
Fundamenta Informaticae XX (2021) 1–35 1

DOI 10.3233/FI-2016-0000

IOS Press

Complexity assessments for
decidable fragments of Set Theory.
I: A taxonomy for the Boolean case.∗

Domenico Cantone

Dept. of Mathematics and Computer Science

University of Catania, Italy

domenico.cantone@unict.it

Andrea De Domenico

Scuola Superiore di Catania,

University of Catania, Italy

andrea.dedomenico@studium.unict.it

Pietro Maugeri

Dept. of Mathematics and Computer Science

University of Catania, Italy

pietro.maugeri@unict.it

Eugenio G. Omodeo

Dept. of Mathematics and Geosciences

University of Trieste, Italy

eomodeo@units.it

Abstract. We report on an investigation aimed at identifying small fragments of set
theory (typically, sublanguages of Multi-Level Syllogistic) endowed with polynomial-time
satisfiability decision tests, potentially useful for automated proof verification. Leaving
out of consideration the membership relator ∈ for the time being, in this paper we provide
a complete taxonomy of the polynomial and the NP-complete fragments involving, besides
variables intended to range over the von Neumann set-universe, the Boolean operators
∪,∩, \, the Boolean relators ⊆, 6⊆,=, 6=, and the predicates ‘· = ∅’ and ‘Disj(·, ·)’, meaning
‘the argument set is empty’ and ‘the arguments are disjoint sets’, along with their oppo-
sites ‘· 6= ∅’ and ‘¬Disj(·, ·)’. We also examine in detail how to test for satisfiability the
formulae of six sample fragments: three sample problems are shown to be NP-complete,
two to admit quadratic-time decision algorithms, and one to be solvable in linear time.

Keywords: Satisfiability problem, Computable set theory, Boolean set theory, Express-
ibility, NP-completeness, Proof verification.

Address for correspondence: D. Cantone, DMI, Università degli Studi di Catania, viale Andrea Doria, 6 —
95125 — Catania (I)
∗We gratefully acknowledge partial support from project“STORAGE—Università degli Studi di Catania, Piano
della Ricerca 2020/2022, Linea di intervento 2”, and from INdAM-GNCS 2019 and 2020 research funds.

2

Introduction

The decision problem for fragments of set theory, namely the problem of establishing algorith-
mically for any formula ϕ in a given fragment whether or not ϕ is valid in the von Neumann
universe of sets, has been thoroughly investigated over the last four decades within the field
named Computable Set Theory. Research has mainly focused on the equivalent satisfiability
problem, namely the problem of establishing in an effective manner, for any formula in a given
fragment, whether an assignment of sets to free variables exists that makes the formula true.

The initial goal (back in 1978, cf. [1]) envisaged an automated proof checker based on
set theory, within which it would become possible to carry out an extensive formalization
of classical mathematics, as well as program-correctness verifications. The inferential kernel
of such a proof assistant should have embodied decision procedures intended to capture the
‘obvious’ (deduction steps). Very soon, and long before the proof checker came into existence,
the initial goal sparked a foundational quest aimed at drawing the precise frontier between
the decidable and the undecidable in set theory (and also in other important mathematical
theories). This inspired much of the subsequent work. Several extensions of the progenitor
fragments MLS and MLSS of set theory were proved to have a solvable satisfiability problem,
which led to a substantial body of results, partly comprised in the monographs [2, 3, 4, 5, 6].

We recall that MLS—an acronym for Multi-Level Syllogistic, see [7, 8, 9]—copes with
propositional combinations of literals of the forms

x = y ∪ z, x = y ∩ z, x = y \ z, x 6= y, x ∈ y, x /∈ y, (1)

(where x, y, z stand for set-variables); MLSS adds the singleton operator {·} to these con-
structs.1 Unfortunately, as shown in [12], the satisfiability problem for either MLS or MLSS
is NP-complete, even if restricted to conjunctions of literals of type (1). All extensions of
MLS will hence have, in their turn, an NP-hard satisfiability problem (in fact, even hyper-
exponential in some cases; see [13, 14, 15]). Notwithstanding, the decision algorithm for an
enriched variant of MLSS, implemented along the guidelines of [16], has come to play a key
role among the inference mechanisms available in the proof-checker ÆtnaNova, aka Ref [4].
In view of the pervasiveness of that mechanism in actual uses of ÆtnaNova (as discussed,
e.g., in [17, Sect. 3], in [5, Sect. 5.3.1], and in the sections on ‘blobbing’ of [4]), it will pay
off to circumvent whenever possible the poor performances occasionally originating from the
full-strength decision algorithm.

This is why we recently undertook an investigation aimed at identifying useful ‘small’ frag-
ments of set theory (which in most cases are subfragments of MLS) endowed with polynomial-
time decision tests.

In this note we report on results mainly focused, for the time being, on fragments that
exclude the membership relator ∈.2 We provide a complete taxonomy of the polynomial
and the NP-complete fragments involving, besides set variables intended to range over the

1Note that by adding Cartesian square literals x = y × y and cardinality literals |x| = |y|, |x| 6= |y| to MLS,
one makes the satisfiability problem undecidable (see [10] and the recent [11]).
2Anyhow, some results involving the membership relator ∈, and treated elsewhere, will be reviewed in Sect.3.1.

3

von Neumann universe of all sets (see below), the Boolean operators ∪,∩, \ and relators
⊆, 6⊆,=, 6=, and the predicates (both affirmed and negated) ‘· = ∅’ and ‘Disj(·, ·)’, expressing
respectively that a specified set is empty and that two specified sets are disjoint.

————

The paper is organized as follows: Sect.1 introduces the syntax and semantics of a language
in which several hundreds of decidable fragments will be framed in this note; a subsection of it
defines ‘expressibility’, a notion which eases the systematic assessment of the complexities of
the satisfiability decision tests. Sect. 2 highlights a complexity-based classification of the frag-
ments under consideration; two subsections of it examine in detail, respectively: three minimal
NP-complete fragments; three emblematic, polynomial-complexity decision algorithms. Next,
in Sections 3.1 and 3.2, the authors survey results published elsewhere [18, 19], regarding a
fragment of set theory that involves the membership relator: a complexity taxonomy for that
fragment is recalled, and the possibility to perform a quadratic-time satisfiability-preserving
translation of it into a purely Boolean language is pointed out. This translation preserves
satisfiability and requires quadratic time, hence it bridges the matter discussed herein and
the material treated in [18]. Sect. 3.4 mentions complexity taxonomies developed by other
authors for fragments of various logical systems. We conclude the paper with a few hints at
future research. Then an appendix offers the proofs of two lemmas on expressibility matters.

1. Boolean set theory

We now introduce an interpreted language regarding sets, whose acronym BST stands for
‘Boolean set theory’. The constructs of BST are borrowed from the algebraic theory of
Boolean rings (see [20, Ch.VII]), but its variables are meant to range over a universe of nested
(as opposed to ‘flat’) sets. We dub BST a ‘theory’ just to emphasize that its satisfiability
problem is decidable. In the ongoing we will browse a wide range of satisfiability subproblems
of the one referring to the entire BST, and will assess their algorithmic complexities.

We postpone to other reports (see, for the time being, [18]) the treatment of ∈, the
membership relation. Adding ∈ to BST does not disrupt its decidability (see Sect. 3.1) and
truly calls for nested sets.

1.1. Syntax

The fragments of set theory investigated within the project we are reporting about are parts,
delimited syntactically, of a specific quantifier-free language

BST := BST(∪,∩, \, =∅, 6=∅,Disj,¬Disj,⊆, 6⊆,=, 6=).

This is the collection of all conjunctions of literals of the types

s = ∅, s 6= ∅, Disj(s, t) , ¬Disj(s, t) ,

s ⊆ t, s 6⊆ t, s = t, s 6= t,

4 1 BOOLEAN SET THEORY

where s and t stand for terms assembled from a denumerably infinite supply of set variables
x, y, z, . . . by means of the Boolean operators: union ∪, intersection ∩, and set difference \ .

More generally, we shall denote by BST(op1, . . . , pred1, . . .) the subtheory of BST involving
only the set operators op1, . . . (drawn from the collection {∪,∩, \}) and the predicate symbols
pred1, . . . (drawn from {=∅, 6=∅,Disj,¬Disj,⊆, 6⊆,=, 6=}).

1.2. Semantics

For any BST-conjunction ϕ, we shall denote by Vars(ϕ) the collection of set variables occurring
in ϕ; Vars(τ) is defined likewise, for any BST-term τ .

A set assignment M is any function sending a collection of set variables V (called the
domain of M and denoted dom(M)) into the von Neumann universe V of well-founded sets.
We recall that the von Neumann universe (see [21, pp.95–102]), aka von Neumann cumulative
hierarchy, is built up in stages as the union V := ∪α∈OnVα of the levels Vα := ∪β<αP(Vβ),
with α ranging over the class On of all ordinal numbers, where P(·) is the powerset operator.

Natural designation rules attach recursively a value to every term τ of BST such that
Vars(τ) ⊆ dom(M), for any set assignment M ; here is how:

M(s ∪ t) := Ms ∪Mt, M(s ∩ t) := Ms ∩Mt, and M(s \ t) := Ms \Mt.

We also put ML := {Mυ | υ ∈ L} for every L ⊆ dom(M), and

M(s = ∅) :=

{
true if Ms = ∅
false otherwise,

M(Disj(s, t)) :=

{
true if Ms ∩Mt = ∅
false otherwise,

M(s 6= ∅) := ¬M(s = ∅), M
(
¬Disj(s, t)

)
:= ¬M

(
Disj(s, t)

)
,

for all literals s = ∅, s 6= ∅, Disj(s, t), and ¬Disj(s, t) of BST; and proceed similarly with the
literals of BST of the remaining types s ⊆ t, s 6⊆ t, s = t, and s 6= t . Then we put, recursively,

M(ϕ1 ∧ · · ·ϕk) := Mϕ1 ∧ · · ·Mϕk

when ϕ1, . . . , ϕk are BST-conjunctions and Vars(ϕi) ⊆ dom(M), for i = 1, . . . , k.
Given a conjunction ϕ and a set assignment M such that Vars(ϕ) ⊆ dom(M), we say that

M satisfies ϕ, and write M |= ϕ, if Mϕ = true. When M satisfies ϕ, we also say that M is a
model of ϕ. If all assignments M such that Vars(ϕ) ⊆ dom(M) satisfy ϕ, then we write |= ϕ.

A conjunction ϕ is said to be satisfiable if it has some model, else unsatisfiable.

Example 1.1. Here are three unsatisfiable BST conjunctions (see [19]):

Disj(x ∪ y , x′ ∪ y′) ∧ x ∪ x′ = y ∪ y′ ∧ x 6= y ,

Disj(x ∪ y ∪ z , x′ ∪ y′ ∪ z′) ∧ (x ∪ x′) \ (y ∪ y′) = z ∪ z′ ∧ x \ y 6= z ,

Disj(x ∪ y ∪ z , x′ ∪ y′ ∪ z′) ∧ x \ y = z ∧ x′ \ y′ = z′ ∧ (x ∪ x′) \ (y ∪ y′) 6= z ∪ z′ . a

BST is a sublanguage of MLS, which has an NP-complete satisfiability problem [12]; since,
in their turn, the fragments of set theory which we shall examine are included in BST, their
satisfiability problems belong to NP.

1.3 Expressibility 5

1.3. Expressibility

The reduction technique to be highlighted next has been our main tool in the construction of
the complexity taxonomy of BST-fragments which will be treated at length in Sect. 2.

Most of our reductions will be based on the standard notion of ‘context-free’ expressibility:

Definition 1.2. (Expressibility)
A formula ψ(~x) is said to be expressible in a fragment T of BST, if there exists a T -conjunction
Ψ(~x, ~y) such that

|= ψ(~x) ←→ (∃~y) Ψ(~x, ~y),

where ~x and ~y stand for tuples of set variables.

We also devised a more general notion of ‘context-sensitive’ expressibility, also character-
ized by its complexity. We named it O(f)-expressibility, where f : N → N is any mapping
intended to bound the complexity of the underlying rewriting procedure.3

Definition 1.3. (O(f)-expressibility)
Let T and f be a fragment of BST and a specific mapping f : N → N, respectively. A
formula ψ(~x)—typically involving a construct which one intends to eliminate—is said to be
O(f)-expressible in T if there exists a mapping

ϕ(~y) 7→ Ψϕ(~x, ~y, ~z) (2)

from T into T (viz., each formula ϕ of T is sent into a formula of T) such that the following
conditions are satisfied by every ϕ:

(a) the mapping (2) can be computed in O(f(|ϕ|))-time,

(b) if ϕ(~y) ∧ (∃~z)Ψϕ(~x, ~y, ~z) is satisfiable, so is ϕ(~y) ∧ ψ(~x),

(c) |=
(
ϕ(~y) ∧ ψ(~x)

)
−→ (∃~z)Ψϕ(~x, ~y, ~z).

Remark 1.4. In Def.1.3, conditions (b) and (c) have a joint bearing lesser than the condition

|=
(
ϕ(~y) ∧ ψ(~x)

)
←→

(
ϕ(~y) ∧ (∃~z) Ψϕ(~x, ~y, ~z)

)
,

akin to the one characterizing simple expressibility in Def. 1.2. Indeed, while condition (c)
requires that each model of ϕ(~y)∧ψ(~x) is also a model of ϕ(~y)∧(∃~z) Ψϕ(~x, ~y, ~z), condition
(b) just requests that when ϕ(~y) ∧ (∃~z) Ψϕ(~x, ~y, ~z) is satisfied by some set assignment M ,
then ϕ(~y) ∧ ψ(~x) is satisfiable, possibly by a set assignment other than M .

It turns out that standard expressibility is a special case of O(1)-expressibility. This is
stated in the following lemma.

3A more general notion of ‘cross’-expressibility recently appeared in [19, p. 218].

6 1 BOOLEAN SET THEORY

Lemma 1.5. If a formula ψ(~x) is expressible in a fragment T of BST, then it is also O(1)-
expressible in T .

Proof:
Let ψ(~x) be any formula expressible in T , and let Ψ(~x, ~z) be a T -conjunction such that

|= ψ(~x) ←→ (∃~z)Ψ(~x, ~z) . (3)

Consider the mapping
ϕ(~y) 7→ Ψ(~x, ~z) (4)

from T into T , where ~z is any tuple of distinct set variables. Plainly, the mapping (4) can be
computed in O(1) time. In addition, by (3), we have

|=
(
ϕ(~y) ∧ ψ(~x)

)
←→

(
ϕ(~y) ∧ (∃~z)Ψ(~x, ~z)

)
.

Hence, in particular, the formulae ϕ(~y) ∧ ψ(~x) and ϕ(~y) ∧ (∃~z)Ψ(~x, ~z) are equisatisfiable,
and we also have

|=
(
ϕ(~y) ∧ ψ(~x)

)
−→ (∃~z)Ψ(~x, ~z).

Thus, conditions (b) and (c) of Def. 1.3 are also satisfied, proving that the formula ψ(~x) is
O(1)-expressible in T . ut

Various expressibility and inexpressibility results are collected in the following two lemmas,
whose proofs are provided in Appendix A.

Lemma 1.6. (a) x = y \ z is expressible in BST(∪,Disj,=);

(b) x = y ∩ z and x = y ∪ z are expressible in BST(\,=);

(c) x = y is expressible in BST(⊆);

(d) x ⊆ y is expressible both in BST(∪,=) and in BST(∩,=);

(e) x * y is expressible both in BST(∪, 6=) and in BST(∩, 6=);

(f) x 6= ∅ is expressible in BST(⊆, 6=), and therefore in BST(∪,=, 6=); moreover, x 6= ∅ is
expressible in BST(*), in BST(6=,Disj), in BST(=∅, 6=), and in BST(¬Disj);

(g) x = ∅ is expressible in BST(Disj);

(h) Disj(x, y) is expressible both in BST(∩,=∅) and in BST(\,=), and ¬Disj(x, y) is ex-
pressible both in BST(∩, 6=∅) and in BST(⊆, 6=∅);

(i) ¬Disj(x, y) (i.e., x ∩ y 6=∅) is expressible in BST(⊆, 6=), and therefore expressible in
BST(∪,=, 6=);

(j) x = ∅ is not expressible in BST(∪,∩,=, 6=);

7

(k) x = y \ z is not expressible in BST(∪,∩,=, 6=).

Lemma 1.7. The mapping ϕ(~y) 7→ Ψϕ(x, ~y) from BST(∪,=, 6=) into itself, where x is any
set variable (possibly in ϕ) and

Ψϕ(x, ~y) :=
∧

y∈Vars(ϕ)

y ∪ x = y,

enjoys the properties

- if ϕ(~y) ∧Ψϕ(x, ~y) is satisfiable, so is ϕ(~y) ∧ x = ∅, and

- |=
(
ϕ(~y) ∧ x = ∅

)
−→ Ψϕ(x, ~y).

Hence, the literal x = ∅ is O(n)-expressible in BST(∪,=, 6=) via Ψϕ(x, ~y).

2. Complexity taxonomy of the fragments of BST

Of a fragment of BST, we say that it is NP-complete if it has an NP-complete satisfiability
problem (see [22]). Likewise, we say that it is polynomial if its satisfiability problem has
polynomial complexity.

The overall number of fragments of BST is 23 · (28 − 1) = 2040; of these, 1278 are NP-
complete and the remaining 762 are polynomial. The complexity of any fragment of BST can
be efficiently identified once the minimal NP-complete fragments (namely the NP-complete
fragments of BST that do not strictly contain any NP-complete fragment of BST) and the
maximal polynomial fragments (namely the polynomial fragments of BST that are not strictly
contained in any polynomial fragment of BST) have been singled out. Indeed, any BST-
fragment either is contained in some maximal polynomial BST-fragment or contains some
minimal NP-complete fragment.

Table 1 reports the 18 minimal NP-complete fragments and the 5 maximal polynomial
fragments of BST. Each row represents the fragment involving the operators and the relators
that are marked with a ‘?’ symbol.

2.1. Minimal NP-complete fragments of BST

Concerning the NP-complete fragments, initially we proved that the fragments

BST(\, 6=), BST(∪,∩, 6=), BST(∪,∩,=∅, 6=∅), and BST(∪,=,Disj,¬Disj)

are NP-complete, by reducing the famous NP-complete problem 3SAT [22] to each of them.
Then, referring to the the initial blocks of Table 1, it can be observed that:

first block: the NP-completeness of the fragments BST(\,*), BST(\,¬Disj), and BST(\, 6=∅)
can be obtained by much the same technique used to reduce 3SAT to BST(\, 6=);4

4The proof of NP-completeness of BST(\, 6=) is so closely analogous to the one regarding MST(\,∈) as provided
in [18, Sec. 3.2] that it would be pointless to replicate it here.

8 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

∪ ∩ \ =∅ 6=∅ Disj ¬Disj ⊆ * = 6= Complexity Section

? ? NP-complete 2.1

? ? NP-complete 2.1

? ? NP-complete 2.1

? ? NP-complete 2.1

? ? ? NP-complete 2.1.1

? ? ? NP-complete 2.1.1

? ? ? ? NP-complete 2.1.3

? ? ? ? NP-complete 2.1.3

? ? ? ? NP-complete 2.1.3

? ? ? ? NP-complete 2.1.3

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? NP-complete 2.1.2

? ? ? ? ? ? ? O(1) 2.2

? ? ? ? ? ? O(1) 2.2

? ? ? ? ? ? ? O(n3) 2.2

? ? ? ? ? ? ? ? O(n3) 2.2

? ? ? ? ? ? ? ? ? O(n4) 2.2

Table 1. Complete taxonomy of minimal NP-complete and maximal polynomial fragments of BST

2.1 Minimal NP-complete fragments of BST 9

second block: the proof of NP-completeness of the fragment BST(∪,∩,*) can be achieved
by much the same technique used to reduce 3SAT to BST(∪,∩, 6=);

third block: the NP-completeness of BST(∪,∩,Disj,¬Disj), BST(∪,∩,=∅,¬Disj), and
BST(∪,∩, 6=∅,Disj) can be obtained by much the same technique used to reduce 3SAT
to BST(∪,∩,=∅, 6=∅); and

fourth block: the NP-completeness of the fragment BST(∪,=, 6=∅,Disj) can be shown by
much the same reduction technique used for BST(∪,=,Disj,¬Disj).

Finally, by resorting to some of the expressibility results listed in Lemma 1.6, it can readily
be proved that:

- BST(∪,=,Disj,¬Disj) can be reduced in linear time

to BST(∪,⊆,Disj,¬Disj), by Lemma 1.6(c),

- BST(∪,=, 6=∅,Disj) can be reduced in linear time

to BST(∪,=, 6=,Disj), by Lemma 1.6(f),

to BST(∪,=,*,Disj), by Lemma 1.6(f),

to BST(∪,⊆, 6=∅,Disj), by Lemma 1.6(c),

to BST(∪,⊆, 6=,Disj), by Lemma 1.6(c)(f),

to BST(∪,⊆,*,Disj), by Lemma 1.6(c)(f).

2.1.1. NP-completeness of BST(∪,∩, 6=)

The fragment BST(∪,∩, 6=) consists of all conjunctions of literals of type t1 6= t2, where t1, t2
are any terms involving the set operators ∪ and ∩. We will now reduce the problem 3SAT to
the satisfiability problem of BST(∪,∩, 6=).

Let F be an instance of 3SAT of the form

F := C1 ∧ · · · ∧ Cm,

where Ci = Li1 ∨ Li2 ∨ Li3, and the Lij ’s are propositional literals. Let P1, . . . , Pn be the
distinct propositional variables in F , and let X1, X1, . . . , Xn, Xn be 2n pairwise distinct set
variables. For i = 1, . . . ,m and j = 1, 2, 3, set

uij :=

{
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k.

Then, for each i = 1, . . . ,m, define

ti := ui1 ∪ ui2 ∪ ui3,
X := (X1 ∪X1) ∩ · · · ∩ (Xn ∪Xn),

Y := (X1 ∩X1) ∪ · · · ∪ (Xn ∩Xn),

T := t1 ∩ · · · ∩ tm.

10 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

Finally put
ΦF := T ∩X 6= T ∩X ∩ Y.

It can easily be checked that |ΦF | = O(|F |).

Lemma 2.1. Any instance F of the 3SAT problem is propositionally satisfiable if and only
if the BST(∪,∩, 6=)-formula ΦF resulting from the above linear-time construction is satisfied
by a set assignment.

Proof:
(Necessity.) First, we show that if the 3SAT instance F is propositionally satisfiable, then ΦF

is satisfied by a set assignment. To this purpose, let v a Boolean valuation satisfying F , and
let M∗ be the set assignment such that

M∗Xk := b and M∗Xk := ∅ if v(Pk) = t

M∗Xk := ∅ and M∗Xk := b if v(Pk) = f,

where b is any fixed non-empty set. Regardless of the value of v(Pi), we have (M∗Xi∪M∗Xi) =
b and (M∗Xi ∩M∗Xi) = ∅, so that M∗X = b and M∗Y = ∅. Hence to prove that M∗ |= ΦF ,
we just need to show that M∗T = b. Preliminarily, we notice that M∗x ∈ {b, ∅}, for each
set variable x. Since v satisfies F , we have v(Ci) = t, for each i = 1, . . . ,m. Hence, for each
i = 1, . . . ,m, there exists a j = 1, 2, 3 such that v(Lij) = t. So, if Lij = Pk for some k, then
M∗uij = M∗Xk = b, while if Lij = ¬Pk then M∗uij = M∗Xk = b. Hence, M∗ti = b, for
i = 1, . . . ,m, and also M∗T = b.

(Sufficiency.) Concerning the converse, assume that ΦF is satisfiable. Since there is only
one negative literal in ΦF , there exists a set assignment M that satisfies ΦF and is such
that, for some non-empty set σ, Mv ∈ {σ, ∅} for every set variable v ∈ Vars(ΦF).5 Since M
satisfies ΦF , plainly MX 6= ∅ and MY = ∅, so that (MX1∪MX1)∩ . . .∩ (MXn∪MXn) 6= ∅
and also (MX1 ∩MX1) ∪ . . . ∪ (MXn ∩MXn) = ∅. Hence, for every i = 1, . . . , n, we have
(MX1 ∪MX1) 6= ∅ and (MXi ∩MXi) = ∅, from which the implication

MXi 6= ∅ −→ MXi = ∅ (5)

follows, and conversely. Moreover, since MT 6= ∅, then Mti 6= ∅ for each i = 1, . . . ,m. Hence,
for each i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that Muij 6= ∅. Consider the following
Boolean valuation:

v(Pk) :=

{
t if MXk 6= ∅
f otherwise.

We only need to show that, for each i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that
v(Lij) = t. We know that, for i = 1, . . . ,m, there exists a j = 1, 2, 3 such that Muij 6= ∅, if
Lij = Pk for some k. Then uij = Xk, so that MXk 6= ∅. Hence v(Lij) = t. On the other

5This is proved in [6, Sec.2.3].

2.1 Minimal NP-complete fragments of BST 11

hand, if Lij = ¬Pk for some k, then Muij = MXk 6= ∅. so that, by (5), MXk = ∅, v(Pk) = f,
and v(Lij) = t. ut

We can then conclude that:

Corollary 2.2. The satisfiability problem of BST(∪,∩, 6=) is NP-hard, and therefore it is
NP-complete.

2.1.2. NP-completeness of BST(∪,=,Disj,¬Disj)

The fragment BST(∪,=,Disj,¬Disj) of BST consists of all conjunctions of literals of the forms

l1 ∪ · · · ∪ ln = r1 ∪ · · · ∪ rm,
Disj(u1 ∪ · · · ∪ uh , t1 ∪ · · · ∪ tk),
¬Disj(s1 ∪ · · · ∪ sp , z1 ∪ · · · ∪ zq),

where the li’s, ri’s, ui’s, ti’s, si’s, and zi’s are set variables and n,m, h, k, p, q > 1.

We will show that the satisfiability problem for this fragment belongs to the NP-complete
problem class, by showing that any instance of the 3SAT problem can be reduced to an in-
stance of the satisfiability problem for BST(∪,=,Disj,¬Disj).

Let F be a 3SAT instance:

F := C1 ∧ · · · ∧ Cm ,

where Ci = Li1 ∨ Li2 ∨ Li3, and the Lij ’s are propositional literals. Let P1, . . . , Pn be the
distinct propositional letters in F ; associate with them 2n+ 1 pairwise distinct set variables
X1, X1, . . . , Xn, Xn,X . For i = 1, . . . ,m and j = 1, 2, 3, define

Tij :=

{
Xk if Lij = Pk for some k

Xk if Lij = ¬Pk for some k,

then define

Ci := Ti1 ∪ Ti2 ∪ Ti3 = X ,

and finally put

ΦF :=
m∧
i=1

Ci ∧
n∧
k=1

(
Disj

(
Xk, Xk

)
∧ Xk ∪Xk = X

)
∧ ¬Disj(X ,X) . (6)

Lemma 2.3. Any instance F of the 3SAT problem is propositionally satisfiable if and only
if the BST(∪,= ,Disj,¬Disj)-formula ΦF resulting from the above construction is satisfied by
some set assignment.

12 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

Proof:
(Sufficiency.) To prove sufficiency, suppose that ΦF is satisfiable. Since ¬Disj(X ,X) is the
only negative constraint in ΦF , there exists a model M of ΦF such that6

MXk,MXk ∈ {∅, b} (7)

holds for each k = 1, . . . , n , where b is a fixed non-empty set.

Since M |= ΦF , we have

M |= ¬Disj(X ,X) ∴

M |= X ∩ X 6= ∅ ∴

M |= X 6= ∅ ∴

MX 6= ∅, (8)

and also, for each k = 1, . . . , n ,

M |= Disj
(
Xk, Xk

)
∧ Xk ∪Xk = X ∴

M |= Xk ∩Xk = ∅ ∧ Xk ∪Xk = X ∴

MXk ∩MXk = ∅ ∧ MXk ∪MXk 6= ∅ (by (8)). (9)

By combining (7) and (9), we obtain:(
MXk = b ∧ MXk = ∅

)
∨

(
MXk = ∅ ∧ MXk = b

)
. (10)

Now consider the following truth-value assignment:

v(Pk) =

{
true if MXk 6= ∅
false otherwise.

We have assumed that M |= ΦF ; therefore M |= Ci holds, for each i = 1, . . . ,m, and hence:

M (Ti1 ∪ Ti2 ∪ Ti3) = MX ∴

MTi1 ∪MTi2 ∪MTi3 6= ∅ (by (8)).

Thus, for each k = 1, . . . , n, there exists a j = 1, 2, 3, such that MTij 6= ∅. There are only
two cases to be examined: Tij = Xk and Tij = Xk. In the former case, we have Lij = Pk for
some k, and also MXk = MTij 6= ∅; hence v(Lij) = v(Pk) = true, and thus v(Ci) = true. In
the latter case, we have Lij = ¬Pk for some k, and also MXk = MTij 6= ∅; hence, by (10),
MXk = ∅, and v(¬Pk) = v(Lij) = true, and thus v(Ci) = true. We conclude that the truth-
value assignment v satisfies the instance F of 3SAT; hence F is propositionally satisfiable, in
consequence of ΦF being satisfied by a set assignment.

6This is proved in [6, Sec.2.3].

2.1 Minimal NP-complete fragments of BST 13

(Necessity.) For the necessity part of this lemma, suppose that v is a truth-value assign-
ment satisfying the instance F of 3SAT, and define the following set assignment:

MX = b,

MXk =

{
b if v(Pk) = true

∅ otherwise,

MXk = b \MXk,

where b is a non-empty set.
Plainly the set assignment M satisfies ¬Disj(X ,X). Since, for each k = 1, . . . , n, when

MXk = b holds then MXk = b \MXk = ∅, and when MXk = ∅ then MXk = b \MXk = b,
we have:

MXk ∩MXk = ∅ ∴ M |= Disj
(
Xk, Xk

)
and

MXk ∪MXk = b = MX ,

so that

M |=
n∧
k=1

(
Disj

(
Xk, Xk

)
∧ Xk ∪Xk = X

)
.

It remains to be proved that M |= Ci for each i = 1, . . . ,m. Since v propositionally satisfies
F , we have that v(Ci) = true holds for each i = 1, . . . ,m; hence for each Ci there must be at
least one Lij , j ∈ {1, 2, 3}, whose truth value is true. This means that for each Ci there is a
Tij such that MTij = b, hence M |= Ci . In fact, if Lij = Pk for some k, then Tij = Xk and
v(Pk) = true, hence MTij = b; if Lij = ¬Pk for some k, then Tij = Xk and v(Pk) = false,
hence MXk = b \MXk = b \ ∅ = b. We conclude that M |= ΦF ; thus, there exists a set
assignment satisfying ΦF in consequence of F being propositionally satisfiable. ut

The lemma just seen readily yields that:

Corollary 2.4. The satisfiability problem for BST(∪,=,Disj,¬Disj) belongs to the class of
NP-complete problems.

2.1.3. NP-completeness of BST(∪,∩,=∅, 6=∅)

The fragment BST(∪,∩,=∅, 6=∅) consists of all conjunctions of literals of the forms

t1 = ∅, t2 6= ∅,

where t1, t2 stand for any terms involving the set operators ∪ and ∩. We will reduce the 3SAT
problem to the satisfiability problem of BST(∪,∩,=∅, 6=∅).

Let F be an instance of 3SAT defined by

F := C1 ∧ · · · ∧ Cm,

14 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

where Ci = Li1 ∨ Li2 ∨ Li3, and the Lij ’s are propositional literals. Let P1, . . . , Pn be the
distinct propositional variables in F , and let X1, X1, . . . , Xn, Xn be 2n pairwise distinct set
variables. For i = 1, . . . ,m and j = 1, 2, 3, set

uij :=

{
Xk if Lij = Pk for some k,

Xk if Lij = ¬Pk for some k.

Then, for each i = 1, . . . ,m, define

ti := ui1 ∪ ui2 ∪ ui3,
yi := (Xi ∩Xi) = ∅,
Y := y1 ∧ · · · ∧ yn
T := t1 ∩ · · · ∩ tm,

and finally put

ΦF := Y ∧ (X1 ∪X1) ∩ · · · ∩ (Xn ∪Xn) ∩ T 6= ∅. (11)

Plainly, the formula ΦF can be constructed in O(|F |) time.

Lemma 2.5. Any instance F of the 3SAT problem is propositionally satisfiable if and only if
the BST(∪,∩,=∅, 6=∅)-formula ΦF resulting from the above construction is satisfied by some
set assignment.

Proof:
(Necessity.) We will show that if the 3SAT instance F is propositionally satisfiable, then ΦF

is satisfied by a set assignment. Let v be a Boolean valuation satisfying F , and M∗ the set
assignment such that

M∗Xk := b and M∗Xk := ∅ if v(Pk) = t

M∗Xk := ∅ and M∗Xk := b if v(Pk) = f,

where b is any non-empty set. Regardless of the value of v(Pi), we have (M∗Xi ∪M∗Xi) = b
and (M∗Xi ∩M∗Xi) = ∅, so that for each i = 1, . . . , n M∗ |= yi and therefore M∗ |= Y .
Hence to prove that M∗ |= ΦF , we just need to prove that M∗T = b. First, we notice
that M∗x ∈ {b, ∅}, for each set variable x. Since v satisfies F , we have v(Ci) = t, for each
i = 1, . . . ,m. Hence, for each i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that v(Lij) = t. So,
if Lij = Pk for some k, then M∗uij = M∗Xk = b, while if Lij = ¬Pk then M∗uij = M∗Xk = b.
Hence M∗ti = b, for i = 1, . . . ,m, and also M∗T = b.

(Sufficiency.) Concerning the converse, assume that ΦF is satisfiable. Since there is only
one negative literal in ΦF , there exists a set assignment M that satisfies ΦF and is such that
Mv ∈ {σ, ∅}, for every set variables v ∈ Vars(ΦF) and for some fixed non-empty set σ. Since
M satisfies ΦF , plainly MT 6= ∅ and (MXi ∪Xi) 6= ∅, for every i = 1, . . . , n. Furthermore,

2.2 Maximal polynomial fragments of BST 15

M |= Y holds. Thus (Xi ∩ Xi) = ∅, for each i = 1, . . . , n. We infer that the following
implication holds

MXi 6= ∅ −→ MXi = ∅, (12)

and conversely. Moreover, since MT 6= ∅, then Mti 6= ∅ for each i = 1, . . . ,m. Hence, for each
i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that Muij 6= ∅. Consider the following Boolean
valuation

v(Pk) :=

{
t if MXk 6= ∅
f otherwise.

We only need to show that, for each i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that
v(Lij) = t. We know that, for i = 1, . . . ,m, there exists a j ∈ {1, 2, 3} such that Muij 6= ∅,
provided that Lij = Pk for some k. Then uij = Xk, so that MXk 6= ∅. Hence v(Lij) = t. On

the other hand, if Lij = ¬Pk for some k, then Muij = MXk 6= ∅, so that, by (12), MXk = ∅,
v(Pk) = f, and therefore v(Lij) = t. ut

We can then conclude that:

Corollary 2.6. The satisfiability problem of BST(∪,∩,= ∅, 6= ∅) is NP-hard, and therefore
is NP-complete.

2.2. Maximal polynomial fragments of BST

The maximal polynomial fragments of BST are

BST(∪,∩, \, =∅,Disj,⊆,=), BST(∪,∩,=, 6=∅,¬Disj,⊆),

BST(∪,=∅, 6=∅,Disj,¬Disj,*, 6=), BST(∩,=∅, 6=∅,Disj,¬Disj,⊆,*,=, 6=),

BST(∪,=∅, 6=∅,¬Disj,⊆,*,=, 6=).

The first two of the above fragments are trivial: in fact, since they contain only satisfiable
conjunctions, they admit a O(1) satisfiability test.

Notice that the first fragment comprises all the positive relators and the complete suite of
Boolean operators. It is immediate to check that each of its conjunctions ϕ is satisfied by the
null set-assignment M∅ over Vars(ϕ) such that M∅x = ∅ for each x ∈ Vars(ϕ).

Concerning the second fragment, it can easily be verified that each of its conjunctions ψ
is satisfied by any constant nonnull set assignment Ma over Vars(ψ), where a is a nonempty
set and Max = a for every x ∈ Vars(ψ).

Next, we provided O(n3) satisfiability tests for the fragments BST(∪,Disj,¬Disj, 6=) and
BST(∪,=, 6=), and a O(n4) satisfiability test for the fragment BST(∩,=∅,=, 6=).7

Since

- |= x * y ←→ x ∪ y 6= y (cf. Lemma 1.6(e)) and

7Due to space concerns, these complexity results are not proved in this paper: their publication is delayed.

16 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

- |= x = ∅ ←→ Disj(x, x)(cf. Lemma 1.6(f),(g)),

the O(n3) satisfiability test for BST(∪,Disj,¬Disj, 6=) yields a O(n3) satisfiability test for
BST(∪,=∅, 6=∅,Disj,¬Disj,*, 6=).

In addition, since

- x = ∅ is O(n)-expressible in BST(∪,=, 6=) (cf. Lemma 1.7),

- x 6= ∅ is expressible in BST(=∅, 6=) (cf. Lemma 1.6(f)),

- x ⊆ y is expressible in BST(∪,=),

- x * y is expressible in BST(∪, 6=), and

- ¬Disj(x, y) is expressible in BST(6=∅,⊆),

the O(n3) satisfiability test for BST(∪,=, 6=) yields a O(n3) satisfiability test for the fragment
BST(∪,=∅, 6=∅,¬Disj,⊆,*,=, 6=).

Finally, since

- x 6= ∅ is expressible in BST(=∅, 6=) (cf. Lemma 1.6(f)),

- Disj(x, y) and ¬Disj(x, y) are expressible in BST(∩,=∅, 6=∅) (cf. Lemma 1.6(h)), and

- x ⊆ y and x * y are expressible in BST(∩,=∅, 6=∅) (cf. Lemma 1.6(d),(e)),

it follows that the O(n4) satisfiability test for BST(∩,=∅,=, 6=) yields a O(n4) satisfiability
test for the fragment BST(∩,=∅, 6=∅,Disj,¬Disj,⊆,*,=, 6=).

It can be checked, through comparison of the symbols appearing in the rows, that:

(A) none of the fragments listed in Table 1 is strictly contained in another fragment in the
same table, namely that no fragment in Table 1 comprises all of the symbols of another
fragment in the same table; moreover

(B) for every fragment T of BST, there is a fragment in Table 1 that either contains T or is
contained in T . Thus, any fragment of BST not appearing in Table 1 is such that either
all of its symbols are contained in a polynomial fragment in the table, or it comprises
all symbols of an NP-complete fragment in the table.

Properties (A) and (B) imply that the 18 NP-complete fragments in Table 1 are indeed mini-
mally NP-complete and, symmetrically, the 5 polynomial fragments in Table 1 are maximally
polynomial.

2.3 Emblematic, non-maximal, polynomial-complexity decision algorithms 17

∪ ∩ \ =∅ 6=∅ Disj ¬Disj ⊆ * = 6= Complexity

? ? ? ? ? ? O(n)

? ? ? ? ? O(n2)

? ? ? O(n2)

Table 2. Three non-maximal polynomial fragments of BST

2.3. Emblematic, non-maximal, polynomial-complexity decision algorithms

While there is a limited interest in further investigating the non-minimal NP-complete frag-
ments of BST, things are not so with the non-maximal polynomial fragments: the latter
may, in fact, admit decision tests outperforming any of the maximal polynomial fragments
extending them.

We briefly report, below, some preliminary results obtained so far in this direction. Among
others, we devised (see Table 2):

- a linear-time decision test for the fragment BST(∪,Disj, 6=), which readily generalizes,
by Lemma 1.6(e),(f),(g), to a linear-time satisfiability test for the extended fragment
BST(∪,=∅, 6=∅,Disj,*, 6=);

- a quadratic-time algorithm for the fragment BST(∩,=∅, 6=), whence one gets a
quadratic-time satisfiability test for the extended fragment BST(∩,=∅, 6=∅,Disj, 6=),
thanks to Lemma 1.6(f),(h);

- a quadratic-time algorithm for the fragment BST(∪,Disj,¬Disj).

2.3.1. A linear-time satisfiability test for BST(∪,Disj, 6=)

Here we provide an account of a linear-time satisfiability test for the fragment BST(∪,Disj, 6=).
For convenience, we shall represent terms of the form x1 ∪ · · · ∪ xh as ∪{x1, . . . , xh}.

Thus, for a set assignment M and a finite nonempty collection of set variables L ⊆ Vars(ϕ),
we shall have M(∪L) = ∪ML =

⋃
x∈LMx. We shall also assume that every formula of

BST(∪,Disj, 6=) is represented in the format

p∧
i=1

∪Li 6=∪Ri ∧
q∧

j=p+1

Disj(∪Lj ,∪Rj) , (13)

where the Lh’s and the Rh’s are nonempty finite collections of set variables.8

Here all inequality literals of an arbitrary BST(∪,Disj, 6=)-conjunction ψ have been grouped
together and isolated from the remaining literals, and it should be clear that this regrouping
can be performed in linear time, along a single scan of ψ.

8The conjunction will comprise no inequality when p = 0, and will comprise no literal of type Disj(s, t) if q = p.

18 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

Towards a linear satisfiability test for BST(∪,Disj, 6=), let ϕ be a satisfiable conjunction of
the form (13), and let M be a set assignment over Vars(ϕ) satisfying ϕ.

As a preliminary remark note that, for each x ∈
⋃q
j=p+1(Lj ∩ Rj), the inclusion Mx ⊆

(∪MLj)∩ (∪MRj) holds for some j ∈ {p+ 1, . . . , q}. Hence, since Disj(∪Lj ,∪Rj) is one of
the conjuncts in ϕ, we have (∪MLj) ∩ (∪MRj) = ∅, which in turn yields Mx = ∅.

Next, for each conjunct of type ∪Li 6= ∪Ri in ϕ, if any, we have ∪MLi 6= ∪MRi, i.e.,(
(∪MLi)∪ (∪MRi)

)
\
(
(∪MLi)∩ (∪MRi)

)
6= ∅. Thus, there is an x ∈ (Li ∪Ri) \ (Li ∩Ri)

such that Mx 6= ∅, whence (Li∪Ri)\(Li∩Ri)\
⋃q
j=p+1(Lj∩Rj) 6= ∅ follows, by the preceding

remark. Summing up, by assuming the satisfiability of ϕ we have established the following
condition:

(C1) (Li ∪Ri) \ (Li ∩Ri) \
⋃q
j=p+1(Lj ∩Rj) 6= ∅, for every i = 1, . . . , p.

Conversely, let ϕ be a BST(∪,Disj, 6=)-conjunction of the form (13) for which the condition
(C1) is true, and let x1, . . . , xk be the distinct variables in Vars(ϕ)\

⋃q
j=p+1(Lj∩Rj). Consider

any assignment M∗ over Vars(ϕ) such that

(i) M∗x = ∅, for each x ∈
⋃q
j=p+1(Lj ∩Rj), and

(ii) M∗x1, . . . ,M
∗xk are nonempty pairwise disjoint sets.

Then, it is not hard to check that M∗ satisfies ϕ. Indeed, let Disj(∪Lj ,∪Rj) be a conjunct
of ϕ, and let s ∈ ∪M∗Lj . Hence, letting x ∈ Lj be the set variable such that s ∈M∗x, by (i)
we have x /∈ Lj ∩Rj , so that x /∈ Rj . Thus, by (ii), s /∈ ∪M∗Rj . The arbitrariness of s yields

∪M∗Lj ∩∪M∗Rj = ∅, namely M∗ |= Disj(∪Lj ,∪Rj). Next, let ∪Li 6= ∪Ri be a conjunct
of ϕ, with i ∈ {1, . . . , p}. In view of condition (C1), there exists x ∈ (Li ∪ Ri) \ (Li ∩ Ri) \⋃q
j=p+1(Lj ∩Rj) 6= ∅, and w.l.o.g. we may assume that x ∈ Li \Ri, so that M∗x ⊆ ∪M∗Li.

From (i) and (ii), we get M∗x 6= ∅ and M∗x ∩ ∪M∗Ri = ∅. Hence, ∪M∗Li 6= ∪M∗Ri,
namely M∗ |=∪Li 6=∪Ri.

We have just proved the lemma below, which yields a satisfiability test for BST(∪,Disj, 6=):

Lemma 2.7. Let ϕ be a BST(∪,Disj, 6=)-conjunction of the form (13). Then ϕ is satisfiable
if and only if condition (C1) holds.

Concerning the complexity of the satisfiability test implicit in Lemma 2.7, we observe that
condition (C1) can be tested in O(|ϕ|) time, where |ϕ| is the length of the whole conjunction
ϕ since

- the set
⋃q
j=p+1(Lj ∩Rj) can be computed in O

(∑q
j=p+1(|Lj |+ |Rj |)

)
= O(|ϕ|) time;9

- the set (Li ∪Ri) \
⋃q
j=p+1(Lj ∩Rj) can be computed in O(|Li|+ |Ri|) time and tested

for emptiness in constant time, for each i = 1, . . . , p; the resulting overall time hence is
O
(∑p

i=1(|Li|+ |Ri|+ 1)
)

= O(|ϕ|).

Therefore,

9|Lj | is the cardinality of the collection of set variables Lj , namely the number of distinct set variables in Lj .

2.3 Emblematic, non-maximal, polynomial-complexity decision algorithms 19

Lemma 2.8. The satisfiability problem for BST(∪,Disj, 6=)-conjunctions can be solved in
linear time.

2.3.2. A quadratic-time satisfiability test for BST(∩,=∅, 6=)

The fragment BST(∩,=∅, 6=) is the collection of all conjunctions of the general form

m∧
i=1

∩Li 6=∩Ri ∧
p∧
j=1

∩Dj = ∅, (14)

where, as in (13), the Li’s, Ri’s and Dj ’s are nonempty finite collections of set variables.

Theorem 2.9. A conjunction ϕ of the form (14) is satisfiable if and only if the following
holds for i = 1, . . . ,m:

Li 6= Ri ; (15)

there exist no j, j′ ∈ {1, . . . , p} such that Dj ⊆ Li ∧ Dj′ ⊆ Ri . (16)

Proof:
(Necessity.) Let ϕ be a satisfiable conjunction of the form (14) and let M be a model of
ϕ. Plainly no i ∈ {1, . . . ,m} can violate condition (15), else ∩Li = ∩Ri. Arguing by
contradiction, suppose that an i violating condition (16) exists, so that there exist indices
j, j′ such that Dj ⊆ Li and Dj′ ⊆ Ri. Since M |= ϕ, we have ∩MDj = ∩MDj′ = ∅ and,
accordingly,

∩MLi ⊆ ∩MDj ∴ ∩MLi = ∅ ;

likewise, ∩MRi = ∅. However, this contradicts the consequence ∩MLi 6=∩MRi of M |= ϕ.

(Sufficiency.) Take 2|Vars(ϕ)| disjoint sets vS with S ⊆ Vars(ϕ), where |Vars(ϕ)| is the
number of distinct set variables appearing in ϕ. Then put

Mx := { vS | x ∈ S ∧D1 * S ∧ · · · ∧Dp * S } (17)

for each set variable x, so that

∩MV = { vS | V ⊆ S ∧D1 * S ∧ · · · ∧Dp * S } (18)

plainly holds for every collection V ⊆ Vars(ϕ). We will now show that if ϕ satisfies both (15)
and (16) then M is a model for ϕ.

As regards conjuncts of type ∩Dj = ∅ in ϕ, we get

∩MDj = { vS |Dj ⊆ S ∧D1 * S ∧ · · · ∧Dp * S }

from (18). Since j ∈ {1, . . . , p}, this set is empty; therefore ∩MDj = ∅.

20 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

Concerning conjuncts of type ∩Li 6= ∩Ri in ϕ, we get from (15) that either Li * Ri or
Ri * Li holds. For definiteness assume that Li * Ri (the treatment of the other case being
symmetrical), so that vRi /∈ ∩MLi. If D1 * Ri ∧ · · · ∧Dp * Ri, then, by (18), vRi ∈ ∩MRi,
which proves ∩MLi 6= ∩MRi. Otherwise, Dj′ ⊆ Ri holds for some j′ such that 1 6 j′ 6 p ,
and hence ∩MRi = ∅ (for, Rj′ ⊆ S implies Dj′ ⊆ S) and, by condition (16), Dj * Li holds
for j = 1, . . . , p ; thus, plainly, vLi ∈ ∩MLi holds, again proving ∩MLi 6=∩MRi. ut

Satisfiability Test
Theorem 2.9 states that, in order to establish whether or not a BST(∩,=∅, 6=)-conjunction

is satisfiable, it suffices to check whether the conjunction satisfies both conditions (15) and
(16). Through the analysis of Algorithm 1, we will now show that the task of performing that
check can be implemented to run in quadratic time.

Algorithm 1 Satisfiability test for BST(∩,=∅, 6=)-conjunctions

Require: A conjunction ϕ of the form (14).
Ensure: Is ϕ satisfiable?

1: for i ∈ {1, . . . ,m} do
2: if Li = Ri then
3: return “unsatisfiable”

4: for i ∈ {1, . . . ,m} do
5: BL := BR := false
6: for j ∈ {1, . . . , p} do
7: if Dj ⊆ Li then
8: BL := true

9: if Dj ⊆ Ri then
10: BR := true

11: if BL ∧BR then
12: return “unsatisfiable”

13: return “satisfiable”

To analyze the complexity of Algorithm 1, it is convenient to first analyze Algorithm 2.
It is easy to show that Algorithm 2 returns true if and only if S ⊆ T , by noticing that if

S * T then there is an element s ∈ S such that A[s] = 0 holds at line 6, so that from that
point on c will always equal 0 and the algorithm will output false.

As far as we are concerned, S, T will be collections of set variables, any two of which,
x, y ∈ S ∪T , are treated as distinct regardless of their values. Moreover, Algorithm 2 trivially
runs in O(|S| + |T |) time, and since its execution leaves the array A unchanged at the end,
we can call this algorithm multiple times using the same array repeatedly: in particular, we
can call the algorithm twice to check whether or not S = T holds in O(|S|+ |T |) time.

Concerning the complexity of Algorithm 1, indicate by n the length
∑m

i=1(|Li| + |Ri|) +∑p
j=1 |Dj | of the conjunction. By using Algorithm 2 where the array A has size |Vars(ϕ)|

and is indexed by the set variables in the conjunction, the for-loop at lines 1–3 runs in

2.3 Emblematic, non-maximal, polynomial-complexity decision algorithms 21

Algorithm 2 Subset check

Require: Two sets, S and T .
Ensure: Is S ⊆ T?

1: Let A be an array of size |S ∪ T |, indexed by the elements of S ∪ T , containing only 0’s
2: c := 1
3: for t ∈ T do
4: A[t] := 1

5: for s ∈ S do
6: c := A[s] · c
7: for t ∈ T do
8: A[t] := 0

9: if c = 1 then
10: return true
11: return false

O
(∑m

i=1(|Li|+ |Ri|)
)

time and the for-loop at lines 4–12 runs in O
(∑m

i=1

∑p
j=1(|Dj |+ |Li|+

|Ri|)
)

= O
(
p
∑m

i=1(|Li|+ |Ri|) +m
∑p

j=1Dj

)
time. Finally, by noticing that the array can be

built and initialized in O(n) time and that m < n and p < n, we conclude that Algorithm 1
runs in O(n2) time, and hence:

Lemma 2.10. The satisfiability problem for BST(∩,=∅, 6=) can be solved in quadratic time.

2.3.3. A quadratic-time satisfiability test for BST(∪,Disj,¬Disj)

The fragment BST(∪,Disj,¬Disj) consists of all conjunctions of literals of the two forms:

Disj(∪L,∪R) , ¬Disj(∪L,∪R) ,

where L,R stand for finite nonempty collections of set variables. The form of any ϕ in this
fragment hence is

p∧
i=1

Disj(∪Li,∪Ri) ∧
m∧

j=p+1

¬Disj(∪Lj ,∪Rj) . (19)

We denote by ⊗ the following operation akin to Cartesian product:

S ⊗ T :=
{
{s , t} | s ∈ S , t ∈ T

}
. (20)

Let us associate with such a ϕ the collection C ⊆ Vars(ϕ)⊗ Vars(ϕ) of set-variable pairs
to which a model can assign intersecting sets, namely

C :=
(
Vars(ϕ)⊗Vars(ϕ)

)
\

p⋃
i=1

(Li ⊗Ri) . (21)

22 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

Theorem 2.11. Let ϕ be a conjunction of the form (19). Then ϕ is satisfiable if and only if

(∀j ∈ {p+ 1, . . . ,m}) (Lj ⊗Rj) ∩ C 6= ∅. (22)

Proof:
(Necessity.) Let ϕ be a satisfiable BST(∪,Disj,¬Disj) conjunction, and let M be a model of
ϕ. By way of contradiction, assume that (22) does not hold, so that

(Lj ⊗Rj) ∩ C = ∅. (23)

holds for a suitable j ∈ {p+ 1, . . . ,m}. Since M |= ϕ , for such a j we have

(∃u ∈ Lj , t ∈ Rj) Mu ∩Mt 6= ∅.

The pair {u , t} belongs to Lj ⊗Rj and so, by (23), {u , t} /∈ C; therefore, by (21):

(∃i ∈ {1, . . . , p}) {u, t} ∈ Li ⊗Ri.

So ∪MLi ∩ ∪MRi 6= ∅, contradicting M |= Disj(∪Li,∪Ri) . From this contradiction we
conclude that if ϕ is satisfiable then condition (22) must hold.

(Sufficiency.) For the sufficiency part of the theorem, we associate a set bc with each c ∈ C
so that the bc’s are pairwise disjoint; then we define the following set assignment:

Mx :=
{
bc | x ∈ c ∈ C

}
.

We will show that if ϕ satisfies condition (22), then M |= ϕ.

First we show that M satisfies literals of type ¬Disj(Lj , Rj). By condition (22):

(∃u ∈ Lj , t ∈ Rj) {u , t} ∈ C ∴

b{u,t} ∈Mu ⊆ ∪MLj ∧ b{u,t} ∈Mt ⊆ ∪MRj ∴

b{u,t} ∈ ∪MLj ∩∪MRj ,

hence M |= ¬Disj(∪Lj ,∪Rj).

Next, concerning literals of type Disj(∪Li,∪Ri), arguing by contradiction suppose

M 6|= Disj(∪Li,∪Ri) , so that

(∃ bc , c ∈ C) bc ∈ ∪MLi ∩∪MRi ∴

(∃ l ∈ Li , r ∈ Ri) bc ∈Ml ∩Mr ∴

c = {l, r} ∈ Li ⊗Ri ∴

c /∈ C,

a contradiction. Therefore we conclude that M |= Disj(∪Li,∪Ri), ending our proof. ut

2.3 Emblematic, non-maximal, polynomial-complexity decision algorithms 23

Satisfiability test

We now prove that Algorithm 3 is a valid satisfiability tester for BST(∪,Disj,¬Disj) con-
junctions.

First,M is initialized as being the matrix of size |Vars(ϕ)|2 each of whose entries has value
1; then the for-loop at lines 2–5 sets each entry of M addressed by a pair in ∪pi=1(Li ⊗ Ri)
to zero; at this point, the value of each entry of M turns out to be 1 if it is addressed by a
pair in C, and to be 0 otherwise.

Finally, at line 11 the value of c will be found to be 0 for some j ∈ {p + 1, . . . ,m} if and
only if no pairs in Lj ⊗Rj also belong to C. By Theorem 2.11, this situation eventually arises
if and only if the conjunction ϕ is unsatisfiable; hence the algorithm is correct.

Algorithm 3 Satisfiability test for BST(∪,Disj,¬Disj)

Require: A BST(∪,Disj,¬Disj)-formula ϕ.
Ensure: Is ϕ satisfiable?

1: Initialize a matrix M of size |Vars(ϕ)|2 each of whose entries has value 1
2: for i ∈ {1, . . . , p} do
3: for l ∈ Li do
4: for r ∈ Ri do
5: M[l][r] := 0

6: for j ∈ {p+ 1, . . . ,m} do
7: c := 0
8: for l ∈ Lj do
9: for r ∈ Rj do

10: c := c+M[l][r]

11: if c = 0 then
12: return false

13: return true

Concerning the complexity of Algorithm 3, let ϕ be a conjunction of the form (19), and
let n =

∑m
i=1

(
|Li|+ |Ri|

)
. We prove that Algorithm 3 has complexity O(n2).

Plainly, initializing matrix M requires O
(
|Vars(ϕ)|2

)
time. Then, each iteration of the

for-loop at lines 2–5 sets to zero exactly |Li| |Ri| entries of M; the for-loop is iterated for
each i ∈ {1, . . . , p} and is accomplished in O

(∑p
i=1 |Li| |Ri|

)
time. Analogously, the for-loop

at lines 6–12 is accomplished in O
(∑m

j=p+1 |Lj | |Rj |
)

time.

The overall complexity of Algorithm 3 hence is O
(
|Vars(ϕ)|2 +

∑m
i=1 |Li| |Ri|

)
and, since

it is easily proved that
∑m

i=1 |Li| |Ri| 6
(∑m

i=1(|Li|+ |Ri|)
)2

= n2 and, moreover, the length
of ϕ cannot be exceeded by the number of distinct variables in it, viz. |Vars(ϕ)| 6 n, we get
an overall complexity O(n2). It readily follows that:

Lemma 2.12. The satisfiability problem for BST(∪,Disj,¬Disj) is solvable in quadratic time.

24 2 COMPLEXITY TAXONOMY OF THE FRAGMENTS OF BST

2.4. Strength-reduction examples

The results summarized in Table 1 and in Lemma 1.6 could drive a proof-assistant in sys-
tematically choosing from a portfolio of decision algorithms one that ensures a fast route to a
needed syllogism. A few examples of this follow.

Example 2.13. An automated prover, confronted with the task of checking that the impli-
cation

x = y \ x −→ y = ∅

is valid, must prove the unsatisfiability of the conjunction

x = y \ x ∧ y 6= ∅.

By indicating that the satisfiability problems for BST(\,=, 6=) and for BST(∩,Disj,=, 6=) are,
respectively, NP-complete and polynomially solvable, Table 1 suggests reducing instances of
the former problem to the latter, when possible.

This is feasible in our case: in fact, by Lemma 1.6(a), x = y\x reduces to x∩x = ∅ ∧ y ⊆
x ∪ x and thus, by Lemma 1.6(d), the goal becomes the one of showing the unsatisfiability of

Disj(x, x) ∧ x ∩ y = y ∧ y 6= x ∩ x.

Example 2.14. In order to verify that

P(A) ∪P(B) ⊆P(A ∪B),

an interactive formal prover could resort to the satisfiability problem for MLSP, which is
known to be decidable [13, 14], but which is intractable in practice by means of the today
known decision algorithms. To ease the task of establishing that the formula

P(A) ∪P(B) * P(A ∪B)

is unsatisfiable, a human intervention could suggest the equivalence

P(A) ∪P(B) * P(A ∪B)←→ (∃x)
(
(x ⊆ A ∨ x ⊆ B) ∧ x * A ∪B

)
to the prover, so that it could reach the goal by simply analyzing the conjunctions:

x ⊆ A ∧ x * A ∪B,
x ⊆ B ∧ x * A ∪B;

both of these easily turn out to be unsatisfiable when tested by the satisfiability algorithm for
BST(∪,⊆,*), which is polynomial.

25

Example 2.15. Distributivity of union over intersection amounts to the unsatisfiability of

(A ∩B) ∪ C 6= (A ∪ C) ∩ (B ∪ C).

At first view, this is an instance of the satisfiability problem for BST(∪,∩, 6=), which is NP-
complete. Alternatively, the issue can be split into two. On the one hand, to prove that

(A ∪ C) ∩ (B ∪ C) * (A ∩B) ∪ C,

is unsatisfiable, we reduce this issue to the unsatisfiability of the conjunction

S 6= ∅ ∧ S ⊆ A ∪ C ∧ S ⊆ B ∪ C ∧ Disj((A ∩B) ∪ C, S) ,

which implies

¬Disj(S,A ∪ C) ∧ ¬Disj(S,B ∪ C) ∧ Disj(S,C) ∧ (Disj(A,S) ∨ Disj(B,S));

this can be proved unsatisfiable through two applications of the satisfiability test for
BST(∪,Disj,¬Disj), which is polynomial. On the other hand, the unsatisfiability of

(A ∩B) ∪ C * (A ∪ C) ∩ (B ∪ C),

is equivalent to the unsatisfiability of the conjunction

S 6= ∅ ∧ S ⊆ (A ∩B) ∪ C ∧
(
Disj(S,A ∪ C) ∨ Disj(S,B ∪ C)

)
,

which implies (
¬Disj(S,A ∩B) ∨ ¬Disj(S,C)

)
∧ Disj(S,C) ∧ Disj(S,A ∩B) ;

this can be proved unsatisfiable through two applications of the satisfiability test for
BST(∩,=∅, 6=∅), which is polynomial.

3. Related work and analogous taxonomies

3.1. Boolean set theory versus membership set theory

This section offers a quick summary of the complexity taxonomy for a fragment,

MST := MST(∪,∩, \, ∈, /∈),

of set theory constructed in close analogy with BST.10 It also reports on an algorithm per-
forming a satisfiability-preserving translation of MST into a purely Boolean language.

10 As recalled in the Introduction, by adding the equality relator = alone (or, respectively, the singleton operator
{·} along with =) to the constructs of MST—whose acronym stands for ‘membership set theory’—, one moves
into the theory MLS (or, resp., into MLSS). Note that, thanks to the equivalences

x = y ∩ z ←→ x = y \ (y \ z) , x = y ∪ z ←→ (x \ y = z \ y ∧ y \ x = x \ x) ,

x 6= y ←→ ∃w (x ∈ w ∧ y /∈ w) , y /∈ w ←→ ∃ v (y ∈ v ∧ w ∩ v = v \ v) ,

x ∈ w ←→ {x} ∩ w = {x} ,

∩, ∪ are eliminable from MLS; so are ∈, /∈ from MLSS; and 6=, /∈ are expressible in terms of =,∈, and \.

26 3 RELATED WORK AND ANALOGOUS TAXONOMIES

As discussed in [23, 18], the number of distinct fragments of MST is 24: of those, 10 are
NP-complete and 14 are polynomial. Much as for BST, the complexity of any fragment of
MST can be readily determined once the minimal NP-complete fragments and the maximal
polynomial fragments have been singled out. Table 3 shows the minimal NP-complete and
the maximal polynomial fragments of MST.

∪ ∩ \ ∈ /∈ Complexity

? ? NP-complete

? ? ? NP-complete

? ? ? O(n2)

? ? ? O(n)

? ? ? ? O(1)

Table 3. Maximal polynomial and minimal NP-complete fragments of MST

The maximal polynomial fragment MST(∪,∩, \, /∈) trivially admits a constant time com-
plexity, because all conjunctions ϕ composing it are satisfiable: indeed, any of them is satisfied
by the null set assignment sending every x ∈ Vars(ϕ) to ∅.

In order to get a O(n) satisfiability test for MST(∪,∈, /∈), we first provided a O(n) satis-
fiability test for the fragment MST(∪,∈) and then managed to translate every MST(∪,∈, /∈)-
conjunction into an equisatisfiable MST(∪,∈)-conjunction in O(n) time.

We also provided a O(n2)-time satisfiability test for the fragment MST(∩,∈), which was
extended into a satisfiability test for MST(∩,∈, /∈) that retains the same complexity.

Both of the fragments MST(∪,∩,∈) and MST(\,∈) were shown to be NP-complete; re-
sorting to the axiom of regularity was necessary to prove the NP-completeness of the former,
while regularity was not needed to prove the NP-completeness of the latter.

3.2. Bridging Boolean set theory and membership set theory

In [19], the authors have proposed a quadratic-time translation of conjunctions of literals of
the forms x = y \ z, x 6= y, and x ∈ y, where x, y, z stand for variables ranging over the von
Neumann universe, into unquantified Boolean formulae of a streamlined conjunctive normal
form. The formulae in the target language involve variables ranging over a Boolean field of
sets, along with a difference operator and relators designating equality, non-disjointness and
inclusion; the result of each translation is a conjunction of literals of the forms x = y\z, x 6= y
and of implications whose antecedents are isolated literals and whose consequents are either
inclusions x ⊆ y and x (y between variables, or equalities between variables.

3.3 Novelties with respect to a prior conference paper 27

3.3. Novelties with respect to a prior conference paper

This paper is an extended version of [24], by the same authors;11 hence we have the duty to
indicate what are the novelties here.

1. The proof of Proposition A.3, preparatory to Lemma 1.7, is now shown—see below.

2. The most challenging NP-completeness proofs regarding fragments of BST are provided
in Sections 2.1.1–2.1.3.

3. A new non-maximal, polynomial-complexity decision algorithm has been pointed
out (third row of Table 2), and the complexity of the decision algorithm for
BST(∩,=∅, 6=∅,Disj, 6=) (second row of Table 2) has been lowered from cubic to
quadratic.

4. The decision algorithms of two quadratic-time satisfiability tests are presented in Sec-
tions 2.3.2 and 2.3.3.

5. Various examples have been introduced—see in particular Sect. 2.4.

3.4. Other complexity taxonomies for decidable logics

Several authors have developed complexity taxonomies of decidable fragments, delimited syn-
tactically, of various logical systems. Among precursors of this approach, we must cite the
landmark paper [25], where Harry R. Lewis analyzed the computational complexity of de-
termining satisfiability for prenex sentences belonging to certain fragments of the classical
predicate calculus. A complexity classification, concerning the point-based temporal logics
LTL, CTL, and CTL∗, appears in [26], which singles out very low complexity fragments.
Quite recently, regarding model-checking in the framework of Halpern and Shoham’s modal
logic of time intervals, we have [27, 28].

4. Conclusion and future work

We highlighted some preliminary results of an investigation aimed at identifying small frag-
ments of set theory endowed with polynomial-time satisfiability decision tests, potentially
useful for automated proof verification and, more generally, in the symbolic manipulation of
declarative specifications (cf., e.g., [29, 30, 31]). In this initial phase, we mainly focused on
‘Boolean Set Theory’, namely the fragment of quantifier-free formulae of set theory involving
variables, the Boolean set operators ∪,∩, \, the Boolean relators ⊆, 6⊆,=, 6=, and the predicates
‘· =∅’ and ‘Disj(·, ·)’, along with their opposites.

Future work will concentrate on the analysis of the sub-maximal polynomial fragments of
BST: as Sect.2.3 illustrates, a finer complexity taxonomy of the collection of all BST fragments
will thus emerge. We also intend to enrich the endowment of set operators and relators of

11It is also closely related to [23, 18], as discussed in Sect. 3.1.

28 REFERENCES

BST, e.g. with the symmetric difference operator 4 such that |= x4 y = (x \ y)∪ (y \x). We
also plan to deepen the study of membership fragments akin to those surveyed in Sect.3.1, and
ultimately to analyze, from the complexity standpoint, situations arising from the interplay
among constructs related to membership and Boolean constructs.

We envisage a confluence of the line of research centered on satisfiability testers, to which
this paper and its companion [18] contribute, with another active line of research centered on
set-unification algorithms (for an up-to-date survey on those, see [32]). In various customary
situations, in fact, a quick satisfiability tester is less helpful than a solver able to produce
a symbolic solution of maximum possible generality, or a bunch of solution templates which
cover, collectively, all possible models of a given formula. E.g., the Büttner–Simonis unification
algorithm for Boolean algebras [33] produces, when a model exists, a most general unifier; its
application realm does border the fragments addressed in this paper (cf. [3, pp. 64–66 and
pp. 168–179]). An example in which a most general unifier does not exist—but nevertheless
all models are covered—is the set-unification algorithm presented in [34] (see also [3, pp. 256–
259]), wherein membership can be expressed in terms of the adjunction operator {· | ·} such
that |= {x | y} = y ∪ {x} and hence |= x ∈ y ←→ {x | y} = y; the application realm of this
unification algorithm is contiguous to the fragments addressed in [23, 18].

Acknowledgements

We are grateful to the anonymous referees for their valuable comments and suggestions.

References

[1] Schwartz JT. Instantiation and decision procedures for certain classes of quantified set-theoretic
formulae. Technical Report 78-10, NASA Langley Research Center, Hampton, Virginia, 1978.

[2] Cantone D, Ferro A, Omodeo EG. Computable set theory. Number 6 in International Series of
Monographs on Computer Science, Oxford Science Publications. Clarendon Press, Oxford, UK,
1989.

[3] Cantone D, Omodeo EG, Policriti A. Set theory for computing - From decision procedures to
declarative programming with sets. Monographs in Computer Science. Springer-Verlag, New York,
2001.

[4] Schwartz JT, Cantone D, Omodeo EG. Computational logic and set theory: Applying formalized
logic to analysis. Springer-Verlag, 2011. ISBN 978-0-85729-807-2. doi:10.1007/978-0-85729-808-9.
Foreword by M. Davis.

[5] Omodeo EG, Policriti A, Tomescu AI. On Sets and Graphs: Perspectives on Logic and Combina-
torics. Springer, 2017. ISBN 978-3-319-54981-1. URL https://link.springer.com/book/10.

1007%2F978-3-319-54981-1.

[6] Cantone D, Ursino P. An Introduction to the Technique of Formative Processes in Set Theory.
Springer International Publishing, 2018. ISBN 978-3-319-74778-1. doi:10.1007/978-3-319-74778-1.

https://link.springer.com/book/10.1007%2F978-3-319-54981-1
https://link.springer.com/book/10.1007%2F978-3-319-54981-1

REFERENCES 29

[7] Ferro A, Omodeo EG, Schwartz JT. Decision procedures for some fragments of Set Theory. In:
Proceedings of CADE-5, Les Arcs, France, July 8–11, 1980, volume 87 of LNCS. Springer-Verlag,
1980 pp. 88–96.

[8] Ferro A, Omodeo EG, Schwartz JT. Decision Procedures for Elementary Sublanguages of Set
Theory. I: Multilevel Syllogistic and Some Extensions. Commun. Pur. Appl. Math., 1980. 33:599–
608.

[9] Breban M, Ferro A, Omodeo E, Schwartz J. Decision Procedures for Elementary Sublanguages of
Set Theory. II: Formulas involving Restricted Quantifiers, together with Ordinal, Integer, Map,
and Domain Notions. Commun. Pur. Appl. Math., 1981. 34:177–195.

[10] Cantone D, Cutello V, Policriti A. Set-theoretic reductions of Hilbert’s Tenth Problem. In:
Börger E, Büning HK, Richter MM (eds.), CSL ’89, 3rd Workshop on Computer Science Logic,
Kaiserslautern, Germany, October 2-6, 1989, Proceedings, volume 440 of LNCS. Springer, 1990
pp. 65–75.

[11] Cantone D, Omodeo EG, Panettiere M. From Hilbert’s 10th problem to slim, undecidable frag-
ments of set theory. In: Cordasco G, Gargano L, Rescigno A (eds.), Proceedings of the 21st Italian
Conference on Theoretical Computer Science, ICTCS 2020, Ischia, Italy, September 14-16, 2020,
CEUR Workshop Proceedings. CEUR-WS.org, To appear.

[12] Cantone D, Omodeo EG, Policriti A. The Automation of Syllogistic. II: Optimization and Com-
plexity Issues. J. Automat. Reasoning, 1990. 6(2):173–187.

[13] Cantone D. Decision procedures for elementary sublanguages of Set Theory. X. Multilevel syllogis-
tic extended by the singleton and powerset operators. J. Automat. Reasoning, 1991. 7(2):193–230.

[14] Cantone D, Omodeo EG, Ursino P. Formative processes with applications to the decision problem
in set theory. I: Powerset and singleton operators. Inform. Comput., 2002. 172(2):165–201. doi:
10.1006/inco.2001.3096.

[15] Cantone D, Ursino P. Formative processes with applications to the decision problem in set theory.
II: Powerset and singleton operators, finiteness predicate. Inform. Comput., 2014. 237:215–242.

[16] Cantone D, Zarba CG. A new fast tableau-based decision procedure for an unquantified fragment
of set theory. In: Caferra R, Salzer G (eds.), Automated Deduction in Classical and Non-Classical
Logics, volume 1761 of LNAI, pp. 127–137. Springer-Verlag, 2000.

[17] Omodeo EG, Tomescu AI. Set graphs. III. Proof Pearl: Claw-free graphs mirrored into transitive
hereditarily finite sets. J. Automat. Reasoning, 2014. 52(1):1–29.

[18] Cantone D, Maugeri P, Omodeo EG. Complexity assessments for decidable fragments of set theory.
II: A taxonomy for ‘small’ languages involving membership. Theoretical Computer Science, 2020.
doi:https://doi.org/10.1016/j.tcs.2020.08.023. URL http://www.sciencedirect.com/science/

article/pii/S0304397520304825.

[19] Cantone D, De Domenico A, Maugeri P, Omodeo EG. A quadratic reduction of constraints over
nested sets to purely Boolean formulae in CNF. In: Calimeri F, Perri S, Zumpano E (eds.),
Proceedings of the 35th Italian Conference on Computational Logic, Rende, Italy, October 13-
15, 2020, volume 2710 of CEUR Workshop Proceedings. CEUR-WS.org, 2020 pp. 214–230. ISSN
1613-0073.

[20] Jacobson N. Lectures in Abstract Algebra, Vol.1 – Basic Concepts. D. Van Nostrand, New York,
1951.

http://www.sciencedirect.com/science/article/pii/S0304397520304825
http://www.sciencedirect.com/science/article/pii/S0304397520304825

30 REFERENCES

[21] Manin YI. A course in mathematical logic. Graduate texts in Mathematics. Springer-Verlag,
1977.

[22] Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman, 1979. ISBN
0716710455.

[23] Cantone D, Maugeri P. Polynomial-Time Satisfiability Tests for ‘Small’ Membership Theories. In:
Cherubini A, Sabadini N, Tini S (eds.), Proceedings of the 20th Italian Conference on Theoretical
Computer Science, ICTCS 2019, Como, Italy, September 9-11, 2019, volume 2504 of CEUR
Workshop Proceedings. CEUR-WS.org, 2019 pp. 261–273. URL http://ceur-ws.org/Vol-2504/

paper29.pdf.

[24] Cantone D, Domenico AD, Maugeri P, Omodeo EG. Polynomial-time satisfiability tests for
Boolean fragments of Set Theory. In: Casagrande A, Omodeo EG (eds.), Proceedings of
the 34th Italian Conference on Computational Logic, Trieste, Italy, June 19-21, 2019, vol-
ume 2396 of CEUR Workshop Proceedings. CEUR-WS.org, 2019 pp. 123–137. URL http:

//ceur-ws.org/Vol-2396/paper22.pdf.

[25] Lewis HR. Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci., 1980.
21(3):317–353. URL https://doi.org/10.1016/0022-0000(80)90027-6.

[26] Meier A, Thomas M, Vollmer H, Mundhenk M. The complexity of satisfiability for fragments of
CTL and CTL*. Int. J. Found. Comput. Sci., 2009. 20(5):901–918. URL https://doi.org/10.

1142/S0129054109006954.

[27] Bozzelli L, Molinari A, Montanari A, Peron A, Sala P. Which fragments of the interval temporal
logic HS are tractable in model checking? Theor. Comput. Sci., 2019. 764:125–144. URL
https://doi.org/10.1016/j.tcs.2018.04.011.

[28] Bozzelli L, Molinari A, Montanari A, Peron A, Sala P. Model checking for fragments of the
interval temporal logic HS at the low levels of the polynomial time hierarchy. Inf. Comput., 2018.
262(Part):241–264. URL https://doi.org/10.1016/j.ic.2018.09.006.

[29] Stolzenburg F. Membership-Constraints and Complexity in Logic Programming with Sets. In:
Baader F, Schulz KU (eds.), Frontiers of Combining Systems, First International Workshop Fro-
CoS 1996, Munich, Germany, March 26-29, 1996, Proceedings, volume 3 of Applied Logic Series.
Kluwer Academic Publishers, 1996 pp. 285–302.

[30] Dovier A, Piazza C, Rossi G. A uniform approach to constraint-solving for lists, multisets, compact
lists, and sets. ACM Trans. Comput. Log., 2008. 9(3):15:1–15:30. URL https://doi.org/10.

1145/1352582.1352583.

[31] Cristiá M, Rossi G. Solving Quantifier-Free First-Order Constraints Over Finite Sets and Bi-
nary Relations. J. Autom. Reason., 2020. 64(2):295–330. URL https://doi.org/10.1007/

s10817-019-09520-4.

[32] Dovier A, Pontelli E, Rossi G. Set unification. Theor. Pract. Log. Prog., 2006. 6(6):645–701. URL
https://doi.org/10.1017/S1471068406002730.

[33] Büttner W, Simonis H. Embedding Boolean Expressions into Logic Programming. J. Symb.
Comput., 1987. 4(2):191–205. URL https://doi.org/10.1016/S0747-7171(87)80065-2.

[34] Dovier A, Omodeo EG, Pontelli E, Rossi GF. A Language for Programming in Logic with Finite
Sets. J. Logic Program., 1996. 28(1):1–44.

http://ceur-ws.org/Vol-2504/paper29.pdf
http://ceur-ws.org/Vol-2504/paper29.pdf
http://ceur-ws.org/Vol-2396/paper22.pdf
http://ceur-ws.org/Vol-2396/paper22.pdf
https://doi.org/10.1016/0022-0000(80)90027-6
https://doi.org/10.1142/S0129054109006954
https://doi.org/10.1142/S0129054109006954
https://doi.org/10.1016/j.tcs.2018.04.011
https://doi.org/10.1016/j.ic.2018.09.006
https://doi.org/10.1145/1352582.1352583
https://doi.org/10.1145/1352582.1352583
https://doi.org/10.1007/s10817-019-09520-4
https://doi.org/10.1007/s10817-019-09520-4
https://doi.org/10.1017/S1471068406002730
https://doi.org/10.1016/S0747-7171(87)80065-2

31

A. Proofs of three major lemmas

This appendix provides proofs of the Lemmas 1.6 and 1.7.

Proof of Lemma 1.6:

(a) |= x = y \ z ←→ (x ∩ z = ∅ ∧ x ∪ z = y ∪ z).

(b) |= x = y ∪ z ←→
(
x \ y = z \ y ∧ y \ x = x \ x

)
and |= x = y ∩ z ←→ x = y \ (y \ z).

(c) |= x = y ←→ x ⊆ y ∧ y ⊆ x.

(d) |= x ⊆ y ←→ x ∪ y = y and |= x ⊆ y ←→ x ∩ y = x

(e) |= x * y ←→ x ∪ y 6= y and |= x * y ←→ x ∩ y 6= x

(f) We have that:

• |= x 6=∅ ←→ (∃y, z)(y ⊆ x ∧ z ⊆ x ∧ z 6= y),

• from the latter and (c), it follows that x 6= ∅ is also expressible in BST(∪,=, 6=),

• |= x 6=∅ ←→ (∃y)(x * y),

• |= x 6=∅ ←→ (∃y)(x 6= y ∧ Disj(y, y)),

• |= x 6=∅ ←→ (∃y)(x 6= y ∧ y = ∅),

• |= x 6=∅ ←→ ¬Disj(x, x),

(g) |= x = ∅←→ Disj(x, x).

(h) We have that:

• |= Disj(x, y)←→ x ∩ y = ∅ and |= Disj(x, y)←→ x \ (x \ y) = x \ x,

• |= ¬Disj(x, y)←→ x∩ y 6= ∅ and |= ¬Disj(x, y)←→ (∃z)(z ⊆ x ∧ z ⊆ y ∧ z 6= ∅).

(i) |= x ∩ y 6=∅ ←→ (∃w,w′)
(
w ⊆ x ∧ w ⊆ y ∧ w′ ⊆ w ∧ w′ 6= w

)
.

From the latter and (d), it follows that ¬Disj(x, y) is also expressible in BST(∪,=, 6=).

(j) By way of contradiction, assume that there exists a BST(∪,∩,=, 6=)-conjunction
Φ∅(x, ~y) such that

|= x = ∅ ←→ (∃~y) Φ∅(x, ~y) (24)

(so that (∃~y)Φ∅(x, ~y), and therefore Φ∅(x, ~y), is satisfiable).
Let M be any set assignment such that M |= Φ∅(x, ~y), and set M ′z := Mz ∪ C, for
every z ∈ Vars(Φ∅), where C is any nonempty set that is disjoint from Mz, for every

32 A PROOFS OF THREE MAJOR LEMMAS

z ∈ Vars(Φ∅) (namely, such that C ∩ ∪M(Vars(Φ∅)) = ∅). Then, for y1, . . . , yn ∈
Vars(Φ∅), we have:

M ′(y1 ∪ . . . ∪ yn) = M ′y1 ∪ . . . ∪M ′yn
= (My1 ∪ C) ∪ . . . ∪ (Myn ∪ C)

= (My1 ∪ . . . ∪Myn) ∪ C
= M(y1 ∪ . . . ∪ yn) ∪ C

and

M ′(y1 ∩ . . . ∩ yn) = M ′y1 ∩ . . . ∩M ′yn
= (My1 ∪ C) ∩ . . . ∩ (Myn ∪ C)

= (My1 ∩ . . . ∩Myn) ∪ C
= M(y1 ∩ . . . ∩ yn) ∪ C.

Therefore:

(j1) if the literal y1 ∪ . . . ∪ yn = z1 ∪ . . . ∪ zm is in Φ∅, then

M ′(y1 ∪ . . . ∪ yn) = M(y1 ∪ . . . ∪ yn) ∪ C
= M(z1 ∪ . . . ∪ zm) ∪ C = M ′(z1 ∪ . . . ∪ zm);

(j2) if the literal y1 ∩ . . . ∩ yn = z1 ∩ . . . ∩ zm is in Φ∅, then

M ′(y1 ∩ . . . ∩ yn) = M(y1 ∩ . . . ∩ yn) ∪ C
= M(z1 ∩ . . . ∩ zm) ∪ C = M ′(z1 ∩ . . . ∩ zm);

(j3) if the literal y 6= z is in Φ∅, then we have

M ′y = My ∪ C, M ′z = Mz ∪ C, and My 6= Mz,

implying M ′y 6= M ′z because of the disjointness between C and My, Mz.

From (j1), (j2), and (j3), it follows that M ′ |= Φ∅, so that we have also M ′ |= (∃~y)Φ∅.

In addition we have M ′x = Mx∪C 6= ∅. Thus, M ′ 6|= (∃~y)Φ∅ −→ x = ∅, contradicting
(24) and hence showing that x = ∅ is not expressible in BST(∪,∩,=, 6=).

(k) If x = y \ z were expressible in BST(∪,∩,=, 6=), then there would exist a conjunction
Ψ(x, y, z, ~w) in BST(∪,∩,=, 6=) such that

|= x = y \ z ←→ (∃~w)Ψ(x, y, z, ~w). (25)

From (25) we get
|= x = y \ y ←→ (∃~w)Ψ(x, y, y, ~w),

33

∴ |= x = ∅ ←→ (∃~w)Ψ(x, y, y, ~w)

∴ |= (∀y)
[
x = ∅ ←→ (∃~w)Ψ(x, y, y, ~w)

]
∴ |= (∀y)

[(
(∃~w)Ψ(x, y, y, ~w) −→ x = ∅

)
∧
(
x = ∅ −→ (∃~w)Ψ(x, y, y, ~w)

)]
∴ |=

[
(∀y)((∃~w)Ψ(x, y, y, ~w) −→ x = ∅)

∧ (∀y)
(
x = ∅ −→ (∃~w)Ψ(x, y, y, ~w)

)]
∴ |=

[(
(∀y)¬(∃~w)Ψ(x, y, y, ~w) ∨ x = ∅

)
∧
(
x = ∅ −→ (∀y)(∃~w)Ψ(x, y, y, ~w)

)]
∴ |=

[(
¬(∃~w)(∃y)Ψ(x, y, y, ~w) ∨ x = ∅

)
∧
(
x = ∅ −→ (∃~w)(∃y)Ψ(x, y, y, ~w)

)]
∴ |=

[(
(∃~w)(∃y)Ψ(x, y, y, ~w) −→ x = ∅

)
∧
(
x = ∅ −→ (∃~w)(∃y)Ψ(x, y, y, ~w)

)]
and therefore may conclude

|= x = ∅ ←→ (∃~w)(∃y)Ψ(x, y, y, ~w);

i.e., x = ∅ would be expressible in BST(∪,∩,=, 6=), contradicting (j). Thus, x = y \ z
is not expressible in BST(∪,∩,=, 6=). �

Remark A.1. (Concerning the expressibility of union in terms of set-difference)
Above, in proving Lemma 1.6(b), we have shown how to formulate union literals as conjunc-
tions of equalities between \-terms (viz., terms built from set-variables by means of the set-
difference operator). Concretely, we have pointed out that |= x = y∪z ←→

(
t1 = t2 ∧ t3 = t4

)
holds for suitable \-terms t1, t2, t3, t4 . To show that this result cannot be ameliorated, we will
now prove that no single equality s1 = s2 between \-terms suffices to express x = y ∪ z.

By way of contradiction, suppose that |= s1 = s2 −→ x = y∪z holds, where s1 and s2 are
\-terms and x, y, z are distinct variables. To enforce that left(s) denotes the leftmost variable
in s, we define recursively:

left(s) :=

{
s when s is a variable

left(s′) when s = s′ \ s′′,

for any \-term s; thus, by straight induction, |= s ⊆ left(s) will hold for every s. There exists
at least one w ∈ {x, y, z} \ { left(s1), left(s2) }; thus, after putting Lw := {x, y, z} \ {w}, we get

|= s1 = s2 −→ w \ ∪Lw =∅

from our initial hypothesis; for, trivially, |= x=y∪z−→
(
x\(y∪z) = ∅ ∧ y\x = ∅ ∧ z\x = ∅

)
.

34 A PROOFS OF THREE MAJOR LEMMAS

However, this is untenable. To see why, consider a set-assignment M such that Mw 6= ∅
holds along with Mu = ∅, for u ∈ Lw ∪ { left(s1), left(s2) }. Then

M |= s1 = ∅ ∧ s2 = ∅ ∧ w \ ∪Lw 6= ∅

holds, which leads us to the sought contradiction. �

In preparation for the proof of Lemma 1.7, we state two propositions, the former of which
is obvious and will easily yield the other one.

Proposition A.2. Consider two lists S0, . . . , Sm and T0, . . . , Tn of sets, along with a set C
included in each Si and in each Tj , so that C ⊆ S0 ∩ · · · ∩ Sm ∩ T0 ∩ · · · ∩ Tn . Then we have:

m⋃
i=0

Si =

n⋃
j=0

Tj ←→
m⋃
i=0

(Si \ C) =

n⋃
j=0

(Tj \ C). (26)

Proposition A.3. Let ϕ be a conjunction in BST(∪,=, 6=), and let x be any variable occur-
ring in ϕ such that the conjunction

ϕ ∧
∧

y∈Vars(ϕ)

y ∪ x = y (27)

is satisfiable. Then ϕ has a model M∗ such that M∗x = ∅.

Proof:
Le M be any model for (27), so that Mx ⊆My holds for all y ∈ Vars(ϕ). By putting

M∗y := My \Mx, for y ∈ Vars(ϕ),

define the set assignment M∗ with dom(M∗) = Vars(ϕ). Thus, for all L,R ⊆ Vars(ϕ),⋃
y∈L

My =
⋃
y∈R

My ←→
⋃
y∈L

(My \Mx) =
⋃
y∈R

(My \Mx)

←→
⋃
y∈L

M∗y =
⋃
y∈R

M∗y ,

will hold (in particular, the former of these bi-implications follows directly from Proposi-
tion A.2). Consequently, taking into account that M(s0 ∪ · · · ∪ sκ) = M s0 ∪ · · · ∪M sκ holds
for any nonempty set {s0, . . . , sκ} ⊆ Vars(ϕ), we get M∗ |= ϕ from M |= ϕ. Since we also
have M∗x = Mx \Mx, we readily reach the desired conclusion. ut

We are now ready to prove Lemma 1.7.

35

Proof of Lemma 1.7: Let ϕ 7→ Ψϕ(~y, x) be the mapping from BST(∪,=, 6=) into itself where

Ψϕ(x, ~y) :=
∧

y∈Vars(ϕ)

y ∪ x = y .

Plainly, |= x = ∅ −→
∧
y∈Vars(ϕ) y ∪ x = y. Hence, a fortiori,

|=
(
ϕ(~y) ∧ x = ∅

)
−→

∧
y∈Vars(ϕ)

y ∪ x = y ,

proving condition (c) of Def. 1.3.
As for condition (b) of Def. 1.3, we have to show that if ϕ(~y) ∧

∧
y∈Vars(ϕ) y ∪ x = y is

satisfiable, so is ϕ(~y) ∧ x = ∅. But this follows at once from Proposition A.3.
Finally, by observing that the mapping ϕ 7→

∧
y∈Vars(ϕ) y∪x = y clearly can be computed

in O(n)-time, we conclude that the literal x = ∅ is O(n)-expressible in BST(∪,=, 6=). �

	Boolean set theory
	Syntax
	Semantics
	Expressibility

	Complexity taxonomy of the fragments of BST
	Minimal NP-complete fragments of BST
	NP-completeness of BST(, , =)
	NP-completeness of BST(,=,Disj,Disj)
	NP-completeness of BST(,,=,=)

	Maximal polynomial fragments of BST
	Emblematic, non-maximal, polynomial-complexity decision algorithms
	A linear-time satisfiability test for BST(,Disj,=)
	A quadratic-time satisfiability test for BST(,=,=)
	A quadratic-time satisfiability test for BST(,Disj,Disj)

	Strength-reduction examples

	Related work and analogous taxonomies
	Boolean set theory versus membership set theory
	Bridging Boolean set theory and membership set theory
	Novelties with respect to a prior conference paper
	Other complexity taxonomies for decidable logics

	Conclusion and future work
	Proofs of three major lemmas

