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ABSTRACT

Low-frequency components of reflection seismic data are of paramount importance for acous-

tic impedance inversion, but they typically suffer from a poor signal-to-noise ratio. The es-

timation of low frequencies of the acoustic impedance can benefit from the combination of

a harmonic reconstruction method (based on autoregressive models) and a seismic-derived

interval velocity field. We propose the construction of a convex cost-function that accounts

for the velocity field, together with geologic a priori information on acoustic impedance

and its uncertainty, during the autoregressive reconstruction of the low frequencies. The

minimization of this function allows one to reconstruct sensible estimates of low-frequency

components of the subsurface reflectivity, which lead to an estimation of acoustic impedance

model via a recursive formulation. In particular, the method is suited for an initial and

computationally inexpensive assessment of the absolute value of acoustic impedance even

1

Page 1 of 65 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

1



when no well log data are available. We first tested the method on layered synthetic mod-

els, then we analyzed its applicability and limitations on a real marine seismic dataset that

included tomographic velocity information. Despite a strong trace-to-trace variability in

the results, which could partially be mitigated by multi-trace inversion, the method demon-

strates its capability to highlight lateral variations of acoustic impedance that cannot be

detected when the low frequencies only come from well log information.

2

Page 2 of 65GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

2



INTRODUCTION

This paper describes a 1-D post-stack methodology that aims at inferring the acoustic

impedance (AI) of the subsurface from amplitudes of seismic records and ancillary infor-

mation that may be available in the aftermath of a seismic survey. The trace-by-trace

approach discussed here is a simplification of the general problem of seismic waveform in-

version. Our approach implies a computationally inexpensive algorithm that can be useful

for an initial assessment of the subsurface acoustic properties. The subsurface AI model

is reconstructed by assuming an acoustic isotropic propagation medium. Low frequencies

of this model are ill-conditioned components of the solution because of the poor S/N that

active-source seismic data exhibit at low frequencies. Typically, when dealing with seismic

data for oil and gas exploration, frequencies below 5-10 Hz are strongly affected by acquisi-

tion and environmental noise (e.g. Lesage et al. (2015)). Broadband seismic data acquired

in recent years, show a good S/N starting from frequencies as low as 2.5 Hz (Soubaras and

Lafet, 2011). Regardless, our method remains useful for conventional, as well as for higher

resolution seismic data.

Veeken and Da Silva (2004) provide an overview of several inversion methods for the re-

covery of noisy low frequencies. We propose a modification of the autoregressive (AR)

method (Walker and Ulrych, 1983) in which we constrain the AR inversion using a seismic-

based velocity field. We call this approach combined AR-velocity (CARV) method. The

AR reconstruction of reflectivity allows one to recursively compute a full bandwidth AI

estimate (Russell, 1988). The AR low frequency reconstruction method was originally pro-

posed together with the minimum L1-norm solution (Oldenburg et al., 1983) in the 1980’s.

The latter solution found larger success with the advent of fast algorithms (i.e. Iterative

Reweighted Least Squares) in the field of linear programming. Minimum L1 or L1/L2 norm
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solutions do not require a spectral estimation with its associate sources of error. Rather,

these solutions make a different a priori assumption: that of a sparse time domain repre-

sentation of reflectivity (Walden and Hosken, 1985). In this respect, they produce different

AI models than the ones identified by the AR reconstruction. More recently, Gholami and

Sacchi (2013) achieved a sparse solution by minimizing the total variation of AI rather than

performing the reconstruction in reflectivity domain. Many other methods for bandwidth

extension have been proposed to date but we limit our analysis to the harmonic extrapo-

lation methods for a physically valid quantitative reconstruction of the acoustic properties.

A careful analysis on the validity of the AR and sparse spike reconstruction, compared to

other methods is detailed by Liang et al. (2017).

The AR method for impedance inversion is a model-based method. This method predicts

the low frequency components of each seismic trace by fitting an AR model to the frequency

components that show an adequate S/N. The AR model assumes the signal to be composed

of a limited number of events in time domain. A limited number of events in time domain

corresponds to a limited number of complex sinusoids in the Fourier domain and in turn

to a blocky AI. By assuming that the trace is made up of a limited number of reflections,

ill-conditioned low frequency components of reflectivity are univocally reconstructed to be

consistent to the components measured in the band-pass region. The reconstruction is based

on the extension of few sinusoids estimated from the data, hence the term harmonic. The

reconstruction makes use of the conjugate symmetry of real signals in the Fourier domain.

The reconstruction is deterministic because the inverted output consists of only a single

model among many that fit the data. The deterministic nature of the estimate proposed

does not prevent the undertaking of a sensitivity analysis on the parametrization adopted.

The most relevant parameters to consider are the relevance of the interval velocity field in

4
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the estimate, the number of reflection events to be modeled, and the frequency band in

which the AR model is estimated.

THEORY

In order to obtain a sensible absolute AI inversion the input seismic trace must be properly

processed to include only primary energy. Effects of source and receiver signatures must

be accounted for and removed during processing. Accurate imaging is required to place

seismic events at their true subsurface locations before inversion. The inversion algorithm

proposed here does not account for non-zero incidence angles; therefore the input post-stack

data should ideally be a near-angle partial stack. The choice of angles has to be a trade-off

between data quality, which is related to stacking fold, and the offset required to achieve such

fold. Alternatively, the AVO intercept section could be used as input for the reconstruction.

This approach implies that the AVO behavior of the data is properly modeled, which could

be problematic when strong anisotropic or higher order effects are present in the records.

Relative amplitudes of the events must be preserved throughout processing. Since often

the relative amplitude is preserved but the processing is not actually “true amplitude”, we

invoked a global scalar for the whole seismic section. In absence of accurate well log ties, the

scalar can be approximately determined from the a priori knowledge of AI at two different

depths and applied to the data before inversion.

The convolutional model (Robinson, 1954), is at the root of the impedance inversion method

proposed in this paper. This model assumes that the processed seismic trace d(t) can be

expressed as:

d(t) = w(t) ∗ r(t) + n(t), (1)
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where w(t) is a time-invariant seismic wavelet, r(t) is the reflectivity series providing infor-

mation on the subsurface features of interest and n(t) is the additive noise, which includes

all the features of the data that cannot be ascribed to the previous two terms.

Dispersion and attenuation are not taken into account by the convolutional model as well

as by the proposed algorithm. In order to uniquely single out the interfaces between lay-

ers of contrasting AI, we make three assumptions: weak dispersion, sparsity of reflectivity

(Oldenburg et al. (1983) and Hargreaves et al. (2013)), and high frequency (i.e. Bleinstein

et al. (2000) pp. 5-6). The high frequency approximation assumes that the rock property

variations have much longer wavelength than the longest wavelength of the seismic source.

In the presence of thin layers, the AR method is expected to fail, and the absolute value

of the predicted AI to be biased below the layers whose thickness is similar to that of the

seismic wavelength (see Figure 1 at about traces 2-10 for reference). This behavior is well

known (Ulrych and Walker, 1984), and additional information (interval velocity field and

a priori geologic constraints) is required to increase the accuracy of the inversion in the

real case scenarios that may not meet the three assumptions. Figure 1 exemplifies the ef-

fects of the bias that may be introduced when thin layers are inverted for the AI with an

unconstrained AR approach.

Figure 1 about here.

The seismic traces that meet the assumptions described above, having been band-pass

filtered to reject the noisier spectral components (including the low frequencies), can be

6

Page 6 of 65GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

6



modeled as:

d′(t) = sr′(t) + n′(t), (2)

where d′(t) is the bandlimited seismogram, s is a scalar, r′(t) is a bandlimited version of

reflectivity and n′(t) represents the bandlimited component of noise. After such processing,

the seismic traces represent a scaled and noisy bandlimited reflectivity series. Data must

be processed to zero phase in order to place the interfaces between adjacent layers at their

correct temporal position. Approximate results can also be obtained without properly

removing the wavelet effects. However the results depart from the theoretic reconstruction

in such a way that the resulting very low frequencies are completely unreliable if no accurate

constraints at depth are imposed in the inversion (see appendix A). A time variant AR

process (Rao, 1970) may model the complex-value non stationary series in this case. Tary

et al. (2014) provide a detailed description on the topic of fitting time variant AR models on

seismic time series, but such models have not been considered in this paper. Provided that

equation 2 is valid and as long as the scalar s is properly estimated and noise taken into

account, the input data for the inversion may be d′(t) or r′(t). The reconstruction performed

in the zero-offset data domain is a scaled version of the reconstruction performed in the

reflectivity domain. In what follows, the data in the band-pass window will be modeled

by equation 2, which provides a means to estimate r′(t) from the data. The reflectivity

thus obtained becomes the input to the inversion process. We follow the weak contrast

approximation introduced by Peterson et al. (1955) to relate the AI to the interface property

of reflectivity (ri) for a continuous earth model and normal incidence:

AI(t) = AI(t0)e2
∑t

i=1
ri . (3)

If the reference impedance is known or estimated at a certain depth AI(tref ) rather than

near the surface (AI(t0)), the AI reconstruction above the reference level is obtained by

7
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rewriting equation 3 as:

AI(t) =
AI(tref )

e
2
∑t

i=t0
ri
. (4)

In case the absolute value of reflectivity is smaller than 0.4, the difference between the

results of equation 3 and the formulation of impedance for a discrete layered earth,

AI(t) = AI(t0)
t∑

i=t0

1 + ri
1− ri

, (5)

is negligible for a single interface (Bertheussen and Ursin, 1993) but the difference accumu-

lates for increasing depths proportionally to the sum of the cubic power of the amplitudes

of each event. All the frequency components of the reflectivity must be available to invert

for the absolute value of AI by using equation 3 or 4. In particular, the low frequency com-

ponents of reflectivity play the most relevant role in describing the features of AI because

of the low frequency boosting due to the summation operator in equation 3 or 4.

METHOD

The proposed method estimates the absolute AI by considering the spectrum of each post-

stack seismic trace as a gapped complex signal. The gap refers to the low frequency part of

the recorded data that is bounded by the negative and positive signal spectral components.

The idea of filling the gap was initially proposed by Fahlman and Ulrych (1982) in the

context of power spectral estimation and developed by Walker and Ulrych (1983) for the

case of seismic inversion. The novelty of the proposed approach consists of including, during

the gap filling process, information from interval velocity together with geologic knowledge

on impedance and its uncertainty. The inclusion of ancillary information is performed by

modifying the original formulation proposed by Walker and Ulrych (1983).
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Harmonic representation of times series

The harmonic AR modeling is fully detailed in Walker and Ulrych (1983) and we will only

outline here the salient points that may be useful for the new aspects of the proposed CARV

inversion. A limited number (M) of events in a recorded time series is represented in the

Fourier domain (Rf ) by a sum of a limited number of complex sinusoids in a noise-free case

Rf =
M∑
k=1

rke
−i2πfτk . (6)

In equation 6 τk represents the travel-time of the events rk. A limited number of sinusoids

is fully described by a linear combination of M Fourier components

Rf =
M∑
k=1

Rf−ke
−i2πkτk . (7)

Equation 7 can be interpreted as perfectly predictable AR process of coefficients gk and

innovation equal to 0:

Rf =
M∑
k=1

gkRf−k. (8)

Innovation, in the context of AR modeling, describes the unpredictable part of the process

as the difference between the recorded value and the value predicted by the harmonic model

(Kay and Marple, 1981).

ARMA models for noisy data

In the presence of noise (Nf ) that is uncorrelated to signal (Rf ) in the recorded data (Xf ),

an autoregressive moving average (ARMA) process with the same coefficients for the AR

and the moving average process is the correct representation of the signal (Ulrych and

Clayton, 1976):

Rf = Xf −Nf =
M∑
k=1

gkXf−k −
M∑
k=1

gkNf−k. (9)
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The spectral estimator of Pisarenko (1972) can be used to fit an ARMA model to the

data. However, this method is very sensitive to the model order (Kay and Marple, 1981),

which must be chosen to be equal to the number of the reflections plus one: this piece of

information is not available a priori in real case scenarios. A modification of the Pisarenko

method that makes use of projection filters (Soubaras, 1994) has been proposed by Sacchi

and Kuehl (2005). This approach provides an estimate of all the Rf in equation 9 as

R = (Id− (GHG + ψId)−1GHG)X, (10)

where G is the convolution matrix of the coefficients of the Prediction Error Operator (gHg)

and ψ is a regularization parameter to account for the magnitude of the noise variance when

its distribution is assumed to be Gaussian (Chen and Sacchi, 2014). The vector R estimated

from equation 10 is in theory the noise-free spectral representation of a limited number of

events in the time representation of the seismic trace (Sacchi and Ulrych, 2005). The noise-

free estimate can be used as input for the AR reconstruction of low frequencies.

AR low frequency reconstruction

AR models of order much longer than the number of complex sinusoids in the data mimic

the ARMA behavior and can be adopted to reduce the sensitivity of the results to the model

order in the presence of noise (Walker and Ulrych, 1983). Figure 2 (which is described more

fully in the RESULTS section) compares the AR reconstruction to the ARMA reconstruc-

tion of the full bandwidth of a synthetic sparse time series. In order to fill the low frequency

gap with an AR model, Walker and Ulrych (1983) minimize the AR forward and backward

prediction error in the following cost function

min
RLf
||
M∑
k=0

gkRf−k||22+||
M∑
k=0

gHk Rf+k||22= min
R
||CR− b||22. (11)

10
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The vector R contains the low frequency components of the reflectivity spectrum, the

matrix C contains the convolution of the AR coefficients, and the vector b describes the

known terms resulting from the multiplication of the AR coefficients and the known Fourier

components of the spectrum at higher frequencies. An explicit solution is found by imposing

the first derivative of equation 11 with respect to R equal to 0:
2|
∑M
k=−M gkg

H
k Rf+k|

. . .

2|
∑M
k=−M gkg

H
k R−f+k|

 =


0

. . .

0.

 (12)

The minimization of equation 11 is a two-stage process: the AR filter coefficients (gk) are

initially estimated from a spectral window where the wavelet effects are properly removed

and, after the gap of low frequencies is filled, a new AR model is fitted to the original spectral

window plus the low frequency band to return an updated version of the low frequency

reconstruction. This procedure reduces the prediction error (Fahlman and Ulrych, 1982).

The computation of the autocorrelation function on a longer complex-value series is one of

the factors to account for the reduction in the prediction error when the second AR model

is fitted to the gap-filled spectrum. This approach helps to stabilize the estimation of the

later lags of the autocorrelation that are particularly relevant for the estimation of the AR

coefficients when the order of the AR model is close to the length of the spectral passband.

Different spectral estimators lead to different reconstructions of the AR coefficients. This

behavior is particularly relevant in presence of a large number of reflectors and interference

features. In this paper the Yule-Walker (Kay and Marple, 1981) method has been applied,

providing more stable results when applied to both complex synthetic scenarios and real

data.

The spectral components that show a poor S/N are not suitable for quantitative inversion

in the framework of AR models (Kay and Marple, 1981). Following the work of Walker
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and Ulrych (1983) we define a frequency band where S/N is adequate for inversion. The

average amplitude spectrum of the input seismic section can be used to estimate reasonable

cut-off frequencies. The choice is a trade-off between neglecting part of the information

present in the data and estimating the model on a flat part of the spectrum, where the

signal prevails over the noise. The choice of low- and high-cut frequency (passband length)

also influences the order of the AR model that best describes the data. Walker and Ulrych

(1983) recommend an AR model order which is 0.7 times the passband length (in units of

sampled frequencies) on the real data tested. Our tests confirm this empiric rule. Such

recommendation implies that as the passband length shortens, the AR model also shortens,

and therefore fewer features of impedance variation can be accurately obtained by the

model (Hendrick and Hearn, 1993). To overcome the incorrect predictions due to the AR

reconstruction only, we introduce in the CARV algorithm the information coming from the

interval velocity field.

Interval velocity field

We do not discuss here all the various methods to obtain an accurate seismic-based interval

velocity field, and we only consider the velocity field as an input for our algorithm. In

order to tie the reconstruction of AI to the velocity field, a rock physics expression for the

density term has to be assumed. Gardner et al. (1974) or other empirical relationships can

be adopted. With the first choice, and following the notation of Oldenburg et al. (1983)

ρ(t) = Cvp(t)
α (13)
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where ρ(t) is the bulk density, vp(t) the p-wave velocity, C and α are two scalars. The AI

can consequently be estimated by the following expression:

AI(t) = Cvp(t)
1+α. (14)

The coefficient α is typically much smaller than 1 leading to a quasi-linear propagation of

the error from the interval velocity field to the AI obtained from equation 14.

Many prospects of interest for oil and gas exploration show anomalous deviations from

Gardner’s trend. Löseth et al. (2011) describe this issue with particular emphasis on the

amount of organic content in source rocks. In our method the velocity field information

is not incorporated as a series of constraints (Oldenburg et al., 1984), but rather as a

weight in the inverse problem. The use of the weight provides flexibility to the solution

and the possibility to emphasize anomalies on Gardner’s trend due to the seismic reflection

information. The interval velocities we consider contain very-low-frequency information.

Most of the velocity fields derived from conventional seismic tomography show significant

spectral content until 2 Hz (ten Kroode et al., 2013), but factors related to target depth,

offset length and velocity variations may imply a higher resolution. We chose to sample

the velocity field at the sampling rate corresponding to the low frequency cut-off chosen for

the seismic passband. This choice is generally safe with respect to the spectral content of

the velocity field and, providing there is no aliased energy, larger sampling intervals can be

chosen to improve the algorithm performance. Each of the re-sampled values of the velocity

field is transformed into AI by using equation 14. Ulrych and Walker (1984) provide a

relationship to tie the low frequency components of the reflectivity (RL
f ) to the values of

impedance at depth in the form of

log AI(t)
AI(0) − 2

∫ tk
t0
rH(u)du = 2

∫ tk
t0
rL(u)du = 2

∫ tk
t0

∑Fmax
f=−FminR

f
Le
−i2πfudu =

=
∑Fmax
f=−FminR

f
L2

∫ tk
t0
e−i2πfudu.

(15)
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In equation 15 (rH(u)) is a known term that describes the time-domain reflectivity com-

ponents within the passband. tk is the time corresponding to the k-th velocity-derived

recommendation for the AI. The continuous approximation of the reflectivity integral for a

discrete time series allows the analytical solution of equation 15 as

log
AI(t)

AI(0)
− 2

∫ tk

t0
rH(u)du =

Fmax∑
f=−Fmin

RfL(2
ei2πftk

i2πf
− 2

ei2πft0

i2πf
). (16)

The unknowns for both equation 15 and 16 are RLf . All the equations described in the

system 16 are linear with respect to the unknowns RLf and can be rewritten in matrix

notation as

γ = LR. (17)

In equation 17, γ describes the known terms, L represents the Inverse Fourier transform

combined with the integration operator, and R is the vector of low-frequency reflectiv-

ity. The smaller the Euclidean norm of the residual ||LR − γ||22, the closer the estimated

reflectivity is to the information provided by the velocity field.

A priori geologic constraints

Seismic data acquisition normally follows a preliminary geologic assessment of the region

of interest. For this reason, constraints on AI at different depths are generally available on

a geologic basis. The accuracy of such constraints depends on the degree of knowledge of

the surveyed area. Equation 15 describes a way to introduce equality constraints (“hard

constraints”) on impedance into the AR solution. To account not only for the value of

impedance at depth but also for its uncertainty, “soft constraints” are proposed for ap-

plication to each trace of a 2D section or a 3D seismic volume. By soft constraints we

refer to constraints that provide an upper an a lower bound to the AI inversion at selected
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depths. When the unconstrained AR reconstruction produces an AI inversion that does not

fit within the impedance constraint limits, the AR method is modified such as the vector R

from equation 11 is no longer the one that minimizes the AR prediction error, but it is the

one that minimizes the AR prediction error among those that fit the impedance constraint

limits. In a probabilistic framework, the approach taken here imposes a uniform a priori

probability distribution for the AI at selected depths within two bounds. This condition

was not extensively explained in the original Ulrych and Walker (1984) publication. The

uncertainty can both be in time and in the value of the AI. Small errors in defining the time

of the constraints (of the order of tenths of temporal samples) can be tackled by evaluating

the cost function proposed in equation 20 for the different combinations of the travel-times

admitted by the timing uncertainty. The timings of the constraints that produce the mini-

mum value of the cost function are then adopted. The use of large time uncertainties makes

the constraints ineffective. On the other hand, to account for the uncertainty on the values

of impedance constraints, equation 16 can be modified as it follows:

log AI(t)−∆AI(t)
AI(0) − 2

∫ t
0 r

H(u)du ≤
∑Fmax
f=−FminR

f
L(2 e

i2πftk

i2πf − 2 e
i2πft0

i2πf )

∑Fmax
f=−FminR

f
L(2 e

i2πftk

i2πf − 2 e
i2πft0

i2πf ) ≤ log AI(t)+∆AI(t)
AI(0) − 2

∫ t
0 r

H(u)du
. (18)

∆AI(t) represents the uncertainty on the AI. In a more compact form, equation 18 can be

written as: { HR ≤ β + ∆β

−HR ≤ −β + ∆β
. (19)

Equation 19, introduced by the background geologic knowledge, is a condition that can be

included in a constrained optimization problem.
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Inversion formulation

The CARV inversion proposed in its general form can be described by the minimization of

the convex cost function:

J = ||CR− b||22+λ||LR− γ||22 s.t.

{ HR ≤ β + ∆β

−HR ≤ −β + ∆β
(20)

with respect to the vector R of low frequency components of reflectivity. The condition

minR ||CR− b||22 comes from equation 11 and aims at minimizing the AR forward and

backward prediction errors. The cost function includes the regularization term (||LR−γ||22)

to make the resulting low frequencies adhere to the AI estimated from the interval velocity

field. The degree of adherence is controlled by the parameter λ ≥ 0.

Sensible values for λ may come from the ratio between the maximum eigenvalues of the

matrix CHC = G (in Walker and Ulrych (1983) original notation) and LHL, but the

final choice depends on the relative confidence on the velocity field with respect to the

confidence on the seismic amplitudes. The velocity field is the regularization term and the

soft constraints on impedance can be implemented by a constrained least squares algorithm

(i.e. via a subspace trust-region method). Minimizing equation 20 is equivalent to a multi-

objective optimization problem:

minR∇J = GR−B + λ(LHLR− LHγ) s.t.

{ HR ≤ β + ∆β

−HR ≤ −β + ∆β
(21)

where B = CHb. The regularization term pertaining to the velocity field (LHL) concen-

trates its information at the very low frequencies (around its main diagonal). This fact

underlines the relevance of the velocity field term to weight the solution trend, while the

AR term influence is stronger at higher frequencies within the low frequency gap. There is

no mathematical guarantee that the matrix to be inverted G + λLHL is well conditioned,
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although no issue has been found during testing on synthetic and real data. This experi-

mental statement can be explained by the decaying nature of the autocorrelation function

of seismograms that leads to the Toeplitz matrix G with largest values around its main

diagonal. In case of instability during the inversion, additive white noise can be possibly

introduced into equation 21 by summing a weighted identity matrix. We obtained sta-

ble low-frequency reconstructions for all the results presented in this paper without such

regularization.

Inversion with lateral continuity

An unwanted feature in the inversion of real data is the trace-to-trace variability of the

results. Many seismic amplitudes may be related to causes other than rock property-based

reflectivity changes like interference, noise, residual wavelet effects and other inaccuracies in

the processing flow. The integral operator that transforms reflectivities into AI magnifies the

issue at the low-frequency end, leading to vertical stripes which are obviously not related

to the actual properties of the subsurface materials. Ideally, we expect to find solutions

that show some level of reasonable trace-to-trace stratigraphic continuity. This expectation

is especially true for low-frequency components of AI, which should directly be related to

smooth spatial changes in geology. To reduce the instability in the inverted AI, the data may

be smoothed before inversion with a targeted processing that removes the incoherent noise.

Alternatively, the cost function may be modified to promote the continuity of the solution,

or a spatial low-pass filter can be applied after inversion. We focus here on modifying the

cost function, with an additional penalty term related to the trace-to-trace variability of the

reflectivity reconstruction. This penalty term only influences the low-frequency part of the

spectrum that we aim at reconstructing. Provided that the impedance of the first layer is

17

Page 17 of 65 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

17



constant for all the traces in the section, we obtain a laterally continuous AI by solving for

the lateral variation of the low frequency components of the reflectivity (∆R) rather than

for R in equation 20. The cost function of equation 20 can be rewritten with an additive

term µId∆R (where Id represents the identity matrix):

J = ||C∆R + CR0 − b||22+λ||L∆R + LR0 − γ||22+µ||Id∆R||22 s.t.

{ HR ≤ β + ∆β

−HR ≤ −β + ∆β
.

(22)

We call R0 the known term pertaining to the low frequency reconstruction at the previous

adjacent-trace location. The additive term µId∆R controls the amount of trace-to-trace

variability (µ ≥ 0). Once R0 is arbitrarily chosen at both ends of the line, the low frequency

components of reflectivity R can be iteratively obtained as R = R0 + ∆R at each trace

location. We perform the summation from one end of a seismic line to the other and in the

opposite direction and we adopt the average of the two results as our smoothed AI estimate.

In case a seismic cube is available, the summation operation could be performed in inline and

cross-line direction separately, and then the results could be merged. Alternatively, slightly

different penalty terms that weight the ∆R term over many traces may be considered in

equation 22 to produce a smooth inversion in one step only.

Reflectivity extension to high frequency

The high frequency components of the data are as unreliable as the very low frequencies, but

note that the high frequency content of reflectivity tends to be suppressed when recursively

summed into AI (see equation 3 or 4). Walker and Ulrych (1983) proposed to minimize

an entropy norm (Ooe and Ulrych, 1979) after the low frequency completion to reconstruct

the full bandwidth of reflectivity from its low-mid frequency content. We adopt, instead, a

logarithmic entropy function with frequency domain constraints (Sacchi et al., 1994). Both
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norms aim at obtaining a sparse solution compatible with the input time series. This ap-

proach agrees with the initial assumption that the algorithm recovers the full bandwidth of

reflectivity given a limited number of events in the recorded traces. Minimizing an entropy

norm as a final step of a constrained harmonic reconstruction process might lead to instabil-

ities. Factors that may contribute to instability are the presence of noise and the presence

of conflicting information between the velocity field and the geologic constraints. A further

element that may contribute to instability is the parametrization of the minimum entropy

deconvolution algorithm. The tolerance on the entropy norm increment at each algorithm

iteration plays the most important role in determining the energy of the reconstructed high

frequencies. A threshold ratio equal to one between the energy of the high-frequency compo-

nents and the energy of the low-mid frequencies is adopted here to terminate the iterative

high frequency reconstruction process. Our threshold choice has the purpose of limiting

the high-frequency reconstruction impact on the inversion result. This approach is taken

because we do not trust the quantitative outcome of the deconvolution process and we use

the outcome of the deconvolution only as a mean to enhance the sharpness of the stronger

reflectors for the purpose of obtaining a blocky AI inverted model. The application of this

reconstruction step does not influence the validity of the low- and mid-frequency estimates

of the AI.

RESULTS

In this section we illustrate the novel aspects and the performance of the proposed inversion

method, with emphasis on describing general results rather than a data- or site-dependent

behavior. For the sake of clarity, we summarize the various approaches to AI inversion that

we will discuss on synthetic examples and real data in Table 1. All the AI inversion results
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are expressed in rayl, corresponding to kg/m2/s.

Table 1 about here.

Synthetic examples

We generated 1-D time series that simulate seismic traces to assess the effectiveness of

the four reconstruction methods described in Table 1. The fifth method, the model-based

approach, is introduced in the inversion of a real seismic dataset for comparison with the

harmonic reconstruction methods. We assumed two input models, both characterized by

a blocky impedance corresponding to a sparse time-domain reflectivity. Model 1 contains

10 vertically stacked AI blocks, while Model 2 contains 100 AI blocks. Both models are

discretized into 1,000 temporal samples. The input synthetic data in Figure 2 is a ban-

dlimited (8-70 Hz) version of the model reflectivity function with additional white noise

(S/N=34 dB in terms of maximum amplitude). Figure 2 highlights the sensitivity of the

unconstrained AR and ARMA reconstructions to the model order choice on the Model 1

synthetic example. No constraint at depth or velocity field regularization is required for

obtaining reliable results on such a sparse and controlled synthetic example when the ap-

propriate model order is chosen. The ARMA process that correctly models the data is of

order 10, while we assume that the best AR approximation is obtained for a model order of

105 (in line with the recommendation of selecting the model order 0.7 times the passband

length in units of sampled frequencies). Given a Nyquist frequency of 125 Hz, and a 12

to 50 Hz signal bandwidth choice, the number of sampled frequencies available for fitting

the AR model is 152. When the ARMA model order is smaller than the actual number

of events in the data (Figure 2B, model order 7), the reconstruction becomes unreliable
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because the low-frequencies are incorrectly modeled. The instability of the ARMA model

appears hard to overcome because one needs to know exactly the number of reflectors that

are contained in the model before inverting the seismic section. Figures 2B and 2C show

that the sensitivity of the impedance profile results is much lower for the AR than for the

ARMA approach, despite the range of relative normalized order values being comparable

between the two types of reconstruction. The comparison in Panel 2D between the two more

accurate AR and ARMA solutions shows the good approximation, in presence of noise, of

a long AR model to the appropriate ARMA model.

Figure 2 about here.

Synthetic Model 1 and Model 2 are compared in Figures 3, 4, and 5 to show the effective-

ness of the CARV reconstruction with respect to the classical AR approach on a controlled

input. In these Figures, panels A and B show the input synthetic data (7-80 Hz zero-phase

Butterworth filter) on the Model 1 and Model 2 reflectivity with additional white noise

(S/N=34 dB in terms of maximum amplitudes). Panels C and D are obtained after the

low-frequency reconstruction and the subsequent AI inversion on the input trace of panels

A and B, modified by the absence of additional white noise. Panels E and F are obtained

from the reconstruction of the traces of panels A and B, respectively. We present in panels

G and H the reconstruction results that can be obtained when the input trace is the convo-

lution between the model reflectivity and a 30 Hz Ricker wavelet that bandlimits the data

(no additive noise). Figure 3 shows the quality of the reconstruction that can be achieved

with the unconstrained AR models, in comparison to the bias introduced by the weak con-
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trast approximation. The weak-contrast approximation is not a relevant limitation for both

Model 1 and Model 2 reconstructions: all panels of Figure 3 evidence the reduced bias of

the unconstrained AR solution that can be imputed to this approximation. A bias in the

reconstruction of the DC component of the AI is also clearly visible in Figures 3C to 3H.

In fact, frequencies close to the DC component are generally the hardest to be successfully

reconstructed by the AR model, as it has been reported since the work of Oldenburg et al.

(1983). This behavior can be clearly seen as the AI drift, in particular for the more complex

Model 2 (Figures 3D, 3F, and 3H). We propose the two reconstructions of panels 3G and

3H to highlight the effects of not correcting for the wavelet shape before performing the

reconstruction. The wavelet effects on the reconstruction are visible both in terms of high

frequency undesired features and low frequency drift in Figures 3G and 3H.

Figure 4 shows the effects of the soft constraints on impedance at selected times (blue brack-

ets) that aim at limiting the bias introduced by incorrect AR predictions. As reported in

Table 2, the RMS error between the input Models (red curves) and the constrained AR re-

constructions (black curves), is smaller or equal to the RMS error between the input Models

and the unconstrained AR reconstructions (gray curves). The reconstructions in Panels 3H

and 4H represent no exception, but the absence of constraints in the shallow layers has the

side effect of producing a less accurate reconstruction in the shallow part of the constrained

solution (Figure 4H) then in the shallow part of the unconstrained solution (Figure 3H). An

explanation for this behavior can be sought in the artifacts that are introduced when the

wavelet shape is not removed before the low-frequency reconstruction. On the contrary, the

drift from the input model is strongly reduced in Panels 4D and 4F with respect to Panels

3D and 3F. Figures 2 to 4 do not make use of the velocity field information. The effects

and artifacts of incorporating an interval velocity field which does not have the AI blocky
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structure are shown in Figure 5. The AI curve that plays the role of the velocity-derived AI

field in Figures 5C, 5E and 5G is obtained by fitting, in a least squares sense, a polynomial

of order 5 to the Model 1. The best fit polynomial of order 8 is used in Figures 5D, 5F, and

5H to derive the green AI curve for Model 2. The trade-off parameter λ that governs the

amount of velocity-field derived AI in the inversion, has been chosen as 0.5 times the ratio

between the maximum eigenvalues of matrix G and LHL for all the panels of Figure 5. In

addition to the information coming from the velocity field, the constraints on impedance

indicated by the blue brackets in Figure 5 have been enforced. The CARV reconstruction

of Model 2 still shows a relevant mis-tie with respect to the reference AI model in the

shallowest part (panels 5D, 5F, 5H). Weighting in the solution the low frequency AI model

that mimics an AI model derived from a velocity field reduces the reconstruction error with

respect to the results of panels 4D, 4F and 4H. Note that the CARV reconstruction of panel

5C appears less blocky than the reconstruction 4C that does not account for the velocity

field: this is an unrealistic case in which the extreme sparseness of the layer interfaces and

the absence of noise lead to a CARV inversion that is less blocky than the classical AR

inversion.

Figure 3 about here.

Figure 4 about here.
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Figure 5 about here.

Table 2 about here.

Figure 6 shows the amplitude spectrum of the reconstructed reflectivity whose derived AI

is shown in Figure 5F, in comparison to the amplitude spectrum of the Model 2 reflectivity.

The match in the 12-50 Hz bandwidth, in which we fit the AR model is good. The relative

error in this band is around the -34 dB, which can be attributed to the additive noise

level that is present in the input data and not in Model 2. The relative error both in the

low- and in the high-frequency reconstruction is much higher, around -20 dB. Although the

spectral peaks of the input and the reconstructed reflectivity appear to be correlated, the

two amplitude spectra assume very different values outside the signal bandwidth.

Figure 6 about here.

Real data

We tested the AI reconstruction method on part of a line from a 2015 towed-streamer

seismic survey in the Rockall Trough area across the UK Atlantic margin. The PSTM full-

angle stack (6◦-35◦) is shown in Figure 7A together with the location of the wells and the

interpreted horizons available. Ancillary data include a tomographic interval velocity field

and a model-based AI inversion within the interval 1-5 s. All the data have been obtained
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from the UK Oil and Gas Authority under the Open Government license v.3.0. High-

amplitude events that are probably related to igneous lenses stand out in the section below

the Top Paleocene horizon. As far as the authors are aware, no specific reservoir targets

are present on this 2D line, as the line was selected only to demonstrate the advantages

and the drawbacks of the CARV method with respect to a standard AI inversion approach

in the early stages of prospect identification. Figure 7B displays, for reference, the AI field

that was obtained by applying Gardner’s relationship (α = 0.25, C = 310 kg/m3) to the

tomographic velocity field.

Figure 7 about here.

Different parameterizations of the CARV low-frequency reconstruction have been applied to

a scaled version of the data. Calibrating seismic amplitudes to well-log amplitudes through

synthetic tie analysis is the more accurate way to scale seismic data to the subsurface

reflectivity (Veeken and Da Silva, 2004). However, we decided to estimate a global scalar

for the whole section directly from the data to show the potential of the inversion even

in absence of well-log control. We estimated that the AI is 1.5 106 rayl above the water-

bottom and 8.5 106 rayl 100 ms below the Top Cretaceous event. The latter figure has

been chosen in accordance to the values of Well 132/06 below the Top Cretaceous event,

but a reasonable assumption is that the same degree of information may be available from

background knowledge of the area of interest. We ran a first pass of the classical AR

inversion algorithm directly on the seismic data with no constraints imposed at depth.

After integration of the reconstructed (full-bandwidth) trace, we obtain an AI value 100
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ms below the Top Cretaceous event which is, in general, different from our assumption of

8.5 106 rayl. The ratio between the section average of the AI values thus obtained, and

the expected 8.5 106 rayl value, provides a mean to estimate the scalar s (see equation 3).

Once the data amplitudes are calibrated to amplitudes pertaining to the reflectivity, the

AR reconstruction is re-computed with impedance constraints at depth, with the AI derived

from the tomographic interval velocity field, and with the lateral continuity constraint (µ).

The CARV reconstructed reflectivity is then integrated into AI from a starting value of

1.5 106 rayl in the water layer. We obtained our preferred inversion result on the Rockall

Through line when the signal bandwidth is in the range 5 to 40 Hz (see Figure 9A). The

inspection of the amplitude spectrum of the input data (Figure 8) was used for defining the

signal bandwidth. The high-cut choice is not obvious from Figure 8, but we decided to be

conservative and to avoid the attenuation and dispersion effects that are more pronounced

at higher frequencies and in the deepest part of the section. The amplitude spectrum is flat

in the above mentioned frequency range, at least until 2000 ms below the water bottom.

Figure 8 about here.

Figure 9 shows a comparison between the combined AR-velocity (CARV) inversion (Figure

9A) and a model-based inversion available from the UK Oil and Gas Authority (Figure

9B). We name the latter solution “legacy inversion”. Figure 9A is obtained by fixing

the AR model order to 250 and by setting the parameter µ that governs the degree of

spatial continuity in equation 22 to 0.2. The AI derived from the tomographic velocity

field (Figure 7B) has been weighted in the inversion 9A by tuning the parameter (λ) from
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equation 22 to 0.3 times the ratio of maximum eigenvalues of G and LHL. The presence

of two soft constraints on AI reduces the uncertainty and enhances the lateral continuity

of the estimation at about the Top Paleocene (6 106± 1 106 rayl) and the Top Cretaceous

horizons (8 106± 1.5 106 rayl). The lateral continuity is enhanced at about the timing of

such horizons because, at those timings, similar values of AI are imposed to all the traces

of the section. The impedance constraints are applied 100 ms after the picked horizons

to avoid trace-to-trace artifacts that may arise after the CARV reconstruction sharpens

the seismic events. If soft constraints were applied at the timings of the picked horizons,

each constraint might be enforced right before the reconstructed reflector in one trace and

right after the reconstructed reflector in the adjacent trace, thus leading to unreasonably

different AI interval property between the two traces at about the timing of the constraint.

The legacy inversion of Figure 9B was obtained by merging the low-frequency AI model,

derived from well logs and interpolated in a stratigraphically conformable manner across the

seismic line, to the relative AI recursively derived from the seismograms. The well AI logs

were smoothed using the wavelet provided in the legacy inversion project and overlain to

the inversion results within rectangular boxes. Figure 9C shows the difference between the

inversion of Figure 9A and the inversion of Figure 9B. Within the water column and in the

few hundred ms below the seabed the differences are due to the incorrect extrapolation of the

well information in the shallowest portion of the legacy model-based solution. Shallow areas

around trace 500 show significant anomalies in the CARV reconstruction (black arrows).

A pinch-out, which is a feature of potential interest, is apparent in the difference section

(Figure 9C) at about trace 700 and at about 3,500 ms TWT (black arrows). This feature is

present in the CARV result, but not in the legacy AI inversion, probably because of the limits

of the model-based approach when the well population and the number of horizons used
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for extrapolating the log information are limited. On the contrary, the CARV inversion

is not affected by these issues and it highlights an increase of AI underneath the pinch-

out (Figure 9A) that is not evident in the tomographic velocity field (Figure 7B). Even

though the pinch-out is also evident in the seismic data (Figure 7A), the additional piece of

information contained in the CARV inversion is the estimate of the AI within the different

layers. Figure 9B shows a hard layer (in yellow) at the depth corresponding to the pinch out.

This layer extends across the section and we interpret it as being probably due to inaccurate

extrapolation of the log information from a further well in the legacy model-based solution.

Figure 9 about here.

Figure 10 shows the effects of not accounting for the continuity term in the CARV recon-

struction (Panel 10A), the effects of not incorporating the velocity-derived AI in the AR

reconstruction (Panel 10B), and the effects of changing the AI derived from the velocity

field in the CARV reconstruction (Panel 10C). Solving the inverse problem of equation 22,

which is the case where lateral continuity is imposed, provides a more realistic estimate

than solving the problem of equation 20, which is the case where lateral continuity is not

imposed (µ = 0). The unsmoothed solution in Figure 10A shows more high-frequency spa-

tial noise (vertical stripes) with respect to the smoothed solution of Figure 9A. The solution

that did not use the smoothing term in the cost function, shows few traces with unreliable

AI, for instance those with AI larger than 2 106 rayl in the water column. These features

are indicated by red arrows in Figure 10A. Figure 10B represents the classical AR inversion

with two soft constraints at depth, and with an additional lateral continuity weight. The
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weight (µ = 0.2) has the same smoothing effect as the one adopted in Figure 9A. The in-

corporation of the interval velocity field is important to guide the solution toward accurate

results: in absence of the velocity field information, as in Figure 10B, some deep parts of

the section (at more than 4,000 ms for CDPs 1-1500) show lower AI values in comparison

to those of Figure 9A. These lower AI values are comparable to much shallower formations

and thus hard to justify on a geologic basis. To demonstrate the sensitivity of the CARV

method to the variation of the interval velocity field, we show in Figure 10C the inversion

result obtained if the tomographic-derived AI field is 5% higher than the AI field used for

the inversion shown in Figure 9A. The color scale in Figure 10C does not directly represent

the AI values, but it is normalized by the AI values of the inversion 9A. This color scale

choice enhances the effects of weighting in the solution the AI derived from an overall faster

velocity field. Only a subtle generalized increase of the low-frequency content of the AI is

noticeable with respect to the solution of Figure 9A. The two soft constraints on impedance

further attenuate the background AI variation at about the time of their respective horizons.

Figure 10 about here.

Figure 11 highlights the role played by the low-frequencies on the AI inversion. Figure

11A shows the 0-5 Hz components of the CARV inversion in Figure 9A, while Figure 11B

shows the low-frequency model used as input for the model-based inversion 9B. Both the

CARV reconstruction and the model-based inversion incorporate seismic data components

higher than 5 Hz as recorded, to characterize the higher-frequencies of the AI. The CARV

reconstruction of Figure 11A represents the AI information that we deem to be reliably
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reconstructed from the seismic data and the tomographic velocity field. Figure 11A shows

a relatively high AI layer (indicated by the red arrows) at about 500 ms below the water

bottom, and a change in impedance in the bottom left corner of the section that is neither

related to the velocity field (Figure 7B) nor to the AI constraints at the two selected horizons

(black arrows). Figure 11A shows vertical stripes due to the incorporation of the information

from the seismic events, particularly evident in the deepest part of the section. Those stripes

are not present in Figure 11B, which is directly derived by a spatial extrapolation of well

log data. The yellow region in the bottom of the low-frequency model of Figure 11B is

probably due to the incorporation, in the legacy model, of a third well that lays outside of

the 2D section that we discuss. The comparison between Figure 11A and 11B highlights

the different low-frequency character that is responsible for the different mismatch of the

two inversions at well locations.

Figure 11 about here.

Although the CARV reconstruction method appears to be a sensible solution for the low

frequencies of AI at the scale of the entire section, the comparison of the results of Figure

9A and 9B at the two available wells, shows that the log matching is not as good as in the

case of the legacy inversion. This result could be better appreciated in Figure 12, where the

AI derived from well log measurements (red line) is compared to the model-based legacy

inversion (blue line) and to the CARV inversion around the well location (gray lines). The

poorer match of the CARV inversion to the log-derived AI is presumably due to the well

log constraints used in the legacy AI inversion that the CARV method tries to incorporate
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with ancillary indirect information and inferences. Table 3 shows the RMS error of the two

types of inversion with respect to the well log data. The error for the CARV inversion is

computed on the average of the 25 traces around the well location. At well 132/15 the

modified AR solution is comparable with the legacy AI along much of the well, although a

relatively large mismatch exists between about 3250-3400 ms. At well 132/06 a significant

mismatch exists around 4100-4350 ms, with a dominant frequency between 2 and 5 Hz

(see Figure 12). The mismatch in this frequency range is possibly due to an incorrect AR

low-frequency extension along part of the well log. A further measure to assess the quality

of the AI inversion could be the fraction of log data that is matched by the AI estimate

within a given confidence level. If we set a threshold of the 15 % on the relative error of

the estimation (with respect to the log-derived AI), we observe that the legacy model-based

inversion exceeds this value for 6% of the length of Well 132/06 log and for 16% of the

length of Well 132/15. The CARV inversion exceeds the same threshold for 28% of the

length of Well 132/06 and for 22% of the length of Well 132/15. All the misfit measures we

approached agree on the fact that the CARV inversion has a poorer match than the legacy

model-based inversion to log data.

Table 3 about here.

Figure 12 about here.
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DISCUSSION

The combined AR-velocity (CARV) algorithm reconstructs the main features of AI of the

synthetic examples proposed. The introduction of an accurate interval velocity field is useful

to direct the low frequencies of the inverted AI to more accurate values. For example, the

CARV results (black lines of Figure 5D-5F-5H) reconstruct the AI of the most complex

Model 2 (red) better than the classical AR results (gray lines). This statement is supported

by the RMS errors of the reconstruction proposed in Table 2. Synthetic cases show the

effects of not considering the wavelet shape in the inversion. In particular, Figures 5G and

5H show spurious peaks and incorrect values in the AI estimate that are more pronounced

than in Figure 5C and 5D where the wavelet is properly removed before inversion. This

behavior is also analytically discussed in the Appendix A with reference to an AR model of

order 1. The presence of wavelet effects in the data may invalidate the AR reconstruction:

care must be taken during pre-processing steps to minimize this issue within the signal

band-width. Spectral analysis on long time windows (see Figure 8) may help to identify a

frequency band were the energy of the single components is balanced. The CARV approach

also results in features of interest in the inverted test field-dataset that are not observed

in the legacy inversion, which incorporates log data. The comparison between Figure 11A

and Figure 7B shows that the low frequency reconstruction of the CARV AI appears to

contain more temporally and laterally varying character of possible geologic origin than the

AI derived from the velocity field alone. The shallow areas that are characterized by a flat

spectrum in the signal bandwidth show an interesting contribution of the AR reconstruction

in revealing the higher impedance anomalies at about 500 ms below the water bottom, at

about CDPs 500-2000 (Figure 11A). The lateral variation of the low-frequency components

of the CARV inversion of Figure 11A is more realistic (despite the vertical stripes) than the
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lateral variation of the low-frequency components of the legacy model-based inversion in

Figure 11B, because it includes spatially-varying information in compliance with the seismic

data. The very low-frequency differences between the two panels of Figure 11 are mainly

due to the differences between the AI derived from the velocity field of Figure 7B and the

very low frequencies of the legacy model-based inversion (Figure 11B), with a role played

also by the AI constraints at about the two horizons where they are enforced. The spatially

smooth very-low-frequency difference may account to a large extent for the differences that

can be seen in Figure 9C. There is a tendency of the legacy model-based inversion to be more

accurate at well locations because it was constructed to match the wells at low frequencies,

while the CARV method does not incorporate the log data. Table 3 illustrates this bias, but

the tie at much of the well depths is not dramatically different between the two inversion

methods, as reported in the RESULTS section. Sources of error in the CARV inversion are

also related to the uncertainty of the choice of the AI for the reference layer. This issue may

not be solved once an interval velocity field is available for the poor accuracy of the velocity

field in the shallow layers, and for the uncertainty on the reference density. For instance,

Figure 7B shows some unrealistic velocities within the water-column. The estimation of

the AI in the reference layer should be even more problematic for land data where there is

no water column characterized by a very narrow range of AI. Furthermore, amplitudes of

seismic data “are more reliable for marine than for land data” (Simm and Bacon, 2014).

Even if we consider a lateral continuity term in the combined AR-velocity reconstruction,

the inversion shows a trace-to-trace variability that is still not completely mitigated. The

trace-to-trace variability does not prevent the interpretation from being made at the global

scale of the inverted 2D section: the signature of the vertical stripes is different from the

signature of the geologic features in the CARV reconstruction. Weighting a smooth interval

33

Page 33 of 65 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

33



velocity field in the AR reconstruction also favors a laterally smooth solution. The interval

velocity field weighting factor λ should be tuned by performing a sensitivity analysis of its

effects on the result.

Figure 13 provides a measure of the sensitivity of the AI inversion depending on the CARV

parametrization. Each of the four panels of Figure 13 shows the sample standard deviation

among the AI models that can be obtained by sampling the most impacting parameters

of the CARV reconstruction one at a time. The standard deviation, which is computed

sample by sample for each trace of four Rockall Trough AI inversions. Figure 13A shows

the sample standard deviation section that is obtained by varying the AR model order from

200 to 275, in increments of 25. The choice of the AR model order requires the knowledge

that there are fewer reflectors in the section than the number of frequency components

that can be resolved by the spectral estimation within the optimal bandwidth. In the real

subsurface this condition is not always met. However, given that the AR models are less

sensitive to model order than the ARMA models, and once ancillary information is available,

the variability of the AI reconstruction that depends on this parameter is less than 2 106

rayl. Figure 13B shows that the sensitivity of the inversion to the scalar that transforms

the relative amplitude of the seismogram into the reflectivity amplitude is also relatively

small. In Figure 13B, we let the scalar vary from 50,000 to 65,000 in increments of 5,000.

The limited impact of the scalar can be attributed to the use of ancillary information such

as soft constraints at depth and the interval velocity field that make the reconstruction

less sensitive to the input data amplitude variation. Figure 13C shows a measure of the

variability that can be related to a change in the low frequency cut-off for fitting the AR

model. The cut-off varies from 5 to 8 Hz in 1 Hz increments. The bandwidth choice

appears to have a larger effect with respect to the other parameters, but a spectral analysis
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of the dataset to be inverted could greatly reduce this kind of uncertainty. Figure 13D

shows the sample standard deviation among four AI inversions that have been obtained

by letting the trade-off parameter λ vary in the range 0.1 to 0.4 times the ratio between

the maximum eigenvalues of matrix G and LHL. The parameter λ weights in the CARV

solution the interval velocity field, and its influence is more pronounced in the deepest

part of the section where the recursion of equation 3 tends to provide less stable results

if a classical AR approach is attempted. The variability in all the panels of Figure 13 is

about one order of magnitude less than the estimated values of AI themselves. From a

visual inspection of Figure 7A, the seismic events seem sparse enough for a correct AR

modeling, but interference (see Figure 1) and attenuation (see Figure 8) tend to degrade

the AR reconstruction. A comparison between our method and a similar formulation of

the sparse-spike inversion that accounts for constraints at depth and velocity information

might be beneficial to better understand the relevance of the AR approach with respect to

the well-established sparse-spike low-frequency extension of seismic data. The comparison

should consider the sensitivity of the results to the parametrization choice.

Figure 13 about here.

CONCLUSIONS

The combined AR-velocity method proposed here for the reconstruction of the full band

of AI provides a more accurate solution than the classical AR algorithm on which it was

based, at the expense of the larger amount of information required, some additional pre-

conditioning work and parameter tuning. A reduced sensitivity to the parametrization
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choice is demonstrated on synthetic examples characterized by sparsity in the time domain

representation of the reflectivity and on a seismic section from the Rockall Trough area.

Due to the hypothesis that the number of events is limited, that the acoustic impedance

variation is only related to jumps at specific interfaces, and due to the necessity of a spectral

estimation, the original AR reconstruction method is prone to inaccuracies. For this reason,

our combined AR-velocity reconstruction method benefits from the introduction of the

seismic-based interval velocity field combined with a targeted rock physics relationship for

the density, resulting in a more accurate evaluation of the low frequency components of

the AI with respect to the classical AR approach. Results appear encouraging on the

test dataset and an insight on lateral variations of AI can be obtained even where no well

log is available. The match between the proposed inversion results and log information

is comparable to the legacy model-based inversion for one of the two wells of the Rockall

Trough test line. The misfit of our inversion at the other well is significantly higher in a

limited time-window. Not all the inversion results can be considered realistic representations

of the subsurface impedance, especially due to proximity of the layer interfaces, interference,

noise, residual wavelet effects, and sensitivity to the parametrization choice. Trace-to-trace

vertical artifacts were unavoidable in the current implementation of our method, but further

work on data pre-conditioning and the incorporation of a larger number of constraints when

available, could reduce this issue. Regardless, the performance of the inversion procedure

should be considered on the global scale of the test dataset where the signature of the

geologic features of possible interest is different from the signature of the artifacts. Further

research on field seismic data could be addressed to confirm the validity of the method in

different geologic settings using data with different acquisition styles.
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APPENDIX A

RESIDUAL WAVELET EFFECTS

One of the hypothesis at the basis of the AR modeling for low frequency reconstruction is

that the seismic data represent a bandlimited version of reflectivity before fitting the AR

model. However, on real seismic data, it is not possible to completely remove all the wavelet

effects. This leads to incorrectly assume that equation 2 actually describes the recorded

data. The consequences of fitting an order 1 AR model to a non-stationary complex-series

is presented for the particular case where w(t) is described by a Ricker wavelet with a given

dominant frequency (fd). This wavelet has the following time-domain analytic formulation:

w(t) = (1− πfd2t2)ei2π
2fd

2t2 (A-1)

which leads to an amplitude spectrum:

W (f) =
2f2

√
πfd

3 e
− f

2

f3
d . (A-2)

In the absence of noise and for a single event r1, equation A-1 can be rewritten as

d(t) = [(1− πfd2t2)ei2π
2fd

2t2 ] ∗ [r1δ(t− τ1)]. (A-3)

Equation A-3 has the following representation in the Fourier domain

D(f) =
2f2

√
πfd

3 e
− f

2

f2
d r1e

−i2πfτ1 . (A-4)

In case we model equation A-4 as an AR process of order 1, the resulting AR coefficients

depend on a frequency term:

D(f) =
2(f − 1)2

√
πfd

3 e
− (f−1)2

f2
d r1e

−i2π(f−1)τ1 f2

(f − 1)2
e
− f2

(f−1)2 e−i2πτ1 . (A-5)
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If we name r1e
−i2πτ1 as α1

D(f) = D(f − 1)α1
f2

(f − 1)2
e
− f2

(f−1)2 . (A-6)

Recursively

D(f) = D(f − k)αk1
f2

(f − k)2
e
−
∑k

j=1

(f−j+1)2

(f−j)2 . (A-7)

The extension to longer AR models depends on the spectral estimator used and it is not

analytically derived here. In any case, modeling the complex time-series as a stationary

AR process neglects the presence of the wavelet: if the signal shows a decaying amplitude

with frequency in the passband, the stationary AR model accounts for that decay and the

subsequent frequency content interpolated outside the band-pass region is biased. The bias

is higher when the spectral distance between the known frequencies adopted to fit the AR

model to the data and the frequency to be predicted increases. For AR models of order 1,

this is due to the term

f2

(f − k)2
e

∑k

j=1
− (f−j+1)2

(f−1)2 (A-8)

that increases as the distance between the frequency to be predicted (f) and the known

spectral component (f − k) increases. The issue may find a solution by modeling the trace

spectrum as a time-variant AR process (Rao, 1970), but a larger number of parameters is

required.
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LIST OF FIGURES

1 Figure 1. Synthetic wedge model that shows the effects of thin beds in the recon-

struction of AI. Reconstructed AI is displayed in colors [rayl] on top of the synthetic seismic

input (wiggles). Input data are bandlimited by a Butterworth zero phase filter with 7-80 Hz

cut-off frequency, while the frequency band 12-50 Hz has been used for the AR modeling.

2 Figure 2. Results of low frequency reconstruction with AR and ARMA models.

Panel 2A shows the input AI Model 1 (red) and the derived synthetic trace (cyan) (S/N =

34 dB). Panel 2B: reconstruction via unconstrained ARMA modeling. Panel 2C displays

the reconstruction via the unconstrained AR modeling. Panel 2D compares the results for

the two more accurate solutions of panel 2B and 2C.

3 Figure 3. Effectiveness of the bandwidth extension via the AR method only. Panels

3A and 3B: input data (S/N = 34 dB). Panels 3C and 3D: reconstruction from bandlimited

input reflectivity (no noise). Panels 3E and 3F: reconstruction from input data of Panels 3A

and 3B. Panels 3G and 3H: reconstruction from input reflectivity convolved with a Ricker

wavelet.

4 Figure 4. Effectiveness of the bandwidth extension in presence of impedance con-

straints at depth with a given uncertainty (in blue). Panel 4A and 4B: input data (S/N

34 dB). The unconstrained results from Figure 3 are reported in gray. Panels 4C and 4D:

constrained reconstruction from bandlimited input reflectivity (no noise). Panels 4E and

4F: constrained reconstruction from input data of Panels 4A and 4B. Panels 4G and 4H:

constrained reconstruction from input reflectivity convolved with a Ricker wavelet.

5 Figure 5. Results of the CARV reconstruction (black curves) and comparison with

the constrained classic AR reconstruction reported in Figure 4 (gray curves). Panel 5A and

5B: input data (S/N = 34 dB). Panel 5C and 5D: CARV reconstruction from bandlimited
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input reflectivity. Panel 5E and 5F: CARV reconstruction from input data of Panels 3A

and 3B. Panel 5G and 5H: CARV reconstruction from input reflectivity convolved with a

Ricker wavelet.

6 Figure 6. Amplitude Spectra of the relative error in the reconstruction of the re-

flectivity of the CARV reconstruction of Figure 5F. The relative error has been obtained by

dividing the reconstruction misfit by the spectrum of the input reflectivity.

7 Figure 7. Post-stack seismic line 78 from the Rockall Trough survey (traces 1400-

6000). c© Crown Copyright. Well positions and horizons overlay the seismic section in

Figure 7A. The AI [rayl] derived from tomographic velocity field and the Gardner’s rela-

tionship is displayed in Figure 7B, together with AI derived from sonic and density logs.

8 Figure 8. Average amplitude spectrum of the Rockall Trough seismic section within

three time-windows. Values are normalized to the peak amplitude.

9 Figure 9. Panel 9A: AI inversion [rayl] combining the AR reconstruction and the

velocity field regularization term with lateral continuity. Panel 9B: model-based legacy AI

estimate [rayl]. Panel 9C: difference between the CARV inversion (9A) and the model-based

legacy inversion (9B) [rayl].

10 Figure 10. Effects of lateral continuity and ancillary information on the CARV

inversion. Panel 10A [rayl] shows the result in absence of lateral smoothing, Panel 10B

[rayl] shows the results of a classical AR inversion in absence of the AI derived from the

velocity field. Panel 10C shows the ratio between the AI inversion when the AI derived from

the tomographic velocity field is arbitrarily increased by 5%, and the AI inversion of Figure

9A.

11 Figure 11. Comparison between the low frequency content of AI reconstructed via

the CARV method (11A) [rayl] and via the low-frequency model for the legacy inversion
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(11B) [rayl].

12 Figure 12. AI reconstruction around the two well locations referring to the inver-

sions presented in Figure 9A and 9B. The CARV inversion is proposed every 5 traces for

25 traces around the two well locations.

13 Figure 13. Sample standard deviation of the AI results among four different outputs

when: the AR model order changes from 200 to 275 (13A), the scalar that maps the seismic

data into reflectivity changes from 55,000 to 65,000 (13B), the low-cut frequency changes

from 5 to 8 Hz (13C), the scalar that weights the velocity field changes from 0.1 to 0.4 (13D).
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LIST OF TABLES

1 Naming convention with short description of the AI inversion methods presented.

2 RMS error of the synthetic reconstructions.

3 RMS error of the legacy model-based inversion and of the CARV inversion with

respect to the AI measured by well logs.
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METHOD DESCRIPTION AND REFERENCE

Classical ARMA approach
Method adopted when the exact number

of events is known a priori. Pisarenko (1972)

Unconstrained AR approach Method described in Walker and Ulrych (1983)

Classical AR approach Method described in Ulrych and Walker (1984)

Model-based Inversion
Method that adds the a priori low-frequencies

to the bandlimited inversion. Russell (1988)

Combined AR-velocity approach

(CARV)

Method described in this paper.

Table 1. Naming convention with short description of the AI inversion methods presented.
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METHOD DESCRIPTION AND REFERENCE
Classical ARMA approach Method adopted when the exact number

of events is known a priori. Pisarenko (1972)
Unconstrained AR approach Method described in Walker and Ulrych (1983)
Classical AR approach Method described in Ulrych and Walker (1984)
Model-based Inversion Method that adds the a priori low-frequencies

to the bandlimited inversion. Russell (1988)
Combined AR-velocity approach (CARV) Method described in this paper
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Figure Reconstruction type RMS error [rayl] Figure Reconstruction type RMS error [rayl]

2B ARMA order 7 47.4 104 2C AR order 90 6.9 104

2B ARMA order 10 4.8 104 2C AR order 105 7.5 104

2B ARMA order 14 18.3 104 2C AR order 120 13.2 104

3C Unconstrained AR 10.1 104 3D Unconstrained AR 67.6 104

4C Classic AR 10.1 104 4D Classic AR 35.7 104

5C CARV 5.3 104 5D CARV 17.0 104

3E Unconstrained AR 7.9 104 3F Unconstrained AR 58.7 104

4E Classic AR 7.9 104 4F Classic AR 31.1 104

5E CARV 5.0 104 5F CARV 14.7 104

3G Unconstrained AR 30.9 104 3H Unconstrained AR 54.4 104

4G Classic AR 14.3 104 4H Classic AR 53.3 104

5G CARV 10.3 104 5H CARV 23.1 104

Table 2. RMS error of the synthetic reconstructions.
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Figure Reconstruction 
type

RMS error 
[rayl]

Figure Reconstruction 
type

RMS error 
[rayl]

2B ARMA order 7 47.4 104 2C ARMA order 7 6.9 104

2B ARMA order 10 4.8 104 2C ARMA order 10 7.5 104

2B ARMA order 14 18.3 104 2C ARMA order 14 13.2 104

3C Unconstrained 
AR

10.1 104 3D Unconstrained 
AR

67.6 104

4C Classic AR 10.1 104 4D Classic AR 35.7 104

5C CARV 5.3 104 5D CARV 17.0 104

3E Unconstrained 
AR

7.9 104 3F Unconstrained 
AR

58.7 104

4E Classic AR 7.9 104 4F Classic AR 31.1 104

5E CARV 5.0 104 5F CARV 14.7 104

3G Unconstrained 
AR

30.9 104 3H Unconstrained 
AR

54.4 104

4G Classic AR 14.3 104 4H Classic AR 53.3 104

5G CARV 10.3 104 5H CARV 23.1 104
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WELL METHOD RMS ERROR [rayl] METHOD RMS ERROR [rayl]

132/15 Legacy model based 57.5 104 Combined AR-velocity 73.4 104

132/06 Legacy model based 41.1 104 Combined AR-velocity 83.0 104

Table 3. RMS error of the Legacy model-based inversion and of the CARV inversion with respect

to the AI measured by well logs.
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WELL METHOD RMS ERROR [rayl] METHOD RMS ERROR [rayl]
132/15 Legacy model based 57.5 104 Combined AR-velocity 73.4 104

132/06 Legacy model based 41.1 104 Combined AR-velocity 83.0 104
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Figure 1. Synthetic wedge model that shows the effects of thin beds in the reconstruction of AI. 
Reconstructed AI is displayed in colors [rayl] on top of the synthetic seismic input (wiggles). Input data are 
bandlimited by a Butterworth zero phase filter with 7-80 Hz cut-off frequency, while the frequency band 12-

50 Hz has been used for the AR modeling. 
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Figure 2. Results of low frequency reconstruction with AR and ARMA models. Panel 2A shows the input AI 
Model 1 (red) and the derived synthetic trace (cyan) (S/N = 34 dB). Panel 2B: reconstruction via 

unconstrained ARMA modeling. Panel 2C displays the reconstruction via the unconstrained AR modeling. 
Panel 2D compares the results for the two more accurate solutions of panel 2B and 2C. 
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Figure 3. Effectiveness of the bandwidth extension via the AR method only. Panels 3A and 3B: input data 
(S/N = 34 dB). Panels 3C and 3D: reconstruction from bandlimited input reflectivity (no noise). Panels 3E 
and 3F: reconstruction from input data of Panels 3A and 3B. Panels 3G and 3H: reconstruction from input 

reflectivity convolved with a Ricker wavelet. 
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Figure 4. Effectiveness of the bandwidth extension in presence of impedance constraints at depth with a 
given uncertainty (in blue). Panel 4A and 4B: input data (S/N  34 dB). The unconstrained results from Figure 
3 are reported in gray. Panels 4C and 4D: constrained reconstruction from bandlimited input reflectivity (no 
noise). Panels 4E and 4F: constrained reconstruction from input data of Panels 4A and 4B. Panels 4G and 

4H: constrained reconstruction from input reflectivity convolved with a Ricker wavelet. 
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Figure 5. Results of the CARV reconstruction (black curves) and comparison with the constrained classic AR 
reconstruction reported in Figure 4 (gray curves). Panel 5A and 5B: input data (S/N = 34 dB). Panel 5C and 

5D: CARV reconstruction from bandlimited input reflectivity. Panel 5E and 5F: CARV reconstruction from 
input data of Panels 3A and 3B. Panel 5G and 5H: CARV reconstruction from input reflectivity convolved with 

a Ricker wavelet. 
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Figure 6. Amplitude Spectra of the relative error in the reconstruction of the reflectivity of the CARV 
reconstruction of Figure 5F. The relative error has been obtained by dividing the reconstruction misfit by the 

spectrum of the input reflectivity. 
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Figure 7. Post-stack seismic line 78 from the Rockall Trough survey (traces 1400-6000). © Crown 
Copyright. Well positions and horizons overlay the seismic section in Figure 7A. The AI [rayl] derived from 
tomographic velocity field and the Gardner's relationship is displayed in Figure 7B, together with AI derived 

from sonic and density logs. 

210x202mm (300 x 300 DPI) 

Page 59 of 65 GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

59



 

Figure 8. Average amplitude spectrum of the Rockall Trough seismic section within three time-windows. 
Values are normalized to the peak amplitude. 

210x107mm (200 x 200 DPI) 

Page 60 of 65GEOPHYSICS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

This paper presented here as accepted for publication in Geophysics prior to copyediting and composition. 
© 2019 Society of Exploration Geophysicists.

D
ow

nl
oa

de
d 

03
/0

5/
19

 to
 1

51
.9

6.
25

4.
3.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/

60



 

Figure 9. Panel 9A: AI inversion [rayl] combining the AR reconstruction and the velocity field regularization 
term with lateral continuity. Panel 9B: model-based legacy AI estimate [rayl]. Panel 9C: difference between 

the CARV inversion (9A) and the model-based legacy inversion (9B) [rayl]. 
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Figure 10. Effects of lateral continuity and ancillary information on the CARV inversion. Panel 10A [rayl] 
shows the result in absence of lateral smoothing, Panel 10B [rayl] shows the results of a classical AR 

inversion in absence of the AI derived from the velocity field. Panel 10C shows the ratio between the AI 
inversion when the AI derived from the tomographic velocity field is arbitrarily increased by 5\%, and the AI 

inversion of Figure 9A. 
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Figure 11. Comparison between the low frequency content of AI reconstructed via the CARV method (11A) 
[rayl] and via the low-frequency model for the legacy inversion (11B) [rayl]. 
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Figure 12. AI reconstruction around the two well locations referring to the inversions presented in Figure 9A 
and 9B. The CARV inversion is proposed every 5 traces for 25 traces around the two well locations. 
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Figure 13. Sample standard deviation of the AI results among four different outputs when: the AR model 
order changes from 200 to 275 (13A), the scalar that maps the seismic data into reflectivity changes from 
55,000 to 65,000 (13B), the low-cut frequency changes from 5 to 8 Hz (13C), the scalar that weights the 

velocity field changes from 0.1 to 0.4 (13D). 
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DATA AND MATERIALS AVAILABILITY

    Data associated with this research are available and can be obtained by contacting the corresponding
author.
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