

)
(6.14)

where |w| and ξ quantify respectively the polarization rotation and ellipticity in-
duced in a linearly polarized input beam.
The phononic degrees of freedom are not affected by the action of HRe f . Concerning
the optical ones, the induced evolution by LRM can be calculated as

aλj(τ) = ∑
λ′

exp
(

iτ
VS

2V
ωjχ

(0)
)

λλ′
aλ′ j(0) (6.15)

with

exp
(

isχ(0)
)

λλ′
= exp(isu)

(
cos(s|w|) +eiξ sin(s|w|)

−e−iξ sin(s|w|) cos(s|w|)

)
. (6.16)

The quadrature reads accordingly

Xλj(τ, ϕ) =
1√
2

aλj(τ)e−i(ωjt+ϕ) + c.c. =

= cos
(

τ
VS

V
ωj|w|

)
Xλj

(
0, ϕ − τ

VS

V
ωju

)
± sin

(
τ

VS

V
ωj|w|

)
Xλ′ j

(
0, ϕ − τ

VS

V
ωju ± ξ

) (6.17)

From the latter equation we can appreciate the role of the factor |w| in ruling the
quadrature amplitude by mean of the polarization rotation process, and also the
effect of the factors u and ξ in controlling the field phase during the propagation
through the sample.
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In addition, the intensity measured after the LRM interaction can be expressed as

Iλj(τ) = a†
λjaλj(τ) = cos2

(
τ

VS

V
ωj|w|

)
Iλj(0) + sin2

(
τ

VS

V
ωj|w|

)
Iλ′ j(0)

± sin
(

τ
VS

V
ωj|w|

)
cos

(
τ

VS

V
ωj|w|

)
(a†

λaλ′e∓iξ + a†
λ′aλe±iξ).

(6.18)

6.1.2 Impulsive Stimulated Raman Scattering

The energy exchange in the sample is modeled by the Raman Hamiltonian, HRam

(6.13). The phonon related non-linear susceptibility coefficients χ
(1)
λλ′ are assumed

real, such that χ
(1)
λλ′ = χ

(1)
λ′λ, and small in absolute value, so they represent a pertur-

bative modification of the equilibrium tensor. Unlike the LRM hamiltonian which is
solved exactly, we indeed exploit a perturbative approach to perform the ISRS cal-
culations. For a general observable we obtain its evolution up to second order in the
interaction parameter τχ(1) with

O(τ) = O(0) + iτ[HRam, O(0)]− τ2

2
[HRam, [HRam, O(0)]]. (6.19)

The evolution of the phonon operator b reads

b(τ) = b(0) + i
τ
√

VS

2V
√

2mΩ
g, (6.20)

where g = ∑
λλ′,j

χ
(1)
λλ′ ωj a†

λjaλ′ j+Ω
δ

,

which in turn gives the mean values of the phonon phase-space variables position q
and momentum p, modified with respect to a generic phonon initial state as{

⟨q(τ)⟩ = ⟨q(0)⟩ ,
⟨p(τ)⟩ = ⟨p(0)⟩+ τ

2V γ,
(6.21)

with γ = ⟨g⟩ = ∑λλ′,j χ
(1)
λλ′ ωj |αλj||αλ′ j+Ω

δ
|,

where we assumed coherent states of the radiation with the same spectral phase.
This shows that the result of a sudden Raman interaction is a displacement along
the momentum axis, as depicted in Fig. 6.1. The squared radius R2 gives the mean
value of the phonon number N = b†b, which, to second order in the τχ(1) coupling
parameter, results

⟨N(τ)⟩ = ⟨N(0)⟩+ τVS

2VmΩ
γ ⟨p(0)⟩+ τ2VS

8V2mΩ
⟨g†g⟩ . (6.22)

We notice that the first order contribution depends on the value of the momentum
p before the interaction, while the second order term is proportional to the mean
value of the operator g†g, which equals γ2 if light states are classical (coherent states
such that |α|2 ≫ 1). The formalism is descriptive of both pump and probe interac-
tions. The second order term is usually negligible with respect to the first one unless
⟨p(0)⟩ = 0. For example, probing the excited phonon relies on the first term, while
the pump excitation from thermal equilibrium on the second.
The effects on the phonon degrees of freedom have their counterparts on the photon
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p

q

R(t)

R = (2V , 0)

R(t + )

Figure 6.1: Phase space representation of the Raman interaction between light
and phonon. The circular trajectory is the one followed by the free evolution of
the coherent phonon, modeled as an harmonic oscillator. Light-phonon imparts
a positive momentum displacement (arrow) modifying the radius of the phonon
trajectory.

ones. The intensity of the transmitted light at a certain frequency ωj and polarization
λ, computed as ⟨Iλj(τ)⟩ = ⟨a†

λj(τ) aλj(τ)⟩ reads

⟨Iλj(τ)⟩ = ⟨Iλj(0)⟩

+
τVS

2VmΩ ∑
λ′

χ
(1)
λλ′ωj|αλj|

(
|αλ′ j+Ω

δ
| − |αλ′ j−Ω

δ
|
)(

⟨p(0)⟩+ τ

4V
γ

)
+ τ2γ′

j.

(6.23)

In (6.23) the term in ⟨p(0)⟩ results from first order contributions and is proportional
to the difference in amplitude between the modes corresponding to the frequencies
ωj + Ω and ωj − Ω. The terms in γ and γ′ result from second order interaction.
Among them one can recognize a contribution with a structure similar to the first
order (⟨p(0)⟩ substituted by γ) and a further one γ′

j which depends on the mean-
values of squared phonon operators (see Supplementary Material in [13] for γ′ full
derivation).
If we examine the quadrature up to first order we have

Xλj(τ, ϕ) =
1√
2

(
aλj + i

τ
√

VSωj

2V
√

2mΩ
∑
λ′

χ
(1)
λλ′(aλ′ j+Ω

δ
b† + a†

λ′ j−Ω
δ

b)
)

e−i(ωjt+ϕ) + c.c.

(6.24)

which for the mean value reads

⟨Xλj(τ, ϕ)⟩ = ⟨Xλj(0, ϕ)⟩+
τVSωj

2
√

2V
∑
λ′

χ
(1)
λλ′

(
(|αλ′ j+Ω

δ
| − |αλ′ j−Ω

δ
|) cos(ωjt + ϕ)

⟨p(0)⟩
mΩ

+(|αλ′ j+Ω
δ
|+ |αλ′ j−Ω

δ
|) sin(ωjt + ϕ) ⟨q(0)⟩

)
.

(6.25)

We highlight that in the latter also a position dependent modulation is present. Since
the quadrature is defined such that ⟨X(ϕ)⟩ = 1√

2
|α| cos(ωt + ϕ), the momentum
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related term describes a modification in the amplitude, in agreement with (6.23).
Otherwise, the one controlled by the position is associated to a phase shift of the
quadrature. We remind that in the previous expression we considered all the modes
with the same spectral phase and we note that in the case of an elliptical polarization
(φλ ̸= φλ′) these interpretation should be adapted.

Equipped with this general machinery, we now proceed to study in detail the
expected signatures in pump&probe experiments.

6.2 Pump&probe approach

Pump&probe experiments provide standard techniques in time-resolved spec-
troscopy, whereby a first intense laser pulse (the pump) excites the vibrational de-
grees of freedom of a sample and a second pulse, less intense, is used to probe non-
equilibrium features. By repeating the experiment at different time-delays between
pump and probe, one can retrieve information about the phonon dynamics in the
sample.
In the following, we describe how the theoretical model presented in the previous
section applies in this framework, highlighting the different effects due to subse-
quent interaction of the pump and the probe pulses. We will consider the pump
acting on the phonon equilibrium state at a reference time, and study the non-
equilibrium response as a function of the delay time ∆t. In particular, we describe
two different regimes. Firstly, we take into account the interaction of a second pump
pulse as a function of the phase of the vibrational mode, in order to describe the
coherent dynamical control of the phonon. We then adapt this description to the
probing process, which is the specific case of a weak interacting pulse.
Figure 6.2 shows a sketch of the pump&probe interactions under examination with
reference to the phonon phase space description.

6.2.1 Pump interaction

We assume the pump impinging on the sample at equilibrium, where the phonon
position and momentum have zero average ⟨q(0)⟩ = ⟨p(0)⟩ = 0 (Fig. 6.2, left). This
is the case for instance if the initial state of the vibrational degrees of freedom has a
thermal distribution.
The ISRS effect on the intensities of the different frequency components of the pump
pulses are here evaluated neglecting the equilibrium LRM. The first order term is
null because of ⟨p(0)⟩ = 0 and we also neglect the term γ′pump

j because the phonon
population is negligible with respect to the photon number. The transmitted pump
intensity is given by

⟨Ipump
λj (τ)⟩

∆t=0
= ⟨Ipump

λj (0)⟩

+ τ2VS
8V2mΩ

γpump ∑
λ′

χ
(1)
λλ′ωj|α

pump
λj |

(
|αpump

λ′ j+Ω
δ

| − |αpump
λ′ j−Ω

δ

|
)

,
(6.26)

where ⟨Ipump
λj (0)⟩

0
is the intensity of the spectral components priorly to the interac-

tion and the second term can be interpreted as an effective red-shift of the pulse spec-
trum. Indeed, assuming the incoming pulse to have a Gaussian spectrum centered in
ω0, equation (6.26) implies that modes with frequency smaller than ω0 are amplified
(because the difference |αpump

λ′ j+Ω
δ

| − |αpump
λ′ j−Ω

δ

| is positive), while modes with frequency

higher than ω0 are suppressed. This description rationalizes well the pump red-shift
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observed in experiments [7, 20].
Correspondingly, according to (6.21), the phonon system is shifted from the origin of
the phase space (⟨q(0)⟩0 = 0,⟨p(0)⟩0 = 0) along the momentum axis to a trajectory
of radius

R ≡ ⟨p(τ)⟩0 =
τ

2V
γpump. (6.27)

6.2.2 Coherent control

After the impulsive excitation, the vibrational mode evolves in time, neglecting
dissipation, along its circular trajectory in the phase space following its free evo-
lution hamiltonian H f ree = Ωb†b. The phonon system is indeed represented by a
quantum harmonic oscillator. Remarkably, we can analyze the interaction of the
radiation with the excited coherent phonon in analogy with a forced harmonic oscil-
lator. Hence, in the following we underline the ISRS capability in controlling coher-
ently the phonon-photon energy exchange at the femtosecond scale.
The phonon time-dependent evolution of the phase space observables at a given
time delay (t) from the pump excitation are summarized as:{

t < 0, ⟨q(0)⟩∆t = ⟨p(0)⟩∆t = 0
t > 0, ⟨q(0)⟩∆t =

R
mΩ sin(Ω∆t), ⟨p(0)⟩∆t = R cos(Ω∆t).

(6.28)

With these explicit expression we can evaluate the contributions in (6.22) and (6.23)
in order to describe the energy exchange between the phonon and a second optical
pulse (#2)⎧⎨⎩⟨∆N⟩∆t =

τVS
2VmΩ γ#2 ⟨p⟩∆t +

τ2VS
8V2mΩ (γ#2)2

⟨∆Iλj⟩∆t =
τVS

2VmΩ ∑λ′ χ
(1)
λλ′ωj|α#2

λj |(|α#2
λ′ j+Ω

δ

| − |α#2
λ′ j−Ω

δ

|)
(
⟨p⟩∆t +

τ
4V γ#2

)
+ τ2γ′#2

j .

(6.29)
It results that the amplification of the vibrational mode is favoured when the ISRS
process takes place in phase with the phonon momentum, while it is damped when
π out of phase. On the other hand, the corresponding amount of energy is respec-
tively taken from/left in the pulse which gets spectrally red/blue shifted.
We note that a second pulse with the suitable intensity in the damped oscillator con-
figuration would even completely quench the coherent oscillation. Although, we
underline that such prepared vibrational state could in principle differ by the orig-
inal empty ground state in its statistical distribution, in particular if the system is
characterized by incoherence or inhomogeneity. This framework would thus be an
interesting playground where to exploit the statistical sensitivity of Time-resolved
Heterodyne Detection.

6.2.3 Probe interaction

The probe interaction with the sample is a peculiar case of coherent control in
which we employ a weakly perturbative light pulse. In this setting, indeed, the focus
is not set on modifying the attributes of the system, but in monitoring its evolution.
In particular, the aim is to map the material attributes on the probe optical degrees
of freedom.
We can read these information imprinted in the multimode quadrature Xλj. We
describe in eq. (6.17) and (6.25) the quadrature response relative to the LRM and
ISRS effects separately. However, in the actual experiment the two processes need to
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Figure 6.2: Coherent control of excitations in the vibrational phase space.
a) Pump and probe induced displacements (arrow) describe the effect on the

vibrational energy ( ⟨p2⟩
2m + 1

2 mΩ2 ⟨q2⟩). Depending on the phase space coordi-
nates at the interaction time the phonon oscillation (b) can be amplified (red) or
damped (blue). The corresponding effect on the transmitted pulse spectra (c)
is a red-shift or blue-shift, respectively. The energy exchange is most important
at the momentum extremes. At the position extremes instead the oscillation
amplitude is minimally modified, while it is experienced a phase shift of the
oscillation.
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be considered together. In particular, in order to discriminate the symmetry of the
non-linear susceptibility tensor χ(1), a convenient choice for the detection geometry
is a reference frame with the polarization analyzer aligned along the main axes of
the polarization ellipsis. The latter configuration is described acting on the system
with hamiltonian HRot which is analogous to HRe f , but has tensor structure of the
kind

χ
(0)
Rot =

(
0 +i|w|

−i|w| 0

)
(6.30)

which accounts only for the compensation of the polarization rotation effect, neglect-
ing the dichroism.
If we consider a linearly polarized input state aligned along λ = x(

⟨axj(0)⟩
⟨ayj(0)⟩

)
=

(
|αprobe

j |
0

)
, (6.31)

the equilibrium (HRe f + HRot) measured elliptical polarization state has the form⎧⎨⎩⟨axj⟩ = kx(|w|, ξ)|αprobe
j |

⟨ayj⟩ = iky(|w|, ξ)|αprobe
j |

(6.32)

where the amplitudes are a function of the birefringence parameters |w|, ξ. Taking
into account relatively small refractive effects we can set kx ≫ ky.
The Raman interaction can be considered a perturbation of the latter state due to
HRam. Adapting (6.25) to this elliptic input leads to the phonon dependent modula-
tions

⟨Xxj(ϕ)⟩∆t =
√

2kx|αprobe
j | cos(ωjt + ϕ)

+
τkxVSωj

2
√

2V
χ
(1)
xx

(
(|αprobe

j+Ω
δ

| − |αprobe
j−Ω

δ

|) cos(ωjt + ϕ)
⟨p⟩∆t
mΩ

+(|αprobe
j+Ω

δ

|+ |αprobe
j−Ω

δ

|) sin(ωjt + ϕ) ⟨q⟩∆t

)
.

(6.33)

and

⟨Xyj(ϕ)⟩∆t =
√

2ky|αprobe
j | sin(ωjt + ϕ)

+
τkxVSωj

2
√

2V
χ
(1)
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(
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j+Ω
δ
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j−Ω

δ

|) cos(ωjt + ϕ)
⟨p⟩∆t
mΩ
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j+Ω

δ
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j−Ω

δ

|) sin(ωjt + ϕ) ⟨q⟩∆t

)
.

(6.34)

where we considered only the dominant contributions in each of the two polariza-
tions.
The measured phonon dynamics is imprinted through the dependence on the phase
space observables q and p. We highlight that the π/2 phase shift between the two
polarization components determines the attributes of their dynamical response.
The x-component (eq. (6.33)), parallel to the main polarization, is ruled by the diag-
onal elements of the susceptibility tensor. The phonon momentum modulation is in
phase with the quadrature, thus describes a change in the quadrature amplitude. In
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detail, it generates the spectral shift of the spectral content associated with the forc-
ing/damping of the vibrational oscillation. On the other hand, the position related
term is most effective in modifying the quadrature phase, which result in a shift of
the same sign on all the spectral modes.
Conversely, the orthogonal y-polarization (eq. (6.34)), owing to the elliptical polar-
ization, has a π/2 shifted equilibrium quadrature which reverses the properties
of the detected dynamics. The involved tensor terms are the out-of-diagonal ones
which are characteristic of polarization mixing symmetries. Indeed, in the hamilto-
nians HRe f in eq. (6.12) and HRam in eq. (6.13), they rule the interaction between
modes with orthogonal polarization. The amplitude modulation is ruled by the
spectrally uniform term dependent on the phonon position. On the contrary the
phase dynamics guided by the phonon momentum has an opposite response on the
two spectral sides.
In conclusion, we underline that the analysis of the quadrature dynamics allows us
to discriminate the contribution of atomic position and momentum related effects in
the coherently oscillating dynamics. The predictions elaborated in this chapter will
guide our interpretation of the Time-resolved Heterodyne measurements performed
on quartz in the next chapter.
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Chapter 7

Pump&probe heterodyne
measurements

We report the experimental investigation of coherent vibrational Raman dynam-
ics performed via Time-resolved Heterodyne measurements in the α-quartz sample.
Crystalline quartz is an ideal platform wherein to test the prototypical phonon re-
sponse generated by Impulsive Stimulated Raman Scattering. The sample is indeed
endowed with high transparency, photo-resistance and with distinguishable Raman
modes. We are therefore in a suitable setting to verify the consistency of the ex-
periment with the quantum ISRS model developed in the previous chapter. The
object of the analysis is to address the pump&probe non-equilibrium dynamics as-
sociated with the coherent phonon, with focus in discriminating the modulation of
the frequency-resolved quadrature phase and amplitude.
Firstly, we introduce the representation of the measurement output and discuss the
distinctive features of the general dynamical response in the main polarization com-
ponent of the probe field. Afterwards, we exploit the polarization geometry to ana-
lyze the exhibition of different effects depending on the symmetry of the considered
lattice mode. Moreover, we probe the behavior of the explored observables also in
the case of coherent control of the vibrational excitation, performing double-pump
studies.

7.1 Disentangling amplitude and phase dynamics

Standard pump&probe spectroscopies rely on the measurement of the integrated
optical intensity. Remarkably, heterodyne detection, exploiting the interference with
the LO, allows us to preserve the field information and disentangle its amplitude
and phase contributions.
A Time-resolved Multimode Heterodyne measurement consists in reconstructing
the frequency-resolved quadrature of the probe pulse as a function of the delay of
the pump pulse. In particular, we are interested in the non-equilibrium modulation
of the spectral amplitude and phase.
In Fig. 7.1 we present the multimode quadrature of the employed probe recorded
with the parallel array detection scheme (Fig. 3.7). Every quadrature point is ob-
tained acquiring a train of 200 pulse repetitions. We quantify the optical amplitude
A and phase φ through a sinusoidal fit of each single-mode quadrature (Aω cos(ωt+
φω), Fig. 7.1a). The results are included in the spectrum in Fig. 7.1c.
The pump&probe output is obtained retrieving the fit parameters for the different
pump delays ∆t. Precisely, we focus on the evolution of the differential between
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a)

c)b)

Figure 7.1: Equilibrium spectrum of the probe quadrature. The quadrature of
each frequency-component (a) is analyzed from the full map acquired with the
array detection (b). The result of the fit are collected in the phase and intensity
(I = A2/2) spectra in (c).

the perturbed (pumped) and the constantly referenced1 equilibrium (unpumped) re-
sponse. The result are the frequency-delay maps ∆Aω(∆t), ∆φω(∆t) in 7.2.
We report a measurement whereby the probe pulse with fluence 0.7 µJ/cm2 investi-
gates2 the non-equilibrium dynamics produced by a 30 mJ/cm2 pump. We observe
in the output an oscillating dynamics of the non-equilibrium modulation.
Importantly, the spectral dependence of these features are different comparing the
phase and amplitude maps. The oscillation phase is spectrally uniform for the phase,
while the two sides of the spectrum have an opposite modulation in the amplitude
map.
In Fig. 7.3 we analyze the coherent oscillations revealed. In detail, we plot the re-
sults of the interaction in selected spectral ranges. We average the phase modulation
along the full spectrum, while we distinguish the contributions of the two opposite
sides for the amplitude. We isolate the oscillation frequencies by mean of Fourier
Transform analysis (Fig. 7.3b) and we identify some quartz Raman modes [21]. In
particular, the main contribution is related to the total-symmetric 6 THz mode.
As suggested by the dotted reference line in Fig. 7.3a, we can appreciate that the
amplitude trends of frequencies on opposite sides of the spectrum are in anti-phase
to each other, while the phase modulation is π/2 shifted with respect to them. In
order to rationalize the observed dynamics, we refer to the model developed in the
previous chapter. In particular, we consider eq. (6.33), describing the detection of the

1By means of a chopper blade on the pump beam we alternately acquire the pumped
and the reference condition, in order to monitor slow interferometer phase drifts and laser
intensity fluctuations.

2The probe is amplified with a LO 103 times more intense (108 photons per pulse).
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Figure 7.2: Pump&probe field dynamics in quartz. The differential of the
phase (a) and amplitude (b) fit parameters between the perturbed and equilib-
rium condition is showed as a function of the pump delay in frequency-time-
resolved maps.

a) b)

Figure 7.3: Analysis of the coherent oscillations in the field dynamics. a) Co-
herent phonon oscillations obtained averaging the time-response for selected
spectral regions (Full spectral range for the phase modulation, separated analy-
sis of the two spectral sides for the amplitude). The dotted line highlights the
π/2 shift between amplitude and phase modulations. b) Average among the
probe modes of the Fourier Transform module of the oscillating traces. Three
phonon modes (3.8, 6.1 and 14 THz) are identified.
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main polarization component, which presents two different modulation terms ruled
respectively by the phonon position and momentum.
If the probe interacts with the coherent vibrational state at a time when the atoms
have the maximum momentum the Stokes process dominates and high frequency
photons are down-converted. On the contrary, when the probe impinges on the
sample when the atoms are coherently moving with minimum momentum a partial
quench of the atomic motion can be triggered and the probe-phonon interaction is
dominated by the Anti-Stokes process; i.e. low frequency photons are up-converted
and an effective energy transfer between the elastic field and the probe occurs. Con-
versely, the time dependence of the phase of the different spectral components ex-
hibits a uniform behavior across the probe spectrum and it is π/2 shifted with re-
spect to the amplitude oscillation. This indicates that the phase response results from
the linear modulation of the sample refractive properties. The real part of the refrac-
tive index is dependent on the lattice displacements and the time domain response
of the phase is ruled by the coherently evolving atom position.

Hence, we disentangle the amplitude and phase contributions in the field dy-
namics. We show that they are in general different and descriptive of distinct phys-
ical effects. In the next paragraph we study how these properties behave scaling
down the probe to the photon number regime dominated by the quantum noise.

Low-noise detection in the quantum probe regime

The quantum nature of the optical probe gets more relevant as we decrease its
intensity to a relatively small number of photons. However, the performance of our
experiment would be limited by the detection capability to discriminate weak fields
and by the intensity related cross-section of the probe interaction effects. Therefore a
compromise between acquisition time, signal-to-noise ratio and probe intensity has
to be reached.
We discussed in Chapter 4 how the low-noise differential detection scheme is a use-
ful tool to improve the quality of the measurement. Here, we employ the latter in
the pump&probe experiment in order to be capable of dealing with a weak quantum
probe. We report the relative equilibrium quadrature in Fig. 7.4 acquired with 1000
repetitions per point.
Quantitatively, the experiment is performed with a few hundreds of photons in the
probe bandwidth selected by the LO (Fig. 7.4c). The fact that we work with this
amount of photons per mode means we can access the shot noise regime, where the
probe photon statistics is dominated by quantum fluctuations (σN =

√
N ), which

overcome the classical instabilities (which scale linearly on the order of 0.1–1% for
our laser source).
Importantly, such a probe intensity is sufficient to trigger a non-equilibrium re-
sponse able to overcome the noise level. In Fig. 7.5 we show the pump&probe maps
obtained in this setting. We see that the magnitude of the phase shift and of the nor-
malized amplitude modulation are comparable with the ones observed in the high
intensity regime with a similar pump intensity. Otherwise, in this framework the
absolute quantity of scattered light corresponds only to a range of 1-10 photons.
We highlight that the time-domain response of the phase gives a significantly better
signal-to-noise ratio than the amplitude. This can be understood by considering that
the pump-induced amplitude modulation is a non-linear Raman effect inducing the
scattering of a small fraction of photons, while the phase modulation is the result
of changes in the material dielectric function which are independent of the probe
intensity. This suggests that in the low probe photon number, phase modulation is a
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a)

c)b)

Figure 7.4: Equilibrium probe quadrature with low-noise detection in the
quantum regime. a) Single-mode quadrature data and fit. b) Spectral quadra-
ture map. c) Spectral phase and intensity retrieved from fit parameters.

a)

c)

b)

d)

Figure 7.5: Pump&probe field dynamics with quantum probe [14].
a) Frequency-resolved pump&probe phase map. b) Spectral amplitude map.
c) Details of the measured phonon oscillations and corresponding Fourier spec-
trum of the relative modes (d).
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more suitable observable compared with amplitude or intensity dynamics.

7.2 Symmetry dependent studies

In the measurements reported so far, we detected different phonon modes spe-
cific of the quartz sample. Remarkably, these vibrational states also belong to differ-
ent symmetry classes and, as a consequence of this, they present peculiar properties
which rule the light-matter interaction.
In detail, we discuss the case of α-quartz excited along its c-axis [22]. In this set-
ting, three different symmetry classes for the phonon modes come into play. Their
different contributions can be selected by a proper combination of the pump-probe
polarizations [23]. These three classes correspond to a specific structure of the non-
linear susceptibility tensor. In particular, for the classes called A (totalsymmetric),
and the two degenerate EL (longitudinal) and ET (transverse), the (χ

(1)
n )λλ′ have the

form

A =

(
a 0
0 a

)
, EL =

(
cL 0
0 −cL

)
, ET =

(
0 −cT

−cT 0

)
. (7.1)

We can perform a selective detection of the different symmetry classes by varying
the angle between the pump and the probe polarization. We consider a reference
frame such that the probe is initially polarized along the x axis (as in eq.(7.2)) while
the pump is oriented at an angle θ with respect to it(

⟨apump
xj ⟩

⟨apump
yj ⟩

)
=

(
|αpump

j | cos θ

|αpump
j | sin θ

)
. (7.2)

The effects on the probe after the action of the pump depend on the phase space
phonon operators p and q, which in turn are ruled by the radial parameter R intro-
duced in (6.27). In particular, we can explicit the dependence on the pump orienta-
tion as

RA = aη
pump
ΩA

,

REL = cL cos(2θ) η
pump
ΩE

,

RET =− cT sin(2θ) η
pump
ΩE

,

(7.3)

where the parameter η
pump
Ω has been defined as follows

η
pump
Ω =

τ

2V ∑
j

ωj|α
pump
j ||αpump

j+Ω
δ

|. (7.4)

The results indicate the total-symmetric character of the A modes, while the E have
a 4-fold structure.
The contributions of the different vibrational states excited in this framework can be
distinguished in the detection. We observed in equations (6.33) and (6.34) that diag-
onal or out-of-diagonal susceptibility terms are responsible of distinct probe effects.
The latter can be separated exploiting the pump orientation dependence. We sum-
marize in Fig. 7.6 the suitable geometry configurations to discriminate the various
symmetries.
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b)a) c)

A-symmetry, ‖-pol EL-symmetry, ‖-pol ET-symmetry, ⊥-pol

Figure 7.6: Phonon symmetries associated to the different detection geome-
tries. Polar plots of the mode visibility for a selected probe component as a
function of the pump-probe relative orientation. a) Total symmetric A mode
in the main polarization, b) Longitudinal EL mode in the main polarization,
c) Transverse ET mode in the orthogonal polarization.

In the previous section we reported the effects proper of the diagonal susceptibil-
ity terms. In the following we isolate the contribution of the transverse ET mode
responsible of polarization mixing.

7.2.1 E-symmetry selection

The measurement of the orthogonal probe component, described by eq. (6.34),
involves the out-of-diagonal susceptibility and predicts a different output with re-
spect to the parallel component one. In particular, the only symmetry class with
contributing non-diagonal susceptibility is the ET. We analyze the associated inter-
action by selecting it with the suitable geometry. On the basis of Fig. 7.6c, we set the

a) b)

ET-symmetry

Probe
x

y

⊥

+45°

Pump

⊥ spectrum

Figure 7.7: Transverse E-mode selection. a) Polarization geometry. b) Equi-
librium spectrum of probe orthogonal polarization component.

configuration in Fig. 7.7a, where we detect the orthogonal component and orient the
pump at 45◦ with respect to the probe. Moreover, since we have in eq. (7.3) that

RET = −cT sin(2θ) η
pump
ΩE

, (7.5)

we expect the response to be maximized for |θ| = 45◦ and having an opposite
phonon phase with θ = ±45◦. Otherwise, the ET signal disappears continuously
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if the pump is parallel or orthogonal to the probe.
In Fig. 7.8 we report the measurement performed with the +45◦ pump orientation.

a)

c)

b)

d)

Figure 7.8: E-symmetry transverse field dynamics with pump oriented at
θ = +45◦. a) Frequency-resolved phase modulation. b) Frequency-resolved
amplitude modulation. c) Coherent oscillations averaged over selected spectral
ranges and relative Fourier-Transform spectra (d). The polarization geometry
is sensitive to the 3.8 THz ET mode, which presents spectral dependent phase
dynamics and uniform amplitude response.

We note that the spectral dependence is reversed with respect to the main polariza-
tion results in Fig. 7.3. This time, the amplitude modulation is spectrally uniform,
while the phase presents a different structure on the two sides of the spectrum. This
agrees with the model prediction and it is due to the π/2 phase shift between the
orthogonal components of the elliptical polarization. Indeed, the phonon momen-
tum dependent redistribution of photons is most effective in shifting the quadra-
ture phase, while the amplitude is modulated by the position dependent refractive
modulation. From the physical point of view, the phonon is regulating the mixing
between the polarization components, which results in a modification of the probe
polarization state. For instance, an increasing in the orthogonal amplitude signals a
more elliptical character, while a decreasing represents a linearization.
The Fourier analysis of the detected oscillations reveals the selection of the E 4 THz
mode with respect to the A one. A residual A-component is still present owing to
the higher order effects not expressed in model equation (6.34). In particular, it is
the result of the diagonal susceptibility terms interaction on the orthogonal probe
component.
We also verify the pump polarization dependence considered in eq. (7.5) presenting
the measurement with θ = −45◦ in Fig. 7.9. Comparing the amplitude oscillations
we observe that the modulation in the two pump orientations have opposite phase
as expected.
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a)

c)

b)

d)

Figure 7.9: E-symmetry transverse field dynamics with pump oriented at
θ = −45◦. a) Frequency-resolved phase modulation. b) Frequency-resolved
amplitude modulation. c) Coherent oscillations averaged over selected spectral
ranges and relative Fourier-Transform spectra (d). The phase of the oscillations
are π-shifted with respect to the case with pump at θ = +45◦ (Fig. 7.8).

7.3 Coherent control experiments

In the previous sections, we observed that the result of the probe-sample interac-
tion are dependent on the phonon time-evolution. Importantly, this is not only very
useful to monitor the non-equilibrium vibrational excitation, but also a suitable tool
to control it on the ultrafast scale. Indeed, Impulsive Stimulated Raman Scattering
is able to regulate the energy exchange between the radiation and the elastic field in
analogy with a forced/damped harmonic oscillator configuration, as we introduced
in Fig. 6.2.
In order to implement the coherent control scheme, we build a double-pump ex-
periment. This kind of pump&probe scheme relies on the tuning of two temporal
delays: the coherent control is ruled by the relative delay between the two pumps,
while the measurement of the produced state is obtained scanning the probe delay
with respect to the pumps.
In the following, we report the probed field dynamics of coherently controlled vi-
brational states. We perform measurements in the different configurations represen-
tative of the phonon mode symmetry.

A-symmetry

Firstly, we investigate the vibrational control in the totalsymmetric condition.
The effect of the control pulse is defined by the delay with respect to the first pump,
in particular by the momentum of the excited phonon. If we act to force it at the in-
stant of maximum momentum, we sum the intensity of the two pumps. Otherwise,
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we subtract them if we maximally dump the phonon excitation at the minimum mo-
mentum. A peculiar case is the one in which we can perfectly cancel the vibrational
excitation.
In Fig. 7.10 we present the phonon quench experiment. We tune the relative delay to
the minimum momentum instant of the totalsymmetric A mode. We also regulate
the control pump intensity with an attenuator. We obtain the optimal cancellation
of the phonon response with a second pump weaker than the first one. The latter
condition occurs because part of the vibrational energy is spontaneously lost due
to dissipation during the interval between the pumps. We can observe that setting
these conditions the measured non-equilibrium dynamics doesn’t show a coherent
oscillation after the second pump. There is only a residual signal owing to the non
perfect tuning of the pump parameters and to the presence of other phonon modes
with different frequencies.

a)

c)

b)

Figure 7.10: Example of vibrational coherent control in a double-pump ex-
periment. The A-mode 6 THz phonon excited by the first pump is subsequently
quenched by the second pump pulse. The second pump is imparted when the
phonon momentum is minimum; the intensity of the second pump is lower than
the first in order to account for the phonon dissipation between the two interac-
tions. a) Frequency-resolved phase dynamics. b) Frequency-resolved amplitude
dynamics. c) Oscillating profile of selected spectral ranges.

E-symmetry

Previously (Fig. 7.8,7.9), we highlighted that the ET mode presents a characteris-
tic dynamics in the probe orthogonal polarization due to the associated polarization
mixing process. Remarkably, the features of this symmetry class are regulated by
the experimental geometry. In particular, we can exploit the polarization depen-
dence for control purposes.
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As expressed in eq. (7.5), dealing with the E-symmetry we can change the pump ef-
fect orienting its polarization. Therefore, we have another degree of freedom avail-
able in the coherent control machinery, in addition to the relative delay between the
two pumps.
We consider a coherent control experiment with the two pump of equal intensity but
with different polarization orientations: one at θ = +45◦ and the other at θ = −45◦

with respect to the probe. In this setting, each pump imparts an opposite displace-
ment to the state of the transverse ET phonon.
The temporal delay between the two pumps is still a crucial parameter in determin-
ing the vibrational evolution. Nevertheless, the polarization dependence requires to
correct the general interpretation in terms of the phonon momentum. Indeed, the
opposite effect of the pumps implies that the oscillation is now quenched with posi-
tive momentum and forced with negative one.
In Fig. 7.11 we study the case in which the two pump are separated in time by half
of the phonon period (π-shift, minimum momentum) and we report the coherent
amplification of the vibrational excitation at 4 THz.

a)

c)

b)

d)

Figure 7.11: Double-pump with opposite polarization (θ = ±45◦) delayed by
half phonon period resulting in the amplification of the 4 THz mode. The phonon
is forced at the minimum momentum because of the negative displacement
induced by the polarization geometry. The response is analyzed in the probe
orthogonal component. a) Frequency-resolved phase dynamics. b) Frequency-
resolved amplitude dynamics. c) Oscillation profile of selected spectral ranges.
d) Fourier-Transform spectra. The main contribution is the geometry selected
ET mode, but also a residual totalsymmetric signal is detected.

Another representative condition is the one involving the quench of the excitation.
While in the totalsymmetric analysis in Fig. 7.10 we exploit the control with a sub-
sequent pulse to damp the phonon, thanks to the E-symmetry polarization depen-
dence we can even prevent the excitation to occur.
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We show this setting in Fig. 7.12. The two pump pulses with opposite polarization
are acting simultaneously on the sample. While the two pump can separately trigger
the 4 THz mode, the total result is null. We can observe from the Fourier Spectrum
of the non-equilibrium dynamics (Fig. 7.12d) that the 4 THz E-mode signal is absent
and the detected dynamics is relative to the 6 THz A component. Indeed, we also
distinguish in the maps that the phase dynamics is spectrally uniform and the am-
plitude one is wiggling, as expected for the totalsymmetric contribution.

a)

c)

b)

d)

Figure 7.12: Double-pump with opposite polarization (θ = ±45◦) temporally
superimposed resulting in the quench of the 4 THz mode. The opposite effect
on the ET mode of the two pumps is canceled if they act together and only
the residual totalsymmetric dynamics takes place. The response is analyzed
in the probe orthogonal component. a) Frequency-resolved phase dynamics.
b) Frequency-resolved amplitude dynamics. c) Oscillation profile of selected
spectral ranges. d) Fourier-Transform spectra. The ET contribution is quenched
and the residual A mode is dominating the response.

In conclusion, we demonstrated the capability to control the coherent phonon vibra-
tion on the ultrafast scale and to monitor its evolution both on the probe amplitude
and phase, where specific responses are distinguishable.
In perspective, we underline that the last examples of coherent quench are inter-
esting to study not only the control of the vibrational excitation, but also a more
general superposition of different oscillators. Despite the final state has a zero aver-
age response, it represents a non-equilibrium condition which can show a statistics
in principle very different from the initial ground state. In quartz these effects are
not evident, because the system is well described by a single-oscillator approxima-
tion considering the high degree of temporal and spatial coherence of the phonon
excitation. Nevertheless, we expect these considerations to be particularly relevant
in systems affected by incoherence and inhomogeneity, where the non-equilibrium
response is the result of many localized excitations.
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Chapter 8

Analysis of ISRS statistical features

The capability to resolve each single-pulse acquisition in our ultrafast experi-
ments allows us to explore the full statistics of the pulses repetitions, which rep-
resents a further degree of freedom where information regarding the light-matter
interaction can be stored. Moreover, the frequency-resolved measurement of the
multimode probe allows us to investigate the presence of statistical correlations be-
tween different spectral components.
The typical probe pulse is in a multimode coherent state, where the various fre-
quencies are independent from each other. Interestingly, non-linear interactions can
though modify the coherent state and introduce a correlation between different com-
ponents. For instance, parametric processes as up/down-conversion or four-wave
mixing [24, 25] are employed to study the mode entanglement in quantum optics
experiments.
In this chapter we highlight that also the Raman interaction, as the one involved in
the examined ISRS process, can create spectral correlations between components. In
particular, the result is a pair entanglement of the modes whose energy difference
matches the phonon frequency, as a consequence of their interaction mediated by
the vibrational field.

8.1 Raman mediated multimode correlations

The Raman scattering involves the inelastic interaction between two optical fields
together with the emission/annihilation of a low energy excitation (i.e. a phonon)
in a Stokes/Anti-Stokes process. This action is well-described by the Raman hamil-
tonian obtained in (6.13)

HRam = −
√

VS

2V
√

2mΩ
∑

λλ′,j
ωj χ

(1)
λλ′

[(
a†

λjaλ′ j+Ω
δ

)
b† +

(
aλja†

λ′ j+Ω
δ

)
b
]

. (8.1)

The structure of this hamiltonian implies a mixing between the frequencies which
mediate the exchange of phonon quanta. In order to express the entanglement be-
tween interacting optical modes we proceed to the calculation of the covariance be-
tween the spectral quadratures

Cov[Xj, Xj′ ] = ⟨XjXj′⟩ − ⟨Xj⟩ ⟨Xj′⟩ . (8.2)
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We will explicit the latter considering the Raman modified quadrature in eq. (6.24).
In detail, for the sake of simplicity we neglect the polarization dependence and as-
sume a diagonal susceptibility to rewrite the evolved quadrature as

Xj(τ, ϕ) =
1√
2

(
aj + i

τ
√

VSωj

2V
√

2mΩ
χ(1)(aj+Ω

δ
b† + a†

j−Ω
δ

b)
)

e−i(ωjt+ϕ) + c.c. . (8.3)

We define the initial input state as an uncorrelated probe (i.e. multimode coherent
state), which has the following properties⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Cov[aj, aj′ ] = δj,j′σ
2
aj

,

Cov[a†
j , a†

j′ ] = δj,j′σ
2
a†

j
,

Cov[a†
j , aj′ ] = δj,j′ Cov[a†

j , aj],

Cov[aj, a†
j ] = Cov[a†

j , aj] + [aj, a†
j ] = Cov[a†

j , aj] + 1 .

(8.4)

Taking the latter relations into account, the predicted covariance, up to first order in
the Raman interaction parameters τ and χ(1), results in a quite elaborated expression

Cov[Xj, Xj′ ] = (8.5)

(a) +δj,j′
1
2

(
σ2

aj
e−2i(ωjt+ϕ) + σ2

a†
j
e2i(ωjt+ϕ) + 2Cov[a†

j , aj] + 1
)

(b) +δj,j′−Ω
δ

i
τ
√

VSωj

4V
√

2mΩ
χ(1)

(
σ2

a†
j
b − σ2

aj
b† + Cov[a†

j , aj](be−2i(ωjt+ϕ) − b†e2i(ωjt+ϕ))

+σ2
a

j+ Ω
δ

b†e−2i((ωj+Ω)t+ϕ) − σ2
a†

j+ Ω
δ

b†e2i((ωj+Ω)t+ϕ) + Cov[a†
j+Ω

δ
, aj+Ω

δ
](b† − b)

+be−2i(ωjt+ϕ) + b†
)

(c) +δj,j′+Ω
δ

i
τ
√

VSωj

4V
√

2mΩ
χ(1)

(
σ2

aj
b†e−2i(ωjt+ϕ) − σ2

a†
j
b†e2i(ωjt+ϕ) + Cov[a†

j , aj](b† − b)

+σ2
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δ

b − σ2
a
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b† + Cov[a†
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δ
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δ
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)

.

Despite the many terms involved in the previous equation, we can isolate the fun-
damental elements. We have three non-vanishing contributions (lines a,b,c) ruled
by the Kroenecker deltas, which define the entangled pairs. Firstly, we report in line
(a) the trivial correlation of each mode with itself (δj,j′), which is equivalent to the
single-mode quadrature variance. The other contributing terms are remarkably the
one relative to the modes differing by the phonon energy (δj,j′−Ω

δ
in (b), δj,j′+Ω

δ
in (c)),

whose intensity depend on the phonon operators and on the coupling factor of the
ISRS interaction.
Importantly, the calculated covariances are also dependent on the statistical prop-
erties of the input optical field (σ2

a , σ2
a† , Cov[a†, a]). Therefore, we can study the ex-

pected results as a function of the probe noise. We start by analyzing the quantum
limited fluctuations in the case of the coherent states and then generalize to other
sources.
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8.2 Quantum regime

The quantum fluctuations implied by the Heisenberg uncertainty principle are
an intrinsic property of quantum optical fields. In this section, we analyze how this
typology of noise can be relevant in determining the statistical correlation features
when dealing with a Raman interaction.
The typical probe employed in our experiments is in a coherent state. It is charac-
terized by a symmetrical statistical distribution of the minimal uncertainty in the
optical phase space, which quantitatively implies σ2

a = σ2
a† = Cov[a†, a] = 0. If we

express the predicted covariance in eq. (8.5) taking into account the previous rela-
tions we obtain

Cov[Xj, Xj′ ] = +δj,j′
1
2

(8.6)

+δj,j′−Ω
δ

i
τ
√

VSωj

4V
√

2mΩ
χ(1)

(
+ be−2i(ωjt+ϕ) + b†

)
+δj,j′+Ω

δ
i

τ
√

VSωj

4V
√

2mΩ
χ(1)

(
− b†e2i((ωj+Ω)t+ϕ) − b

)
,

which describes that the correlations are only detectable thanks to the minimal noise
resulting from the commutation relation between the operators a, a†.
In order to estimate the magnitude of the phonon induced correlations, we consider
the ratio between the vacuum quadrature variance (Cov[Xj, Xj] = 1/2) and the Ra-
man interaction dependent terms. We can derive this value in comparison with the
mean value results for the quadrature amplitude modulation, in particular we an-
alyze the model prediction in eq. (6.33) and the measurement in Fig. 7.3. From the
analytical expression we read that the relative amplitude modulation (∆A/A) has
the same order of magnitude of the out-of-diagonal/diagonal covariance contribu-
tions in eq. (8.6). Experimentally, we measure that the considered phonon induced
amplitude modulations are on the order of 1%. Recalling the characterization of the
probe covariance map in Fig. 4.9b, we report that the noise level of the measured
covariance map is quantified in 2% of the probe vacuum variance, which means that
the expected phonon correlation signal is not resolvable out of the employed exper-
imental sensitivity. In order to reveal the features predicted in eq. (8.6) we should
thus improve the performance of the detection system. A possible technical upgrade
would require to increase the repetition rate of the acquisition in order to collect a
larger statistics in the same experimental time. In the present configuration the de-
tection rate is limited to 1 kHz, while the laser source is designed to work up to 200
kHz. An hundred times larger statistics should improve the signal-to-noise ratio of
a factor 10 and thus discriminate the expected covariance modulations.
On the other hand, keeping in mind the dependence on the probe statistics in eq.(8.5),
we can instead operate on the properties of the optical input. Actually, we can fol-
low a stochastic resonance approach [26], which consists in properly adding white
noise in the measurement in order to favour the detection of the desired output.
In our specific case the strategy is to increase the quantities σ2

a , σ2
a† , Cov[a†, a], which

means to modify the coherent state condition. We discuss two possible approaches.
In the next paragraph, we propose the hypothesis to change the statistics while pre-
serving the quantum fluctuation limit, i.e. employing squeezed light. Otherwise, we
can add noise above the Heisenberg limit, for example introducing fluctuations of
classical nature, as we experimentally verify in the following section.
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Squeezed light

Squeezed states of light are purely quantum objects in which the Heisenberg
uncertainty is conserved, but interestingly is not equally distributed between the
number and phase statistics. Formally, they can be described with the action of the
squeezing operator

S(reiϑ) = exp
(1

2
r(e−iϑa2 + eiϑa†2

)
)

(8.7)

which is ruled by the amplitude r and the phase ϑ of the squeezing factor.
If we calculate the new statistical quantities calculated on the squeezed coherent
state they read ⎧⎪⎪⎨⎪⎪⎩

σ2
a = sinh 2r

2 eiϑ,
σ2

a† =
sinh 2r

2 e−iϑ,
Cov[a†

j , aj′ ] = sinh2 r .
(8.8)

We see that, in comparison to symmetric coherent states which have σ2
a = σ2

a† =

Cov[a†, a] = 0, many contributions in eq. (8.5) are not vanishing anymore. Therefore,
the visibility of many terms in eq. (8.5) can be controlled as a function of the ampli-
tude of the squeezing factor, revealing the Raman multimode correlations. Nonethe-
less, the ideas discussed in this paragraph are just a perspective and a more detailed
analysis should be performed to evaluate the experimental feasibility. In particular,
while the correlation signal can be expected to improve on the order of the squeez-
ing factor, it should be verified that the covariance uncertainty does not increase and
the spectral noise remains uncorrelated.

8.3 Classical fluctuations

While the quantum regime is intrinsically characterized by the Heisenberg fluc-
tuations, we can exploit the statistical features also in the classical one by modifying
the coherent state approximation. In particular, randomization or chaotic generation
processes can be exploited to increase the involved noise.
Regarding the correlation statistics, in the recent years many covariance based ex-
periments using stochastic light have been implemented [15, 27, 28, 29]. Hereby we
report the results of a project I contributed to and whose results are relevant in the
discussion of the Raman induced multimode correlation [15].
The adopted technique is dubbed Femtosecond Covariance Spectroscopy and in-
volves the measurement of the frequency-resolved intensity statistics of the probe
pulse transmitted through the quartz sample, as depicted in Fig. 8.1. The key ele-
ment of the experiment is the use of a noisy probe, whose statistical distribution is
randomized pulse by pulse by means of a programmable pulse shaper. The noise
can be introduced acting both on the amplitude or the phase of each spectral com-
ponent. Importantly, the fluctuations are required to be spectrally uncorrelated. The
result are intensity profiles which vary independently for each pulse repetition and
frequency component, as shown in Fig. 8.2a.
The observable adopted to measure the entanglement between the probe modes is
the Pearson correlation coefficient map defined as

ρ(Ij, Ij′) =
Cov[Ij, Ij′ ]

σIj σIj′
(8.9)
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quartzrandomization

PULSE 
SHAPER

probe

reference

Figure 8.1: Femtosecond Covariance Spectroscopy setup. The spectrum of
the probe light is randomized by means of pulse-shaping. The stochastic light is
employed in a transmission experiment and the output pulse statistics is analyzed
with a frequency-resolved detection with photodiode arrays.

a) b)

Figure 8.2: Probe pulse employed in Femtosecond Covariance Spectroscopy
experiment. a) Example of the noisy probe intensity spectra for few pulse repe-
titions. b) Correlation coefficient map of the input probe.
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which is calculated on the spectra acquired for many single-pulse repetitions (in this
case 50k acquired at 5 kHz). In Fig. 8.2b we report the reference correlation map for
the randomized input probe. We verify that the introduced fluctuations are highly
uncorrelated and the map shows only the trivial diagonal correlation. The diagonal
width is determined by the spectral correlation length of the fluctuations and sets
the frequency resolution of the experiment.
The uncorrelated map of the input probe represents a white sheet where we can
write the response induced by the interaction with the sample. In particular, we ex-
pect to reveal the Raman signatures due to the phonon excitation.
In order to describe the result quantitatively, we should adapt eq. (8.5) to an intensity
description. Nevertheless, the qualitative features of interest are already deducible
from the quadrature covariance. Indeed, the Raman mediated entanglement is rep-
resented by lines in the correlation map which describe the link between modes dif-
fering by the involved phonon energies. We can distinguish these in the correlation
map in Fig. 8.3a, calculated on the light transmitted through the quartz sample. The
measurement is performed with 1 mJ/cm2 of probe fluence on the sample.
In order to obtain the spectrum of the involved vibrational modes, we average the
map along the diagonal in Fig. 8.3b. Hence, we can identify the signal relative to the
phonon Raman modes already detected in the average pump&probe measurements
(Fig. 7.5d).

a) b)

Figure 8.3: Multimode Raman induced correlations in classical stochastic
intensity measurement [15]. a) Correlation coefficient map. The arrows highlight
the phonon correlation lines imprinted by the Raman interaction. b) Phonon
spectrum obtained averaging the map along the diagonal.

The correlation profile in Fig. 8.3b is reported for both configurations in which the
noise is introduced on the probe amplitude or phase. We observe that there is a de-
pendence on the shaping typology, which can be controlled to optimize the result.
The analysis of the optimal shaping methods to use are considered in [15]. Moreover,
the complete discussion together with the extension to non-equilibrium dynamics
in pump&probe measurements are included in Giorgia Sparapassi’s doctoral thesis
[30].
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The description of materials at the fundamental level relies on the quantum me-
chanical interactions between the matter constituents. While in many situations their
macroscopic realization can be approximated with a classical formalism, though in
other fascinating systems, defined quantum materials, purely quantum effects sur-
vive over a wide range of energy and length scales [1]. The concept of quantum
materials is representative of an increasingly larger research field encompassing con-
densed matter, cold atoms and quantum computing [2], which studies the intriguing
effects emerging owing to the complex interactions involved. In particular, a lot of
interest is raising in understanding and controlling them in order to achieve new
functionalities and quantum-based devices [3].
The traditional definition of quantum materials developed from the study of corre-
lated electron systems, which have a large number and variety of examples among
transition metal oxides [4, 5]. The complexity in these systems is a consequence of
the interplay between the various electronic, orbital, spin and lattice degrees of free-
dom [6, 7] which leads to materials with striking and attractive properties, such as
magnetic phases [8, 9] and superconductivity [10, 11].
From the spectroscopist perspective, the advent of femtosecond laser sources opened
up the possibility to manipulate and examine these materials at the typical timescale
of the fundamental interactions, triggering a plethora of ultrafast studies [12, 13,
14]. The present thesis aims to help in moving a step forward in this direction, by
enriching the amount of information inferable from ultrafast optical experiments in
quantum materials.

In this last part of the dissertation, we explore the potentialities of the developed
time-resolved multimode heterodyne detection technique as a tool for the investiga-
tion of complex quantum materials.
We consider two examples of different transition metal oxides. We study the in-
sulating antiferromagnet Titanium Oxy-Chloride (TiOCl) and the high-temperature
cuprate superconductor Yttrium Barium Copper Oxide (YBCO).
The ultrafast pump&probe response of TiOCl is reported in Chapter 9. Focus is set
on the orbital degree of freedom of the valence 3d electron by adopting pump and
probe resonant to optical dd transitions. A dependence on orbital excitation is re-
vealed together with a vibrational response, signaling a orbital-phonon coupling.
In Chapter 10 we study the non-equilibrium dynamics in the YBCO sample. The co-
herent phonon response is measured at room temperature. The quadrature dynam-
ics is then investigated as a function of the sample temperature and an anomalous
response in the optical phase is observed at low-temperature.
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Chapter 9

Ultrafast orbital dynamics in the
1D quantum magnet TiOCl

Strongly correlated electron materials show striking properties which are the out-
come of the complex interplay between their various fundamental attributes, such
as the crystalline and electronic structure, the magnetic spin properties and lattice
excitations.
A key role is set by the orbital degree of freedom [6], which defines the electronic
distribution ruling for instance the structure geometry or the Coulomb repulsion. In
particular, the anisotropic shape of the valence 3d levels in transition metal oxides
orients the interaction along preferential directions, leading for example to materials
with low-dimensional character.
The orbital structure is crucial also in determining the magnetic properties, since the
spin interaction is correlated to the electronic distribution. Titanium-Oxy-Chloride
(TiOCl) is an interesting 1D-like quantum antiferromagnet where we can observe the
orbital-spin interaction at play. Remarkably, at low temperature the system shows a
magnetic transition to the exotic Spin-Peierls phase [15, 16].

In this context, ultrafast optical studies are useful not only in order to understand
the sample properties, but also to control it and drive new out-of-equilibrium states.
Considering its fundamental role, it would be relevant to manipulate the electronic
structure in a controlled way, for instance with the aim of governing the exchange
interaction.
In TiOCl, the state of the Ti single valence electron determines the exchange interac-
tion. Therefore, intraband dd transitions represent a direct way to modify the orbital
configuration, and an indirect way to modify the spin [17, 18] and other coupled
degrees of freedom, such as the lattice phonons [19, 20].
Orbital d-band transitions have been already studied in optical and inelastic x-ray
scattering experiments to probe the equilibrium properties [21, 22]. Hereby, we ex-
plore the possibility to exploit the dd optical transitions both to stimulate and test
the non-equilibrium response of the material. We measure in the room temperature
antiferromagnetic phase. We reveal different dd dependent absorption mechanisms
and get some insights on the structural modifications using the dd as Crystal Field
indicators.
Firstly, we characterize the sample response with intensity pump&probe measure-
ments employing a broadband White-light probe. We finally apply the time-resolved
multimode heterodyne detection in this framework to study the intraband interac-
tion with a narrowband ultrashort pulse. We disentangle the spectral amplitude and
phase and the multimode dynamics reveals signatures of an orbital-phonon cou-
pling.
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9.1 Titanium Oxy-Chloride (TiOCl)

TiOCl is a transition metal oxide insulator presenting low-dimensional attributes
which are crucial in determining its peculiar magnetic properties.
The material is formed by layers of Ti and O, separated by the Cl atoms, which are
stacked along the c-axis (Fig. 9.1). The unit cell is orthorhombic belonging to the
Pmmn crystallographic group. The unit vectors at room temperature are a = 3.79
Å, b = 3.37 Å and c = 8.06 Å [23]. The fundamental coordination unit is a Cl2O4
octahedron surrounding the Ti atom.

c
a

b

Ti
O
Cl

Figure 9.1: TiOCl crystalline structure. The fundamental coordination unit is
an O-Cl octahedron enclosing a Ti atom. They are arranged in bi-dimensional
layers stacked along the c-axis, which are characterized by 1-D atomic chains
along the b-axis. [24].

In this environment, the titanium transfers 3 electrons to the O and Cl atoms such
that the electronic configuration results Ti3+O2−Cl−, with Ti in a 3d1 state. Moreover,
as we will discuss in the following, the single Ti electron ground state is the dy2−z2

orbital oriented in the b-c plane1.
Another important structural feature to note is the existence of 1D atomic chains
along the b-axis. Indeed, this low dimensional attribute together with the orbital
ground state are key elements in defining the magnetic properties.

9.1.1 Magnetic properties

TiOCl presents a rich phase diagram involving transitions between states with
different structural and magnetic attributes. At high temperature, the system is an
antiferromagnetic 1D Heisenberg chain, along which the Ti ions dimerize below TC1
= 67 K in the so-called spin-Peierls transition, observed so far only in titanium oxy-
halides and CuGeO3 among inorganic compounds [15, 16]. The phase diagram of
TiOCl is further enriched by the presence of an intermediate phase at temperatures
above TC1 and below TC2 = 91 K.
The electronic distribution owing to the orbital ground state defines the magnetic
exchange interaction along the b-axis. The interaction between the S = 1

2 spins of
the electrons on the different Ti sites is ruled by the hamiltonian

H = J ∑
i,j

Si · Sj (9.1)

1We assume the orbital reference frame x, y, z matching to the crystallographic axes a, b, c.
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Figure 9.2: The magnetic properties of TiOCl are set by the ground state
3dy2−z2 orbitals along the 1D Ti-chain. a) Antiferromagnetic spin orientation
due to exchange interaction along the b-axis. b) Magnetic phase transitions. The
magnetic susceptibility from [25] highlights two critical temperatures, accounting
for the transitions to the incommensurate and the Spin-Peierls phases.

where J is the exchange parameter and i, j label the lattice site.
The exchange interaction has a strong anisotropic character and can be quantified
along the different directions as Jb = 660 K, Ja = −10.5 K, Jc = −16.7 K [26, 27]. It
follows that the leading contribution sets an antiferromagnetic ordering along the b
chain (Fig. 9.2a), while the a and c ferromagnetic terms are weak and are involved in
magnetic frustration between the 1D chains.
The interplay of the orbital-spin interaction with the lattice excitations triggers then
the temperature dependent phase transitions [28]. The balance between exchange
and vibrational energy is crucial and at low temperature the Spin-Peierls phase ap-
pears. Neighboring spins dimerize leading to pairs with S = 0, which set that the
magnetic susceptibility in Fig. 9.2b is null below TC1. The existence of the interme-
diate phase is more complex to address and it has been described accounting for the
interchain frustrated exchange interactions in addition to the phonon contribution
[29, 30, 31].

9.1.2 dd-orbital transitions

As we already introduced, the orbital state of the 3d valence electrons in transi-
tion metals is a fundamental attribute in determining the material properties. We
now discuss the orbital splitting and the dy2−z2 ground state in TiOCl on the basis
of its crystalline structure. Moreover, we consider the possible intraband excitations
between the different d-orbital states. The d-energy levels of the Ti atom are five-
fold degenerate in an isotropic setting. However, when placed in the crystalline
environment the symmetry is broken and the degeneracy is removed. Precisely, the
anisotropic Coulomb repulsion with the electronic clouds of the surrounding atoms
energetically favors orbital states with a minimized overlap between the electronic
wavefunctions.
This approach is described by the Crystal Field theory. In the TiOCl case we have the
Ti atom inside an octahedral environment. In Fig. 9.3 we describe the corresponding
d-band Crystal Field splitting. In an ideal octahedral symmetry the result is the sep-
aration in two states, respectively two- and three-fold degenerate. Then, considering
the distorsion induced by the different effects of Cl with respect to O atoms, the de-
generacy is completely removed. The reported energy distribution of the d-levels is
based on the results of theoretical and experimental studies [21, 22, 23, 32].
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Figure 9.3: Crystal Field splitting of the 3d orbital levels due to distorted
octahedral enviroment surrounding the single electron (3d1) Ti atom.

In the TiOCl ground state, the single electron in the Ti3+ atom occupies the lowest
dy2−z2 orbital. Possible orbital excitations can occur as the result of transitions to
higher energy levels. In particular, we consider the capability of stimulating them
optically.
Optical intraband (∆L = 0) transitions are usually forbidden in centrosymmetric
systems because the momentum conservation rule (∆L = ±1) is not fulfilled. Nev-
ertheless, inversion symmetry is broken in TiOCl by the strong octahedral distorsion
and optical dd transitions are allowed.

Equilibrium absorption measurements

The optically active orbital transition lying in the insulator gap can be referenced
with absorption measurements. In detail, TiOCl presents a Mott gap involving the
electron transfer between adjacent Ti atoms above 2 eV [33]. Hence, the dd transi-
tions below gap can be distinguished. In particular, we can exploit our laser source
to explore the visible and near-infrared range.

a) b)

Figure 9.4: Transmittance spectrum due to optical orbital dd transitions as
a function of the polarization orientation. a) optical absorption from literature
[21]. b) optical absorption measured.

The optical transitions have a strong polarization dependence following the sym-
metry selection rules. In Fig. 9.4 we show the polarization dependent transmittance
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spectrum from literature (a) [21] and tested experimentally on our sample (b). A
thin TiOCl sample is prepared by exfoliating along the c-axis and we analyze the
transmission in this direction. We observe the polarization dependence generating a
different spectrum with respect to the transitions to the dxz and dyz states. The abso-
lute value of the transmittance between literature and experiment is due to different
sample thickness. Fringes effects are a consequence of interference between multiple
reflections in the ∼ 10µm thick sample.
In the following, we exploit the optical properties of the analyzed dd transitions in
ultrafast pump&probe experiments. Precisely, we target intraband transitions both
to stimulate and test the orbital dependent non-equilibrium dynamics. We pump
the near-infrared transition and probe in the visible range.

9.2 Ultrafast investigation of orbital dynamics

Femtosecond lasers can represent the tool to obtain the control of magnetism at
the fastest timescale. Pump&probe experiments are employed to explore and con-
trol photoinduced ultrafast phenomena like fast demagnetization, recovery of the
magnetic order or the onset of metastable states [34]. Since microscopically the spin
ordering is governed by the exchange interaction, studies are focusing on its possi-
ble ultrafast manipulation [17, 18, 35].
On a fundamental level, exchange interactions emerge from the repulsive Coulomb
interactions between electrons and are most sensitive to electronic perturbations. We
discussed in particular how the magnetic properties in TiOCl are strongly defined by
the orbital ground state. Following this line of reasoning, we thus employ the con-
sidered orbital dd excitations as a route to manipulate the electronic distribution and
in turn modify the magnetic exchange interaction. Though dd transitions were fre-
quently overlooked in magnetic studies due to their optical condition ∆S = 0, their
correlation with the exchange interaction has recently been highlighted [17, 18].
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Figure 9.5: Pump&probe approach in TiOCl. a) The pump pulse modifies
the orbital ground state by means of a resonant dd excitation, perturbing the
equilibrium exchange interaction. b) Orbital transition targeted by the optical
pump and probe pulses employed.

In the TiOCl insulator, the localized single electron system permits a rather simple
interpretation of the orbital effects of the photoinduced excitation. In Fig. 9.5a we
represent the effect of an optical induced orbital transition. In particular, we con-
sider a near-infrared pulse at ∼ 0.7 eV exciting the valence electron from the ground
state to the dxz orbital.
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We expect this perturbation of the electronic distribution along the chain to mod-
ify the equilibrium exchange interaction of the room temperature antiferromagnetic
phase. In order to investigate the resulting non-equilibrium state we setup a pump&
probe experiment. We employ a near infrared pump resonant to the dxz transition.
On the other hand we probe in the visible range, with focus on the effects relative to
the dyz absorption.

9.2.1 Time-resolved white-light continuum spectroscopy

In this section, we perform ultrafast intensity studies probing on the entire visible
range exploiting a broadband white-light pulse. The experiment is setup employing
the Near-Infrared (NIR) idler beam produced by the OPA system. We split it in two
(Fig. 9.6a). Part of it is used directly to pump the sample, while the other portion
generates a White-Light (WL) continuum through non-linear interaction in a YAG
crystal. The pump fundamental is then filtered out of the WL beam with a dichroic
mirror. The WL pulse is thus transmitted through the sample and it is frequency-
resolved and detected in a photodiode array. In Fig. 9.6b we report the intensity
spectrum of the employed probe. In the presented experiments we use a fluence of
10 mJ/cm2 for the pump and 30 µJ/cm2 for the probe. By studying the WL spectrum
as a function of the tunable pump delay, we build the dynamical map in Fig. 9.6c,
which presents the non-equilibrium intensity differential.

b)

TiOCl

NIR pump

WL probe 
YAG

a)

c)

Figure 9.6: Pump& White-Light Probe experiment. a) Measurement setup:
The NIR laser beam is split in two to generate a white-light (WL) probe in the
YAG non-linear crystal and to pump the TiOCl sample. The frequency-resolved
intensity spectrum of the WL pulse is detected with a photodiode array and
reported in (b). c) Example of Pump&WL-probe map: the non-equilibrium
differential is plot as a function of WL frequency and pump delay.

The example map reported in Fig. 9.6c is relative to the case where both pump and
probe are maximally absorbed by the relative dd transitions. As reported in Fig. 9.4,
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the pump is maximally absorbed if polarized along the a-axis, while the probe along
the b-axis. This triggers a spectral dependent dynamics which we analyze in more
detail in Fig. 9.7. The overlap signal has a sickle shape due to the chirped temporal
distribution of the WL components. We do also correct for this effect in in Fig. 9.7a.

a)

b)

c)

Figure 9.7: Pump& White-Light Probe measurement of ultrafast orbital re-
sponse. Pump and probe are polarized in order to be absorbed in the involved
dd transitions. The pump is absorbed along the a-axis, while the probe along
the b-axis (Fig. 9.4). a) Frequency-delay map corrected in time for the probe
chirp. We can distinguish two spectral regions with different responses at the
positive times. b) The selected cuts at a fixed probe frequency exemplify the
different dynamics observed. c) Spectral dependence at fixed pump delay.

We can distinguish three contributions in the ultrafast dynamics: a negative overlap
signal and two different regions in the positive times. We observe a positive trans-
mittivity modulation around 1.5 eV and a negative differential at the higher energy
components. In Fig. 9.7b we show the time dependence for selected frequencies in
each of the two different regions. In Fig. 9.7c we highlight the spectral response at
three different time-delays (negative time, overlap, positive time).

In the following, we exploit polarization and energy tuning in order to change
the orbital absorption condition. This allows us to discriminate the different non-
equilibrium effects which are taking place.

9.2.2 Pump-orbital response

We start by isolating the effects of the pump absorption only. In order to do this
we orient the probe along the a-axis so it is minimally absorbed. Then, in Fig. 9.8 we
compare the effects of the polarization dependent absorption of a pump resonant to
the dxz transition. We observe that only when the pump is absorbed (a-polarization,
Fig. 9.8a) a negative change in the transmittivity is present at positive time, while
the response is null when the pump is not absorbed (b-polarization, Fig. 9.8b). We
confront the time-dependence in the two cases at the selected probe frequency of
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b)

d)

a)

c)

Figure 9.8: Effects of resonant pump absorption. a) Negative transient trans-
mittivity induced by a-polarized pump absorbed in the dd. b) Absence of positive
time response with b-polarized not-absorbed pump. c) Comparison of dynami-
cal profiles for selected probe frequency. d) The spectral dependence at positive
times highlights that the effect is more relevant at high probe energies.

b)

d)

a)

c)

Figure 9.9: Effects of non-resonant pump absorption. The pump energy (1
eV) is not in the optimal dd absorption range. a) Weak negative transient trans-
mittivity induced at high frequency with the pump absorption. b) Reference map
without orbital absorption. c) Selected frequency profile. d) Spectral response
at positive times.
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1.66 eV in Fig. 9.8c. When the pump is not absorbed there is no signal other than
the coherent overlap, while a negative differential is triggered when the pump is
absorbed. In Fig. 9.8d we compare the spectral response at the positive times and
reveal that the effect is maximized at higher energies.
Another useful parameter to reference the orbital absorption is the pump energy.
Indeed, in Fig. 9.9 we detune the dd resonance using a 1.0 eV pump. In comparison
with the resonant pump absorption (Fig. 9.8a), the result in Fig. 9.9a is a reduction
of the negative non-equilibrium response at positive times, which we conclude to
be owing to the dxz orbital absorption. The outcome with b-polarized not absorbed
pump in Fig. 9.9b is not affected by the change in pump energy and does not present
a response in the positive times. In Fig. 9.9c, without pump absorption we distin-
guish a fast (∼ 100 fs) positive peak, which we interpret as ground state bleach. We
compare the spectral features in the slow timescale between the two orientations of
the non-resonant pump in Fig. 9.9d and appreciate only a residual response whit the
pump a-polarized.

9.2.3 Probe-orbital response

We now repeat the measurements in the previous different pump configurations
with a probe polarized along the b-axis and sensitive to the orbital absorption in the
visible to the dyz level.
In Fig. 9.10 we report the data obtained with pump energy in resonance with the
NIR dd (which targets the dxz orbital). In Fig. 9.10a (as already presented in Fig. 9.7a)
we observe that on top of the negative transmittivity, which is due to the absorbed
pump, we reveal a wide region of the map with positive signal. Therefore, the probe
is recording an increasing of the transient transmittivity which is revealed only if the
probe is maximally absorbed by the visible dd transition.
If we inhibit the pump absorption setting the polarization orientation along the b-
axis (Fig. 9.10b) we note that the increased transmittivity effect in the picosecond
timescale is still present. Hence, the positive response is a non-equilibrium effect
not directly linked to the orbital excitation induced by the pump pulse. In addition,
avoiding the pump absorption isolates the positive contribution from the negative
response.
As we show in Fig. 9.10c, the probe dependent effect is a positive dynamics. The
fast peak is likely due to ground state bleach, while the picosecond response is prob-
ably a thermal increase of the sample transparency. From the spectral analysis in
Fig. 9.10d, we observe that the maxima of the differential response are found around
1.5-1.6 eV, suggesting a correlation with the energy of the dyz transition (Fig. 9.4).
Moreover, we note that the spectral dependence is more peaked when the pump is
absorbed.
The increased transmittivity is confirmed also when detuning the pump energy out
of the transition resonance in Fig. 9.11. If this is non-resonant, both with pump ab-
sorbed (Fig. 9.11a) or not (Fig. 9.11b) the result is similar. We can appreciate this
comparing the details of the dynamical (Fig. 9.11c) and of the spectral (Fig. 9.11d)
response. The positive time response is a positive change of the differential inten-
sity. However, in comparison with Fig. 9.10d, in Fig. 9.11d we have that the spectral
response is peaked to slightly higher energies (1.6-1.7 eV).

We summarize in Fig. 9.12 the spectral dependence of the observed positive time
dynamics (at 1 ps of pump delay) in the different configuration analyzed. We collect
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b)

d)

a)

c)

Figure 9.10: Effects of orbital probe absorption with resonant pump. The
b-polarized probe is sensitive to dynamical induced transparency revealed by pos-
itive transient transmittivity. a) Map with combined pump and probe absorption
responses. b) Positive transmittivity without orbital pump excitation. c) Profiles
at selected frequency. d) Spectral dependence at positive time (1.0 ps).

b)

d)

a)

c)

Figure 9.11: Effects of orbital probe absorption with non-resonant pump.
Negative transmittivity effect due to pump absorption is no more revealed. a) a-
polarized pump map. b) b-polarized pump map. c) Profiles at selected frequency.
d) Spectral dependence at positive time (1.0 ps).
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b)

d)

a)

c)

Figure 9.12: Summary of orbital absorption effects at positive times (1 ps).
a) Resonant pump, absorbed. b) Resonant pump, not absorbed. c) Non-
resonant pump, absorbed. d) Non-resonant pump, not absorbed. The com-
parison between probe orientations reveals an increased transmittivity when the
probe is maximally absorbed. Orbital pump absorption implies instead a negative
transmittivity response at high energy (a,c).

together the signals relative to the different probe polarizations in order to com-
pare them directly in the different pump configurations (resonant/non-resonant,
a/b-polarization). We distinguish two main phenomena.
On one hand we have a negative transmittivity modulation when the pump is ab-
sorbed in the dxz orbital transition, namely with pump a-polarized as in Fig. 9.12a,c.
The signal is maximized for the high energy components of the probe pulse, which
are close to the onset of the Mott-gap.
On the other hand, we report a generalized increased transmittivity in the visible
range on the slow picosecond timescale when the probe is sensitive to the dyz orbital
absorption. The b-polarized probe has always a positive differential. Nevertheless,
peak and shape of the spectral response are slightly varying among the different
cases.

In short, with this first experimental survey we highlighted the role of dd excita-
tions in both stimulating and probing an ultrafast equilibrium response. In the next
section we improve the discussion adopting the multimode heterodyne detection
approach developed in this thesis.
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9.3 Probe field dynamics via heterodyne detection

After the exploration of the ultrafast response on the broad visible range with
white-light intensity measurements, we investigate the spectral dynamics of the
probe electric field by means of time-resolved multimode heterodyne detection. This
experiment employs an ultrafast probe with quasi monochromatic bandwidth. Pump
and probe beams are generated in our setup as idler and signal outputs of an OPA,
which implies that the photon energies of the two are co-dependent (their energy
sum is fixed). We tune them in such a way that both pulses are close to the in-
volved dd transitions. We use a 0.75 eV pump and 1.66 eV probe. The fluences
are respectively 6 mJ/cm2 and 150 pJ/cm2. We perform the experiment with both
pulses oriented in their optimal absorption polarization (pump∥a, probe∥b). The
time- and frequency-resolved heterodyne maps for the field amplitude and phase
are presented in Fig. 9.13a,b.

b)

d)

a)

c)

Figure 9.13: Orbital dependent time-resolved heterodyne trace in TiOCl.
Pump and probe pulses are both close to resonance to a different orbital tran-
sition. a) Frequency-resolved phase dynamics. b) Frequency-resolved amplitude
dynamics. c) Dynamical trace averaged along the probe spectrum. d) The
non-equilibrium response on the tails of the probe spectrum reveals coherent
oscillations.

We note that phase and amplitude time dependence of the probe spectral compo-
nents are distinct. In Fig. 9.13c, we plot the non-equilibrium response integrated
along the probe spectrum. We see that phase and amplitude pump induced changes
have an opposite sign and they also decay differently. The fast and slow timescales
contributions have different weight, which likely indicates that amplitude and phase
are sensitive to distinct effects.
Furthermore, if we analyze the spectral dependence in the frequency-resolved maps
(Fig. 9.13a,b), we see that remarkable information is present on the spectral tails. We
show in Fig. 9.13d the fast decaying oscillations thereby visible. We state that they
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c)

a)

b)

Figure 9.14: Analysis of coherent phonon oscillations in TiOCl. a) Fit of
the exponential decay at positive time. b) Oscillations after the subtraction of
the exponential fit. The damping time (approximated by the dashed line) is
comparable with the average one of the underlying exponentials. The dotted
lines highlight the phase shift between phase and amplitude oscillations. c) The
Fourier Transform spectrum of the oscillations identifies the 11 THz totalsym-
metric phonon mode.

are a signature of Impulsive Stimulated Raman Scattering owing to an excited co-
herent vibrational response which eludes spectrally integrated measurements.
We analyze the details of the observed oscillations in Fig. 9.14. In order to separate
the oscillations from the underlying dynamics we fit the exponential decay at posi-
tive times (Fig. 9.14a). The obtained decays vary slightly for each trace, but in order
to get a gross common estimation we calculate the average decay time of 0.17 ps. In
Fig. 9.14b we plot the positive dynamics subtracted of the fitted exponential trends.
We observe that the oscillations are decaying in few hundreds of femtoseconds. In
order to confront the decay timescales for both amplitude and phase oscillations, we
trace as guides to the eye the exponential trends with the estimated average decay
time of 0.17 ps. We note that the oscillations and the approximation of the under-
lying dynamics are damped in a comparable timescale. This suggests a correlation
between the underlying and oscillating dynamical features.
In order to address the coherent oscillations to a vibrational ISRS process we re-
turn to the phase relation between amplitude and phase dynamics pointed out in
the quartz experiments (Chapter 7). With the help of the dotted reference lines,
we can verify that the amplitude oscillations of each spectral component are π/2
shifted with respect to the corresponding phase one. Precisely, the two sides of the
spectrum present an opposite (±π/2) shift, as expected for the ISRS interaction.
However, since the equilibrium spectral phase is slightly chirped, especially on the
low energy tail, it is not easy to discriminate if the process is imparting a spectrally
uniform modulation on the amplitude or on the phase dynamics. Nevertheless, a
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strong evidence of the phonon character of the observed oscillations is retrieved by
the Fourier Transform analysis in Fig. 9.14c. Indeed, we distinguish a component
at 11 THz which is identified with a totalsymmetric vibrational mode of the TiOCl
sample [36, 37, 38].

9.4 Discussion

The performed experiments on TiOCl show intense ultrafast signals with a strong
dependence on the optical energies and polarizations analyzed, which are a con-
sequence of the complex interplay between different degrees of freedom involved
in the material. From the white-light intensity measurements we discriminate two
main effects relying respectively on the pump and probe orbital absorption. Fur-
thermore, the examination of the orbital non-equilibrium dynamics with Multimode
Heterodyne detection reveals a phonon signature associated to the ISRS Raman in-
teraction inside the probe bandwidth.
In the next paragraphs we briefly discuss the possible physical interpretation of the
experimental observations.

9.4.1 Effects of resonant orbital pumping

Selective optical absorption of the NIR dxz orbital transition is associated to the
excitation of the electrons in the Ti sites. Therefore, an amount of energy is trans-
ferred to the material by these excitation processes, which then relaxes through the
non-equilibrium dynamics.

Transient transmittivity modulation

When the pump is absorbed in the orbital transition, in particular if the probe
absorption effects are not present, we probe a negative transient transmittivity. In
detail, thanks to white-light measurements, we can appreciate that the orbital re-
sponse is increased in the probe high energy range. This spectral dependence can
be described as a modification of the Mott gap. Indeed, considering the temperature
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Figure 9.15: Temperature dependent equilibrium optical transmittance from
[39]. Increasing the temperature shifts the high energy gap towards lower ener-
gies and reduces the orbital absorption.

dependence from [39], we see in Fig. 9.15 that the non-equilibrium modulation is
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compatible with a thermal rise which lowers the energy of the gap absorption pro-
file.
The analogy with the thermal response suggests the involvement of a similar Mott
gap shift, but it does not clarify the interactions responsible for the observed effect.
Indeed, any of the orbital, spin and lattice degrees of freedom could have a role in
setting the properties of the anisotropic Mott gap [40]. Hence, further studies would
be required to define the specific contributions.
In particular, we would be interested in understanding if the direct optical orbital
excitation is effective in modifying the anisotropy of the magnetic exchange inter-
action [41]. In support of this possible research direction, we report that ultrafast
responses involving the magnetic degrees of freedom as a consequence of resonant
dd excitation has been observed in other orbital systems such as iron oxides [17],
chromium oxides [18] and manganites [42].

Orbital-phonon coupling

The frequency-resolved detection of the developed Multimode Heterodyne tech-
nique is crucial to reveal the excitation of a totalsymmetric coherent phonon mode.
The presence of the oscillations is linked to the pump orbital absorption. The elec-
tronic perturbation modifies the crystalline potential and drives a displacive excita-
tion mechanism of the vibrational mode [43].
Another remarkable result obtained is the agreement between the damping time of
the coherent oscillations and the decay time of the underlying dynamics (Fig. 9.14).
Since the oscillations are a phonon signature and the positive time dynamics is re-
lated to the orbital excitation, a orbital-phonon coupling is suggested. We recently
contributed to a work which demonstrated the orbital effects induced driving a vi-
brational mode in another Spin-Peierls material [20]. Interestingly, in the present
framework we analyze the orbital-phonon coupling the other way around, stimulat-
ing the orbital excitation and experiencing a phonon response.

9.4.2 Photo-induced orbital transparency

The other qualitative effect we deduce from the white-light measurements is the
positive non-equilibrium response distinguishable when the probe is b-polarized
and thus absorbed. We can interpret this as an induced transparency in the dyz or-
bital transition targeted by the probe. The effect is weakly dependent on the pump
orbital excitation.
In Fig. 9.15 we see that the transition intensity decreases with temperature because
the thermal fluctuations in the lattice tend to re-establish an isotropic environment.
This weakens the inversion symmetry breaking, which is instead the condition al-
lowing the optical excitation. If the pump is not strongly absorbed, the framework
is similar to that of a transparent material, where we can observe the ISRS excita-
tion of phonons. Even if we don’t notice coherent oscillations in this condition, the
induced transparency is an indirect evidence of the presence of weak or incoher-
ent lattice excitations which perturb the crystalline structure, adding disorder which
re-establishes the not optically active inversion symmetry.
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dd transition shift

When the thermal increase is higher because of the orbital absorption, we mea-
sure that the probe-orbital effect has a slightly different spectral dependence, which
peaks at lower energies (Fig. 9.12a). This is interpreted as an energy shift of the dd
transition towards lower energy, which is also experienced in temperature depen-
dent measurements [39, 44]. This results indicates a modification of the crystal field
environment which reflects in the d-level splitting.

In conclusion, we observed that orbital and lattice have a key role in determining
the ultrafast response in TiOCl. In particular, we highlighted their interplay both in
the excitation and probing process.
The direct optical control in TiOCl stimulates an intriguing way to control the mag-
netic exchange interaction. However, discrimination of the evolution of the spin
degrees of freedom would require more dedicated studies. In order to distinguish
the magnetic response it would be useful, for example, to measure the optical rota-
tion properties or to follow the temperature dependence in the different magnetic
phases.
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Chapter 10

Ultrafast dynamics in the high-Tc
superconductor YBCO

The superconducting materials with the highest critical temperature at ambi-
ent pressure currently belong to the family of cuprates. Despite the efforts in the
last decades, the mechanism involved in the emergence of superconductivity in this
strongly correlated cooper oxides has not been completely understood yet.
In order to solve the puzzle, spectroscopy experiments have a relevant role. In-
deed, the optical properties are strongly modified when entering the superconduct-
ing phase. In the traditional superconductors well-described by the BCS theory, the
onset of superconductivity is associated to the opening of a gap in the energy con-
ductivity. In standard BCS systems, the changes in the optical properties occur only
at energy scales comparable to the superconducting gap. On the contrary, one of the
anomalies of high-Tc materials, which is likely associated to the mechanism driving
superconductivity in those systems, is the fact that the onset of superconductivity is
associated to changes in the optical conductivity up to energies which are 100 times
larger than the superconducting gap. In detail, cuprates show modifications of the
optical conductivity in the visible range upon entering the superconducting phase
[45, 46], which are indicative of a correlation with low-energy physics in the Infrared
regime proper of the superconducting gap.
Ultrafast techniques are very useful in this context [14] both to follow the evolution
of this indicators at the typical timescale of the fundamental processes involved and
to photo-induce non-equilibrium phases. For instance, ultrafast stimulation can be
employed to even induce superconductivity [47, 48] by properly coupling to low-
energy collective excitations or quenching competing phenomena.

In this chapter, we explore the capabilities which Time-resolved Multimode Het-
erodyne Detection could bring in order to improve the ultrafast investigation of
cuprate superconductors. In particular, we test as an example the widely studied
Yttriium Barium Copper Oxide (YBCO).
Firstly, we employ Multimode Heterodyne to reference the pump&probe response
at room temperature, observing the coherent phonon dynamics. Afterwards, we
study the non-equilibrium dynamics at low temperature, performing measurements
across the pseudogap phase down to the superconducting transition. The analysis of
phase and amplitude modulations at low temperature, reveals a sample- and phase-
specific behavior, which we discuss could be related to charge density order in the
pseudogap phase.
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10.1 Yttrium Barium Copper Oxide (YBCO)

The first material discovered to be a superconductor above liquid nitrogen boil-
ing point is Yttrium Barium Copper Oxide (YBCO) [49], which in the optimal doping
condition has a critical temperature of 92 K.
The general crystalline structure of cuprates is characterized by the presence of copper-
oxygen layers. In Fig. 10.1 we represent the YBa2Cu3O7 unit cell, where the Cu-O
planes are stacked along the c-axis and the inter-layer spaces are occupied by the Y
and Ba ions. The electronic correlations between the orbitals of the Cu-O plaquette
and the charge from the heavy atoms, together with their interplay with lattice and
spin degrees of freedom are allegedly responsible for the intriguing effects occur-
ring in the sample, including superconductivity. Yet an exhausting description of
the onset of superconductivity at high critical temperature remains elusive.

c

a
b

Y

Ba

O
Cu

Figure 10.1: YBCO crystalline structure. The sample is formed by Cu-O
planes stacked along the c-axis. The space between layers is occupied by Y and
Ba atoms.

10.1.1 Superconductivity and pseudogap

The rich phenomenology of a cuprate superconductor is usually described in
terms of a phase diagram as a function of temperature and doping, as the one
sketched in Fig. 10.2a. A comprehensive description of cuprates physics is beyond
the scope of this thesis and we introduce here a brief survey of the typical features.
The superconducting character emerges at low-temperature and reaches the high-
est critical temperature for an optimal value of the oxygen content in the sample,
which can be expressed as the doping parameter δ in YBa2Cu3O7−δ. In the case of
an undoped cuprate, superconductivity does not take place and the compound is an
antiferromagnetic insulator. Well above the critical temperature the material is in the
so-called ‘bad metal’ state which presents many anomalies with respect to standard
metallic samples. In between the strange metal and superconducting regimes lies
the pseudogap phase, which is probably the most mysterious and debated region of
the diagram [51].
Whether the pseudogap is a precursor or competing state of superconductivity is
still debated. Anyhow, experiments discovered in the pseudogap phase the onset
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Figure 10.2: YBCO phase diagram as a function of temperature and dop-
ing. a) Typical phase diagram of a cuprate superconductor. b) Quantitative
parameters of YBCO superconducting (light gray dome) and pseudo-gap (below
T∗ line) phases and associated charge density effects identified with different
experimental techniques (from [50]/CC BY).

of charge density order [52, 53]. As reported in Fig. 10.2b [50], charge density ef-
fects appear in the most crucial regions of the phase diagram and are likely to be a
fundamental ingredient in the comprehension of the cuprates physics.

In the following we assess the possible contributions to the discussion that can
result exploring the degrees of freedom accessible with Multimode Heterodyne De-
tection.
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10.2 Ultrafast room temperature dynamics

We start our experimental investigation by measuring the room temperature ul-
trafast response of YBCO. We collect the transmitted probe pulse. In our studies
we employ an optimally doped, 70 nm tick YBCO sample, which has about 60 unit
cells grown in the c-direction on a lanthanum aluminate (LAO) substrate (which we
reference in appendix A). We perform the pump&probe measurements pumping in
the near-infrared (0.75 eV) and probing in the visible range (1.66 eV). The probe has
a fluence of about 1 µJ/cm2. In Fig. 10.3 we test the non-equilibrium modulation of
the spectrally integrated intensity for different pump fluences in the 1-10 mJ/cm2

range.

b)

d)

a)

c)

Figure 10.3: Room temperature integrated intensity pump&probe studied as
a function of the pump fluence. a) Non-equilibrium intensity modulation reveals
coherent oscillations in time. b) Fourier Transform analysis of the oscillations
identifies a 4.5 THz vibrational mode. c) The negative step of the slow-timescale
dynamics depends linearly on the pump fluence. d) The phonon amplitude tends
to saturate at high-pump fluences in agreement with [54].

The observed ultrafast dynamics consists of a step-like decrease of the transmittiv-
ity, which decays on a very long timescale with respect to the picosecond range
analyzed. On top of it, with high pump fluence we can distinguish coherent oscilla-
tions. In Fig. 10.3 we perform the Fourier analysis of the modulation and associate
it to a 4.5 THz A-symmetry vibrational mode, which involves the displacement of
Cu ions along the c-axis [54, 55, 56]. Analyzing the pump fluence dependence, we
see that the slow response is linear (Fig. 10.3c), while the amplitude of the phonon
oscillation tends to saturate with a strong perturbation (Fig. 10.3d). The trend of the
vibrational feature, as suggested in [54], indicates that the excitations are localized at
the lattice sites and not representative of a coherent de-localized mode. The present
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situation is therefore different with respect to the one studied regarding the coherent
phonon in quartz (Chapters 6-7). In the next section, we verify how the dynamics of
the optical probe field behaves in this case.

10.2.1 Probe field dynamics via heterodyne detection

We apply Multimode Heterodyne Detection in order to frequency resolve the
probe bandwidth and disentangle amplitude and phase effects. The relative spectral
maps are shown in Fig. 10.4.

a)

c)

b)

d)

Figure 10.4: Room temperature pump&probe heterodyne. a) Frequency-
resolved phase dynamics. b) Frequency-resolved amplitude dynamics. c) Spec-
trally averaged phase and amplitude profiles have qualitatively different re-
sponses. The dotted lines underline that phase and amplitude oscillations are in
phase. d) Fourier spectrum highlighting the presence of the phonon mode.

We note that amplitude and phase have a different dynamics also in this setting.
However, they are both spectrally uniform in the positive times and hence we con-
sider the average spectral response (Fig. 10.4c). The amplitude response reflects the
intensity dynamics, while the phase follows a different evolution. For few hundreds
of femtoseconds we can distinguish the phonon oscillations also in the phase trace,
which we note are in phase with the amplitude ones. On the slower picosecond
timescale we observe instead a positive shift of the phase signal.
The spectrally uniform and in-phase amplitude and phase oscillations indicate that
the probe is experiencing a modulation of the refractive properties of the sample
which does not involve the spectral redistribution typical of Impulsive Stimulated
Raman Scattering (ISRS), as discussed for the quartz sample in Chapters 6-7. The
ISRS mechanism dominates the interaction in the transparency regime, while other
effects associated to the dissipation of absorbed energy are relevant in absorptive
systems like YBCO. In this framework, the phonon excitation is generally retained
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owing to the displacive mechanism [43] generated by the perturbation of the elec-
tronic landscape after the optical absorption. In this connection, the slow incoherent
contribution is likely a thermal response due to the absorption in the material.

10.2.2 Coherent control of vibrational excitation

We noted in the previous experiments the localized nature of the phonon excita-
tion and its displacive origin. In order to discriminate the coherent and incoherent
dynamics in this setting we perform coherent control measurements. We setup a
double-pump experiment and tune the temporal separation between the two simi-
lar optical perturbations.

a) b)

Figure 10.5: Coherent control of the vibrational mode. We study the hetero-
dyne response tuning the two-pumps delay in both phonon damping and forcing
condition. In this example we select respectively a separation of 1.5 and 1 phonon
periods. a) Spectrally averaged amplitude profile. FT-spectrum in insert. The
amplitude of the phonon oscillations is modulated by the coherent control, while
the slow step dynamics is not affected and due to incoherent processes. b) The
average phase profile is weakly sensitive to phonon oscillations. The positive
time response is representative of an incoherent dynamics and not perturbed by
the coherent control.

We can exert a coherent control of the vibrational oscillation modifying the delay of
the first pump. In Fig. 10.5 we report the measurement performed in both damping
and forcing condition of the single-pump signal. We adjust the arrival time of the
first pump. In the damping condition the delay between the two pumps is 0.33 ps
(1.5 phonon periods), corresponding to an half-integer cycle of the phonon oscilla-
tion (π phase shift). The forcing is achieved with 0.22 ps delay (1 phonon cycle),
when the pump separation is an integer multiple of the phonon period (2π-shift).
The modulation of the phonon oscillation dependent on the coherent control is ev-
ident in the amplitude response (Fig. 10.5a). The resulting phase signal (Fig. 10.5b)
instead is not sensitive to the temporal separation between the two pumps. This in-
dicates that the slow timescale dynamics is likely an incoherent superposition of the
effects of the two pumps. As a consequence of this, we understand that in a com-
plex absorptive system, even if the coherent oscillation can be quenched, coherent
control is not able to restore the equilibrium state and dissipative and decoherence
processes have a relevant role.
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10.3 Temperature dependent studies

After having referenced the room temperature response, we are ready to explore
the more interesting regions of the YBCO phase diagram. We exploit a nitrogen
cooled cryostat to measure the optimally doped YBCO sample at the temperatures
typical of the pseudogap and superconducting phase.

a) b)

Figure 10.6: Low temperature (80 K) integrated intensity dynamics as a func-
tion of the pump fluence. a) Non-equilibrium modulation. b) Fluence depen-
dence of the step signal at positive times indicates a strong non-linear behaviour.

At first we study the dynamics of the probe integrated intensity. In Fig. 10.6 we
report the non-equilibrium response at 80 K as a function of the pump fluence. We
employ a lower fluence range in order to reduce the perturbative effects and avoid,
for instance, thermal melting of the superconducting phase.
The non-equilibrium response at low temperature is still a negative modulation of
the transmitted intensity, but the fluence dependence is not linear (Fig. 10.6b), sug-
gesting a critical behavior.
In order to verify if the non-equilibrium response is sensitive to the different phases

a) b)

Figure 10.7: Temperature integrated intensity pump&probe. a) Non-
equilibrium response as a function of temperature. The modulation signal van-
ishes with increasing temperature. b) Temperature trend of the average positive
time response (highlighted in (a)). The dotted line suggest the presence of a
kink around 90 K, whereby we expect to find Tc for an optimally doped sample.
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of the system, we test the temperature dependence in the less perturbative pump
regime. We explore the range corresponding to the pseudogap phase and the critical
temperature of the superconducting transition. The results are presented in Fig. 10.7.
The negative modulation is enhanced with decreasing temperature. Also a change
in the relaxation time is expected [57]. The present measurements have a low signal-
to-noise ratio which does not allow for precise analysis of the decay profile. Nev-
ertheless, we account for the relative effects considering the average on the positive
times interval (highlighted in Fig. 10.7a). The temperature dependence of the latter
observable (Fig. 10.7a) reports that the non-equilibrium modulation vanishes heat-
ing the sample. Moreover, we observe the hint of a kink around 90 K, compatible
with the expected superconducting critical temperature for optimally doped YBCO.

These preliminary measurements showed that the ultrafast dynamics is sensitive
to the different phases ruled by the temperature. In the following, we deepen the
investigation focusing on the phase observable accessible with heterodyne detection,
which reveals a non trivial behavior.

10.3.1 Anomalous low-temperature field dynamics

We examine the optical field response with the aim of disentangling amplitude
and phase dynamics and revealing features specific of the low-temperature phases.
We perform Multimode Heterodyne pump&probe measurements with two pump
fluences and report the resulting spectral maps in Fig. 10.8.
We detect also in this case spectrally uniform modulations. The amplitude as usual
reflects the intensity response. The phase dynamics measures instead a peculiar neg-
ative shift of the spectral phase. This reveals a reduction in the probe propagation
time as a consequence of the pump photo-excitation. The measurement at higher flu-
ence underlines also that the signal is composite. We distinguish a positive and fast
contribution, likely due to the optical overlap between pump and probe, together
with a slower and negative modulation.

In order to correlate the observed dynamics to the system phase, we analyze the
temperature dependence with the low 20 µJcm2 pump fluence. We display the data
for three different temperatures in Fig. 10.9.
The observed field dynamics is reduced increasing the temperature. Precisely, the
fast positive shift in the phase response is rising, but it could be an effect of a reduced
contribution from the negative component. Importantly, we record that the negative
phase shift is not disappearing over the critical temperature and still present in the
pseudogap phase. Further studies would be required in order to define the onset
temperature of the considered effect.
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a)

c)

b)

d)

e) f)

Figure 10.8: Low temperature pump&probe heterodyne. We study the re-
sponse with two different pump fluences. The amplitude modulation agrees with
the intensity one. Regarding the phase we reveal a peculiar negative phase mod-
ulation. a),b) Frequency-resolved phase and amplitude dynamics for high pump
fluence. c),d) Low fluence. e) Comparison of spectrally averaged phase profiles
for different fluences. f) Same for amplitude profiles.

a) b)

Figure 10.9: Temperature dependent pump&probe heterodyne. We study the
low-pump response across a temperature interval corresponding to the supercon-
ducting transition and the pseudogap phase. The observed negative modulations
vanish with increasing temperature. a) Average spectral phase profile. b) Aver-
age spectral amplitude profile.
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10.3.2 Discussion

We highlight the anomalous negative phase shift as result peculiar of the cuprates.
In all the other samples and configurations studied in this thesis we observe that the
pump photoexcitation is associated to a positive probe phase shift. In detail, we al-
ways measured a positive response in the overlap signals and in the slow timescale
thermal steps. We reported another negative phase signal only in the case of quartz,
whereby the phonon causes a phase oscillation around zero. This suggests the pos-
sibility that also the low-temperature effect in YBCO has a coherent nature.
This photo-induced reduction of the probe propagation time can be described as-
suming either a decreasing of the sample refractive index or length, which is not
common. The optical pump absorption can often result in an increase of the ther-
mal energy, which would induce a sample dilation and slow-down the propagation
velocity. Moreover, this is usually associated to a slow dynamics lasting many pi-
coseconds. The latter framework is likely the one observed in TiOCl and room tem-
perature YBCO.
The low-temperature field effects must have instead a different origin. Nevertheless,
it is interesting to consider the temperature dependent expansion also in this discus-
sion. Indeed, there exist many examples of materials which in certain conditions
contract their dimensions with increasing temperature, like water for instance, and
this attribute is dubbed anomalous expansion coefficient. Remarkably, this prop-
erty is reported to be present in the superconducting phase of many cuprate and
non-cuprate samples [58, 59, 60, 61]. YBCO shows as well the anomalous expansion
coefficient in the superconducting phase [62] and we hypothesize a link between the
ultrafast negative phase shift and the peculiar dilation effect.
Interestingly, the negative expansion coefficient in high-temperature superconduc-
tors has been associated by A. I. Golovashkin and A. P. Rusakov [63] to the presence
of charge density waves. This element represents a very intriguing factor taking into
account the correlation between charge density order and the critical regions of the
YBCO phase diagram (Fig. 10.2b). We propose that the observed anomalous phase
dynamics could be a signature of charge density waves in the superconducting and
pseudogap phase.

In conclusion, we applied Time-resolved Multimode Heterodyne Detection in
the study of the low-temperature complex phases in YBCO and revealed that ac-
cessing the phase degree of freedom of the optical probe field allows us to discrim-
inate information which eludes amplitude and intensity response. Interestingly, we
discuss the possible connection of the observed effect with the presence of charge
density order, which is a key ingredient to address in order to understand the mech-
anisms ruling the high-temperature superconductors. Further studies will be neces-
sary to give fundament to this interesting scenario.
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Chapter 11

Conclusion

The intriguing and puzzling features of complex quantum materials are investi-
gated at their fundamental timescales by means of ultrafast spectroscopy techniques.
These rely on ultrashort laser pulses which provide a time-resolution on the fem-
tosecond scale. The common approach is the pump&probe one, in which a first
intense pump pulse triggers a non-equilibrium excitation while the not perturbative
probe is measured as a function of the delay between the two pulses to monitor the
de-excitation. The insights about the material are then deduced analyzing the signa-
tures of the light-matter interaction in the probe pulse.
In order to reveal the most possible amount of the information written in the optical
pulse, we propose Time-resolved Multimode Heterodyne Detection. Our goal is to
go beyond the standard detection of the probe mean value intensity and reconstruct
the full quantum state of the examined light. In this way, we access also the field
phase and statistical fluctuations which are a consequence of the intimate wave and
particle natures of light.

In this doctoral thesis we present the Time-resolved Multimode Heterodyne De-
tection method and analyze its potentialities studying the non-equilibrium response
in three different typologies of materials.
The core of the thesis studies the details of prototypical light-phonon interaction in
transparent materials, such as quartz, while in the last part we explore the potential-
ities to discover new effects in complex materials. In particular, we investigate the
magnetic insulator TiOCl and the high temperature superconductor YBCO.

The first part of the dissertation introduces the developed technique. We de-
scribe the theoretical formalism regarding the optical quantum state reconstruction
method and the associated experimental implementation through balanced hetero-
dyne detection. Since we are dealing with ultrashort pulses with a wide spectral
content, we take into particular account the multimode treatment.
We characterize the spectral quadratures of the employed coherent probe pulses and
verify that we are sensitive to the quantum limited fluctuations. Importantly, we
compare the noise levels achieved with a fast parallel multichannel detection and a
low-noise single-channel acquisition. We underline that the use of a low-noise dif-
ferential detector is crucial to achieve high quality performance (measuring the shot
noise with uncertainty of few percent) and the adoption of pulse shaping of the Lo-
cal Oscillator beam is key to achieve frequency resolution in this configuration.

Application of Time-resolved Multimode Heterodyne Detection to the ultrafast
investigation of materials allows us to monitor the evolution of non-equilibrium
femtosecond dynamics. We start studying the coherent vibrational excitations in
transparent quartz. It is a benchmark material without other electronic responses,
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which is suitable to examine the general attributes of coherent excitation of phonons.
We model and measure the dynamics triggered by Impulsive Stimulated Raman
Scattering (ISRS) processes. We develop a fully quantum description of the interac-
tion which is consistent with our quantum detection. We highlight that amplitude
and phase responses are different and they are indicative of momentum and position
dependent interactions. The position sets the spectral independent modulation of
the refractive properties, while the momentum rules the spectral dependent energy
exchanges between matter and radiation. Moreover, we underline the non-linear
character of the interaction between different frequency-modes, which imprints cor-
relations in the multimode state owing to the Raman interaction. We reveal them in
a classical intensity experiment and discuss the possible strategies to detect them in
the quantum regime.

When we extend our approach to more complex materials we find other inter-
esting insights in the phase degrees of freedom. We see that the typical phonon
response discussed in quartz is retrieved, but other specific phase dynamics arise
owing to the increased complexity of the considered samples.

In TiOCl we find a dynamics strongly dependent on the dd orbital absorption
of the pump. Thanks to the measurement of the multimode field, we identify the
ISRS signature in analogy with the quartz case. Therefore, we associate a phonon
response to the orbital dependence, revealing coupling between orbital and vibra-
tional degrees of freedom in the sample.

In YBCO we observe a striking dependence of the phase response as a function of
temperature. In the room temperature experiment we report dynamical responses
similar to what observed in the other samples. We see coherent oscillations and a
slow-timescale positive shift of the phase, which is probably due to a thermal effect.
Lowering the temperature to reach the intriguing pseudogap and superconducting
phases, we see instead an anomalous negative transient in the phase response. This
signals a photoinduced decreasing of the propagation time of light through the sam-
ple. We discuss this specific phase dynamics establishing a link with anomalous
thermal dilation, which in turn is correlated to charge density wave physics. Thus,
we open the possibility to reveal details of the ultrafast charge dynamics in high
temperature superconductors by means of heterodyne spectroscopy.

To sum up, in the performed experiments we verified in different contexts the
advantages of accessing the optical phase. In perspective we highlight that also the
potentialities linked to the statistical degrees of freedom could represent a wide field
to explore. Statistical properties like fluctuations and inhomogeneity have a relevant
role in critical systems and we aim to map them in the photon distribution.
In this direction, in addition to the analysis with coherent states, we suggest the
possible impact of performing experiments with probe light with peculiar statistical
features. Among these, we remind for instance the phase-randomized states charac-
terized in this thesis, which could be suitable to study the phase independent photon
number statistics.

In conclusion, in this dissertation we propose an evolution of the standard ul-
trafast methodology and show that the new observables provided by Time-resolved
Heterodyne Detection can be an insightful tool to access new information to be pro-
cessed in the study of complex materials.
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Appendix A

Characterization of LAO substrate

We report the characterization of the bare LaAlO3 (LAO) substrate employed in
the YBCO measurements (Chapter 10). We perform acquisitions in the same condi-
tions discussed for YBCO, in order to exclude that the observed features are relative
to the transparent LAO support. We employ a 0.75 eV pump and a 1.66 eV probe.
The probe fluence is 1 µJ/cm2, the pump is used with 20 µJ/cm2 or 2 mJ/cm2 flu-
ence.

Ultrafast intensity pump&probe

The data relative to the ultrafast dynamics of the integrated intensity are shown
in Fig. A.1. The temperature dependence is very weak, and the fluence dependence
scales linearly. The response consists of a fast overlap signal, and a slow modulation
which is compatible with a low frequency coherent E-symmetry vibrational mode
[1].

a) b)

Figure A.1: Ultrafast integrated intensity dynamics. a) low-high fluence and
temperature comparison. b) Detail of the low pump response.

Ultrafast heterodyne pump&probe

We test the Multimode Heterodyne approach at low temperature (80 K) and at
the higher pump fluence in Fig. A.2.
The spectral maps describe an almost spectrally uniform response, which presents
the fast optical overlap signal and the slow phonon oscillation. Importantly, the
phase dynamics is mainly a positive shift. The anomalous negative behavior ob-
served in YBCO is sample specific.
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a)

b)

c)

Figure A.2: Multimode heterodyne data at 80 K and high pump fluence.
a) Spectral phase dynamics. b) Spectral amplitude dynamics. c) Average spec-
tral profiles.

In Fig. A.3 we verify that with the lower pump the trend scales linearly with the
pump fluence.

a) b)

Figure A.3: Fluence dependent heterodyne at 80 K. a) High pump. b) Low
pump.
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