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Abstract: Damage to building load-bearing members (especially columns) under explosions and
impact are critical issues for structures, given that they may cause a progressive collapse and
remarkably increase the number of potential victims. One of the best ways to deal with this issue
is to provide values of safe protective distance (SPD) for the structural members to verify, so that
the amount of damage (probability of exceedance low damage) cannot exceed a specified target.
Such an approach takes the form of the so-called safe scaled distance (SSD), which can be calculated
for general structural members but requires dedicated and expensive studies. This paper presents
an improved calculation method, based on structural reliability analysis, to evaluate the minimum
SSD for steel columns under dynamic blast loads. An explicit finite element (FE) approach is used
with the Monte Carlo simulation (MCS) method to obtain the SSD, as a result of damage probability.
The uncertainties associated with blast and material properties are considered using statistical
distributions. A parametric study is thus carried out to obtain curves of probability of low damage for
a range of H-shaped steel columns with different size and boundaries. Finally, SSD values are detected
and used as an extensive databank to propose a practical empirical formulation for evaluating the
SSD of blast loaded steel columns with good level of accuracy and high calculation efficiency.

Keywords: safe protective distance; safe scaled distance; steel beam-column; dynamic blast load;
reliability analysis; Monte Carlo simulation

1. Introduction

Crowded buildings such as schools, shopping venues, stadiums, transportation in-
frastructure and public locations are well-known attractive targets for terrorist attacks.
The disruption of such places has irreversible consequences, including severe casualties
and fatalities and negative impact on society [1]. There is a need to identify areas that
may be potentially at risk and to take preventive measures to improve their safety and
security. In this regard, securing the perimeter of structures or buildings using landscaping
or barrier methods is one of the valid risk reduction options recommended in the litera-
ture for protecting buildings against terrorist attacks, including vehicle-borne improvised
explosive devices [2]. These secure barriers must be installed at the minimum required
stand-off distance from a structure, in order to minimize the damage probability of primary
structural elements and consequently the risk of progressive collapse. In order to design a
blast-resistant building, the design engineer first has to determine blast loads on the build-
ing and its structural components. To determine the characteristics and intensity of blast
loading, the parameters for explosive charge weight (W) and stand-off distance (R) must be
necessarily known. There are several formulas and graphs that can be used to determine
blast load parameters, as a function of the scaled distance parameter (Z). The Z parameter,
also known as R/W1/3 [3], indicates that two charges with similar geometry, ambient
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conditions, explosive composition, but different size (weight) will produce self-similar
blast waves as far as their distances R = Z ×W1/3 are identical. A much more complete
discussion on features and applicability of the scaling law is given in [4]. In [5], the scaled
distance parameter is used to assess the safety and resistance of structures under air blast
loads. As an example, for un-strengthened buildings, an SSD of 4.46 m/kg1/3 is specified
from suffering a damage of “approaching to destruction” [5,6]. The SSD parameter, in this
context, represents a guide to determine the explosive weight that can be used at a given
distance, without exceeding the safe limit states of the structure (allowable support rotation
values or damage index, for low damage). It should be noted that the SSD parameter is
derived so that probability of failure is lower than an acceptance criterion. The probability
of failure, as explained later in Section 3, is a function of capacity and demand called state
function. In some cases, the state function can be expressed mathematically, but in most
cases it does not have an explicit mathematical closed-form and must be defined by other
methods such as FE analysis. When the state function is defined in mathematical form, it
is possible to calculate the SSD parameter directly, otherwise an iteration-based method
should be used to meet the acceptance criterion (Section 4). The SSD values presented in
standards and regulations are usually obtained from blast tests on simple structural models
and the effects of structural configuration or material properties are usually disregarded.
As such, guidelines can be used for a quick safety assessment of structures, but do not
provide clear damage scenarios [6]. Some studies have been performed to also investigate
the SPD and SSD of structural elements under blast loads.

The blast performance assessment of structural systems is one of the critical issues for
research. Accordingly, the need of empirical but accurate tolls in support of design opti-
mization is an ongoing challenge. Among others, Byfield and Paramasivam [7] developed
an iterative method to establish the minimum SSD of Reinforced Concrete (RC) columns
for a given charge weight, column geometry and material. The iterative process must be re-
peated until the strength of the column is equal to the dynamic force in it. Thomas et al. [8]
implemented MCS method for the reliability analysis of circular RC columns subjected to
sequential vehicular impact and blast. Given that the stand-off distance has marked effects
on reliability predictions, minimum SPD values have been proposed for selected configura-
tions. Hadianfard and Malekpour [9] evaluated safe explosion distances of a steel column
with IPBv220 and length of 3.6 m under different blast scenarios by utilizing the Single
Degree of Freedom (SDOF) and FE methods via MCS method. Zhai et al. [10] investigated
the blast effects on reticulated domes, proposing a method to determine the SSD based
on the intersections of W-R charts and Pressure–Impulse (P–I) curves. Wu and Hao [6,11]
numerically derived the SSD for masonry infilled RC frame structures. The presented SSD
values for different damage levels (RC frame collapse, side wall collapse, front wall col-
lapse and excessive damage) were compared with the corresponding estimates by the US
DoD [5] and ASCE [12] technical documents. A simple approximate method was proposed
by Dorofeev for unconfined hydrogen explosions in three hypothetical obstructed areas
with different congestion levels. Based on [13], a number of different safety distance rela-
tionships were stipulated depending upon the receptor under consideration, comprising
storage distances, process building distances and public building and traffic distances.

To provide a robust background and comprehensive feedback for civil engineering
applications, experimental and theoretical investigations on the effects of blast loads on
steel structural members have been also reported in [14–17]. Bao and Li [18] focused on
the residual axial capacity of square RC columns, while the study in [19] was dedicated
to H-section steel columns. A number of numerical investigations used equivalent SDOF
systems and FE for primary members [16,20–32]. Besides, the uncertainty of input variables
for blast load parameters and material properties (but also geometrical parameters and
FE modelling errors [33]) can severely affect the predicted structural response. As such,
probabilistic methods are preferred to support a more holistic risk-based approach [34–37].
Several studies have been focused on the reliability analysis of selected structures, such
as RC buildings [38,39], steel structures [40], RC slabs [36,41], RC columns [35,42–44], RC
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wall panels [33,45], RC beams [46], composite walls [47], masonry walls [48], profiled wall
structures [49], clamped aluminum plate [50] and steel columns [51,52], by considering
the uncertainties of input variables related to material properties and blast load parame-
ters. Stewart et al. explored the reliability analysis of structures under blast [33,35,43,44]
and supported the definition of a general framework for quantitative probabilistic risk
assessment of structures subjected to blast [53–56]. Most of those studies have been de-
veloped based on MCS method along with SDOF, Multi Degree of Freedom (MDOF) and
full 3D FE models. In [52], a methodology based on structural reliability analysis using
MCS and explicit FE modelling (shell element formulation) was proposed for determining
the damage probability of H-shape steel columns (IPBv 200 section) under various blast
scenarios. It was shown that the time required in a probabilistic analysis for iterations of
1000 and 300 can be expected to be about 100 and 30 h. Such a run time may be acceptable
for a single reliability analysis, but it is not suitable for SSD calculations that require a
trial-and-error process with several reliability analyses. In this regard, a parametric analysis
was performed in [57] to capture the effect of several FE modelling techniques (based on
solid, shell or beam elements), blast intensity (medium and high levels) and supports
(pinned or fixed ends), on damage evaluation assessment. It was proved that the beam
formulations can offer good results for the calculation of the residual axial capacity of blast
loaded steel columns, with high computational efficiency.

As mentioned above, recommending the minimum SSD is of high practical interest,
especially for the design of structures in congested urban areas. Once SSD is known, the
corresponding SPD can be easily calculated as a function of SSD and W. Although the blast
dynamic behavior of structures has been largely investigated, the SSD of axially preloaded
columns has been rarely considered and, to date, no comprehensive studies have been
conducted. In this regard, this paper represents an effort toward the definition of a reliable
and efficient methodology based on reliability analysis along with explicit FE approach
(using beam element formulation) to determine the SPD and SSD for blast loaded steel
columns. The proposed strategy, as shown, can be extended to different structural members
(or assemblies) under the effect of a given explosion. In more detail, reliability analyses
are carried out to obtain the curves of probability of low damage for a set of H-shape
steel columns with different cross sections (IPB180 to IPB500), lengths (2.8, 3.2, 3.6 and
4.0 m) and boundary conditions (pinned or fixed ends), under different explosive charge
weights. Afterward, using the obtained curves of probability of low damage, the SSD
are extracted for the selected configurations, to present a correlation between SSD and
several input parameters (such as the explosive charge weight and the initial axial capacity
of a given column) and derive some useful empirical formulas for practical design. An
illustrative calculation example is finally discussed, in order to highlight the applicability
of the proposed equations for calculating SSD and SPD of steel columns under blast loads.

2. FE Numerical Analysis and Failure Assessment
2.1. Steel Columns

A set of explicit FE models is developed using LS-DYNA software [58], to examine the
blast loaded behavior of steel columns with different boundary conditions. As a reference,
the limit pinned and fixed ends are considered. To characterize steel, MAT_PLASTIC_KINE
MATIC material model is used. This constitutive model can adequately describe the
isotropic and kinematic hardening plasticity, with the inclusion of strain rate effects based
on the Cooper–Simonds relationship, that is [59–61]:

DIF = 1 +
( .

ε

C

) 1
P

(1)

where
.
ε is the material strain rate, DIF is the dynamic increase factor and C and P are

constant coefficients that were set to 40.4 and 5 for mild steel [61,62]. The stress–strain
curve provided by MAT_PLASTIC_KINEMATIC material model is shown in Figure 1,
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where L0 and L1 are undeformed and deformed lengths of uniaxial tension specimen,
respectively. Furthermore, Es, Fy, Et, σt and εt are the modulus of elasticity, yield stress, the
slope of the bilinear stress strain curve in strain hardening region, true stress and true strain,
respectively. Furthermore, kinematic, isotropic, or a combination of kinematic and isotropic
hardening may be specified by varying β′ between 0 and 1 as shown in Figure 1 [58].
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Figure 1. Stress–strain curve of MAT_PLASTIC_KINEMATIC model used for steel material [58].

It should be noted that strain hardening was not considered in this study and the value
of Et was set to zero (Et = 0). Such a choice was derived from earlier preliminary sensitivity
studies where the results showed that strain hardening has no significant effect on residual
axial capacity of a steel column [63]. For sake of conciseness, the aforementioned results
are not included in the discussion herein reported.

The Hughes–Liu beam element formulation is used for the FE modelling of the
selected steel columns [57,64]. There is an integration refinement factor in Hughes–Liu
beam element formulation to determine integration points throughout a cross section. The
number of integration points can vary depending on the desired accuracy required. A
greater number of integration points can also more accurately represent the structural
response. In this study k was set to 5 (k = 5) following carried out sensitivity analyses
that are not presented in the discussion herein for sake of brevity. A schematic drawing
of the typical FE modelling of steel columns (as columns of a building (not columns of a
boundary wall)) with H-shape cross section and k = 2 is shown in Figure 2.
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Although the use of beam elements is notoriously deficient for simulating the effects
of local buckling phenomena or shear damage mechanisms induced by blast loads, this
choice can significantly improve the calculation efficiency of simulations (compared to
shell and solid elements) when the global behavior prediction prevails on local behaviors.
This advantage is further appreciated when the time reduction is a relevant issue, like in
the case of reliability analysis.

2.2. Nature of Blast Loading

The magnitude of blast waves due to terrorist attacks can be generally classified in
the number of explosive packs (portable by humans) and different types of used vehicles
(such as automobiles, vans and trucks), based on the amount of W and the distance of
detonation R [52,65].

In this research study, three types of surface burst explosive packs with 55, 275 and
555 kg of trinitrotoluene (TNT) are considered and can be reasonably assumed to be
carried by an automobile, a van or a truck, respectively. The stand-off distance is also
considered to modify in each blast scenario, in order to find the minimum required SPD,
using the reliability analysis. It should be noted that human-made explosions generally
occur on the vicinity of the ground surface. Due to this closeness, an immediate interaction
initiates between the blast wave and the ground, which forms the hemispherical surface
burst [66]. The incident waves are quickly reflected from the ground surface and lead to
higher pressure values [67]. Based on [38,52,66,68–70], the parameters of the hemispherical
surface burst (reflected pressure (Pr) and the positive time duration (td)) can be defined
using the conventional relationships for free air burst, by replacing W with the effective
charge weight (Weff = 1.8 ×W). Finally, the blast load time history is defined based on the
calculated surface burst parameters and is considered as a simplified equivalent triangular
pulse, for all the FE modelled configurations. For the sake of conciseness and to avoid
lengthening, no major details about definition of time history of blast loading are reported
in this paper. More details can be found in [52,57].

2.3. Damage Evaluation Assessment Based on Damage Index Criterion

To numerically assess the expected damage of blast loaded steel columns after explo-
sion, the damage index (DI) based on residual axial carrying capacity is taken into account
in this study. According to Shi et al. [25], this index is given by:

DI = 1− Presidual
Pinitial

(2)

where Presidual is the post-blast residual axial capacity of the damaged column and Pinitial
is the maximum axial load-carrying capacity of the undamaged column. The degrees of
damage are thus categorized into four levels [25], namely corresponding to:

(a) DI = 0–0.2 low damage;
(b) DI = 0.2–0.5 medium damage;
(c) DI = 0.5–0.8 high damage;
(d) DI = 0.8–1.0 collapse.

It should be noted that for vertical load bearing components belonging to high-class
buildings that are sensitive to lateral deformations and must be designed for maximum
lateral ductility ratio 1, no relevant damage is allowed and consequently DI must be
selected in such a way that this limitation is satisfied. From a computational point of
view, several calculation steps must be generally carried out to find the expected Presidual
value. The sequence of required steps, however, is not reported in this paper for the sake
of conciseness. Additional details can be found in [52,57]. In blast-resistant design of
structures, it is often stated that the damage caused in a structure due to blast loads would
be reduced if the structure is well designed against seismic loadings. This is not true in
all cases and it should not be assumed that a structure designed to withstand seismic
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loads is sufficient to resist the prescribed blast loading or prevent subsequent progressive
collapse. Despite the similarities between seismic and blast loadings, the global response of
buildings subjected to blast loading is not usually critical. In the other words, for a structure
that is affected by an explosion, only its critical members (i.e., closer to detonation) are
individually assessed and designed by means of different methods (SDOF and FE models)
and damage criteria (support rotation and damage index), while for building structures
under the effects of earthquake loadings, the global deformations (inter-story drifts) must
be evaluated based on the desired performance level (life safety) as the most important
response parameter [71,72]. In the design of structures under seismic and blast loading,
the desirable features of design—that is, the provision for ductility in member response
and increasing the ability to redistribute extreme loads to lesser-loaded elements—must be
satisfied.

3. Random Variables and Reliability Analysis Using MCS
3.1. Random Variables

The variability of blast loading parameters is one of the key variables of the problem
explored herein. A number of documents [34,36,73] have reported constant coefficient of
variation (COV) values for the variability of blast loads at various scaled distances. On the
other hand, the observed statistics obtained from blast tests and empirical formulations
confirm the basic variability. To overcome this major limit, additional studies were per-
formed in [35,37,73]. Among others, the proposals by Hao et al. [35] and Netherton and
Stewart [37] are of general application and thus often used in the reliability analysis of
blast loaded structures. Although the cited strategies are different, the shared feature is the
blast load variability, which is expressed in terms of Z. Furthermore, the same strategies
are validated for a wide range of scaled distance values (0.24 m/kg1/3 ≤ Z ≤ 40 m/kg1/3

in [35] and 0.59 m/kg1/3 ≤ Z ≤ 40 m/kg1/3 in [37]). As a final result of the formulations
provided in [35] and [37], for a blast scenario (with specified charge weight and stand-off
distance) the mean, standard deviation (σ) and COV of wave parameters can be estimated
as a function of Z. In this paper, Pr and td are selected as random variables for blast loading.
It is also assumed that the uncertainties are defined based on [35], that is:

log Pr(mean) = 3.651− 3.018× log Z + 0.1967× (log Z)2 + 0.8873× (log Z)3

−0.3795× (log Z)4 (3)

logσPr = 3.03− 3.533× log Z + 0.4534× (log Z)2 + 0.3248× (log Z)3

+0.07896× (log Z)4 (4)

log COVPr = −0.6239− 0.5726× log Z + 0.3203× (log Z)2 − 0.3538× (log Z)3

+0.2973× (log Z)4 (5)

log(
td(mean)

w1/3 ) = −0.00307 + 1.2186× log Z− 0.5207× (log Z)2 − 0.2835× (log Z)3

+0.2132× (log Z)4 (6)

logσtd/w1/3 = −0.8433 + 1.0982× log Z− 0.8127× (log Z)2 + 0.4214× (log Z)3

−0.1046× (log Z)4 (7)

log COV(td/w1/3) = −0.8411− 0.1186× log Z− 0.2868× (log Z)2 + 0.6955× (log Z)3

−0.3141× (log Z)4 (8)

Equations (3)–(8), in more detail, represent the statistical characteristics (mean, σ and COV)
of the Pr and td variables, as a function of Z, in the range of 0.24 m/kg1/3 ≤ Z≤ 40 m/kg1/3.
It should be noted that the log in these equations is the logarithm to the base 10. As
reported in [35], the proposed formulas are valid only for an open field explosion and large
enough flat reflection surface. For a complex explosion scenario, such as an explosion in a
complex city environment, more significant variations are expected because of blast wave
interactions with surrounding structures.
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It should be noted that td is the positive time duration of an idealized triangular blast
loading history with sufficient accuracy instead an exponentially decayed loading history
of a real explosion. The assumption of using triangular pressure-time history for blast
loading originates from past research studies, such as [35,37,38,42,43,55,74–79]. There, the
variation of the waveform coefficient for the positive pressure phase has been generally
disregarded for the reliability analysis, due to lack of information. This issue depends
on blast load databanks that have been used to propose analytical formulas to calculate
the variation of blast load parameters as functions of scaled-distance. Among others, the
parameter corresponding to the waveform coefficient has been considered probabilistic
in [48,73], but the intended scaled distance was set between 1.62 and 2.78 m/kg1/3, and an
explicit relation was not presented for the calculation of statistical properties (i.e., mean and
standard deviation) of the waveform coefficient based on scaled distance. Although the
linear assumption of blast load imposes some unwanted approximation in the problem [35],
such an assumption might cause an error up to 10% for the final results. In this paper,
following former dedicated research [35,37,38,42,43,55,74–79], a linear function is thus used
to define the input blast.

Normal probability density function (PDF) is used for all input random parameters
including loading parameters (Pr and td) and steel material properties (Fy and Es), see
Table 1 [35,42,80–82].

Table 1. Statistical properties of input random variables.

Random Variable Mean σ COV PDF

Pr Equation (3) Equation (4) Equation (5) Normal
td Equation (6) Equation (7) Equation (8) Normal
Fy 240 × 1.15 MPa 16.56 MPa 0.06 Normal
Es 210 GPa 8.40 GPa 0.04 Normal

3.2. MCS Method

The MCS method is a well-known technique for estimating statistical properties of
structural systems under stochastic uncertainties of input parameters [83,84] and is used in
this paper to carry out the reliability analyses. MCS is one of the simplest and relatively
most accurate methods which provides a feasible way to determine the reliability index,
where the limit state function is more complicated. Most of the literature studies on
the reliability of structures under blast loading have been performed using MCS. The
probability of failure based on MCS equals to Pf = Nf/N, where N is the number of total
simulations and Nf is the number of trials for which limit state function, g(X) = r–q, falls
in the failure region or has negative value. In the definition of the state function, X is the
vector of input random variables, r is the capacity or resistance, q is the demand or loading.
The probability of failure can also be written as follows:

Pf = P[g(X) ≤ 0] =
∫

g(X)≤0
fX(X)dX =

∑N
i=1 IF(Xi)

N
(9)

where fX(X) is the joint probability density function and IF is the failure indicator which
equals 1 if g(X) ≤ 0 and 0 if g(X) > 0.

The accuracy and precision of MCS in damage estimation directly depends on the N
value. The higher the N value, the more precise the MCS. On the other hand, by increasing
the number of simulations, the computational effort is also increased, which is the main
disadvantage of the MCS method. In this regard, there are many procedures in the literature
to find the minimum number of iterations required for MCS for a certain level of accuracy.
The equation proposed by Broding et al. [85] is taken into account in this paper:

N >
− ln(1−CL)

Pf
(10)
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where N is the minimum number of required random samples, Pf is the probability of
failure and CL is the confidence level. In this paper, the value N = 300 is taken into
account for reliability analyses, which corresponds to 95% confidence (CL = 0.95) and 0.99
reliability (Pf = 0.01).

4. Methodology of Calculating SSD Using Reliability
4.1. SSD Definition

SPD is defined as the minimum required stand-off distance where the probability
of low damage based on Equation (2) is at least 95% [86–88] or the damage probability
is lower than an acceptance criterion 5%. Figure 3 shows schematically an instance of
probability of low damage diagram for a given charge weight, based on stand-off distance,
that can be obtained from the results of reliability analysis for any blast loaded member.
The concept in Figure 3 is shown for the specific case of probability of low damage 95%. The
philosophy is that the structure object of analysis is examined for different blast scenarios
(under constant charge weight and a variable stand-off value) and the probability of low
damage in each case is calculated and drawn in Figure 3. In the other words, each point in
Figure 3 corresponds to probability of low damage for the selected configuration under a
blast scenario.
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The desired output is obtained by a complete probabilistic analysis using MCS with
300 different simulations. The final result agrees with Figure 3 and is the basis for the SPD
determination. This is in fact calculated as the stand-off distance corresponding to the
intersection point between the diagram in Figure 3 and the probability of low damage 0.95.
Once the SPD is known, the SSD can be easily determined, given that SSD = SPD/W1/3.

4.2. Application of Reliability Analysis Based on MCS in Calculating SSD

Key steps to perform the SSD by implementing the concept of reliability analysis with
MCS method and FE method (based on LS-Dyna software simulations) are summarized in
this section. The full calculation process takes advantage of a set of LS-PrePost, MATLAB,
LS-DYNA and C# coding for each FE model, thus importing the models into LS-DYNA
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and extracting and post-processing the results of interest. As shown in Figure 4, the general
procedure can be basically described as follows:

1. Definition of boundary conditions, section properties and length for the examined
steel column.

2. Generation of the initial LS-DYNA model (input file) for the considered steel column.
At this stage, hypothetical (average) values are used for input random parameters.
The same values are then updated in the following calculation steps, based on the real
values of generated samples, for each random parameter. The aim of step 2 is only to
create a .k file format for the column that will be object of the probabilistic analysis.

3. Selection of a blast scenario, by defining corresponding values for charge weight and
stand-off distance.

4. Calculation of the mean values and standard deviations for the input random vari-
ables. In this paper, the attention is focused on blast load parameters (Pr and td) and
material properties (Fy and Es), according to Table 1.

5. Choice of appropriate probability density functions for the selected input random
variables.

6. Generation of random variables (MATLAB code) according to the selected PDF
(step 5).

7. Update of the initially generated LS-DYNA model (input file, see step 2), for the
number of generated random variables (step 6), using MATLAB.

8. Analysis of all the FE models (by automatically running LS-Dyna software with C#
coding) and extracting all the damage indices (MATLAB).

9. Derivation of histogram, PDF and Cumulative Distribution Function (CDF) for the
calculated DI (from step 8).

10. Calculation of the probability of low damage, or P[DI ≤ 0.2].
11. And in conclusion, a double check must be necessarily carried out, given that:

(a) If the probability of low damage from step 10 is approximately 95%, the selected
stand-off distance (step 3) coincides with SPD and consequently the required
SSD can be calculated.

(b) Otherwise, if the probability of low damage is less or more than 95%, the selected
stand-off distance (step 3) must be increased or decreased, respectively. The
full algorithm must be thus repeated (from step 3), until the probability of low
damage reaches 95%.

4.3. Verification of Reliability Analysis Based on MCS Using Beam Element Formulation

In order to verify the current MCS results based on beam element formulation, major
outcomes from the reliability analyses presented in [52] are compared in this study. In
more detail, the numerical results of two loading cases (Case 1 and Case 2) are considered,
as obtained for a steel column with section type IPBv200, nominal length of 3.6 m and
pinned ends. The column from [52] is made of ST37 steel, with density of 7850 kg/m3.
Yield strength, elastic modulus, Poisson’s ratio and failure strain are set equal to 240 MPa,
210 GPa, 0.3 and 0.2 respectively. In Case 1, the column is subjected to W = 55 kg of TNT
and R = 6 m. In Case 2, the explosive charge weight and the stand-off distance are set
to 55 kg and 8 m. For both configurations, the number of simulations is set to 300. The
comparison of past [52] and current numerical results is shown in Figure 5a,b, for Cases 1
and 2, respectively, in terms of CDFs for DI.
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Based on Figure 5a,b, it can be clearly noticed that there is a rather close correlation
between the collected results, even in the presence of different accuracy levels for the FE
models in use (beam and shell elements, respectively). For Case 1, according to Figure 5a,
the probabilities of low damage (DI < 0.2) are found to be 0.25 (present study) and 0.22 [52],
with a scatter of 12%. In Case 2, see Figure 5b, the probabilities of low damage (DI < 0.2)
are calculated at 0.90 (present study) and 0.93 [52], respectively, with a 3.22% scatter that
further confirms the good agreement between the compared MCS results. In order to better
clarify the performance of beam elements in probabilistic analysis, the required analysis
durations for reliability analyses of the so-called Case 1 with beam and shell element
types are thus presented in this paper. For beam elements, the typical required time was
approximately 0.90 h for 300 MCS iterations. For shell elements [52], the required time was
in the order of 30 h for the same number of iterations (that is, 33.33 times higher), which
shows that implementing beam elements speeds up the procedure, especially in finding
SPD and SSD values which need many separate reliability analyses.

4.4. Selected Columns

Given the potential of beam element formulation, a set of H-section steel columns
with different geometrical properties in cross sections (IPB180 to IPB500) and lengths (2.8,
3.2, 3.6 and 4.0 m) are considered in the FE parametric investigation. The reference cross-
sectional parameters are shown in Table 2, where Ag is the cross-sectional area, Ix is the
moment of inertia about the strong axis (x-axis), Iy is the moment of inertia about the weak
axis (y-axis).

Table 2. Geometrical properties of selected H-sections for parametric FE simulations.

Section Properties
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Reference cross section

Identification b (mm) h (mm) s (mm) t (mm) Ag (cm2) Ix (cm4) Iy (cm4)

IPB 180 180 180 8.5 14.0 65.3 3831 1363
IPB 220 220 220 9.5 16.0 91.0 8091 2843
IPB 260 260 260 10.0 17.5 118.4 14,920 5135
IPB 300 300 300 11.0 19.0 149.1 25,170 8563
IPB 340 300 340 12.0 21.5 170.9 36,660 9690
IPB 400 300 400 13.5 24.0 197.8 57,680 10,820
IPB 500 300 500 14.5 28.0 238.6 107,200 12,620

5. Results and Discussions
5.1. Curves of Probability of Low Damage

The curves of probability of low damage are obtained in this paper for all the steel
sections presented in Table 2 via reliability analysis, for both the pinned and fixed ends
under different blast scenarios (with TNT charges of 55, 275 and 555 kg). For example,
Figure 6a–c illustrate the numerical curves for IPB220 with pinned ends under explosive
charge weights of 55, 275 and 555 kg, respectively. Each plot corresponds to a column
with a specified length and explosive charge. Furthermore, it consists of some observed
points that are obtained from reliability analyses. Each observed point and its probability
of low damage is in fact the result of a reliability analysis based on the MCS method
with 300 simulations. In total, 15,900 simulations were performed to extract Figure 6a–c,
indicating the high amount of computational effort, which was around 47.4 h. Additionally,
the normal CDFs have been fitted to the observed points for each case related to a specified
column length, to convey a better understanding of presented concepts in Section 4 and
also calculating the probability of low damage for points other than the observed points, if
necessary. Given that the stand-off distance corresponding to the 95% probability of low
damage is considered for finding safe distance (see Figure 4), then the fitting operation
was used to find the stand-off distance corresponding to exactly 95% probability of low
damage. In this case, lower tails are not important and will not affect the calculation and
extraction of SPD and SSD.
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According to Figure 6c, the SPD value for IPB220 with pinned ends and 3.6 m of
length, subjected to 555 kg of TNT, is approximately calculated as 20.2 m by considering the
95% probability of low damage as a criterion and using orange arrows connected to normal
fitted CDF for L = 3.6 m which eventually shows the value of SPD on the horizontal axis.
As can be estimated from the figure, by changing the criterion from 95% to 99%, the SPD
increases to 21.0 m. The important aspect, in this regard, is that the exclusive calculation of
the SPD value for a column is not a sufficient way to provide protection against catastrophic
events or major releases. In other words, finding the SPD value of 21.0 m by selecting
99% probability of low damage instead of 20.2 m (with 95% probability) does not mean
that the safety of the examined steel column (or generally the whole structure) is ensured
at this distance, without considering additional special arrangements. As such, the SPD
values can be thus used as a valuable guidance to design and provide special arrangements
around the building (such as appropriate access control and security guards), so as to
reduce the frequency and/or the possible consequences to an acceptable level. The reliable
prediction of adequate distances or separation zones around the building is thus one of
the fundamental considerations for safe layout and can be designed according to SPD
values. In some cases, it is worth mentioning that providing SPD for a structure to protect
from all possible events is not practicable and this is especially the case in urban places,
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due to the lack of sufficient space between buildings and access roads. The assessment of
the frequency of the expected event and its potential consequences is thus necessary to
understand which risks can be reasonably mitigated by an SPD. For cases in which the
obtained SPD value is too large, of course, additional mitigating or prevention measures
should be considered. In a nutshell, the 95% criterion is internationally recognized to
represent a rational choice for finding practical SPD that causes no serious damage for
the structure (if special arrangements are provided) and the designer’s judgment along
with SPD values should lead to better decisions for ensuring safety of the structure under
such events.

Similarly, Figure 7a–c present the curves of probability of low damage for IPB220 with
fixed ends, subjected to explosive charge weights 55, 275 and 555 kg, respectively. As also
explained in Section 4, using the obtained curves, the required SPD and the corresponding
SSD can be calculated for each column by using orange arrows connected to each fitted
curve. For instance, as Figure 6c reveals, the SPD values for IPB220 with different column
lengths (2.8, 3.2, 3.6 and 4.0 m) and pinned ends are calculated in 16.9, 18.8, 20.2 and 21.2 m,
respectively. Consequently, the SSD for lengths 2.8, 3.2, 3.6 and 4.0 m (and an explosive
charge weight of 555 kg of TNT) are 2.06, 2.29, 2.46 and 2.58 m/kg1/3, respectively.
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As shown, when increasing the column length, the SSD also increases. The reason
is that the longer the column length (and thus slenderness), the more it is exposed to
premature buckling which reduces the overall residual axial load capacity and further
results in more severe damage and thus higher SPD value. In the case of fixed ends,
according to Figure 7c, the SPD values are obtained in 11.8, 13.0, 13.9 and 15.0 m, which
correspond to SSD values of 1.44, 1.58, 1.69 and 1.83 m/kg1/3 for 555 kg of TNT and column
lengths of 2.8, 3.2, 3.6 and 4.0 m, respectively. As evidenced, by changing the support
condition from pinned to fixed ends, the calculated SSD decreases. The actual boundary
condition has thus a significant effect on the final performances and results. Moreover,
considering the fact that the end conditions for real columns are neither fully pinned nor
fixed, it is preferable for designers to take into account an actual value between the two
limit conditions of perfectly pinned or fixed column models, which ultimately leads to
choosing an SPD in between [89].

It should be noted that the variability of stand-off distance is highly dependent on
the position of the explosive, given that the location of a terrorist device is not a certain
parameter. When the target is known, the minimum stand-off distance from a facility
(building, bridge, etc.) is obtained from the knowledge of the site (roads, parking, etc.), the
access control (security gates, bollards, etc.) and the perimeter security [78]. Generally, for a
critical building that may represent a target for terrorist attacks with variable and portable
explosive weights (i.e., by human and different vehicles), the minimum stand-off distance
can be easily found using the proposed strategy. Such a minimum stand-off distance can be
thus used to provide appropriate access control and security guards around the building,
thus ensuring that the risk of damage for the structural members in the first stage and the
progressive collapse can be reduced.

Further, the residual axial load carrying capacity of a column (which is used to obtain
DI) alternates between minimum (zero) and maximum (Pinitial) values. This variation
depends on geometrical properties and boundaries of the column, as well as on some
uncertainties associated with blast loading and material properties. For all the cases
in which the SPD is calculated, due to the fact that 95% probability of low damage is
considered as decision criterion, the residual capacity of a given column under a selected
blast scenario is expected to approach Pinitial, or equivalently, the DI values are expected to
approach zero. To better clarify the given explanations, Figure 8 shows the DI histograms
obtained from MCS for a given IPB260 steel column with length of 3.6 m and pinned ends,
subjected to 55, 275 and 555 kg of TNT. In all these cases, the probabilities of low damage
are approximately calculated as 0.95, and, consequently, the proposed stand-off distances
on the top of each figure are related to SPD value for the selected charge weights. As
Figure 8 reveals, in all cases, the frequency of the DI obtained from MCS tends to low
DI values (almost between DI = 0 and DI = 0.5), while the possibility of high damage
(0.5 < DI < 0.8) and collapse (DI > 0.8) is really rare.

5.2. Empirical Relationship for Calculating SSD

The curves of probability of low damage were extracted similar to the approach
presented in Section 5.1 to find the SSD values for all selected configurations (Table 2). Both
pinned and fixed end conditions are examined, including different column lengths and
explosive charge weights (55, 275 and 555 kg of TNT). A large number of FE simulations
(approximately 252,000) were conducted for reliability analyses based on MCS, which took
nearly 756 h of run time. The collected data were further investigated to find a practical
relationship which could support designers in the predicting the SSD for steel columns
under blast loads. By examining the results after a lot of trial-and-error process, it was
finally found that the SSD can be expressed as:

SSD(W, Pinitial) = α0 + α1W + α2Pinitial + α3W2 + α4W.Pinitial + α5Pinitial
2 (11)

where the parameters α0 to α5 are constant coefficients. The final values of these αi
coefficients, as well as the coefficient of determination (R2) values, goodness of fit (GoF)
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and root-mean-square error (RMSE), are shown in Table 3 for different columns, as obtained
from curve fitting. It is clear that the R2 values are higher than 97% for all the selected
configurations, hence indicating a very satisfactory accuracy of the proposed formula for
SSD predictions (usually, R2 values higher than 80% are considered satisfactory).
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4.00 +2.266 +6.718×10−4 −2.705 × 10−4 −5.376 × 10−7 +1.577 × 10−8 +1.872 × 10−9 0.9782 0.0562 0.0612
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There are two conventional ways to calculate Pinitial: one based on FE modelling and
another based on the empirical relationships that are presented in several regulations.
In this study, the second method is used, which is easier to apply, is efficient and can
be extended to each column, without the need of any complex calculation. The final
result is that, even disregarding sophisticated FE methods, the Pinitial prediction can be
used in Equation (11) and it can be consequently assessed (for a specific explosive charge
weight) whether the column is in a safe condition or not. According to the regulations,
in more detail, Pinitial for members under compression without slender elements can
be calculated as:

Pinitial = Fcr ×Ag(
keL
rg

)
max
≤ 4.71

√
Es
Fy

→ Fcr =

[
0.658

Fy
Fe

]
Fy(

keL
rg

)
max

> 4.71
√

Es
Fy

→ Fcr = 0.877 Fe

(12)

where Fcr is the critical stress due to flexural buckling and L, rg and ke are, respectively, the
column length, the radius of gyration and the effective length factor. For a column with
pinned ends or fixed ends, it is assumed ke = 1 or ke = 0.5, respectively. Finally, Fe is the
elastic buckling stress which can be calculated as:

Fe =
π2Es(
keL
rg

)2 (13)

Figures 9 and 10 show the predicted SSD values and the corresponding fitted planes
(according to Equation (11)) for pinned and fixed ends and for different column lengths.
In these figures, the numerical data collected from reliability analyses for different steel
configurations and blast scenarios are represented by 21 points which are used for curve
fitting (Equation (11)).
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Figure 9. SSD values for steel columns with pinned ends and different lengths: (a) L = 2.8 m, (b) L = 3.2 m, (c) L = 3.6 m and
(d) L = 4.0 m.
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Figure 10. SSD values for steel columns with fixed ends and different lengths: (a) L = 2.8 m, (b) L = 3.2 m, (c) L = 3.6 m and
(d) L = 4.0 m.

As shown, the SSD value typically increases with increasing explosive charge weight
and decreases with increasing initial axial load capacity. For a given column length, by
changing the support condition from pinned to fixed, the SSD decreases. Additionally,
the effect of the explosive charge weight on SSD is minimum, compared to Pinitial. For
W-values higher than or equal to 275 kg, the effect of W is almost negligible and the values
obtained for SSD are almost identical. In other words, by maintaining Pinitial constant, the
obtained SSD values for W = 275 kg of TNT can be still considered for W > 275 kg, with an
acceptable level of accuracy (Equation (14)). For a given Pinitial value and a variable W, the
SPD can be in fact calculated as follows:

SSD(W=275)
∼= SSD(W>275) (14)

SSD(W=275) =
SPD(W=275)

2751/3

SSD(W>275) =
SPD(W>275)

W1/3

 Substituting Eq. 14−−−−−−−−−−−−−−→
with acceptable estimation

SPD(W>275) = SPD(W=275)×
(

W
275

)1/3
(15)

where SSD(W=275) and SSD(W>275) are the safe scaled distances for W = 275 and W > 275 kg
of TNT, respectively. Similarly, SPD(W=275) and SPD(W>275) are the SPDs for W = 275 kg
and W > 275 kg of TNT, respectively. Based on such an equation, the SPD for W values
higher than 275 kg of TNT can be thus easily obtained, without the need for any further
simulation. As an instance, the predicted SSD value for a steel column with IPB 220 section
and length of 3.6 m is 2.22 and 2.15, as obtained for TNT explosive charge weights equal
to 555 or 275 kg. This results in SPD values of 18.24 and 13.98 m, respectively. Using
Equations (14) and (15), the SPD(W>275) for the aforementioned column is calculated as
17.66 m, thus with a minimum percentage scatter (3.15%) compared to the expected value.

5.3. Verification of the Proposed Formula

The proposed analytical correlation for calculating the SSD was finally further dis-
cussed and verified. To this end, the numerical results from [52] were taken into account.
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For a pinned steel column with IPBv200 cross section (ST37 steel) and a total length
of 3.6 m, subjected to different charge weights (55, 275 and 555 kg of TNT), the SPD values
in [52] were predicted to be 8, 15 and 19 m, thus resulting in SSD values of 2.10, 2.30 and
2.31 m/kg1/3, respectively. The input steel yield stress, density, elastic modulus and Pois-
son’s ratio were set to 240 MPa, 7850 kg/m3, 210 GPa and 0.3, respectively. Furthermore,
the geometrical characteristics of the resisting section (i.e., b, h, s and t, see Table 2), were
set to 206, 220, 15 and 25 mm, respectively. It should be noted that the IPBv200 cross section
is different from the intended steel sections presented in Table 2.

In order to analytically predict the SSD value based on Equation (11), the initial
axial capacity of the column must first be calculated. Based on Equations (12) and (13),
such a value can be estimated as 2518 kN. Consequently, by using Equation (14) and the
constant coefficients presented in Table 2 (pinned ends and column length of 3.6 m), the
corresponding SSD are easily calculated for selected explosive charges. The related values
of SSD and SPD from Equations (14) and (15), together with those obtained from the
previous study [52], are thus compared in Table 4. As shown, the percentage scatter ∆ is
also calculated for each case, giving evidence of the accuracy of the proposed method.

Table 4. Verification results of the proposed formula, with respect to previous study [52].

W (kg of TNT)
SSD Value (m/kg1/3) SPD (m)

Hadianfard et al. [52] Present Study ∆ (%) Hadianfard et al. [52] Present Study ∆ (%)

55 2.10 1.99 5.24 8 7.57 5.37
275 2.30 2.18 5.21 15 14.17 5.53
555 2.31 2.21 4.33 19 18.16 4.42

As Table 4 reveals, there is in fact a rather close correlation between the current pro-
posed formula for the SSD calculation and the past numerical study reported in [52]. SSD
values obtained by Equation (11) were equal to 1.99, 2.18 and 2.21 m/kg1/3, respectively,
for explosive charge weights of 55, 275 and 555 kg, and thus corresponding to a negligible
scatter (5.24%, 5.21% and 4.33%) compared to the SSD values from [52].

6. Calculation Examples

In conclusion, to emphasize the applicability and usefulness of the proposed relation-
ship, some calculation examples are presented. The objective of these examples is to find
the SPD and SSD of:

(i) A steel column with IPB 240 cross section and L = 3.4 m (Section 1), and
(ii) A box shape steel column with L = 3.6 m and given geometrical properties in Table 5

(Section 2).

Table 5. Sectional properties of selected box section steel column for calculation examples.

Section Properties
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 Properties Section 

 
section cross Reference 

Identification (mm) b (mm) h (mm) f w(mm) )2(cm A )4(cm xI )4(cm yI 

BOX 300 300 19.6 6.2 149.9 24986 15799 

 
Section 1 differs from the intended columns presented in Table 2. Its length of 3.4 m, 

in particular, is further modified and differs with considered lengths (i.e., 2.8, 3.2, 3.6 and 

Identification b (mm) h (mm) f (mm) w(mm) A (cm2) Ix (cm4) Iy (cm4)

BOX 300 300 19.6 6.2 149.9 24,986 15,799

Section 1 differs from the intended columns presented in Table 2. Its length of 3.4 m,
in particular, is further modified and differs with considered lengths (i.e., 2.8, 3.2, 3.6
and 4.0 m) in the reliability analyses, in order to create a databank for the relationship
proposal. Section 2 is selected from [57], in which its sectional properties about bending
axis is the same as for a IPB300 steel column, while its cross-sectional shape is totally
different. Again, the material yield stress, density, elastic modulus and Poisson’s ratio
are set equal to 240 MPa, 7850 kg/m3, 210 GPa and 0.3, respectively. Finally, Section 1
is subjected to six different explosive charge weights (55, 200, 275, 350, 555 and 1000 kg
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of TNT), while Section 2 is subjected to 275 kg of TNT, under the assumption of two
idealized boundary conditions, (a) pinned and (b) fixed ends. The reason for selecting an
explosive weight of 1000 kg of TNT, in this regard, is to verify the accuracy of the proposed
Equations (14) and (15) for calculating the SPD and SSD for explosive charge weights
higher than 555 kg of TNT.

To determine the SSD of the selected configurations, the proposed relationship
(Equation (11)) and the methodology earlier presented are employed. The results are
collected in Table 6, for both the pinned and fixed ends. It is worth mentioning that the
SSD values calculated by Equation (11) are obtained by an interpolation approach. This
means that, for a column with a length other than those reported in Figures 9 and 10, for
both pinned and fixed end conditions, the interpolation method should be always used
to calculate the corresponding SSD. For the present calculation example, the SSD values
for column lengths of 3.2 and 3.6 m are thus first calculated by Equation (11) and then,
using the interpolation, the required SSD values are estimated for the assigned column
length of 3.4 m.

Table 6. SSD and SPD calculations with different methods MCS and proposed practical equations.

Column B.C
W

(kg of TNT)

SSD (kg/m1/3) SPD (m)

Eq
ua

ti
on

(1
1)

Eq
ua

ti
on

(1
4)

MCS ∆1 (%) ∆2 (%)

Eq
ua

ti
on

(1
1)

Eq
ua

ti
on

(1
5)

MCS ∆1 (%) ∆3 (%)

IPB
240

Pinned

55 2.052 – 2.039 0.63 – 7.80 – 7.75 0.64 –
200 2.192 – 2.077 5.24 – 12.82 – 12.15 5.23 –
275 2.244 2.244 2.214 1.34 1.33 14.59 14.59 14.40 1.30 1.30
350 2.254 2.244 2.172 3.63 3.20 15.88 15.81 15.31 3.58 3.16
555 2.274 2.244 2.265 0.39 0.93 18.69 18.44 18.61 0.43 0.91

1000 – 2.244 2.278 – 1.49 – 22.44 22.78 – 1.49

Fixed

55 1.466 – 1.416 3.41 – 5.58 – 5.38 3.58 –
200 1.532 – 1.438 6.14 – 8.96 – 8.41 6.13 –
275 1.587 1.587 1.533 3.40 3.40 10.32 10.32 9.97 3.39 3.39
350 1.614 1.587 1.558 3.46 1.83 11.37 11.18 10.98 3.43 1.78
555 1.646 1.587 1.657 0.66 4.22 13.53 13.04 13.62 0.66 4.26

1000 – 1.587 1.598 – 2.92 – 15.87 15.98 – 0.69

BOX
Pinned 275 1.874 1.874 1.811 3.36 3.36 12.18 12.18 11.78 3.28 3.28

Fixed 275 1.386 1.386 1.396 0.71 0.71 9.01 9.01 9.08 0.77 0.77

From Table 6, see Section 1, it is possible to notice that the proposed equation is able
to provide a good level of accuracy for the estimation of the expected SSD under different
explosive charge weights. Such an outcome is confirmed by the calculated percentage
scatters, obtained between Equation (11) and MCS as ∆1, and between Equation (14) and a
MCS as ∆2, and between Equation (15) and MCS as ∆3. It should be noted that the symbol
dash (–) in Table 6 shows that input value of W is out of range for corresponding equation.
Furthermore, for Section 2, it can be seen that the proposed relationship accurately predicts
the required SPD and SSD values, in comparison to the FE-based MCS results. This is also
consistent with the results presented in [57], where for steel columns with different cross-
sectional shapes (but similar section properties) subjected to the same loading/boundary
conditions, it was proved that the cross section shape has mostly null effects on the global
response. In case of pinned ends, in more detail, the cross-sectional shape has little effect
on the response of a given column, while in case of fixed ends the results may change
up to 20% [57].

In this paper, the results obtained for Section 2 show that, for a non H-shape steel
column that can be equaled to an H-section (within the examined range and with the
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same loading/boundary conditions), the proposed formula can be used with accuracy
to determine the SPD and SSD parameters. It should be kept in mind, however, that the
proposed relationship is generally based on interpolation within the range of the intended
columns. In general, it is hence recognized that the use of the proposed formula for other
steel columns can provide a preliminary estimation of the required SPD and SSD values,
but the accuracy of these results should be examined through engineering judgment and
further investigations.

It is also clear, in this regard, that considering the high computational cost of the
rigorous approach (almost 0.9 h for 300 simulations, and almost 4.5 h for each curve of
probability of low damage, consisting of 5 points), the proposed approximate relationships
can be efficiently used to obtain practical and reliable estimates.

The illustrative calculation examples, in conclusion, proved that the proposed for-
mula is capable of properly interpolating the available data, and thus finding the SSD of
various types of columns, which may differ in length and/or cross-sectional properties.
Furthermore, such a relationship could be further extended to find the SSD of blast loaded
steel columns with semi-fixed boundary conditions. Recently, a research study was in
fact reported in [89] to investigate the effect of semi-fixed supports on the response of
flexural members under impact loads. The equivalent SDOF system was used and the
transformation factors including load, mass, stiffness and ultimate resistance factors were
obtained for different fixity values in the elastic, elastic–plastic and plastic regions. It was
thus shown that the semi-fixed condition can severely affect the blast response of a given
column, compared to the two ideal assumptions of fully pinned and fully fixed support
conditions. Accordingly, it is recognized that the current research outcomes—based on the
SSD results for two perfectly pinned and fixed conditions—can support the designer with
their engineering judgment in the choice of the SSD value (in between two limit support
conditions) which is closest to the real boundary condition.

7. Conclusions

Safe scaled distance (SSD) is of practical interest, especially for design purposes of
structural elements or assemblies, in order to minimize the damage probability and conse-
quently the risk of progressive collapse against terrorist attacks in congested urban areas.
In this paper, an improved methodology based on reliability analysis and implementing the
beam element formulation was presented for calculating the SSD and the safe protective
distance (SPD) for steel beam columns subjected to blast loads. To obtain the probability of
low damage, the Monte Carlo simulation (MCS) method was used, so as to account for the
uncertainties of blast loading parameters and material properties. The proposed methodol-
ogy was extended to steel columns with different cross sections (IPB180 to IPB500), lengths
(2.8, 3.2, 3.6 and 4.0 m) and boundary conditions (pinned or fixed ends). The collected data
were thus further investigated to find a practical relationship to predict the SSD of steel
columns under blast loads. From the comparative discussion, the following conclusions
were obtained:

• The results showed that the improved methodology, based on the beam element
formulation, has good efficiency and accuracy in predicting the damage probabil-
ity of blast loaded steel columns and further remarkably reduces the run time of
probabilistic analyses.

• A practical relationship was proposed and verified against numerical studies in the
literature, to relate the SSD of blast loaded steel columns to the initial axial capacity
and explosive charge weight.

• The proposed equation has a very good agreement with FE results based on MCS,
which indicates its very high level of accuracy in predicting the SSD and thus its
efficiency in obtaining practical and reliable estimates.

• The results showed that for both pinned and fixed end conditions, by increasing the
initial axial carrying capacity of a given column and the amount of explosive charge
weight, the SSD decreases and increases, respectively. The variation of the explosive
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charge weight, however, has minimum effects on the calculated SSD, compared to
variations in the initial axial capacity of the column.

• The discussed results proved that upon changing the support condition from pinned
to fixed ends, the corresponding SSD decreases significantly. This indicates that the
actual boundary condition has substantial effects on the SSD and the designer should
consequently select an SSD value between two perfectly pinned and fixed models to
account for real support conditions.

• For explosive charge weights (W) higher than or equal to 275 kg of TNT, by keeping
constant the initial axial capacity, the effects of W variations on SSD are almost negligi-
ble. In a nutshell, the SSD obtained for W = 275 kg of TNT can be rationally taken into
account, with an acceptable level of accuracy, for W values higher than 275 kg of TNT
(SSD(W=275)

∼= SSD(W>275)).
• Similarly, the SPD of a given steel column subjected to explosive charge weights

higher than or equal to 275 kg of TNT can be easily obtained by calculating the SPD
for W = 275 kg of TNT using the proposed equation.
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Abbreviations

MCS Monte Carlo Simulation
SPD Safe Protective Distance
SSD Safe Scaled Distance
FE Finite Element
RC Reinforced Concrete
SDOF Single Degree of Freedom
MDOF Multi Degree of Freedom
DIF Dynamic Increase Factor
DI Damage Index
GoF Goodness of Fit
RMSE Root-Mean-Square Error
R2 Coefficient of determination
PDF Probability Density Function
CDF Cumulative Distribution Function
COV Coefficient of Variation
TNT Trinitrotoluene
BC Boundary Condition
W Explosive charge weight
Weff Effective charge weight
R Stand-off distance
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Z Scaled distance
C and P Constant coefficients of Cooper-Simonds relationship
k Integration refinement factor
σ Standard deviation
εt True stress
εt True strain
.
ε Strain rate
L1 Deformed length of uniaxial tension member
L0 Undeformed length of uniaxial tension member
Pr Reflected pressure
Pr(mean) Mean value of reflected pressure
σPr Standard deviation of reflected pressure
COVpr Coefficient of variation of reflected pressure
td Positive time duration
td(mean) Mean value of positive time duration
σtd Standard deviation of positive time duration
COVtd Coefficient of variation of positive time duration
Presidual Post-blast residual axial capacity of the damaged column
Pinitial Maximum axial load-carrying capacity of the undamaged column
Fy Yield stress
Es Modulus of elasticity
Et Slope of the bilinear stress strain curve in strain hardening region
Pf Probability of failure
Nf Number of trials for which limit state function falls in the failure region
N Number of total simulations
X Vector of input random variables
g(X) Limit state function
r Capacity
q Demand
fx(X) Joint probability density function
IF Failure indicator
CL Confidence level
Ix Moment of inertia about the strong axis
Iy Moment of inertia about the weak axis
α0 to α5 Constant coefficients
Fcr Critical stress due to flexural buckling of members without slender elements
Ag Total cross-sectional area
L Column length
rg Radius of gyration
ke Effective length factor
Fe Elastic buckling stress
∆, ∆1, ∆2 and ∆3 Percentage scatters
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