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Abstract
We investigate adaptivity issues for the approximation of Poisson equations via radial basis
function-based partition of unity collocation. The adaptive residual subsampling approach
is performed with quasi-uniform node sequences leading to a flexible tool which however
might suffer from numerical instability due to ill-conditioning of the collocation matrices.
We thus develop a hybrid method which makes use of the so-called variably scaled kernels.
The proposed algorithm numerically ensures the convergence of the adaptive procedure.

Keywords Partition of unity method · Radial basis functions · Meshfree approximation ·
Elliptic PDEs · Variably scaled kernels

Mathematics Subject Classification 65D05 · 65D15 · 65N99

1 Introduction

The partition of unity (PU) scheme has been used for interpolation from the sixties when
Shepard [42] introduced, as undergraduate student at Harvard University, what are now
called the Shepard’s weights. Later, this local approach based on decomposing the original
reconstruction domain into many subdomains or patches has been coupled with radial basis
functions (RBFs), see e.g. [17,46].Moreover, among several applications (see e.g. [7,21]), the
RBF-PU method for solving partial differential equations (PDEs), first introduced in the mid
nineties [33], is nowadays a popular and well developed technique (refer to [23,38,44]). The
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importance of investigating new robust tools for solving PDEs easily follows from the fact
that they govern many multivariate physical phenomena, such as for instance the distribution
of heat, the propagation of sound or light waves and fluid dynamics.

Here, our goal consists in developing an adaptive PU meshfree collocation method for
Poisson equations independent of the problem geometry. In the current literature, except
for particular applications (see e.g. [27]), most papers about adaptive RBF collocation and
multiscale methods only consider global approximation methods or RBF-finite difference
(FD) local approaches (see [9,15,19,34]). In [19], the approximate solution is constructed
with amultilevel approach in which compactly supported RBFs (CSRBFs) of smaller support
are used on an increasingly finer mesh, similarly as done also in [25]. In the cited papers the
approximation is found by adaptively selecting points so that the sampling density follows
the regions of high variation of the solution. Such approach is also adopted here and, thanks
to the use of the so-called geometric greedy points, introduced in [10] and recently analyzed
in [39], the Adaptive Residual Subsampling (ARS) scheme shows to work quite well with
such distribution of nodes, without computing grid data as outlined in [15].

When using RBF-based methods, the oversampling induced by adaptivity and the shape
parameter as well (see e.g. [18]) may lead to ill-conditioning of the collocation matrices and
thus a stable approximation of the solution is crucial. For the Gaussian kernel there are well-
established tools, such as RBF-QR methods, that allow stable computations of the solutions,
see e.g. [20,28,29]. More recently, the Hilbert–Schmidt singular value decomposition (HS-
SVD) has been developed [8]. Such technique in principle can be applied to any kernel,
provided that the Hilbert–Schmidt eigendecomposition is known. However, the eigenvalues
and eigenvectors are far from being easy to compute and in practice are known only for
the Gaussian kernel. We finally remark that there are two other classes of stable methods,
namely the weighted SVD (WSVD) and the rescaled-method that properly work with any
RBF. The WSVD has the purpose of finding a stable subspace for a given kernel [13,35],
while the rescaled-method is based on a proper selection of the supports of CSRBFs so that
the ill-conditioning is kept under control [11].

In this paper, in order to guarantee the stability of the solution, as suggested by [40], we
carry out Tikhonov regularization [4,45] and preconditioning techniques [16,23,31]. Fur-
thermore, we develop a stable method for the solution of elliptic boundary value problems
(BVPs) via variably scaled kernels (VSKs), recently introduced in [2] and further developed
in [36,37]. The VSKs depend on a scale function that usually enhances stability and work for
any kernel. However, in several cases, the standard scaling gives more accurate results. Thus,
taking advantage of the PU scheme, we develop a hybrid technique (HVSK) such that, on a
given subdomain, we use of the standard scaling as long as the conditioning is acceptable,
otherwise we switch to VSKs.

The outline of the paper is as follows. In Sect. 2, we briefly review the main theoretical
aspects of the RBF-PU collocation method. Then in Sect. 3 we present the main compu-
tational issues for stably computing the solution of the Poisson problem. In Sect. 4, we
propose an adaptive scheme based on the HVSK approach. In Sect. 5 we provide extensive
numerical experiments and in the last section we make some conclusions and outline future
developments.
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2 Elliptic PDEs Via RBF-PU CollocationMethods

For large scale problems, the globalRBF-based approach has prohibitive computational costs.
Fortunately, the PU method, which leads to moderately sparse matrices, partially overcomes
these computational cost issues.

This scheme for computing the solution of elliptic PDEs is reviewed in this section. It is
essentially based on Kansa’s collocation method, which was introduced by Kansa [26]. Orig-
inally it consisted of an unsymmetric scheme, based on multiquadrics, whose convergence
properties in the global case were studied only later by Schaback (see e.g. [43]).

2.1 RBF-PUMethod: Interpolation and Partition of Unity

Let Ω be a bounded domain on R
M and f : Ω → R. Given a set of N distinct points

X N = {x1, . . . , xN } ⊂ Ω , and function values FN = { f (x1), . . . , f (xN )}, the usual goal
in the approximation framework is that of recovering f from the values FN . To this end,
we consider a positive definite and symmetric kernel � : Ω × Ω −→ R and define the
interpolant R ∈ span{�(·, xi ), i = 1, . . . , N } as

R(x) =
N∑

k=1

ck�(x, xk), x ∈ Ω. (2.1)

We take radial kernels and thus we suppose that there exists a function φ : [0,∞) → R such
that for all x, y ∈ Ω ,

�(x, y) = φ(||x − y||2) := φ(r).

Moreover, the function φ may depend on a positive shape parameter ε > 0. The role of this
parameter is relevant for the accuracy of the whole reconstruction process (see e.g. [18]).

The coefficients c = (c1, . . . , cN )T in (2.1) are determined by solving the linear system
Ac = f , where f = ( f1, . . . , fN )T , fi = f (xi ), and A ∈ R

N×N is the interpolation (or
kernel) matrix of entries

(A)ik = �(xi , xk), i, k = 1, . . . , N .

In the sequel we only focus on strictly positive definite functions. For such functions the
interpolation system admits a unique solution.

On real applications we often deal with large data sets and the computational cost of
constructing the interpolant via (2.1) becomes prohibitive. Such drawback can be overcome
by introducing the PU method [46]. At first, we consider a partition of the open and bounded
domain Ω into d subdomains or patches Ω j , such that Ω ⊆ ∪d

j=1Ω j , with some mild

overlaps among them. In what follows, as patches, we take balls on R
M of a certain radius

δ. The radius is chosen so that the covering property is satisfied.
Together with these subdomains we take a family of compactly supported, non-negative

and continuous functions W j , with supp
(
W j

) ⊆ Ω j and such that

d∑

j=1

W j (x) = 1, x ∈ Ω.
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A possible choice is given by the Shepard’s weights (see [42])

W j (x) = W̃ j (x)

d∑

k=1

W̃k (x)

, j = 1, . . . , d,

where W̃ j are compactly supported functions on Ω j .
Once we choose {W j }d

j=1, the global interpolant is formed by the weighted sum of d local
approximants R j (see e.g. [46])

I (x) =
d∑

j=1

W j (x) R j (x) , x ∈ Ω, (2.2)

with

R j (x) =
N j∑

k=1

c j
k �(x, x j

k ),

where N j indicates the number of points on Ω j and x j
k ∈ XN j = XN ∩ Ω j , with k =

1, . . . , N j .
Hence, the problem of finding the global PU approximant in (2.2) reduces to solving

for each Ω j a linear system with local kernel matrix A j ∈ R
N j ×N j of entries (A j )ik =

�(x j
i , x j

k ), i, k = 1, . . . , N j .

Remark 1 In the PU framework, an important computational issue consists in organizing
points among the subdomains. To achieve thiswe use the so-called block-based data structure,
refer to [6] or see also [5,14] for further details. Furthermore,we remark that other partitioning
data structures, such as kd-trees, are available in literature, see e.g. [17].

Tomake the paper self-containedwe report the convergence theorem for the PU interpolant
and later we will discuss the differences arising when the PU is used for collocation. At first,
we define two common indicators of data regularity: the separation distance and the fill
distance.

The separation distance is defined as

qXN := 1

2
min
i 	=k

‖xi − xk‖2 ,

and represents the radius of the largest ball that can be centred at every point on XN =
{xi , i = 1, . . . , N } such that no two balls overlap.

The fill distance is defined as

hXN := sup
x∈Ω

(
min

xk∈XN
‖x − xk‖2

)
,

and indicates how well the data fill out the domain Ω . A geometric interpretation of the fill
distance is given by the radius of the largest possible empty ball that can be placed among the
data locations inside Ω . In particular, it is used in pointwise error bounds like the following
one (cf. [47, Theorem 15.19, p. 277]). Such statement is enunciated for strictly positive
definite functions, but it can be generalized to the conditionally positive definite case. For
further details, the reader can also refer to [46]. Here the aim is the one of stressing the
dependence of the interpolation error on the fill distance.
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Theorem 1 Let Ck
ν (RM ) be the space of all functions f ∈ Ck whose derivatives of order

|µ| = k satisfy Dµ f (x) = O (||x||ν2
)

for ||x||2 −→ 0. Let Ω ⊆ R
M be open and bounded

and suppose that XN = {xi , i = 1, . . . , N } ⊆ Ω . Let φ ∈ Ck
ν (RM ) be a strictly positive

definite function. Let {Ω j }d
j=1 be a regular covering for (Ω,XN ) and let {W j }d

j=1 be k-stable

for {Ω j }d
j=1. Then the error between f ∈ Nφ (Ω), where Nφ is the native space of φ, and

its PU interpolant can be bounded by

|Dµ f (x) − DµI (x) | ≤ Ch(k+ν)/2−|µ|
XN

|| f ||Nφ(Ω),

for all x ∈ Ω and all |µ| ≤ k/2.

Remark 2 By comparing the results reported in Theorem 1 with the global error estimates
shown in [47], one can easily realize that the PU interpolant preserves the local approximation
order for the global fit.

2.2 RBF-PUMethod: PDEs Collocation

Given a linear elliptic differential operator L , the goal consists in finding an approximate
solution of the BVP problem (Dirichlet boundary conditions)

L f (x) = g1(x), for x ∈ Ω,

f (x) = g2(x), for x ∈ ∂Ω.
(2.3)

The problem (2.3) is then discretized on a global set of collocation points XN = XNb ∪
XNc = {xi , i = 1, . . . , N }, where Nb and Nc are the number of nodes on ∂Ω and Ω\∂Ω ,
respectively. Precisely, as done in the majority of papers dealing with elliptic operators on
bounded domains, we consider uniformly spaced data on ∂Ω .

Once we assume that (2.3) admits a solution of the form (2.2) then (see e.g. [38,44]),

L I(xi ) =
d∑

j=1

L
(
W j (xi ) R j (xi )

) = g1(xi ), xi ∈ Ω\∂Ω,

I(xi ) =
d∑

j=1

W j (xi ) R j (xi ) = g2(xi ), xi ∈ ∂Ω. (2.4)

Let R j = (R j (x
j
1), . . . , R j (x

j
N j

))T be the vector of local nodal values. Since the local

coefficients c j = (c j
1 , . . . , c j

N j
)T are so that c j = A−1

j R j , we get

L R j = AL
j A−1

j R j , (2.5)

where AL
j is the matrix

(AL
j )ik := L�(x j

i , x j
k ), i, k = 1, . . . , N j .

To obtain a discrete local operator L j , we have to differentiate (2.4) by applying a product
derivative rule and then use the relation (2.5).

To fix things, consider the Poisson problem, i.e. L = −	. The elliptic operator L can
be expanded to get [23]

L (W j (xi )R j (xi )) = −	W j (xi )R j (xi ) − 2∇W j (xi ) · ∇ R j (xi )

− W j (xi )	R j (xi ), xi ∈ Ω\∂Ω,
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where the scalar product is applied to the components of the gradients. Let A	
j and A∇

j be
the matrices with entries

(
A	

j

)

ik
= 	�(x j

i , x j
k ), i, k = 1, . . . , N j ,

and (
A∇

j

)

ik
= ∇�(x j

i , x j
k ), i, k = 1, . . . , N j ,

we have
	R j = A	

j c j = A	
j A−1

j R j .

Furthermore we consider the matrix

W̄ 	
j = diag

(
	W j (x

j
1), . . . , 	W j (x

j
N j

)
)

,

and similarly we define W̄ ∇
j and W̄ j . Finally, by including the boundary conditions, we can

express the discrete local Laplacian as

(L j )ik =
{

(L̄ j )ik, for x j
i ∈ Ω\∂Ω,

δik, for x j
i ∈ ∂Ω,

where δik denotes the Kronecker delta and

L̄ j =
(

W̄ 	
j A j + 2W̄ ∇

j · A∇
j + W̄ j A	

j

)
A−1

j . (2.6)

In what follows we will refer to the collocation method described in this section as the RBF
Standard approach (RBF-S), meaning that the standard basis is used to approximate the
solution.

Note that, since we use the Laplacian, we require that both the kernel and the weight
functions are at least twice differentiable. Let xζk j ∈ XN j be the node corresponding to
xk ∈ XN . In order to obtain the global discrete PDE operator, we need to assemble the local
ones into a global matrix L as follows

(L)ik =
d∑

j=1

(L j )ζi j .ζk j , i, k = 1, . . . , N .

Then, we simply have to solve the (possibly ill-conditioned) system

L z = f , (2.7)

where z = (I(x1), . . . , I(xN ))T and f = ( f1, . . . , fN )T , with

fi =
{

g1(xi ), for xi ∈ Ω\∂Ω,

g2(xi ), for xi ∈ ∂Ω,
i = 1, . . . , N .

Remark 3 Themain advantage of PU collocation is the computational efficiency in construct-
ing the collocation matrix. However, we have to discuss several drawbacks concerning its
well-posedness. In general, amongmeshfree global collocation methods, the symmetric ones
should be preferred because they guarantee the existence and uniqueness of the solution. For
Kansa’s collocation approaches instead, the systemmight be singular [24] and its uniqueness
can be ensured only under several restrictions, which in particular lead to distinguish between
collocation points and RBF centres [32]. The non-symmetry of the matrix L suggests that its
non-singularity could be ensured only with a similar distinction between RBF centres and
collocation data. This needs further investigations. Alternatively, one can also use the least
squares approach proposed in [30].
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3 RBF-PU Collocation: Stability Issues

For several choices of the shape parameter the solution of an elliptic PDE via PU collocation
might be inaccurate. Indeed, we can easily note that in (2.6) multiplying by the inverse of
the local matrix A j might lead to instability that is carried over to the global collocation
matrix L . We already pointed out in the introduction that RBF-QR methods effectively solve
such problem, but we are here interested in stably computing the solution for any kernel. We
consider two approaches: Tikhonov regularization, which is also well-known in the context
of neural networks [4], and VSKs [2]. The former, described in the next subsection, gives
acceptable results but we show that it is outperformed by the use of our hybrid procedure
based on VSKs, which will be presented in Sect. 3.2.

3.1 Tikhonov SVD Regularization (TSVD)

As we noticed, the final collocation system (2.7) could be severely ill-conditioned. A stable
solution of (2.7) can be found by the Tikhonov regularization method [45], which essentially
gives a penalized least square solution.Wedenote by z̃ the solution depending on theTikhonov
matrix � given by

min
z

(||L z − f ||22 + ||�z||22
)
. (3.1)

The minimum is
z̃ = (LT L + �T �)−1LT f , (3.2)

and the penalty term ||�z||22 in (3.1) is designed to improve the stability, hence making the
problem less sensitive to ill-conditioning. According to [16,40], in what follows, we consider
� = √

γ I , with γ > 0 ∈ R (see also Sect. 5 for further details).
In [22], it has been proved that (3.2) can be expressed as

z̃ = V D U T f ,

where V and U come from the SVD of L , i.e. L = UV T and  is the diagonal matrix of
the singular values σi of L . Then, the entries of the diagonal matrix D are given by

di = σi

σ 2
i + γ

,

i = 1, . . . , N . Note that, also when the local matrices (especially A j ) are severely ill-
conditioned, the Tikhonov regularization only acts on the final system.

3.2 Hybrid Variably Scaled Kernels (HVSK)

Unlike Tikhonov regularization, the HVSK approach enables us to intervene on the local
discrete operators, producing truly more accurate and stable solutions, as numerically shown
in Sect. 5.

VSKs were introduced in [2] and the main idea behind their definition is to consider
the shape parameter as an additional coordinate the kernel depends on. That is, the scale
parameter is considered as a continuous function. More precisely, we can define a VSK as
follows (cf. [2, Def. 2.1]).
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Definition 1 Let ψ : RM → (0,∞) be a given scale function. A Variably Scaled Kernel
(VSK) Kψ on R

M is

Kψ(x, y) := K((x, ψ(x)), ( y, ψ( y))), x, y ∈ R
M , (3.3)

where K is a kernel on R
M+1.

It is easy to show that if in (3.3)K is positive definite on RM+1, so the VSK Kψ is on RM

and thus the VSK interpolant is uniquely defined.
In particular the local VSK interpolant can be defined as follows.

Definition 2 Given the set of points XN j = {x j
i , i = 1, . . . N j } on the subdomain Ω j and

the (local) scale function ψ j : RM → (0,∞), then the local VSK interpolant is

Rψ j (x) =
N j∑

k=1

c j
kK((x, ψ j (x)), (x j

k , ψ j (x
j
k ))), x ∈ Ω j .

Furthermore, ψ j defines a function

� j : x �→ (x, ψ j (x)),

whichmaps the spaceRM into a M-dimensional submanifold� j (R
M ) ofRM+1 and the set of

nodes XN j ⊂ Ω j ⊂ R
M into � j (XN j ) ⊂ � j (Ω j ) ⊂ � j (R

M ) ⊂ R
M+1. As a consequence,

the interpolation by the kernelK takes place onRM+1 at the transformed points set� j (XN j ).

For the interpolation setting, in [2], the authors prove that the error and stability analysis of
the VSK on RM coincides with that of a fixed-scale problem on a submanifold on RM+1. In
other words, referring to Theorem 1, we know that for VSKs the interpolation error depends
on the fill distance as well. Therefore, in order to have a better understanding of the error
analysis we only need to discuss how the fill distance changes when VSKs are used. Indeed,
both the fill distance and separation distance will be transformed by � j and will roughly be
multiplied by a factor that scales with the norm of the gradient ofψ j or the Lipschitz constant
� of ψ j , depending on the regularity of ψ j . Indeed

‖� j (x) − � j ( y)‖22 = ‖x − y‖22 + (ψ j (x) − ψ j ( y))2 ≤ ‖x − y‖22(1 + �)2,

so that
‖� j (x) − � j ( y)‖22 ≥ ‖x − y‖22,

which shows that distances will blow up with � j , letting separation distance never decrease
and improving the stability of the process. In fact, the ill-conditioning growswith the decrease
of the separation distance and not necessarily with the increase of the number of data points.
Unfortunately, also thefill distance,which is ameasure of the interpolation error (seeTheorem
1), grows. For this reason the new idea of the HVSK approach.

With particular scale functions the conditioning of the kernel matrix can be sensibly
reduced [2]. However, aside the case inwhich noise is introduced, thismight lead to a decrease
of the accuracy of the solution with respect to the standard basis. In practice, we will see that
the error via VSKs is usually higher than the one that can be found with the optimal shape
parameter εopt , that is the reason why we propose the use of the HVSK technique. The idea
is as follows:

– take a constant shape parameter ε,
– compute the local kernel matrix A j on a subdomain Ω j ,
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– use the scaling with ε and standard bases as long as A j is not close to be singular, i.e. as
long as the conditioning is acceptable.

Concerning the last step, we check if the conditioning is acceptable by fixing a threshold
and applying the VSKs if and only if the smallest singular value of A j is below the prescribed
tolerance. To this end we compute the SVD of the local matrices. The computational cost is
affordable, being such matrices of small size.

For the collocation via VSKs we can prove the following result.

Proposition 1 Let us consider a radial function φ(·) at least twice differentiable associated
to the VSK, K. Letting

Ωα =
(

x j
iα − x j

kα

)
+
(
ψ j

(
x j

i

)
− ψ j

(
x j

k

)) ∂ψ j

(
x j

i

)

∂x j
iα

, α = 1, . . . , M,

dωα = 1 +
(

∂ψ j (x
j
i )

∂x j
iα

)2

+
(
ψ j

(
x j

i

)
− ψ j

(
x j

k

)) ∂2ψ j

∂2x j
iα

(
x j

i

)
, α = 1, . . . , M,

and

ρ =
(

||x j
i − x j

k ||22 +
(
ψ j

(
x j

i

)
− ψ j

(
x j

k

))2)1/2

,

then the entries of the local VSK differentiation matrices for the BVP (2.3) with L = −	

are given by
(

A∇
ψ j

)

ik
=
((

A1
ψ j

)

ik
, . . . ,

(
AM

ψ j

)

ik

)
=
(

ω1

ρ

dφ(ρ)

dρ
, . . . ,

ωM

ρ

dφ(ρ)

dρ

)
, (3.4)

i, k = 1, . . . , N j , and

(
A	

ψ j

)

ik
=

M∑

α=1

[
d2φ(ρ)

dρ2

ω2
α

ρ2 + dφ(ρ)

dρ

(
dωα

ρ
− ω2

α

ρ3

)]
, i, k = 1, . . . , N j . (3.5)

Proof From [2], we know that if the VSK K is radial then it can be seen as a univariate
function φ = φ(ρ). Thus, the entries of the associated kernel matrix Aψ j are given by

(
Aψ j

)
ik

= φ

((
||x j

i − x j
k ||22 +

(
ψ j

(
x j

i

)
− ψ j

(
x j

k

))2)1/2
)

, i, k = 1, . . . , N j .

Moreover, since
∂φ(ρ)

∂x j
iα

= dφ(ρ)

dρ

∂ρ

∂x j
iα

, α = 1, . . . , M ,

and

∂ρ

∂x j
iα

= 1

ρ

⎡

⎣
(

x j
iα − x j

kα

)
+
(
ψ j

(
x j

i

)
− ψ j

(
x j

k

)) ∂ψ j

(
x j

i

)

∂x j
iα

⎤

⎦ ,

α = 1, . . . , M, then (3.4) easily follows. The same argument shows that

∂2ρ

∂2x j
iα

= 1

ρ

⎡

⎢⎣1 +
⎛

⎝
∂ψ j

(
x j

i

)

∂x j
iα

⎞

⎠
2

+
(
ψ j

(
x j

i

)
− ψ j

(
x j

k

)) ∂2ψ j

∂x j
iα

⎤

⎥⎦−ω2
α

ρ3 , α = 1, . . . , M .
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Finally from the fact that

∂2φ(ρ)

∂2x j
iα

= d2φ(ρ)

dρ2

ω2
α

ρ2 + dφ(ρ)

dρ

∂2ρ

∂2x j
iα

, α = 1, . . . , M,

(3.5) follows. ��
From this result we obtain that the discrete local operator based on the VSKs (2.6) takes

the form
L̄ψ j =

(
W̄ 	

j Aψ j + 2W̄ ∇
j · A∇

ψ j
+ W̄ j A	

ψ j

)
A−1

ψ j
.

We will numerically show that, by collocating via HVSKs, we are able to provide stable
approximations for the solution of elliptic PDEs. However, a theoretical analysis of the error
via HVSKs for collocation schemes needs further investigations. This is a consequence of
the more general fact that there are no trivial extensions of Theorem 1 for the collocation
setting. Indeed, its proof is based on bounding the global error in function of the local ones.
This can be done since for each patch we have a well-posed interpolation problem. On the
opposite, in the collocation setting, we do not have well-posed local collocation problems,
in fact interior patches have no boundary conditions.

4 RBF-PU Collocation: The Adaptive Residual Subsampling Scheme

Dealing with adaptivity, the two main computational issues concern the stability, related to
the oversampling of certain regions of high variation of the solution, and the choice of the
data sets. In view of the considerations made in the previous section, we will use the HVSK
technique to enhance the stability. This will be more evident in Sect. 5, in which numerical
tests will show that the HVSK approach performs better than TSVD, improving the stability
of the RBF-standard method (RBF-S).

Concerning the data sets, differently fromwhat is usually done in literature (see e.g. [15]),
we do not consider grid data. Our aim in fact is to obtain a method that, at the same time,
works with well distributed nodes and is easy to implement on different geometries of the
hypercube [0, 1]M . Grid data are not extremely suitable, thus we take and compare two kinds
of data sets: the classical low-discrepancy Halton nodes and the greedy points. Both are
generated as sequences of points. The latter have the advantage of being similar to grid data,
in the sense that they provide a set of quasi-uniform points in the Euclidean distance (see
[10,39]). Moreover, such points are independent of the basis function φ. This observation
suggests an algorithm which is based only on geometric considerations and that allows to
generate a similar set of points as a sequence. More precisely, the geometric greedy points
are generated as follows:

– Choose z0 on ∂Ω and let Z0 := {z0}.
– Let Zi ⊂ Ω , zi+1 := maxz∈Ω\Zi dist(z,Zi ).

where dist in our setting is the Euclidean distance. As a remark, in [3] the authors point
out that this algorithm can generate equidistant points on compact sets of RM with respect
to a generic metric.

On Ω let us consider the set XN (1) ≡ XN = {x(1)
i , i = 1, . . . , N (1)}. Along the boundary

we take the set of points X
N (1)

b
with

N (1)
b = (N̂ + 2)M − N (1)

c , where N̂ = �N (1)
c �1/M (4.1)
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This choice follows from the fact that if N (1) grid data are taken on [0, 1]M then exactly
(N̂ + 2)M − N (1)

c lie on the boundary.
Our ARS strategy is based on the residual subsampling technique proposed in [15]. At

the first step, the ARS schemes defines a set of interior points

YÑ (1) ≡ Y
Ñ (1)

c
= { y(1)

i , i = 1, . . . , Ñ (1)},
and takes

Ñ (1) =
⌈

pN (1)
c

⌉
, p ∈ R

+.

ARS algorithm.
Let τ1 and τ2 be two tolerances, τ2 < τ1.

(a) Consider the initial set of nodes and compute the solution on XN (1) . Then, evaluate the
residuals

r (1)
i =

∣∣∣ f
(
y(1)

i

)
− IN (1)

(
y(1)

i

)∣∣∣ , i = 1, . . . , Ñ (1).

where IN (1) is the approximate solution. We then define

ST1(1) = { y(1)
i : r (1)

i > τ1, i = 1, . . . , T (1)
1 },

and
ST2(1) = {x̄(1)

i : r (1)
i < τ2, i = 1, . . . , T (1)

2 },
where x̄(1)

i is the nearest point to y(1)
i and T (1)

1 and T (1)
2 simply identify the cardinality

of the two sets.
(b) At the (k + 1)th step, we take the following new discretization nodes

XN (k+1) = X
N (k+1)

b
∪ X

N (k+1)
c

,

where
X

N (k+1)
c

=
(
X

N (k)
c

∪ ST1(k)

)
\ST2(k) ,

and again X
N (k+1)

b
is constructed so that (4.1) is fulfilled. We define the (k +1)th training

set of interior nodes by taking firstly N̄ (k+1)
c points on Ω with N̄ (k+1) =

⌈
pN (k+1)

c

⌉
.

Hence
YÑ (k+1) = Y

Ñ (k+1)
c

∪ ST2(k) = { y(k+1)
i , i = 1, . . . , Ñ (k+1)}.

In this way we are also able to eventually remove nodes of the previously computed data
set.

(c) Stop when S
T (k)
1

= ∅.
Notes

• If all residuals are greater than the chosen threshold, the number of points is doubled at
each iteration. Therefore after several steps, we expect that only few residuals are greater
than the chosen threshold and moreover that they are located only where the solution
varies faster. Nevertheless, the algorithm computes a large initial set of test points and
consequently large evaluationmatrices, even if in the end only few test nodes become new
centres for the basis functions. To avoid this drawback, if at the kth step card(ST1(k) ) <

aN (k+1)
c , for a certain a < 1, we define a reduced number of check points. Specifically,

for each data belonging to ST1(k) we compute its k nearest neighbours with respect to
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the set XN (k+1) and we define y(k+1)
i as a greedy point on this neighbourhood. This is

an advantage with respect to the method proposed in [15]. Indeed, in the last mentioned
paper, even if only few points are added, the training sets always consist of large grids.
Obviously, this is computationally expensive because it leads to evaluate many residuals
(by constructing useless large evaluation matrices). Hence, the use of greedy points
produces a benefit for the computational cost of the algorithm.

• If the analytical form of the PDE is not known, by defining several subsets of the original
one, it comes easy to identify a training set at each step. The criterion we use here to
select new centres is based on residual subsampling for which the solution is supposed to
be known. Alternatively, following the suggestions provided by [9], a point y(k)

i becomes
a new centre if ∣∣IN (k)

(
y(k)

i

)
− I

(
x̄(k)

i

) ∣∣, (4.2)

is greater than a prescribed tolerance, where x̄(k)
i ∈ X

N (k)
c

is its nearest point. We can
think of ∣∣IN (k)

(
y(k)

i

)
− IN (k)

(
x̄(k)

i

) ∣∣
∣∣∣∣ y(k)

i − x̄(k)
i

∣∣∣∣
2

,

as an estimate of the directional derivative of the solution in y(k)
i (cf. [34]). Also in [34],

the reader can find other useful criteria.

5 Numerical Experiments

Experiments are carried out on an Intel(R) Core(TM) i7 CPU 4712MQ 2.13 GHz processor.
The software is available for the scientific community and can be freely downloaded at http://
www.math.unipd.it/~demarchi/RBF/HVSK_PU.zip.

In this section we firstly show the benefits of the HVSK approach, comparing it with
TSVD, RBF-S and RBF-QR methods. Then, we will present numerical experiments to test
the ARS technique which is based on the HVSK method. About the RBF-QR, we use the
Matlab code downloadable at http://www.it.uu.se/research/scientific_computing/project/
rbf/software.

In what follows, the space dimension is M = 2, the Root Mean Square Error (RMSE) is
computed on a grid of s = 40 × 40 points x̃i , i = 1, . . . , s

RMSE =
√√√√1

s

s∑

i=1

| f (x̃i ) − I(x̃i )|2,

and we also evaluate the 2-norm Condition Number (CN) of the collocation matrix L .
Following [2], for the HVSK technique on Ω j we consider the scale function

ψ j (x) =
N j∑

i=1

∣∣p j
i

(
x, x j

i

)∣∣,

with

p j
i

(
x, x j

i

) = 1

π
arctan

(
h j

i

(
x1 − x j

i1

))
e−5(x2−x j

i2),
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where x = (x1, x2), x
j
i = (x j

i1, x j
i2) ∈ Ω j and h j

i ∈ R
+, i = 1, . . . , N j . From extensive

numerical experiments, we found reliable resultswhen h j
i assumes small values. The function

p j
i increases more rapidly if h j

i is large. Therefore we look for larger values of h j
i when the

points are clustered. Thus, a possible choice is

h j
i = qN j

s j
i

10−5,

where qN j is the separation distance of the j th subdomain and s j
i is the distance between

x j
i ∈ Ω j and its nearest point on the j th patch. Nevertheless, this choice is computationally

expensive and a nearest neighbour procedure must be applied. That is why here we fix
h j

i = 7 · 10−6 for all i = 1, . . . , N j , and j = 1, . . . , d .

5.1 Stability Issues

In order to test the HVSK method, we consider an elliptic problem on Ω = [0, 1]2 with
a manufactured solution from which we can easily compute the functions g1 and g2 of the
Poisson problem (2.4). In particular we take

f1(x1, x2) = sin(x1 + 2x22 ) − sin
(
2x21 + (x2 − 0.5)2

)
.

Experiments are performed considering several sets of Halton nodes on the unit square
Ω . For the PU weights we take the Wendland’s C2 function

W̃ (r) = (1 − εr)4+(4εr + 1),

where (·)+ denotes the truncated power function and ε > 0.
As radial function we consider the Gaussian kernel

φ(r) = e−ε2r2 .

We show the results obtained by means of both TSVD and HVSK, by computing the RMSEs
and CNs for 20 values of the shape parameter ε, uniformly spaced in logarithmic scale in the
range [10−3, 102]. For a suitable selection of the Tikhonov parameter γ we refer to [16,40].
We have found good results for γ ∈ [10−15, 10−10]. In the numerical experiments that follow,
we have actually selected the optimal value, say γ ∗, via trials and errors.

We test our method on Nc = 81, 289, 1089, 4225, Halton data and Nb boundary points
as in (4.1). Finally, we also need to fix the number of patches and related radius. The former
should be chosen proportionally to the number of points N , while the latter must be chosen
so that subdomains form a covering of Ω . To fulfill such properties, we select the number of
patches d such that (see e.g. [6])

d =
⌊ M

√
Nc

2M−1

⌋M

,

and the radius δ as follows

δ =
(
2

d

)1/M

. (5.1)

In Table 1 we provide fill and separation distances for the VSK compared with the ones
of the original data set. For the VSK approach, these quantities correspond to the fill and
separation distances of the original data set mapped via the scale function. As expected, both
distances grow, leading to a more stable scheme in the VSK case (due to the increase of the
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Table 1 Separation and fill
distances of the original data set
compared with the ones mapped
via VSKs

Nc Data set hXN
qXN

81 Original 1.03E−01 1.07E−02

Mapped 2.93E−01 3.68E−02

289 Original 5.72E−02 2.07E−03

Mapped 6.34E−02 6.73−03

1089 Original 3.27E−02 1.12E−03

Mapped 5.79E−02 4.34E−03

4225 Original 1.68E−02 1.74E−04

Mapped 4.85E−02 6.79E−04

separation distance) that however might cause a decrease of the accuracy (due to the increase
of the fill distance that thanks to the choice of ψ j is moderate). In this framework, the use of
the mixed technique results particularly meaningful.

In Figs. 1 and 2 we respectively compare the RMSEs and CNs obtained by means of
TSVD and HVSK with those of the RBF-S and RBF-QR methods. In Table 2 we also report
the corresponding CPU times for ε = 10−3. Note that, both the HVSK and RBF-QRmethods
are comparable with the computational cost of the standard bases. Indeed, the only difference
for HVSK consists in defining and evaluating the scale function. Furthermore, even if the
measured CPU times are slightly different, when the methods execute the same routine, in
Table 2 we report the same CPU times to avoid confusion.

We now need to discuss when, instead of the standard bases depending on ε, VSKs should
be applied. Here, VSKs are used on a subdomain Ω j if and only if σm , i.e. the minimum of
the singular values associated to A j , is such that σm < 10−16/ε4. This tolerance has been
validated only numerically on different test cases. Being dependent on the shape parameter,
it means that for small shape parameters, i.e. when usually the instability becomes more
evident, VSKs are almost always applied. This allows to overcome the instability issues and
at the same time to recover the optimal solution given by the standard bases. Furthermore,
one can use the VSKs also for large shape parameters. In those cases the conditioning with
standard bases is always acceptable but usually the accuracy of themethods gets worse. Thus,
in this example VSKs are also applied when σm > 10−11.

From Fig. 1, we note that both RBF-QR and HVSK outperform the other approaches.
Moreover, as expected, the RBF-QR method gives more accurate and stable results than any
other technique considered here. Nevertheless, we remark that VSKs are independent of the
choice of the kernel, while the RBF-QR approaches are based on the Gaussian kernel. In
applications or in the adaptivity framework, when points are clustered, this is an advantage
for HVSK. In those cases, the use of smooth functions, as the Gaussian, is not recommended.
On the opposite, kernels with limited regularities are strongly advised.

The condition numbers plotted in Fig. 2 are coherent with the fact that HVSK and RBF-
QR are more stable. However, the difference of the conditioning of the HVSK and of the
RBF-S is not always appreciable. Nevertheless, the errors show that, differently from the
standard bases, the HVSK approach is able to moderately reduce the conditioning and, as a
consequence, provides stable solutions. On the contrary, even if TSVD sensibly diminishes
the condition number, the results are not completely satisfactory in terms of accuracy. This
is due to the fact that we do not intervene on the computation of (2.6). Thus, the instability
due to the evaluation of the inverse of the kernel matrix is carried over to the final system.
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Fig. 1 RMSEs obtained by varying ε for the Gaussian C∞ kernel. From left to right, top to bottom, we
consider Nc = 81, 289, 1089 and 4225 Halton data

We also point out that, from other numerical experiments here omitted, we note that HVSK
performs better than other methods based on Tikhonov approaches, such as computations
based on Riley’s algorithm [16], or the one proposed in [40]. However, we have to mention
that differently from [40], we do not employ multiple precision.

Remark 4 Onemay argue that, to achieve both accuracy and efficiency, there is no need to use
stable methods, but selecting the optimal shape parameter would be sufficient. Unfortunately,
there are no a priori optimal choices for its value and one always needs to use very costly
techniques, such as cross-validation or maximum likelihood method (see e.g. [17] for a
general overview).

Concerning the method used to solve the final collocation system (2.7), we take into
account both direct and iterative methods. Numerically, we observed that the direct one
(computed with the standard mldivide.m Matlab function) is more effective in terms
of efficiency. In Table 2 we compare these results with the gmres.m routine that takes an
incomplete LU factorization of L as preconditioner. Moreover, differently from [23], we
also note that the use of preconditioners does not produce a significant regularization of the
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Fig. 2 Condition numbers of the matrix L obtained by varying ε for the Gaussian C∞ kernel. From left to
right, top to bottom, we consider Nc = 81, 289, 1089 and 4225 Halton data

solution. Finally, we quote the fact that no iterative methods can be used for the case of TSVD
which requires high complexity costs due to the computation of SVDs of the potentially final
large matrices.

5.2 Adaptive Residual Subsampling Scheme

We test the adaptive method based on the HVSK technique on three Poisson problems on
Ω ⊆ [0, 1]2 with known solutions:

f2(x1, x2) = 1

20
e4x1 cos (2x1 + x2),

f3(x1, x2) = 1

2
x2
[
cos

(
4x21 + x22 − 1

)]4 + 1

4
x1,

and
f4(x1, x2) = e−8((x1−0.5)2+(x2−0.05)2).
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Table 2 RMSEs for the optimal shape parameter obtained for the test function f1 and several sets of Halton
nodes

Nc Method εopt RMSE tL tD tI

81 RBF-S 0.78 4.52−04 4.02−01 3.10−03 1.34−01

TSVD 0.78 4.52−04 4.02−01 2.18−02 –

HVSK 0.42 3.94−04 9.23−01 3.10−03 1.34−01

RBF-QR 0.42 4.16−04 9.19−01 3.10−03 1.34−01

289 RBF-S 0.78 2.75−05 8.25−01 1.20−02 2.13−01

TSVD 1.43 2.88−05 8.25−01 3.77−01 –

HVSK 2.63 2.41−05 1.77+00 1.20−02 2.13−01

RBF-QR 1.43 2.61−05 1.90+00 1.20−02 2.13−01

1089 RBF-S 2.63 9.19−06 6.02+00 7.19−02 1.14+00

TSVD 1.43 6.06−06 6.02+00 1.50+01 –

HVSK 2.63 8.96−06 6.46+00 7.19−02 1.14+00

RBF-QR 1.43 1.02−06 6.62+00 7.19−02 1.14+00

4225 RBF-S 4.83 2.70−06 4.11+01 6.69−01 5.27+00

TSVD 4.83 2.54−06 4.11+01 1.12+03 –

HVSK 4.83 2.78−06 4.25+01 6.69−01 5.27+00

RBF-QR 1.43 1.32−07 4.49+01 6.69−01 5.27+00

The CPU time (in seconds) tL is the time needed to construct the matrix L . The times tD and tI are those
required to solve the final system by direct and iterative approaches, respectively. The quantity tI corresponds
to the time needed for both constructing the preconditioner and solving the system

Note that f2 is quite easy to approximate while the main difficulties are in solving the elliptic
problem with f3, due to its oscillations (see e.g. [1]). The function f4 is the gaussian peak
function.

Nevertheless, we will point out that, also for the simplest test function f2, the use of the
HVSK approach is essential to ensure a numerical convergence of the ARS scheme.

In these cases we consider the Matérn C6 radial function

φ(r) = e−εr (ε3r3 + 6ε2r2 + 15εr + 15).

Moreover, we take p = 1, a = 1/10, K = 1 + 2k, τ1 = 10−5 and τ2 = 10−9.
We start with a data set consisting of Nc = 100 points on Ω and d = Nc. The radius of

patches is set as in (5.1). Usually, the number of subdomains d is chosen so that N/d ≈ 2M

and since here d is kept fixed along the iterations, the subdomains are more and more filled
out by points, i.e.

N (k)/d ≥ N (k−1)/d, k ≥ 2.

For the test function f2 we take Halton points and ε = 0.3. The first steps of the algorithm
are plotted in Fig. 3. The scheme successfully stops with a data set consisting of 1044 points,
as displayed in Fig. 4. Note that in the end, the subdomain having the largest number of
points contains 100 data.

As a feedback on the accuracy, at each iterationwe compute theMaximumof theResiduals
(MR)

MR = max
i=1,...,Ñ (k)

r (k)
i .
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Fig. 3 An illustrative example. From top to bottom, left to right, we plot the first steps of the algorithm. The
stars represent the data set at the kth step, the dots the check nodes and the circles those check nodes that
become new RBF centres at the k + 1th step

Furthermore, we calculate the RMSE on an independent set of evaluation points consisting
of a grid of 40×40 points. In Fig. 5 (left), we report the iterations versus the MR and RMSE.

We also plot in Fig. 5 (right) the residuals obtained by taking only the standard basis,
showing that the procedure does not stop successfully. The ARS method combined with the
HVSK scheme indeed avoid this situation (see Fig. 5 left) and enanches the stability of the
collocation matrices. A comparison of the condition numbers of the two methods is plotted
in Fig. 6.

Concerning the second test function f3, in Fig. 7 we plot the solutions and the final data
sets obtained by considering bothHalton (left) and greedy (right) points with shape parameter
ε = 3. In both cases the ARS scheme stops after 10 iterations (see Fig. 8). Nevertheless,
with Halton data, it requires 2987 nodes and a maximum number of points per patch equal
to 252. With greedy points it performs slightly better: indeed it stops with 2783 data and the
maximum number of points per patch is equal to 338. In fact, greedy data are added only
where the solution grows more steeply and, differently from Halton points, they are coarse
where the function is flatter.
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Fig. 4 The final data set and the
so-reconstructed solution with
Halton data for the test function
f2
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Fig. 5 The iterations versus the MR and RMSE with Halton data for the test function f2. In the left frame we
use the HVSK approach, while in the right one the standard bases

As last example, we take an initial set of points (Halton and greedy data) on a circle
inscribed in [0, 1]2, the test function f4 and the shape parameter ε = 3. In this case, we use
the criterion based on the directional derivatives (4.2). Again, we observe the pattern already
provided by the greedy points with respect to Halton data. Indeed, from Fig. 9, where we
plot the two data sets and the reconstructed solutions, we note that Halton data oversample
relatively flat regions and undersample the peak. The algorithmwith Halton points stops after
k = 10 iterations with 1740 points and a maximum number of points per patch equal to 224
(see Fig. 10, left). The same approach with greedy points only requires 8 iterations and 1538
data, while the maximum number of points per patch is equal to 333 (see Fig. 10, right).
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Fig. 6 The iterations versus the
condition numbers of the final
collocation matrix L
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Fig. 7 The final data set and the so-reconstructed solutions for Halton (left) and greedy (right) data with the
test function f3

Finally, to point out the efficiency, we report in Table 3 a comparison between the CPU
times for the adaptive and non-adaptive methods, both computed via the HVSK scheme.
The number of points for the non-adaptive HVSK scheme has been selected so that for the
initial data sets all the residual are less than τ1 = 10−5. As expected, we note that there is a
remarkable difference for what concerns the number of points involved in the computation,
truly larger for the non-adaptive case. The CPU times are instead comparable. For the non-
adaptive method, the CPU time includes the time needed to test if for the taken data sets all
the residuals are less than τ1. Of course, testing which check points become new nodes is the
most time-consuming part of the algorithm, while the use of VSKs is very cheap. Indeed,
in addition to the computation via standard bases, we only need evaluations of the scale
function.
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Fig. 8 The iterations versus the MR and RMSE for Halton (left) and greedy (right) data with the test function
f3

Fig. 9 The final data set and the so-reconstructed solutions for Halton (left) and greedy (right) data with the
test function f4

6 Conclusions andWork in Progress

We presented a scheme to adaptively select RBF centres when a Poisson problem is solved
by means of RBF-PU collocation. Moreover, thanks to the proposed new HVSK technique,
we enhance the stability of the algorithm. Future work consists in extending this investigation
to parabolic PDEs, such as the heat equation, and in studying the potential use of a hybrid
technique based on both VSKs and rescaled approximants, as well as rational RBFs [2,11,
12,41]. Our aim is also the one of developing a parallel implementation of the described PU
collocation scheme.
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Fig. 10 The iterations versus the MR and RMSE for Halton (left) and greedy (right) data with the test function
f4

Table 3 CPU times for adaptive
(Y) and non-adaptive (N)
methods with Halton data

Test function N Adaptivity MR t

f1 2684 N 9.83−06 6.44+00

1044 Y 9.82−06 1.00+01

f2 7213 N 8.88−06 3.12+ 01

2987 Y 9.37−06 3.26+01

f3 4160 N 9.16−06 1.63+01

1740 Y 9.87−06 1.51+01
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