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Abstract 42 

 43 

Aims i) To disentangle the global patterns of native and alien plant diversity on coastal sand dune 44 

ecosystems across habitats and floristic kingdoms, ii) to determine the main drivers of variation in 45 

species richness in native and alien species in these endangered ecosystems, and iii) to test for an 46 

interaction between spatial scale and native-alien richness patterns, as predicted by the invasion 47 

paradox.  48 

Location Global. 49 

Methods We collated a dataset of 14,841 vegetation plots in coastal sand dune ecosystems from 50 

around the world. Generalized Linear Models (GLMs) and Generalized Linear Mixed Models 51 

(GLMMs) were used to assess the patterns and main ecological determinants underlying native and 52 

alien species richness. Variation partitioning revealed the relative importance of environmental and 53 

anthropogenic variables. 54 

Results GLMs revealed strong differences among both habitats and floristic kingdoms in the 55 

number of native and alien species. Specifically, native species richness increased along the sea-56 

inland gradient and was higher in the Cape and Paleotropical kingdoms. In contrast, alien species 57 

richness was relatively similar across habitats and kingdoms, though some differences were detected. 58 

There were strong differences between the drivers of native and alien richness; anthropogenic factors 59 

such as Gross Domestic Product were positively associated with alien richness whereas native 60 

richness was more strongly related to environmental factors. Furthermore, we found a weak support 61 

for an invasion paradox effect.  62 

Conclusions Our results revealed the complexity of causal processes underpinning coastal sand 63 

dune plant biodiversity and highlight the importance of considering native and alien species 64 

separately. Recognition of these differences while researching variation in biodiversity patterns and 65 

processes at multiple spatial scales will lead to a better mechanistic understanding of the causes of 66 
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invasion worldwide, and in coastal ecosystems in particular, allowing the development of more 67 

focused control and management measures. 68 

 69 

Keywords: Alien species, Biodiversity, Biogeography, Coastal dune habitats, Diversity patterns, 70 

Invasion paradox, Macroecology, Species richness. 71 
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Introduction 88 

The coastlines of our planet extend to approximately 1.5 million km of which about 31 % are sandy 89 

beaches (World Resources Institute, 2005; Luijendijk et al., 2018). Along these coastlines, sand dune 90 

ecosystems are widespread and occur from the polar regions to the tropics, encompassing a wide 91 

range of climates, biomes and habitats (van der Maarel, 1993; Maun, 2009). Vegetation plays a 92 

primary role in sand dune formation and consolidation due to its ability to stabilize the substrate and 93 

to enhance sand deposition (Maun, 2009). Regardless of differences in species composition, all sand 94 

dune species and habitats worldwide share the same limiting factors, such as sand burial, sand 95 

blasting, marine aerosol, water deficiency and lack of nutrients (Acosta et al., 2009: Monserrat et al., 96 

2012; Pardini et al., 2015; Mahdavi and Bergmeier, 2016), and exhibit a characteristic sea-inland 97 

gradient (‘zonation’; Wilson and Sykes, 1999; Acosta et al., 2009; Miller et al., 2010; Tordoni et al., 98 

2018). 99 

An estimated 41% of the human population lives within 100 km of the shoreline (World Resource 100 

Institute, 2005), and the number of people living or vacationing in coastal areas is steadily increasing 101 

(Brown et al., 2013). This has already caused loss, alteration, degradation and/or habitat 102 

simplification of many sand dune environments, with severe consequences for biodiversity and 103 

associated ecosystems services (Dolan and Walker, 2006; Janssen et al., 2016). Human 104 

encroachment, including tourism and urbanization, along with increased shoreline erosion, have led 105 

to the so called ‘coastal squeeze’ effect (Defeo et al., 2009), leaving coastal ecosystems ‘trapped’ 106 

between erosion on the coastline and human settlements inland. Another source of concern stems 107 

from biological invasions, which are deemed a severe threat to biodiversity (second only to habitat 108 

loss and fragmentation; DAISIE, 2009; Vilà et al., 2011; EEA, 2012). Coastal areas are often reported 109 

to host many alien species (Von Holle and Motzkin, 2007; Chytrý et al., 2008; Giulio et al., 2020) 110 

and are considered as one of the most invaded ecosystems worldwide (Dawson et al., 2017). 111 

Especially in sand dune habitats, alien species can exert strong ecological impacts (e.g. Carboni et 112 
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al., 2010a; Novoa et al., 2013), which may lead to the extinction of native taxa of conservation 113 

concern, including endemic and keystone species (Acosta et al., 2009; Pardini et al., 2015).  114 

The impacts of biological invasions are strongly scale-dependent (e.g. Levine and D’Antonio, 115 

1999; Vellend et al., 2017). One of the most frequently discussed impacts of alien species is the 116 

reduction in species richness of the invaded community (Vilà et al., 2015), but the relationship 117 

between native and alien species diversity is still a matter of discussion in plant ecology (Fridley et 118 

al., 2007), with different interpretations of the phenomenon often reflecting different spatial scales of 119 

observation or study design (e.g. Muthukrishnan et al., 2018; Tomasetto et al., 2019). Generally, 120 

more negative relationships have been described at finer scales (experimental or small-scale studies), 121 

whereas the opposite trend is usually observed at larger observation scales (from large plot to 122 

landscape or biome). In response to this scale-related inconsistency, scientists coined the term 123 

‘invasion paradox’ to describe the scale dependency of native-alien richness patterns (Fridley et al., 124 

2007). 125 

In coastal sand dunes, integration of scale of observation is particularly important for 126 

understanding native plant community assemblage and richness (Carboni et al., 2013). At finer scales 127 

(few m2), biotic interactions usually predominate (Forey et al., 2010; de Toledo Castanho et al., 128 

2015). At regional scales, several studies (e.g. Forey et al., 2008; Brunbjerg et al., 2012) have shown 129 

that a suite of stressors (e.g. water and nutrient stress) and disturbance factors (e.g. sand burial) 130 

interact in shaping plant communities and their species richness. At even larger spatial extents, 131 

environmental and biogeographical factors become predominant (Jiménez-Alfaro et al., 2015).  132 

 133 

Recently, great efforts have been made to disentangle broad-scale patterns of species richness (e.g. 134 

Kreft and Jetz, 2007; Bruelheide et al., 2019) and several theories have been proposed to explain 135 

mechanisms responsible for species richness worldwide. Most of them rely on how water-energy 136 

dynamics drive species richness gradients (Francis and Currie, 2003; Currie et al., 2004; Kreft and 137 
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Jetz, 2007), along with the sensitivity of plants to frost and drought (Wiens and Donoghue, 2004). 138 

Other hypotheses consider environmental heterogeneity (Stein et al., 2014) or historical and 139 

evolutionary processes (e.g. Médail and Diadema, 2009; Kerkhoff et al., 2014). 140 

To our knowledge, no study has comprehensively investigated the patterns of native and alien 141 

plant species diversity in sand dune ecosystems in the context of spatial scale, either across habitats 142 

or across floristic kingdoms. Here, we use a large dataset of vegetation plots we have compiled from 143 

five continents (see Supplementary material Fig. S1.1 in Appendix S1) to fill this gap and to present 144 

a global analysis of vascular plant diversity of coastal sand dune ecosystems. At a global scale, we 145 

hypothesized that native species richness would show a similar pattern to that of vascular plants (i.e. 146 

a decrease of species richness from the equator towards the poles; Kreft and Jetz, 2007). In contrast, 147 

we expected to find an uneven level of invasion, suggesting the presence of hotspots of invasion 148 

across the globe (Pyšek et al., 2017) whose occurrence may be more influenced by anthropogenic 149 

factors (e.g. GDP) than natural ones. At a local scale, whereas several studies have reported a strong 150 

gradient of species richness moving from the drift line to the landward part of the beach, especially 151 

for native species (e.g. Acosta et al., 2009), the global pattern of alien species richness has not yet 152 

been investigated. Nevertheless, some evidence coming from local and regional scale studies located 153 

in the Mediterranean Basin (e.g. Carboni et al., 2010a) suggests that higher values of alien richness 154 

are often observed at intermediate levels of the sea-inland gradient. 155 

Thus, our aims were: i) to disentangle the global patterns of native and alien plant diversity on 156 

coastal sand dune ecosystems across habitats and floristic kingdoms, ii) to determine the main drivers 157 

of variation in species richness in native and alien species in these endangered ecosystems, and iii) to 158 

test for an interaction between spatial scale and native-alien richness patterns, as predicted by the 159 

invasion paradox.  160 

 161 

 162 
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Methods 163 

Study sites and species data 164 

We compiled a database consisting of 14,841 vegetation plots sampled in coastal sand dune 165 

communities distributed across Europe, North America, South America, Africa (Cape and 166 

Paleotropical kingdoms) and Oceania (except Australia). Species richness per sampling unit was 167 

obtained from plots and phytosociological relevés (hereafter plots) derived from literature and plant 168 

databases both public and private such as the European Coastal Vegetation Database 169 

(http://www.givd.info/ID/EU-00-017) or KRITI database (http://www.givd.info/ID/EU-GR-001). 170 

For more details about the data sources see Table S1.1 in Appendix S1. In order to be considered in 171 

the study, all plots had to comply with the following inclusion criteria: 1) a georeferenced location, 172 

2) a defined sampling unit size, and 3) a defined habitat or coastal plant community (see below for 173 

the adopted classification).  174 

Species names were standardized with the Taxonomic Name Resolution Service (Boyle et al., 2013; 175 

http://tnrs.iplantcollaborative.org/). Furthermore, doubtful species and records not identified to the 176 

species level were omitted. The status of the species (native or alien), if not provided by the author 177 

of the data, was assigned using online databases or national alien species checklists (see Table S1.2 178 

in Appendix S1). For each plot, we obtained two response variables: a) native species richness and 179 

b) alien species richness. Plots with size smaller than 0.25 m2 or with missing data for any of the 180 

variables described below were excluded leaving 11,988 plots for analysis. Even though the majority 181 

of the plots ranged in size from 0.25 to 100 m2 (see Fig. S1.2 in Appendix S1), plot size has been 182 

directly added in the models as a covariate to control for its effect on species richness (Arrhenius, 183 

1921). 184 

 185 

Environmental variables 186 

http://www.givd.info/ID/EU-00-017
http://www.givd.info/ID/EU-GR-001
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Each plot was classified as representing one of three main macrohabitat types: (1) foredunes, 187 

including drift line, upper beach, embryo dunes and mobile dunes dominated by pioneer annual and 188 

dune-forming perennial plants tolerant to salt spray, strong winds, and sand burial; (2) fixed dunes, 189 

encompassing communities dominated mainly by perennial plants (generally herbs and shrubs) and 190 

occurring in the inner part of the coastline, or more developed communities such as coastal forests 191 

and woodlands; and, (3) interdunes, comprised of interdunal swales, slacks and humid depressions. 192 

This coarse classification based on dune dynamics was necessary to standardize habitat types, owing 193 

to the great heterogeneity present across the globe (Doing, 1985). 194 

We tested the following environmental variables related to the growth and distribution of vascular 195 

plants as possible predictors of native and alien species richness: mean annual precipitation 196 

(mm/year), precipitation seasonality (percentage variation in monthly precipitation totals over the 197 

course of the year; larger values indicate greater variability), mean annual temperature (°C), and 198 

temperature seasonality (percentage measure of temperature change over the course of the year). 199 

Climatic data were obtained from the CHELSA database (Karger et al., 2017, accessed June 2017), 200 

a high-resolution climatology resource (30 arc seconds, ~1 km) spanning the years 1973 to 2013. 201 

Values were assigned to each plot with nearest neighbor algorithm using QGIS 3.10 with GRASS 202 

7.8.3 (Quantum GIS Development Team, 2020). We also included insularity (mainland vs island) and 203 

floristic kingdom according to the floristic divisions of Takhtajan (1986) to control for the generally 204 

lower diversity of island communities and the effect of unquantified historical or evolutionary 205 

processes. 206 

Anthropogenic variables 207 

Based on previous research (e.g. Bellard et al., 2016; Chapman et al., 2016), we considered a set of 208 

anthropogenic variables as predictors of alien species diversity that are surrogates for propagule 209 

pressure and/or potential introduction pathways. Among these, human population density has been 210 

identified as one of the main determinants of alien species richness at the continental scale (Pyšek et 211 
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al., 2010). Thus, we employed adjusted human population density (people / km²) based on the 212 

Gridded Population of the World at a resolution of 30 arc seconds (GPWv4; CIESIN, 2015), which 213 

provides gridded human population density estimated for the year 2015 adjusted to match United 214 

Nations (UN) estimated national-level population counts. As a proxy for trade volume, we used Gross 215 

Domestic Product per capita (standardized to international dollars, int$), (http://data.worldbank.org) 216 

based on Gross Domestic Product (GDP) constructed from purchasing-power-parity (PPP) per capita 217 

GDP (year 2015). Among human-related variables, proximity of airports, sea ports and cities also 218 

have been recognized as facilitators of biological invasions for several taxa (e.g. Seebens et al., 2013; 219 

Bellard et al., 2016). For this reason, we included the following predictors: Distance to nearest city 220 

with more than 50,000 inhabitants (Nelson, 2008); Distance to nearest airport (Pope and Sietinsone, 221 

2017) and Distance to nearest port (GISCO Ports, 2013). Year of sampling was also included to 222 

assess whether there is an effect of time of the surveys. All datasets were accessed on September 223 

2017. Distances were calculated through proximity analyses using QGIS 3.10 with GRASS 7.8.3.  224 

 225 

Species richness patterns across floristic kingdoms and habitats 226 

 227 

We first tested for differences in species richness across floristic kingdoms and habitat types using 228 

generalized linear modeling (GLM). Due to the presence of severe overdispersion in the data 229 

(variance >> mean), we used a negative binomial error distribution (Zuur et al., 2007). The 230 

explanatory power of each predictor was evaluated through likelihood ratio tests in the R package 231 

‘car’ (Fox and Weisberg, 2011) and effects were estimated using the package ‘effect’ (Fox and 232 

Weisberg, 2018). As a measure of model fit, we reported the amount of deviance explained by each 233 

GLM (D²adjusted; Barbosa et al., 2014). To quantitatively test for the invasion paradox, we fitted a 234 

negative binomial GLM to describe alien species richness as a function of native species richness, 235 

sampling unit area and their first-order interaction. This analysis was also repeated for the Holarctic 236 

http://data.worldbank.org/
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kingdom alone to test for consistency of the results, since most of the data (including larger plots) 237 

belonged to this kingdom. 238 

 239 

Ecological drivers 240 

The ecological drivers of native and alien species richness were evaluated by means of Generalized 241 

Linear Mixed Models (GLMMs), with random intercept to account for possible bias deriving from 242 

having data from different sources nested within floristic kingdoms. In order to linearize the 243 

relationship with species richness, some predictors were transformed as follows: population density 244 

and GDP were log10 (x+1) transformed, whereas plot size was log10 transformed. Furthermore, all 245 

continuous variables were standardized (zero mean, unit variance) in order to obtain comparable 246 

coefficients. 247 

GLMMs were estimated using the R package ‘glmmTMB’ (Brooks et al., 2017) and R2 values 248 

developed by Nakagawa and Schielzeth were also computed (Nakagawa and Schielzeth 2013). To 249 

isolate the effect of each group variable, four models were fitted (two for native and two for alien 250 

species), considering environmental and anthropogenic variables separately (see Table S1.3 in 251 

Appendix S1 for descriptive statistics of fixed effects). The response families were the same as for 252 

the GLMs (negative binomial). Furthermore, the possible occurrence of spatial autocorrelation of 253 

residuals in each model was assessed by means of spline-correlograms using the R package ‘ncf’ 254 

(Bjørnstad, 2020). Specifically, 95% pointwise bootstrap confidence intervals were calculated from 255 

1000 bootstrap samples of Pearson residuals after accounting for the level of spatial autocorrelation 256 

explained by the explanatory variables in each model. To further explore the role of ecological drivers 257 

on species richness, a variation partitioning approach through partial linear regressions was used to 258 

assign the total variation in native and alien species richness into purely environmental, purely 259 

anthropogenic, shared and unexplained fractions (Borcard et al., 1992; Legendre, 2008) using the 260 

‘vegan’ package (Oksanen et al., 2019). All analyses were performed using R 4.0.2 (R Core Team, 261 
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2020); detailed model formulas and specifications are available in Supplementary material (Appendix 262 

S2).  263 

 264 

Results 265 

Global patterns of native and alien richness in sand dunes 266 

Overall, fitted values of native and alien species richness varied strongly among habitats and floristic 267 

kingdoms (Fig. 1; Table S1.4, S1.5 in Appendix S1 of Supplementary material). There was a 268 

significant interaction between habitat and floristic kingdom, both for native and alien species 269 

(Likelihood Ratio Test χ2 (6) = 326.6, P < 0.001, D2
adjusted =

 0.45; χ2 (6) = 132.9, P < 0.001, D2
adjusted 270 

= 0.19; respectively). These explanatory variables were strong predictors of global variation of species 271 

richness for natives whereas they were relatively weak predictors for alien species (there was a 272 

difference in deviance explained of 26% between the two models). For native species, fixed dunes 273 

tended to have higher species richness compared to foredunes and interdunes in all the floristic 274 

kingdoms (Fig. 1a) showing highest species richness in Cape and Paleotropical kingdoms. In contrast, 275 

Holantarctic kingdom was the poorest one. Surprisingly, in some kingdoms, such as the Cape and 276 

Holantarctic, alien species displayed a different pattern with respect to habitat compared to that of 277 

native species (Fig. 1b) showing greater variation among habitats along the sea-inland gradient with 278 

respect to native species. Specifically, foredunes showed higher levels of alien plants relative to fixed 279 

dunes in the Cape and Holantarctic kingdoms, whereas the opposite was observed in the Holarctic 280 

and Paleotropical kingdoms. On average, interdunes tended to have the lower levels of invasion (Fig. 281 

1b). As hypothesized, higher values of alien species richness were clustered in specific regions, such 282 

as New Zealand, North America or some European countries (Fig. 2).  283 

An overall negative relationship between native and alien species richness was observed without 284 

considering plot size (Fig. 3a). However, when grain size was specifically considered in the model, 285 

the slope of the relationship shifted from negative to positive with increasing plot size, in agreement 286 
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with the pattern suggested by the invasion paradox (Fig. 3b). The GLM with alien species richness 287 

as response variable showed a significant interaction between native richness and plot size (χ2 (1) = 288 

63.90, P < 0.001), even though a poor predictive power was detected (D2
adjusted =

 0.02). However, the 289 

overall relationship between native and alien species richness became positive when considering only 290 

the data coming from the Holarctic kingdom, no longer supporting the invasion paradox effect (Fig. 291 

S1.3, χ2 (1) = 4.22, P < 0.05, D2
adjusted =

 0.01). 292 

Global ecological determinants of native and alien richness 293 

GLMMs revealed large differences between the responses of alien and native species richness to 294 

environmental and socio-economic variables. Native species richness was strongly associated with 295 

global environmental gradients and only marginally with anthropogenic variables. Alien species 296 

richness, in contrast, was more strongly associated with anthropogenic variables (Fig. 4, Table S1.6 297 

in Appendix S1). These outcomes were further corroborated by the variation partitioning approach 298 

where native species were mainly driven by environmental variables, whereas for alien species 299 

anthropogenic variables accounted for a greatest percentage of explained variation (Fig. 5). 300 

Specifically, native species richness significantly differed among habitats and, furthermore, was 301 

positively related to mean annual temperature (b = 0.06 ± 0.02 SE, Table S1.6 in Appendix S1), and 302 

mean annual precipitation (0.03 ± 0.01). A negative coefficient was observed for precipitation 303 

seasonality (-0.07 ± 0.02), meaning that higher seasonality was associated with lower species 304 

richness. Insularity, in contrast, did not have a pronounced effect on local coastal dune diversity of 305 

native plants. The only anthropogenic variables with a positive effect on native species richness was 306 

population density (0.09 ± 0.01) whereas a negative relationship with the distance of the closest city 307 

was detected (-0.026 ± 0.01). 308 

For alien species, some strikingly different results were obtained. In contrast to the results for 309 

native species, insularity had a strongly negative effect on alien species richness (-0.44 ± 0.20, Table 310 

S1.6 in Appendix S1). Negative effects on alien richness were also observed for mean annual 311 
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temperature (-0.22 ± 0.06), precipitation amount (-0.11 ± 0.01) and precipitation seasonality (-0.18 ± 312 

0.06). Almost all of the anthropogenic predictors tested were highly informative (confidence intervals 313 

did not overlap zero). Notably, a positive association was observed with GDP (0.70 ± 0.10), 314 

population density (0.04 ± 0.02) and year of sampling (0.010 ± 0.002), as expected. Accordingly, a 315 

negative estimate was observed considering the distance to the closest city (-0.21 ± 0.02), whereas a 316 

positive effect of the distance to the closest airport was found (0.11 ± 0.02).  317 

All four spline correlograms (Fig. S1.4 in Appendix S1 of Supplementary material) failed to reveal 318 

any evidence of spatial autocorrelation in the residuals, thereby allowing us to exclude its influence 319 

on model parameter estimates. 320 

 321 

Discussion 322 

Diversity patterns across habitats and floristic kingdoms 323 

We explored the relationships between native and alien species, and the main environmental and 324 

anthropogenic factors associated with their distribution. Overall, some contrasting patterns and 325 

relationships between species diversity and its drivers emerged among habitats and floristic 326 

kingdoms. Among floristic kingdoms, higher native species richness was detected in Cape and 327 

Paleotropical kingdoms whereas the Holarctic and Holantarctic were significantly poorer (Fig. 1, 2). 328 

This result is consistent with well-known global trends for vascular plants (i.e. higher richness in 329 

Cape region; Kier et al., 2005; Kreft and Jetz, 2007), even though these results might be partially 330 

influenced by the spatial configuration of our database. 331 

Native species richness showed a general increase along the sea-inland gradient from the species-332 

poor foredunes to more diverse communities on fixed dunes. This trend was consistent across floristic 333 

kingdoms and confirms numerous local and regional case studies from around the world (e.g. Acosta 334 

et al., 2009; Miller et al., 2010; Monserrat et al., 2012; Ciccarelli et al., 2012; Jiménez-Alfaro et al., 335 
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2015). The increase in species richness along the dune gradient is attributable to the variable effect 336 

of limiting factors acting in these environments: low levels of nutrients and moisture, salt spray, sand 337 

burial and soil features (see Forey et al., 2008; Houle, 2008; Acosta et al., 2009; Ciccarelli and 338 

Bacaro, 2016; Angiolini et al., 2017). Thus, the more extreme conditions in foredunes cause them to 339 

be, on average, more species-poor compared to the other habitats, even though a strong 340 

biogeographical signal is evident across floristic kingdoms. This signal may be partially explained by 341 

the climate (even though this effect is stronger in stable dunes, Jiménez-Alfaro et al., 2015) and by 342 

dispersal processes occurring along the coastline that might be favored by sea currents (Clausing et 343 

al., 2000). Fixed-dune communities, in contrast, displayed higher species richness due to less 344 

dynamic habitats and to the more mature, diverse and deeper soils; at increasing distance from the 345 

coastline, vegetation is progressively less exposed to extreme conditions allowing for the 346 

establishment of perennial plants and forest vegetation (Wiedemann and Pickart, 2004; Maun, 2009). 347 

Thus, our analysis showed that, irrespective of the floristic kingdom considered, there is a strong 348 

gradient of native species richness moving from the foredunes to the landward part of the beach.  349 

Regarding alien species, we detected some hotspots of invasion, mainly located in North America 350 

and New Zealand. Our results are consistent with those of other researchers (Pyšek et al., 2017; 351 

Dawson et al., 2017) who have found higher richness of naturalized aliens in New Zealand and United 352 

Kingdom among islands, and in several North American regions (e.g. California) for mainland. The 353 

effect of habitat on alien species richness was a bit less pronounced with respect to native species and 354 

this pattern was not consistent across floristic kingdoms. Specifically, landward beach areas (i.e. fixed 355 

dunes and interdunes) were more invaded than foredunes, which may be explained mostly by the 356 

overall less stressful conditions in these environments. Invasiveness of alien species have been mostly 357 

explained by their higher phenotypic plasticity coupled with their ability in the use of resources 358 

(Davidson et al., 2011; Tordoni et al., 2019). Other factors to consider include the capability of alien 359 

plants to spread their propagules across habitats (see Simberloff, 2009 for a review on the role of 360 
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propagule pressure in biological invasions) associated with trampling in touristic beaches and 361 

proximity to artificial surfaces (Carboni et al., 2010a; Malavasi et al., 2014). Interestingly, higher 362 

values of alien species richness were observed in the foredunes of the Holantarctic and Cape 363 

kingdoms. Previous studies (e.g. Hertling and Lubke, 1999; Hilton et al., 2006) have reported that 364 

foredunes are heavily invaded by alien species, for example by the west Holarctic marram grass 365 

(Ammophila arenaria) that was widely planted during the 1900s to construct or re-establish foredunes 366 

and stabilize shifting dune systems in New Zealand and South Africa (Johnson, 1992; Lubke et al., 367 

1995). 368 

Scale-dependency of diversity patterns 369 

Several authors have described the scale-dependence of the relationship between native and alien 370 

species richness (see Levine and D’Antonio, 1999; Davies et al., 2005, among others). In our study, 371 

we observed a general negative linear relation between native and alien species richness, i.e. more 372 

species-rich sites were less invaded (Fig, 3). However, when accounting for plot size, we detected the 373 

invasion paradox pattern as proposed by Fridley et al. (2007). Accordingly, even though at very fine 374 

spatial grain a clear negative trend exists between native and alien richness (e.g. Levine, 2000), the 375 

opposite holds true at larger spatial grains (Fig. 3b, Stohlgren et al., 2003, among others). Similar 376 

results have also been observed in a meta-analysis of Mediterranean-type ecosystems including sand 377 

dune vegetation (Gaertner et al., 2009). Fridley et al. (2007) did not provide a single interpretation to 378 

this phenomenon, but rather a suite of possible explanations. At a fine scale, environmental and 379 

disturbance-based features predominate and shape community composition. Sampling effects may 380 

arise in the sense that communities may include particularly invasion-resistant or competitive species; 381 

another possible explanation relies on the concept that in stressful, regularly-disturbed environments 382 

such as sand dune ecosystems, facilitative interactions may ease the establishment and colonization 383 

of alien species across functional groups (Von Holle, 2013). In contrast, at a larger spatial scale, 384 

native and alien species richness increased in concert. The biotic processes are superseded by 385 
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historical, environmental, or biogeographic factors, among which probably spatial and environmental 386 

heterogeneity play a crucial role (Gaertner et al., 2009; Stein et al., 2014). In addition, communities 387 

experiencing high species dispersal or in highly disturbed ecosystems (e.g. roadside and riparian 388 

habitats) often exhibit these positive relationships (Brown and Peet, 2003). Nevertheless, it is worth 389 

noting that when considering only the plots located in the Holarctic kingdom the relationship between 390 

native and alien species remained steadily positive across all scales considered (see Fig. S1.3). This 391 

in agreement with recent studies (Peng et al., 2019; Tomasetto et al., 2019) suggesting that an 392 

explanation for this effect could rely on the sampling design used by different authors, the nature of 393 

the data (observational vs experimental) coupled with a strong bias towards particular study systems 394 

such as grassland habitats. Although we found a highly significant interaction between plot size and 395 

richness values, the poor performance of the models coupled with the inconsistency of the invasion 396 

paradox effect when downscaling the data seem to lend support to these recent findings. Additionally, 397 

despite the fact that macrohabitat classes are quite evenly represented in the dataset within each 398 

kingdom (except for Neotropical), we cannot exclude that the pattern observed may be influenced by 399 

the spatial clustering of the data in terms of plot location relative to plot size (the largest plots are 400 

only in Europe and North America). Second, alien species richness may be biased downward in the 401 

oldest phytosociological relevés, which are largely European, due to preferential sampling (Chytrý, 402 

2001). 403 

Ecological drivers of plant species richness 404 

GLMMs and variance partitioning revealed that environmental and anthropogenic factors (Fig. 4, 5) 405 

acted differently on native and alien species. Climatic and ecological variables predict worldwide 406 

patterns of native species richness. Usually, water-energy interactions exert strong effects on plant 407 

species richness (Francis and Currie, 2003; Kreft and Jetz, 2007) and global diversity gradients in 408 

general (Hawkins et al., 2003). At a global scale, the distribution and the strong geographical 409 

differentiation in the floristic composition of plant communities have been classically attributed to 410 
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climatic differences and regional-scale processes of speciation, extinction and dispersal (Ricklefs, 411 

1987). Even though foredunes are deemed an azonal habitat, local climate seems to influence the 412 

species present in the inner part of the beach (Mahdavi and Bergmeier, 2016; Del Vecchio et al., 413 

2018). The relationships between native species richness and anthropogenic factors such as 414 

population density (proxy for urbanization) has been previously described in literature (Kühn et al., 415 

2004; Luck, 2007; Lucrezi et al., 2014) suggesting a key role of nutrient enrichment and abundance 416 

of resources. Regarding the year of sampling, a very weak positive relationship was observed 417 

meaning that there was an increase of native species richness according to time of the survey. 418 

However, due to the small value of the coefficient (< 0.001), this effect could be considered as 419 

relatively weak. 420 

Coastal dune habitats have been reported previously to be highly invaded by alien plant species, 421 

with a general consensus that propagule pressure is among the most important causes of greater 422 

invasion success (Carboni et al., 2010a; Malavasi et al., 2014; Basnou et al., 2015). Generally, highly 423 

disturbed sites that were close to human activities and/or had been heavily transformed by humans 424 

had greater chance to host more alien species (see Fig. 4), regardless of the biodiversity present in the 425 

area (Basnou et al., 2015; Dawson et al., 2017). Nevertheless, climatic factors influence alien species 426 

richness (Carboni et al., 2010b), as reported also in other global-scale studies in terrestrial ecosystems 427 

(e.g. Pyšek et al., 2017) and even considering different taxa such as birds (e.g. Dyer et al., 2017). In 428 

contrast to Carboni et al. (2010b), we observed a negative relationship of alien species richness with 429 

precipitation amount, precipitation seasonality and mean annual temperature suggesting that more 430 

successful invaders were found in mildest climates, as observed in other environments across the 431 

world (Gassó et al., 2009). 432 

It is generally accepted that islands are more invaded than mainland sites (Lonsdale, 1999; Pyšek 433 

et al., 2017; Moser et al., 2018). In this study, we observed an opposite pattern with higher alien 434 

species richness in coastal sand dunes in mainland areas than on islands (Fig. 4). This is consistent 435 
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with observations by Vilà et al. (2010), who compared Spanish coastal plant communities. The 436 

smaller exotic species pool which is present on islands compared to mainland locations could result 437 

from the lower human population density on islands compared to mainland in our dataset (average 438 

density of 201.15 vs 515.52, respectively) which likely translates into lower propagule pressure. 439 

Nonetheless, this pattern might just arise as a sampling effect due to the spatial distribution of our 440 

data, being only few of our plots located on small islands, and even fewer on oceanic islands. 441 

Socio-economic factors such as per-capita GDP (which is directly related to a country's volume of 442 

trade as well as the disposable income of its population) and population density (proxy for 443 

urbanization) played a key role in explaining alien species richness, which is consistent with other 444 

studies (McKinney, 2006; Carboni et al., 2010ab; Pyšek et al., 2010). Nonetheless, it has been 445 

suggested that the full consequences of biological invasions often realize only decades after their 446 

introduction (so called “invasion debt”, Essl et al. 2011). The positive relationship between alien 447 

richness and year of the study can be explained by the effect of the so-called “residence time” (the 448 

period since the introduction of a taxon to a new area occurred) and might therefore reflect a real 449 

temporal accumulation of alien species, even though this pattern might be influenced by the fact that 450 

older plots mainly belonged to the Holarctic kingdom and more than half of them were collected in 451 

only the last twenty years (Fig. S1.5 in Appendix S1). Other possible explanations might rely on 452 

increased global trade network along with the relatively recent interest in this topic which caused an 453 

increase in research intensity (Hulme et al., 2013). Cities are often the introduction epicenter of alien 454 

species (Pyšek, 1998; Tordoni et al., 2017) due to synergic effects of human activities and transports, 455 

which ensure a high dispersion rate of the propagules through a road network (Bacaro et al., 2015). 456 

The distances to the closest city may be easily related to the concept of the pathways of introduction 457 

and spread and they can be considered as major drivers of invasion throughout the world (Bellard et 458 

al., 2016). More generally, especially across coastal areas, alien plant introductions into new areas 459 

have happened both unintentionally (through major trade routes, Tatem and Hay, 2007; Tatem, 2009; 460 
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Chapman et al., 2016; Bellard et al., 2016) and intentionally (for instance by preventing sand drift or 461 

by establishing ornamental plants). Thus, anthropogenic factors were primarily involved as drivers 462 

of alien species richness patterns of coastal sand dune ecosystems worldwide.  463 

 464 

Conclusions 465 

This study provides a global view on patterns and drivers of native and alien plant species richness 466 

in coastal sand dune ecosystems. A key finding from our study is that native and alien species richness 467 

in coastal sand dune environments differs across habitats and floristic kingdoms. Our study reveals a 468 

consistent sea-inland gradient in native species richness with fixed dunes being the richest, whereas 469 

the richness of alien species tended to be more similar across habitats. Overall, global trends of 470 

vascular plant diversity were also confirmed. We found some support for a scale-dependent change 471 

in the direction of the native-alien relationship consistent with the invasion paradox effect, even 472 

though with a relatively weak predictive power and consistency across floristic kingdoms. Species 473 

richness of coastland habitats is differentially related to ecological and anthropogenic factors. Even 474 

though there was a strong imprint of environmental factors such as climate variables for both native 475 

and alien species richness, the effect of anthropogenic impacts on the latter was much more 476 

pronounced. More detailed and more mechanistic understanding of the causes of invasion should 477 

allow more focused control and management measures and might lead to similar explorations among 478 

other ecosystem types across the globe. 479 
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Figures 823 

 824 

Figure 1. Bar charts displaying the effect of habitat across floristic kingdoms on a) Native species, 825 

b) Alien species. Values reported are estimated species richness per plot ± 95% confidence intervals 826 
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 832 

Figure 2. Global map showing the distribution of the vegetation plots according to Takhtajan floristic 833 

kingdoms (Takhtajan, 1986). Please note that the size of the symbol is proportional to the absolute 834 

number of alien species; lower inset represents a detail of Cape and Paleotropical kingdoms  835 
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 842 

Figure 3. a) Scatterplot illustrating the relationship between alien and native species richness. Solid 843 

line represents the overall regression trend. b) Effect plot displaying the dynamic pattern between 844 

alien species richness and native species richness according to plot size. Shaded areas represent 95% 845 

confidence intervals. Plots were grouped in three classes according to their size (0.25-100,101-500, 846 

501-10000 m2) for ease of interpretation. 847 
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 848 

Figure 4. Summary of GLMMs. x-axis reports the estimate ± 95% Wald confidence interval, y-axis 849 

the model’s predictors.  850 
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 857 

 858 

Figure 5. Variation partitioning reporting the proportion of variance explained expressed as 859 

percentage by environmental variables and anthropogenic variables for native and alien species 860 

richness 861 

 862 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Native species Alien species

P
ro

p
o

rt
io

n
 o

f 
v
a

ri
a

n
c
e

 e
x
p

la
in

e
d

Unexplained

Shared

Anthropogenic variables

Environmnental variables


