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Variable annuities with a threshold fee: valuation,
numerical implementation and comparative static analysis

Anna Rita Bacinello1 · Ivan Zoccolan2

Abstract
In this paper we deal with a variable annuity which provides guarantees at death and
maturity financed through the application of a state-dependent fee structure of the
threshold type. Our first aim is to test the use of least squares Monte Carlo methods
(LSMC) for the numerical implementation of the valuation model. In fact, special
care is needed when applying LSMC, due to the shape of the surrender region. To
this end we introduce a quite general framework, under which we derive a theoretical
result that allows us to stem the numerical errors arising in the regression step of
the valuation algorithm. The second aim of the paper is to analyse numerically the
interaction between the various contract components, in particular fee rates/thresholds
and surrender penalties, under alternative policyholder behaviours. This analysis turns
out to be very useful, in particular when addressing the problem of the contract design.
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1 Introduction

Variable annuities are very flexible life insurance investment products that can package
living and death benefits, essentially with the aim of constructing a post-retirement
income endowed with a number of possible guarantees in respect of financial or bio-
metric risks. Typically, a lump-sum premium is paid when the product is bought, and
is invested in well-diversified mutual funds chosen by the policyholder among a range
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of alternative opportunities. This initial investment establishes a reference portfolio
(policy account), and all guarantees are financed through periodical deductions from
the policy account value.

Guarantees are commonly referred to as GMxBs (guaranteed minimum benefit of
type ‘x’), where ‘x’ stands for accumulation (A), death (D), income (I), surrender
(S) or withdrawal (W). In particular, GMAB and GMDB provide guarantees in the
accumulation phase, prior to retirement, although sometimes theGMDB is offered also
after retirement. The GMIB consists of a deferred life annuity, with guarantees either
on the annuitized amount or on the annuitization rate, while the GMWB is similar to
an income drawdown, entitling the policyholder to make periodical withdrawals from
her account, even when there are nomore available funds. Finally, the GMSB provides
guarantees in case of surrender.

Guarantees are often set in such a way that at least the lump-sum premium is
totally recouped. To fix the ideas, consider the case of a variable annuity with both a
GMAB and a GMDBmaturing at the same date, in which the guarantee is given by the
single premium. Even if no GMSB is present, the policyholder is generally allowed to
surrender the contract at any time before maturity by receiving a cash amount equal
to the account value net of some possible surrender penalty. Then, when the account
value is very high, i.e. the guarantee (‘Titanic’ put option, see Milevsky and Posner
2001) is out of the money, there is a great incentive for the policyholder to surrender
the contract, stopping to pay the high fees (proportional to the account value) for an
out-of-the-money guarantee, and to buy a new contract, identical to the old one but
with an updated, higher guarantee, equal to the surrender benefit. Conversely, when the
account value is low, the policyholder pays a low fee for an in-the-money guarantee.
Summing up, not only there is an unfair misalignment between costs incurred by the
insurer and premiums (fees) to cover them, but also a huge incentive, for policyholders,
to abandon their contracts when they become uneconomical, as defaulting in a swap,
with a loss for the insurer that does not recover the total costs for the guarantee.
In particular, this fact is highlighted in Milevsky and Salisbury (2001), where the
surrender penalties are identified not only as a way to force policyholders to keep their
contracts alive or, at least, to allow insurers to recoup some of their costs in case of
surrender, but also as a way to complete the market enabling the variable annuity to
be hedged.

To eliminate the misalignment between costs and fees and to reduce the surrender
incentive insurers can adopt the so-called threshold expense structure, a special case
of state-dependent fees, according to which the fees, still proportional to the account
value, are, however, paid only if this value is below a fixed threshold, typically equal
to the minimum amount guaranteed, i.e. only when the guarantee is in-the-money.
This structure has actually been introduced in the market for optional GMDB’s by
Prudential UK (see Prudential (UK) 2012) and has been first employed by Bae and Ko
(2013) in the framework of refracted Brownian motions to price maturity guarantees.

An extensive analysis of this particular kind of state-dependent fees is carried
out by Bernard et al. (2014) to price GMAB and GMDB within the framework of
geometric Brownianmotions and regime-switching lognormal processes for the assets
value, as well as deterministic mortality intensity. In their paper sufficient conditions
on the fees in order to eliminate the surrender incentive are provided and explored
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with the aid of some numerical examples. A similar and wider analysis is conducted
in MacKay et al. (2017) within the framework of geometric Brownian motion and
deterministic mortality intensity. More in detail, the analysis conducted by MacKay
et al. (2017) aims at capturing the interaction between fee rates and surrender penalties
on the optimal surrender region, in order to design a marketable insurance product for
which surrender is never optimal, allowing then to completely ignore the presence of
the surrender option in pricing and hedging such product. In Zhou and Wu (2015)
probabilistic properties of the total time of deducting fees are derived within a jump-
diffusion processes framework.Moreover, it is worth mentioning the paper by Bae and
Ko (2010) where, instead, fees are applied when the account value exceeds a given
threshold, i.e. when the guarantee is (close to be) out-of-the-money, and the assets
price follows a geometric Brownian motion. Finally, a very rich model is offered in
the paper by Delong (2014), where pricing and hedging results for variable annuities
with GMAB and quite general state-dependent fees (hence, not only based on the
threshold expense structure) are derived within the framework of incomplete financial
markets and bidimensional Lévy processes.

One of the main conclusions in Bernard et al. (2014) is that the surrender region
when fees are state dependent has a different form than when fees are constant,1 since
the optimal surrender strategy is no longer based on a simple threshold but on a corridor,
that can be very strict. Although the authors do not include a full analysis of optimal
surrenders in the complex case of state-dependent fees, they claim that the particular
shape of the surrender region makes least squares Monte Carlo techniques unsuitable
to tackle the optimal surrender problem, because the numerical errors would be too
significant.

Driven by this argument but believing the intrinsic flexibility of aMonteCarlo based
approach should be preserved, we tested, first of all, the application of these techniques
to the valuation problem. In doing so, we indeed verified that a straightforward appli-
cation of them can actually imply non-negligible numerical errors, particularly for
low levels of the fee, where the contract value in the presence of the surrender option
often turned out to be lower than the one without the option.2 This fact motivated us to
refine the LSMC algorithm in order to reduce, and possibly eliminate, the regression
error. Beyond optimizing number and type of basis functions, one of the arrangements
that have allowed us to improve the numerical approximation is based on a theoretical
result presented in MacKay et al. (2017), where it is proved that it is never optimal
to surrender a contract with both a GMAB and a GMDB, and state-dependent fees,
when the surrender penalties are decreasing, strictly positive, and the account value
is not below the threshold of application of the fee. Although the underlying assump-
tions in MacKay et al. (2017) are geometric Brownian motion for the assets price and
deterministic mortality intensity, we are able to generalize their result; we just require
that, under the pricing measure, the discounted assets price is a martingale and, more-

1 Unless otherwise stated, we use the (general) term ‘state-dependent fees’ to refer to the (special) case
of a threshold expense structure, while the term ‘constant fees’ refers to the case in which fees are always
applied, independently of the policy account value.
2 In these cases the surrender incentive had been completely eliminated and hence the real surrender option
value was 0.
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over, the mortality intensity and the death time of the insured are independent of any
financial-related variable.

Secondly, we applied the (adjusted) LSMC algorithm in order to analyse numer-
ically the interaction between the various contract components, in particular fee
rates/thresholds and surrender penalties, under alternative policyholder behaviours.
This analysis, conducted by assuming a quite complex valuation model, turns out to
be very useful, in particular when addressing the problem of the contract design.

This paper is structured as follows. In Sect. 2 we describe the structure of the
contract. In Sect. 3 we present our valuation framework. Section 4 is devoted to the
numerical analysis that is conducted assuming different policyholder behaviours. In
particular, in Sect. 4.3we describe the problems encounteredwhen applying theLSMC
and the arrangements adopted to overcome them. Section 5 concludes the paper, and
a technical proof is reported in ‘Appendix’.

2 The structure of the contract

Consider a single premium variable annuity contract which provides guarantees at
death and maturity. We denote by P the single premium, 0 the time of issuance and T
the contract maturity, and we assume that the death benefit is paid upon death within
the contract maturity. The single premium is invested in a well-diversified mutual
fund, and the (net) value of the accumulated investments in this fund is referred to
as the policy account value. We denote by At this value at time t . The cost of the
guarantees is recouped through a periodical deduction, called fee, from this account.
Assuming that the policyholder is not allowed to make partial withdrawals from her
account and, for simplicity, that deductions take place continuously over time, we can
describe the instantaneous evolution of the account value while the contract is still in
force as follows:

dAt

At
= dSt

St
− ψtdt, with A0 = P. (1)

Here St denotes the unit value at time t of the reference fund backing the variable
annuity and ψt denotes the (instantaneous, state-dependent) fee rate. Then, the net
return on the account value is obtained by subtracting the (instantaneous) fees from
the return of the reference fund.

Both death and maturity benefits contain a minimum guarantee. Hence, the death
benefit is given by

bDτ = max
{
Aτ ,G

D
τ

}
, τ ≤ T , (2)

while the survival benefit is

bAT = max
{
AT ,GA

T

}
, τ > T . (3)

In (2) and (3) we denote by τ the residual lifetime of the policyholder, assumed to
be aged x years at inception, and by GD

τ and GA
T the minimum amount guaranteed at

death or maturity, respectively.
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We assume that the contract can be surrendered at any time before maturity, if the
insured is still alive, and that, in case of surrender at time t , the policyholder receives
a cash amount, called surrender value. Since the contract does not contain a GMSB,
the surrender value is typically given by

bSt = At (1 − πt ), t < T ∧ τ, (4)

where πt is a (state-dependent) penalty rate such that 0 ≤ πt ≤ 1 (a.s.) for any t < T .
Note that the instantaneous fee rate ψt and the penalty rate πt are stochastic pro-

cesses, adapted to the relevant filtration that we will introduce formally in the next
section. Hence, in principle, they may depend on any observable variable (interest
rate, account value, guaranteed amount, reference fund or other traded asset, volatility
index, etc.). However, the term ‘state-dependent’ fees (or penalties) is usually referred
to the case in which they depend only on the account value At and possibly on the
current date t , hence ψt

.= ψ(At , t) and πt
.= π(At , t). By suitably choosing the

functions ψ and π the insurance company can address the policyholder behaviour.
For instance, in order to discourage surrender, which is more likely to take place when
the account value is high, it can choose a fee rate ψ(At , t) decreasing with respect
to the account value At . A similar result is pursuable through the surrender penalty
rate π(At , t) that may increase with At . If instead the insurance company aims at
keeping contracts alive as long as possible, it may decide to fix a penalty rate decreas-
ing with respect to t . A similar, although not completely obvious, effect may be the
consequence of a time-decreasing fee rate.

Also the guaranteed benefits GD and GA are in general stochastic because they can
depend, for example, on past account values, as happens in the case of ratchet and
reset guarantees (see Bacinello et al. 2011).

However, in what follows we restrict ourselves to a narrow, yet relevant, subset of
contract space due to its linkages to the extant literature (Bernard et al. 2014; MacKay
et al. 2017) and empirical evidence on contracts available in the market (Prudential
(UK) 2012). In particular, we assume

ψt = ϕ1{At<β}, (5)

where ϕ and β are real numbers and 1C denotes the indicator of the event C . Then the
deductions for fees aremade only when the account value is below a given threshold β,
i.e. we adopt a threshold expense structure. In case of deduction, fees are proportional
to the account value according to a fixed rate ϕ (between 0 and 1). If β were equal,
for example, to the minimum amount guaranteed, then the fees would be deducted
only when the guarantee is in-the-money. In our case the minimum amount guaranteed
can change over time, but for simplicity we have taken a barrier β (deterministic and)
constant for all the contract duration. Of course, in the degenerate case of β = ∞ (no
barrier) we recover a constant fee structure.

Moreover, we assume that death and maturity guarantees are of the roll-up type and
with the same, constant, roll-up rate δ. Hence,

GD
τ = Peδτ (6)
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and
GA

T = PeδT . (7)

Here δ is assumed to be ≥ 0. In particular, when δ = 0 we recover the so-called
return-of-premium guarantee.

Finally, we assume
πt = p(t), (8)

where p is a deterministic penalty rate such that 0 ≤ p(t) ≤ 1 for any t < T .
Therefore, equations (1), (2), (3) and (4) for account value, death, maturity and

surrender benefits, respectively, can be rewritten as follows:

dAt

At
= dSt

St
− ϕ1{At<β}dt, with A0 = P, (9)

bDτ = max
{
Aτ , Pe

δτ
}
, τ ≤ T , (10)

bAT = max
{
AT , PeδT

}
, τ > T , (11)

bSt = At [1 − p(t)] , t < T ∧ τ. (12)

To conclude this section we observe that all our contract terms can be summarized
through a vector containing the single premium P , the maturity T , the specification
of the reference fund with (unit) price process S, the roll-up rate δ, the pair (ϕ, β)

characterizing the fee structure, and the penalty function p. In particular, the surrender
penalties have a role not at all ancillary since they contribute, together with the fees,
both to addressing the policyholder behaviour and to recovering all costs arising from
the variable annuity contract.

3 Valuation framework

3.1 Assumptions

We fix a filtered probability space (Ω,F ,F, Q) supporting all sources of financial
and biometric uncertainty, where all random variables and processes are defined. The
filtration F

.= (Ft )t≥0 (satisfying the usual conditions of right continuity and com-
pleteness and such thatF0 is Q-trivial) represents the flow of information available to
the insurer and the policyholder over time. The probability Q is a risk-neutral proba-
bility measure selected by the insurer, for pricing purposes, among the infinitely many
equivalent martingale measures existing in incomplete arbitrage-free markets. Then
the fair value of any security is given by the (conditional) expectation, under Q, of
its expected discounted cash-flows, where discounting is performed at the risk-free
rate (see, for example, Duffie 2001). In particular, we denote by rt the instantaneous
risk-free rate at time t .

It is natural to assume that the policyholder’s residual lifetime τ is an F-stopping
time, meaning that at any time t the information carried byFt allows us to tell whether
death has occurred or not by t . We denote by H the filtration generated by the death
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indicator process
(
1{τ≤t}

)
t≥0 , which equals 0 as long as the individual is alive and

jumps to 1 at death, and assume that F
.= G∨H for some filtrationG not includingH,

with G0 trivial. The intuition is thatG carries all relevant information about biometric
and financial risk factors (in particular, security prices and likelihood of death), but
does not yield knowledge of τ . More specifically, we take G = G

F ∨ G
B, where

the filtrations GF and G
B pertain to financial and biometric factors, respectively. In

particular, we assume that both processes r and S are adapted toGF. It is also natural to
require independence betweenGF andGB ∨H. In other words, there is independence
between financial- and biometric-related variables.

We define the residual lifetime by setting

τ
.= inf

{
t :

∫ t

0
μsds > ξ

}
, (13)

withμ aGB-predictable non-negative process and ξ a unit exponential randomvariable
independent of G∞. The force of mortality μt drives the instantaneous probability of
death at time t conditional on survival for an individual aged x at time0. The probability
of survival at time s > t , conditional on survival at t ≥ 0 and on Gt , is given by

Q(τ > s|τ > t,Gt ) = E
[
e− ∫ s

t μvdv
∣∣∣Gt

]
= E

[
e− ∫ s

t μvdv
∣∣∣G B

t

]
, (14)

while the (conditional) death probability can also be expressed as

Q(τ ≤s|τ > t,Gt )=E

[∫ s

t
e− ∫ y

t μvdvμydy
∣∣∣Gt

]
=E

[∫ s

t
e− ∫ y

t μvdvμydy
∣∣∣G B

t

]
.

(15)

This construction is equivalent to the so-called conditionally Poisson set-up, which
means that τ , conditionally on G∞ and under the measure Q, is the first jump time of
a Poisson inhomogeneous process with intensity (μt )t≥0. This set-up ensures that any
G-martingale is an F-martingale, a property that yields considerable simplifications
in pricing formulae (see, in particular, Biffis 2005).

A key element in the valuation of the contract from the insurer’s point of view is
constituted by the behavioural risk. The policyholder, in fact, can choose among a
set of possible actions such as partial or total withdrawal (i.e. surrender), selection
of new guarantees, switch between different reference funds, and so on. In particular,
in Bacinello et al. (2011) the possible policyholder behaviours are classified, with
respect to the only aspect concerning partial or total withdrawals, into three categories,
characterized by an increasing level of rationality: static, mixed and dynamic. The
variable annuity contract dealt with in Bacinello et al. (2011) is quite general and can
contain different types of guarantees, taken alone or combined together. Here instead
we consider a more specific contract embedding both a GMDB and a GMABwith the
same maturity (not a GMWB), so that the most relevant valuation approaches are the
first two, static and mixed. In what follows, we fit their general model to our specific
case, taking into account, however, that now we are applying state-dependent fees.

123
7



3.2 The static approach

Under this approach it is assumed that the policyholder keeps her contract until its
natural termination, that is death or maturity, without making any partial or total
withdrawal from her policy account value.

The contract value at time t < T , on the set {τ > t}, is thus given by

Vt = E

[
bDτ e

− ∫ τ
t rvdv1{τ≤T } + bAT e

− ∫ T
t rvdv1{τ>T }

∣∣∣∣Ft

]
. (16)

Exploiting the structure of the filtration F and the conditionally Poisson set-up, we
can alternatively express Vt , still on the set {τ > t}, as3

Vt = E

[∫ T

t
bDy e

− ∫ y
t (rv+μv)dvμydy + bAT e

− ∫ T
t (rv+μv)dv

∣∣∣∣Gt

]
. (17)

Unlike equation (16), note that in (17) there are no survival indicators, and discounting
is made with the mortality-adjusted discount rate r + μ. Moreover, the expectation in
(17) is conditional on the elements of the sub-filtration G.

In some situations Vt can be expressed in closed form. This is the case, for example,
of the celebrated single premium contract analysed by Brennan and Schwartz (1976)
and Boyle and Schwartz (1977). However, if more sophisticated assumptions do not
allow to obtain closed-form formulae, a straightforward application of Monte Carlo
simulation can be carried out in order to value the expectation in (16) or (17).

3.3 Themixed approach

Under this approach it is assumed that, at any timeof contract duration, the policyholder
chooses whether or not to exercise the surrender option, and her decision is aimed at
maximizing the current value of the contract pay-off.

We denote by λ the time of surrender. Clearly, early termination can take place
only if the insured is still alive and the contract is still in force, i.e. λ < τ ∧ T .
Conventionally, λ ≥ τ ∧ T means instead that surrender never takes place. The time
λ is in general a stopping time with respect to the filtration F. Given λ, the contract
value at time t < T , on the set {τ > t, λ ≥ t}, can be expressed as

Vt (λ) = E

[
bDτ e

− ∫ τ
t rvdv1{τ≤T∧λ}

+ bAT e
− ∫ T

t rvdv1{τ>T , λ≥T }

+ bSλe
− ∫ λ

t rvdv1{λ<τ∧T }
∣∣∣∣Ft

]
. (18)

3 See also Bacinello et al. (2009) and Bacinello et al. (2010).
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Alternatively, exploiting our previous assumptions, we have also

Vt (λ) = E

[(∫ λ

t
bDy e

− ∫ y
t (rv+μv)dvμydy + bSλe

− ∫ λ
t (rv+μv)dv

)
1{λ<T }

+
(∫ T

t
bDy e

− ∫ y
t (rv+μv)dvμydy + bAT e

− ∫ T
t (rv+μv)dv

)
1{λ≥T }

∣∣∣∣Gt

]
, (19)

where now λ is a stopping time with respect to the sub-filtration G.
Finally, the contract value at time t < T , on the set {τ > t, λ ≥ t}, is obtained by

solving the following optimal stopping problem:

Vt = sup
λ∈Tt

Vt (λ), (20)

where Tt is the set of stopping times taking values in the closed interval [ t,+∞),
with respect to the filtration F if Vt (λ) is expressed by (18) or to the sub-filtration G

if instead Vt (λ) is given by (19).
Note that the contract value Vt can also be expressed as

Vt = max
{
V c
t , bSt

}
, (21)

with V c
t denoting the continuation value, given by

V c
t = sup

λ∈Tc
t

Vt (λ), (22)

where Tc
t is now the set of stopping times taking values in the open interval (t,+∞),

again with respect to the filtrationF if Vt (λ) is expressed by (18) or to the sub-filtration
G if instead Vt (λ) is given by (19).

Under the assumptions described in Sects. 2 and 3.1 the following result holds:

Theorem 1 Let t < T and suppose that τ > t and λ ≥ t . If At ≥ β and the penalty
function p is weakly decreasing on [ t, T ), then V c

t ≥ bSt , which implies Vt = V c
t . In

particular, if p(t) > 0, then V c
t > bSt .

Remark Our Theorem 1 is essentially the same as Proposition 2 in MacKay et al.
(2017), but it holds in a more general framework than that implied by a deterministic
mortality intensity and a geometric Brownianmotion for the assets price. The intuition
behind this result is clear: when the account value is not below the barrier β, the
guarantees at death and maturity are offered for free; hence, there is no incentive for
the policyholder to surrender the contract. In particular, if p(u) = 0 for any u ≥ t , i.e.
there are no surrender charges, at least from t onwards, then it could also be that the
continuation value is equal to the surrender benefit, implying that continuation and
surrender decisions are indifferent. In this case, however, for valuation purposes it can
be assumed that surrender does not take place.

9
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The proof of Theorem 1 is supplied in ‘Appendix’.
The optimal stopping problem (20) needs to be tackled numerically. In particular,

in Sect. 4 we apply the least squares Monte Carlo method for the numerical imple-
mentation of the valuation model.

We conclude by observing that the contract value obtained in themixed approach is,
of course, not less than the corresponding value under the static approach (American-
versus European-style contract).

3.4 Fair contracts

Note that the initial contract value V0, given by equations (16), (17) in the static
approach, and by equation (20) in the mixed one, depends on all the elements of
the vector summarizing the contractual terms. In particular, once maturity, single
premium, reference fund and roll-up rate are given, it could be seen as a function of
all the quantities involved in the recovery of the costs implied by the contract, namely
the fee rate ϕ and the barrier β, along with the penalty function p when acting in
the mixed approach. However, for convenience, in almost all our numerical analyses
presented in Sect. 4 we will assume that also the threshold β and the penalty function
p are given, so that we look at V0 as a function of (only) the fee rate ϕ, say V0

.= V0(ϕ).
We state that the contract is fairly priced if and only if V0 coincides with the initial
premium P:

V0(ϕ) = P. (23)

Then a fair fee rate, ϕ∗, is implicitly defined as a solution of equation (23). Of course,
this solution is meaningful only if it lies between 0 and 1, and, in the mixed approach,
it must be not less than that obtained in the static approach.

4 Numerical analysis

4.1 Assumptions

We consider the variable annuity contract dealt with in the previous sections. We
assume that the age of the policyholder at inception is x = 50, the contract duration
is T = 15 (years), and the single premium is P = 100.

We adopt the following three-factor model (under the risk-neutral measure Q) for
the financial market:

⎧⎪⎨
⎪⎩

drt = α(r)[θ(r)
t − rt ]dt + σ (r)dW (r)

t

dKt = α(K )[θ(K ) − Kt ]dt + σ (K )
√
KtdW

(K )
t

dSt = rt Stdt + √
Kt StdW

(S)
t

, (24)

with r0 ∈ R, K0 > 0, S0 > 0 given, and (W (r),W (K ),W (S)) a vector of correlated
Wiener processes such that Cov(dW (i)

t , dW ( j)
t ) = ρ(i, j)dt for i, j ∈ {r , K , S} and

10
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Table 1 Parameters used in the numerical examples

r K S μ

r0 = 0.02 K0 = 0.06 S0 = 100 μ0 = 0.00568

α(r) = 0.5 α(K ) = 0.8 ρ(S,r) = 0.2 α(μ) = 0.000004485659

θ
(r)
t = 0.02 − 0.0001e−t θ(K ) = 0.06 ρ(S,K ) = −0.5 θ(μ) = 0.06699157

σ (r) = 0.01 σ (K ) = 0.4 σ (μ) = 0.002995216

ρ(r ,K ) = 0

i 
= j . Hence, we choose the stochastic model by Hull and White (1990)4 for the
instantaneous interest rate, while we describe the evolution of the assets volatility√
K through a mean-reverting square-root process, as in the Heston (1993) stochastic

volatility model. Note that this specification for the interest rate, a mean-reverting
Gaussian process, has long been criticized in the past due to the possibility of producing
negative valueswith strictly positive probability.However, now it has regained a certain
popularity because a long-lasting period of very low (if not even negative) interest rates
is currently in force. The same three-factor model has been used also by Kang and
Ziveyi (2018) to price a variable annuity with a maturity guarantee5 and a constant fee
structure. In particular, they value the contract under the mixed approach by solving
numerically the associated free boundary PDE problem.

For the (stochastic)mortality intensitywe assume the followingnon-mean-reverting
(as recommended by Cairns et al. 2006, 2008) square-root process:

dμt =
[
α(μ) + θ(μ)μt

]
dt + σ (μ)√μtdW

(μ)
t . (25)

Here W (μ) is a Wiener process independent of the vector (W (r),W (K ),W (S)), and
μ0 > 0 is given. Although being very simple, this affine model, that collapses to the
well-known deterministic Gompertz force of mortality when α(μ) = σ (μ) = 0, has
the desirable property of producing strictly positive paths with probability 1, provided
μ0 > 0 and 2α(μ) > σ (μ)2. Moreover, it allows to get closed-form formulae for the
survival probability given in equation (14), that converges to 0 when s − t diverges.6

The parameters used in our numerical examples are reported inTable 1. In particular,
the parameters of the financial market are those calibrated by Kang and Ziveyi (2018),
while we have directly calibrated the parameters of the mortality intensity to the data
provided by HMD (2016). The period considered in this study goes from 1985 to
2014. We have used the tables of an Italian male aged 50years in 1985. We have split
the 30-year observation interval into a 20-year training period (from 1985 to 2004)
and a 10-year test period (from 2005 to 2014). The training data are used to fit the
model, while the test data are used tomeasure its predictive performance. The expected
residual lifetime produced by the calibrated process is equal to 32.6406. Note that,

4 Also known as extended Vasicek (1977) model.
5 Without mortality risk.
6 See, for instance, Fung et al. (2014), or Dacorogna and Apicella (2016).
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Fig. 1 The initial contract value, under the static approach, versus the state-dependent fee rate, for different
roll-up rates δ; single premium P = 100, contract maturity T = 15, barrier β = PeδT

although we are acting under the risk-neutral measure, for the mortality we have taken
estimates under the historical measure based on data concerning the whole population
ofmales. Then, very likely the resulting survival probabilities will underestimate those
of a selected group like that of the purchasers (both males and females) of variable
annuity contracts. However, recall that our specific contract provides guarantees in
case of early death (or, at the latest, at maturity), so that our assumptions are in line
with prudence, i.e. the estimated probabilities contain a safety loading on the mortality
(rather than on the longevity) side.

4.2 Results under the static approach

We start by presenting some results under the static approach. To obtain them we
resort to Monte Carlo simulation and generate 20000 paths for all stochastic processes
involved, with a discretized step of 1/365 (1day). We compute the contract value
through equation (16), so that we need also to simulate the time of death, through
(13).

First of all, we fix a barrier level equal to the minimum amount guaranteed at
maturity, β = PeδT , so that fees are applied only when the maturity guarantee is
in-the-money. In Fig. 1 we plot the results obtained in terms of contract value against
the fee rate ϕ for different roll-up rates δ.

Of course, for a given roll-up rate δ the contract value V0 is decreasing with respect
to the fee rate ϕ. Note that the fair fee rate ϕ∗ is given by the abscissa of the intersection
between the contract graph and the dotted horizontal line at level P = 100: ϕ∗ = 1130
basis points (bp) when δ = 0, ϕ∗ = 989 bp when δ = 0.5% and ϕ∗ = 995 bp when
δ = 1%. It is not a priori clear, instead, which is the effect of the roll-up rate on the
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Table 2 The fair fee rate (in bp),
under the static approach, for
different roll-up rates δ and
barrier levels β; single premium
P = 100, contract maturity
T = 15

β δ = 0.000 δ = 0.005 δ = 0.010 δ = 0.015

100 1130 1562 2812 6250

110 703 898 1250 2031

120 527 664 898 1328

130 449 547 742 1055

140 391 488 645 918

150 352 430 566 820

contract value. On the one hand, the higher the δ, the higher the guaranteed amount
at death or maturity, but, on the other hand, the higher the δ, the higher the barrier
β = PeδT so that, for a given fee rate ϕ, there are more cumulated fees deducted
from the account value, that hence results lower. The prevailing effect is not always
the same but depends on the level of δ and ϕ: in particular, the contract value with the
intermediate roll-up rate (0.5%) is dominated by that with roll-up 1% for any level
of the fees here considered and, apart from the case ϕ = 500 bp, it is dominated
also by that with a return-of-premium guarantee (roll-up 0). Anyway, there is not
much difference between contract values with roll-up 0.5% and 1%, while the value
of the contract with a return-of-premium guarantee, lower than that with δ = 1%when
ϕ ≤ 600 bp, is (considerably) more valuable for higher fee levels, resulting in a spread
of 135 bp between the corresponding fair rates (see Fig. 1).

Due to the excessively high level of the fair fee rate resulting in the previous
examples, we now give up the idea of fixing a barrier equal to the guaranteed amount
at maturity and admit the possibility that fees are applied also when the guarantee
is (moderately) out-of-the-money. To this end, in Table 2 we report some results
concerning the fair fee rate ϕ∗ for different levels of the roll-up rate δ and the barrier
β.

As we can see from Table 2, the fair fee rate ϕ∗ increases very fast with the roll-up
rate δ when the barrier β is fixed, reaching impractical values (e.g. 1328 bp when
δ = 1.5% and β = 120), and decreases with β for fixed levels of δ. For this reason
from now on we focus on the case of a return-of-premium guarantee, that is also the
only case compatible with the current low interest rates environment. In Fig. 2 we
compare the contract value obtained with a state-dependent fee structure and a barrier
β = 135 with that implied by constant fees, plotted against different fee rates ϕ.

From Fig. 2 it is visible that the fair fee rate ϕ∗ required by a state-dependent fee
structure is twice as much as that required by constant fees (410 against 205 bp).
This is an obvious consequence of two facts: i) differently from constant fees, that are
always deducted from the account value, even if the guarantee is deeply out-of-the-
money, state-dependent fees are recovered only when the account value is below the
barrier, and hence the total time of deducting fees is reduced; ii) the average amount on
which fees are applied (account value) is lower (below the barrier), when fees are state
dependent. However, it could be difficult to explain these facts to potential customers
with a low level of financial literacy, that only perceive the high level of the fees. Then,
for commercial reasons, we can try to increase the occupational time of deducting fees
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Fig. 2 The initial contract value, under the static approach, versus the fee rate, for both constant and
state-dependent fees; single premium P = 100, maturity T = 15, roll-up rate δ = 0, barrier β = 135
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Fig. 3 The fair fee rate ϕ∗, under the static approach, versus the barrier increment k; single premium
P = 100, maturity T = 15, roll-up rate δ = 0, barrier β = 135(1 + k)

by rebalancing further the barrier β. In particular, we take now β = 135(1 + k) and
plot, in Fig. 3, the fair fee rate ϕ∗ against the barrier increment k, once again with a
return-of-premium guarantee. Of course, the fair fee rate is decreasing with the barrier
increment k and, when k → +∞, we recover the fair fee rate obtained with a constant
fee structure (see dotted horizontal line).

From Fig. 3 we can argue that, if the insurance company has a target fee rate, e.g.
300 bp, in addition to the initial increase in the barrier from 100 to 135, it should
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further increase β of about 25%, undermining in this way one of the goals that led
to the introduction of state-dependent fees, i.e. the elimination of the misalignment
between fees and cost of the guarantees.

4.3 Numerical implementation of themixed approach

As already mentioned in Sect. 3.3, the optimal stopping problem giving the contract
value under the mixed approach needs to be tackled numerically. In particular, in
Bernard et al. (2014) it is claimed that the least squares Monte Carlo techniques are
unsuitable to solve the problem in the case of state-dependent fees, due to the shape
of the surrender region. However, although some drawbacks of Monte Carlo methods
are well known,7 we believe that their intrinsic flexibility, making them practically
model independent, constitutes a precious feature. For this reason we tested their
application to the solution of our problem. Doing this, we have actually verified that a
straightforward application of them is a bit problematic for relatively low levels of the
fee rate (usually not over the fair fee rate), i.e. when very likely the surrender incentive
has been completely eliminated, leading to a valueless surrender option. In these cases,
in fact, the contract value under the static approach turns out to be higher than that under
the mixed approach, contradicting the theoretical relation and confirming the claim
by Bernard et al. (2014) that numerical errors can be significant. Given this appears to
happen only for low levels of the fee, a possible explanation is that the regression tends
to underestimate the continuation value, thus inducing surrender even when this is not
the optimal decision. This behaviour has been detected by comparing the residuals’
plots printed at each regression step for the constant and state-dependent fee cases.
While in the constant case the residuals appeared to be balanced between positive
and negative values for all regression steps, in the state-dependent case they tended to
shift towards positive values in the last few steps. Since the LSMC algorithm proceeds
backward, thismeans that at the very first surrender decision dates the real continuation
values were generally much greater than the predicted ones, leading to earlier and
sub-optimal terminations of the contract. Therefore, in an attempt to improve the
regression, we have tested several methods, such as changing type and number of basis
functions, or using different regression techniques (e.g. generalized linearmodel, ridge
regression, the lasso),8 which, however, have not brought substantial enhancements. In
contrast, Theorem 1 has proven to be of some help to this end. From the computational
point of view, it allows us to skip the regression step in the LSMC algorithm when
At ≥ β.9

This preliminary analysis was conducted under a simpler framework with constant
interest rate, deterministic mortality intensity and asset evolution described through a
geometric Brownian motion. That is because in this framework the contract value can

7 They can be very slow, especiallywhen implying the simulation of variousmarket and biometric quantities
over long periods of time, as in the case of variable annuities. Moreover, some stochastic processes are not
trivial to simulate efficiently without bias.
8 For an illustration of these regression techniques see, for instance, Hastie et al. (2009).
9 A description of the LSMC algorithm for the case of constant fees and more general variable annuity
contracts can be found in Bacinello et al. (2011).
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Table 3 The initial contract value, under the static and the mixed approaches, for different entry ages x
of the policyholder and contract maturities T ; single premium P = 100, roll-up rate δ = 0, risk-free rate
r = 0.03, assets volatility σ = 0.165, surrender penalty p(t) = 0.05(1 − t/T )3 for any t < T , barrier
β = 150, mortality intensity m(y) = (

1 + 3.5 · 1.075y) · 10−4

x T ϕ∗ (bp) Vmixed∗∗
0 Vmixed

0 Vmixed∗
0 V static

0

50 10 190 99.99 99.65 99.96 99.53

60 10 205 99.99 99.82 99.88 98.43

70 10 237 100.00 99.75 99.84 98.38

50 20 96 99.98 99.25 99.40 99.19

60 20 119 99.98 99.54 99.98 99.38

70 20 163 100.06 99.55 100.03 99.76

Table 4 The initial contract
value, under the static and the
mixed approaches, for different
fee rates ϕ; single premium
P = 100, roll-up rate δ = 0,
risk-free rate r = 0.03, assets
volatility σ = 0.165, surrender
penalty p(t) = 0.05(1 − t/T )3

for any t < T , barrier β = 150,
age of the insured x = 50,
contract maturity T = 10,
mortality intensity m(y) =(
1 + 3.5 · 1.075y) · 10−4

ϕ (bp) Vmixed∗∗
0 Vmixed

0 Vmixed∗
0 V static

0

50 105.32 104.80 104.86 104.60

100 103.18 102.64 102.82 102.31

150 101.28 100.89 101.05 100.11

200 99.71 99.44 99.60 97.99

250 98.46 98.14 98.22 95.98

300 97.53 97.18 97.31 94.07

350 96.79 96.50 96.51 92.27

400 96.19 95.82 95.94 90.59

be obtained using partial differential equations (PDE) as discussed in MacKay et al.
(2017), hence providing us with a benchmark. In what follows we show some results
for the contract value under the mixed approach obtained by using PDE (Vmixed∗∗

0 ),
LSMC without skipping the regression step when At ≥ β (Vmixed

0 ), and LSMC by
skipping this step (Vmixed∗

0 ). For comparison, we also report the corresponding values
under the static approach (V static

0 ).
In particular, in Table 3 we reproduce some results obtained by MacKay et al.

(2017), that use the PDE approach to compute the contract values and determine also
the fair fee rate. More in detail, we compute the contract value when the fee rate is
exactly equal to its fair level reported inMacKay et al. (2017) for different policyholder
ages at inception x and contract maturities T . The number of simulations is 20000,
stochastic processes are simulated with a (forward) discretized step of 1/365 (1day),
for the surrender decision we use a (backward) discretized step of 1/4 (3months),
in the regression we employ Laguerre polynomials up to order 4, and the mortality
intensity follows a Makeham law: μt

.= m(x + t). For additional examples see also
Bacinello and Zoccolan (2018).

To produce the results reported inTable 4we choose the first example of the previous
table and analyse the improvement obtainedwith the LSMCadjustmentwhen different
fee rates (both below and above the fair level) are considered. These results seem to
indicate a better response for fee rates very close to (and below) their fair level.
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Table 5 The initial contract value, under the static and the mixed approaches, for different fee rates ϕ (in
bp) and constant surrender penalties p, along with the resulting fair fee rate ϕ∗ (in bp); single premium
P = 100, contract maturity T = 15, roll-up rate δ = 0, barrier β = 135

ϕ p = 0.00 p = 0.01 p = 0.02 p = 0.03

Vmixed
0 Vmixed∗

0 Vmixed
0 Vmixed∗

0 Vmixed
0 Vmixed∗

0 Vmixed
0 Vmixed∗

0 V static
0

1 113.26 114.17 112.89 114.14 112.65 113.77 112.42 113.59 114.02

2 107.87 108.57 107.52 108.34 107.51 108.29 107.47 108.28 109.49

3 103.92 104.58 103.48 104.24 103.04 103.80 102.65 103.50 105.15

4 101.81 102.02 101.06 101.46 100.38 100.94 99.71 100.28 100.46

5 100.65 100.91 99.82 100.10 99.08 99.34 98.31 98.56 96.68

6 99.93 100.08 99.06 99.23 98.21 98.38 97.49 97.65 93.00

7 99.51 99.56 98.62 98.70 97.71 97.83 96.82 96.98 90.11

8 99.03 99.10 98.17 98.23 97.30 97.34 96.43 96.46 87.63

ϕ∗ 590 615 485 511 429 450 390 416 410

4.4 Results under themixed approach

After this preliminary analysis in a very simple framework, we go back to our model
described in Sect. 4.1 and present some results under the mixed approach. To obtain
them we use again the least squares Monte Carlo technique with 20,000 simulations,
we simulate stochastic processes with a (forward) discretized step of 1/365, for the
surrender decision we fix a (backward) discretized step of 1/4, and the contract value
is computed through equations (18) and (20). In the regression, we employ Laguerre
polynomials of up to order 3.

In Table 5 we report the results obtained for various fee rates ϕ and constant sur-
render penalties p(t) ≡ p for any t < T , by assuming a state-dependent fee structure
with barrier β = 135 and roll-up rate δ = 0. In particular, to catch the difference
between the contract value under the static and the mixed approaches, as well as the
improvement obtained by introducing in the LSMC algorithm the arrangement based
on Theorem 1, we show the contract value under the static approach (V static

0 ) and under
the mixed one before and after the adjustment (Vmixed

0 and Vmixed∗
0 , respectively). In

the last row of the table we also display the resulting fair fee rate ϕ∗.
FromTable 5 first of all we can see that the contract value under themixed approach

and, consequently, also the corresponding fair fee rate ϕ∗ are decreasing with the
(constant) surrender penalty p, as expected, no matter whether we apply or not the
adjustment to the LSMC algorithm. Moreover, as in the static approach, the contract
value also decreases with the fee rate ϕ. As anticipated, the contract value under the
mixed approach before the adjustment, Vmixed

0 , is lower than that under the static
approach, V static

0 , for (relatively) low levels of the fee. The introduction of the adjust-
ment based on Theorem 1 always improves the results, resulting in Vmixed∗

0 > Vmixed
0

for any level of penalty and fee, although this improvement is more apparent for low
levels of the fee, when, very likely, the surrender incentive has been completely elim-
inated and hence the adjustment turns out to be more helpful in order to stem the

17



A. R. Bacinello, I. Zoccolan

●

●

●

●

●

●
●

●
●

● ●

100

105

110

115

0.000 0.025 0.050 0.075 0.100

Fee

C
on

tra
ct

  v
al

ue

Fee_structure
● CST

SD

Fig. 4 The initial contract value, under the mixed approach, versus the fee rate, for both constant and state-
dependent fees; single premium P = 100, maturity T = 15, roll-up rate δ = 0, barrier β = 135, surrender
penalty p(t) = 2% for any t < T

regression error. However, this error is not fully removed even after the adjustment,
again for low levels of the fee, especially when combined with high penalties. Any-
way, the theoretical relation between the corresponding fair fee rates under static and
mixed approach is always preserved after the adjustment, while this is not the casewith
a surrender penalty of 3% before the adjustment. Finally, if we compare the results
between mixed (adjusted) and static approaches in terms of fair fee rates, we have a
considerable spread (205 bp)10 when there are no surrender penalties, and this spread
reduces to 101, 40 and 6 bp for surrender penalties of 1%, 2% and 3%, respectively.
Then we can clearly perceive the effect of the penalty on the reduction/elimination of
the surrender incentive (as happenswith the introduction/reduction of the fee threshold
β).

Now we only show some results under the mixed approach and use the adjusted
algorithm in order to produce them. In particular, in Fig. 4 we plot the contract value
against the fee rate ϕ both in the case of state-dependent fees (again with roll-up 0,
barrier 135 and constant penalty 2%) and in that of constant fees.

Unlike in the static approach, from Fig. 4 we can see that the introduction of the
surrender option has practically eliminated the difference between the contract value
implied by a state-dependent and a constant fee structure, at least for high levels of
the fees (over the corresponding fair fee rates). On the other hand, the contract value
is exactly the same when no fees are applied (and it coincides with that in the static
approach), because in this case guarantees at death and maturity are offered for free
and hence it is never convenient to prematurely exit the contract. There remains a
perceptible difference between the contract value with state-dependent and constant
fees only when the fee rate is low, but this does not seem to influence much the

10 This spread represents the implied cost of the surrender option.
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Fig. 5 The initial contract value, under the mixed approach, versus the state-dependent fee rate, for different
penalty structures; single premium P = 100, maturity T = 15, roll-up rate δ = 0, barrier β = 135

corresponding fair fee rates that remain very close to each other (430 bp with constant
fees and 450 bp with state-dependent ones).

Coming now to another aspect of the contract design, given by the surrender penalty,
in Fig. 5 we display the initial contract value versus the (state-dependent) fee rate for
three different penalty structures: constant penalty p(t) = 2%, cubically decreasing
penalty11 p(t) = 0.08(1 − t/T )3, and exponentially decreasing penalty p(t) = 1 −
e−0.0405(1−t/T ), all for any t < T . The last two surrender penalty structures are (special
cases of) those employed by MacKay et al. (2017), and their parameters have been
fixed in such a way that the average penalty over the 15-year time horizon is 2%.
In particular, they both tend to 0 as t → T ; the cubically decreasing penalty is four
times the constant one when t = 0 and rapidly decreases reaching the constant penalty
during the sixth year of contract; the level of the exponentially decreasing penalty is
almost twice the constant one when t = 0 and then decreases more slowly, attaining
the constant penalty during the eighth contract year.

From Fig. 5 we can see that for low levels of the fee (below the fair fee rate), all the
three graphs are overlapping. This confirms the previous results, obtained in the case
of constant penalties: for these fee levels it is never optimal to surrender the contract;
hence, the contract value is independent of the penalty structure and is the same as
in the static approach. When instead the fee becomes higher, the constant penalty
structure becomes less penalizing (high contract values), the exponentially decreasing
produces intermediate values of the contract, while the cubically decreasing structure
turns out to be more penalizing. The gap between the contract value under the two
different decreasing penalty structures becomes higher as the fee rate increases. When
surrender is convenient (high levels of the fee), it is then more advantageous for the
policyholder to have constant rather than decreasing penalties, thus suggesting that the

11 In Fig. 4 it is simply referred to as decreasing.
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Table 6 Some synthetic statistics on the frequencies of death and surrender (in percentage) and on the distri-
bution of death and surrender times (in years) for fair contracts and different penalty structures p(t), t < T ;
single premium P = 100, contract maturity T = 15, roll-up rate δ = 0, barrier β = 135

Frequency of exit causes p(t) = 2% p(t) = 1 − e−0.0405(1−t/T ) p(t) = 0.08(1 − t/T )3

ϕ∗ = 450 bp ϕ∗ = 392 bp ϕ∗ = 388 bp

Surrender 65.565 52.570 35.115

Death 5.340 7.450 10.185

Maturity 29.095 39.980 54.700

Average contract duration 5.768 7.996 11.214

Average surrender time 1.502 2.676 6.271

Average death time 7.838 7.947 7.926
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Fig. 6 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up rate
δ = 0, barrier β = 135, surrender penalty p(t) = 2% for any t < T , fee rate ϕ = 450 bp

convenience to exit the contract is soon enough, before the crossing between constant
and decreasing penalties, i.e. while the constant penalty is still the lowest. Finally,
the corresponding fair fees under constant, cubically and exponentially decreasing
structures are 450, 388 and 392 bp, respectively.

To further investigate the role of different contract configurations (threshold expense
structure and surrender penalty structure, in particular) in reducing/eliminating the
surrender incentive, as well as to get some information on the profile of expected
policyholder behaviour induced by such configurations, in Table 6 we report some
synthetic results on the distribution of death and surrender times corresponding to the
penalty structures used in Fig. 5, while in Figs. 6, 7 and 8 we display the surrender and
death distribution over time corresponding to each penalty structure. This analysis is
conducted only for fair contracts. In fact, the insurance company is obviously interested
in seeing what happens to contracts offered for sale that should be attractive to both
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Fig. 7 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up rate

δ = 0, barrier β = 135, surrender penalty p(t) = 1− e−0.0405(1−t/T ) for any t < T , fee rate ϕ = 392 bp
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Fig. 8 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up rate
δ = 0, barrier β = 135, surrender penalty p(t) = 0.08(1 − t/T )3 for any t < T , fee rate ϕ = 388 bp

contractors, hence fair. On the other hand, we have already seen, from the previous
analysis, that when fees are too low (under the fair fee level) the surrender incentive
has been completely eliminated leading to the equality between contract values under
static and mixed approaches.

The results reported in Table 6 and Fig. 6 for the case of constant penalties are
quite worrying, not only for the high percentage of exits for surrender (more than
65%), but above all for the fact that a high percentage of them is concentrated in the
first year of contract. In fact, in around 40% of the simulated paths surrender takes
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place in the first year, amounting at 61.32% of paths with surrender as exit cause.
The resulting average contract duration is only 5.768 years. On the one hand, it could
be expected that, with constant penalties, surrender is more likely to take place in
the beginning, because the surrender penalty is not high enough to overcome fees
that will be applied for all the remaining contract duration (provided the account
value is below the barrier). Moreover, in the beginning the surrender incentive is not
eliminated because we have fixed a barrier which is 35% higher than the initial account
value. On the other hand, a lower level of the barrier, for instance equal to the initial
account value, has proven to be completely impractical for the contract marketability
due to the high level of the implied fair fee rate (1130 bp in the static approach, see
Table 2). Moreover, although the American-style contingent-claim approach that we
have followed to price the contract provides the worst-case scenario from the insurer’s
viewpoint, it would be dangerous to offer the contract at a fee rate lower than its fair
level because the policyholder has the right to act according to this scenario.

In order to reduce this phenomenon the insurance company could try to modify the
penalty structure by adopting a time-decreasing one. From Table 6 and Fig. 7 we can
see that the exponentially decreasing penalty is not very effective for this purpose. The
percentage of exits for surrender remains still very high (more than 52%), and again
around 23.5% of simulated paths imply surrender in the first year of contract (44.75%
of paths ending with this exit cause). The average contract duration increases more
than 2years, reaching quota 7.996.

The cubic decreasing penalty, instead, turns out to be more effective. In this case
the percentage of surrenders reduces to 35.115%, still high but not so problematic as
before because only 0.185% of simulated paths ends with surrender in the first year of
contract. The skewness of the surrender distribution is strongly reduced, with a modal
value in the sixth year of contract, when the cubic penalty crosses the level of 2% of
the constant one. Anyway, in this year the percentage of simulated paths ending with
surrender is less than 7%, amounting at 19.52% of exits for this cause. Finally, the
average contract duration, 11.214 years, remains completely acceptable (see Table 6
and Fig. 8).

The above analysis shows that the penalty structuremay be very effective in order to
address the surrender behaviour of the policyholder. Then one way to improve the final
result could be to further increase the surrender penalties, particularly in the first year
of contract.12 This result would be reinforced by a corresponding reduction in the fair
fee rate. However, some caution is still needed because too high surrender penalties
could disappoint potential customers and eventually turn back on the marketability of
the insurance product.

The adoption of a threshold expense structure, instead, has not eliminated the surren-
der incentive, unless the contract is underpriced or the surrender penalty is increased.13

A question that arises naturally is therefore the following: What would have happened
without a barrier? To verify if the introduction of the barrier, combined with the previ-
ous penalty functions, has at least reduced (although not eliminated) surrenders, and

12 There are some variable annuity providers, e.g. Intesa Sanpaolo Life, that do not even admit surrender
in the first year of contract. This would be equivalent to fixing p(t) = 1 for t ≤ 1.
13 See also Table 5, from which it can be inferred that a constant penalty just over 3% allows to eliminate
the surrender incentive also for fair contracts.
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Table 7 Some synthetic statistics on the frequencies of death and surrender (in percentage) and on the distri-
bution of death and surrender times (in years) for fair contracts and different penalty structures p(t), t < T ;
single premium P = 100, contract maturity T = 15, roll-up rate δ = 0, barrier β = ∞
Frequency of exit causes p(t) = 2% p(t) = 1 − e−0.0405(1−t/T ) p(t) = 0.08(1 − t/T )3

ϕ∗ = 430 bp ϕ∗ = 360 bp ϕ∗ = 320 bp

Surrender 68.275 59.590 49.695

Death 4.990 6.405 8.035

Maturity 26.735 34.005 42.270

Average contract duration 5.411 7.024 8.931

Average surrender time 1.482 2.380 3.953

Average death time 7.799 7.879 7.796
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Fig. 9 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up rate
δ = 0, barrier β = ∞, surrender penalty p(t) = 2% for any t < T , fee rate ϕ = 450 bp

to what extent, in what follows we repeat the analysis as before, but now with constant
fees. In particular in Table 7 we report our synthetic results, and in Figs. 9, 10 and 11
we display the surrender and death distributions over time.

Comparing Table 7 with Table 6 we can see that the introduction of the barrier
actually reduces the surrender exits and increases the average contract duration for all
three penalty structures. However, this effect is very limited in the case of a constant
penalty, where the surrender exits decrease of only 2.71%, with an increase in the
contracts reaching maturity of 2.36%. The average contract duration increases by just
over 4months, and the average surrender time stretches for about 7days. In the case of
exponentially decreasingpenalties this effect is a bitmore substantial: the percentage of
surrenders reduces of 7.02%, that of contracts reaching maturity increases of 5.975%,
the average contract duration increases of almost 1year and the average surrender
time of about 3 and 1/2 months. Finally, the effect is rather substantial in the case
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Fig. 10 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up
rate δ = 0, barrier β = ∞, surrender penalty p(t) = 1− e−0.0405(1−t/T ) for any t < T , fee rate ϕ = 392
bp
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Fig. 11 Annual distribution of surrender and death; single premium P = 100, maturity T = 15, roll-up
rate δ = 0, barrier β = ∞, surrender penalty p(t) = 0.08(1 − t/T )3 for any t < T , fee rate ϕ = 388 bp

of cubically decreasing penalties, where the surrender exits decrease of 14.58%, the
contracts reaching maturity increase of 12.43%, the average contract duration and the
average surrender time increase by more than 2years and 3months and almost 2years
and 4months, respectively. Hence, once again, the adoption of state-dependent fees is
much more effective if combined with a suitable penalty structure.

As far as the surrender distribution is concerned, we notice that the introduction of
the barrier does not move the modal point in the case of constant and exponentially

24



Variable annuities with a threshold fee…

decreasing penalties, that remains still in the first year of contract. In particular with
constant penalties the frequency of simulated paths ending with surrender during the
first year of contract passes from 45.225 to 40.205% due to the introduction of the
barrier (that is from 66.24 to 61.32% of the exits for surrender),14 and with expo-
nential penalties from 27.11 to 23.525% of the total paths (respectively, from 45.49
to 44.75% of the paths ending with surrender).15 In the case of cubically decreas-
ing penalty, instead, the introduction of the barrier allows to move the modal point
forward, from the second to the sixth year of contract, with 12.12% and 6.855%,
respectively, of simulated paths ending with surrender in these years (24.39% and
19.52%, respectively, of total surrenders).16

Another relevant aspect is linked to possible adverse selection introduced by the
surrender option. In particular, in our model, one could expect a deterioration in the
health conditions of the insureds who do not give up their contracts. In fact, surrender
is only driven by endogenous reasons, aimed at maximizing, under the risk-neutral
measure, the value of the contract pay-off, nomatter if the benefit is directly paid to the
policyholder or to her heirs. Then, if the insured is in a very bad health status, it may
be convenient to ‘wait for death’ (rather than surrendering the contract) in order to
get the entire account value, or the guaranteed amount if higher (instead of the lower,
due to the penalty, surrender benefit). Conversely, if the policyholder feels in excellent
health, it may be convenient to suffer the surrender penalty rather than the application
of fees for a (supposedly) long period of time.

The adverse selection phenomenon is addressed in the paper by Benedetti and
Biffis (2013) that models and analyses its dynamics by representing the conditional
survival probabilities of policyholders through a frailty process. Although this analysis
is beyond the scope of our paper, and we are well aware that it should be conducted
under the physical measure, we conclude this section by giving some information
on the frequencies of death, with and without surrender, observed in our simulations
(under the risk-neutral measure).

The probability of death within the contract maturity implied by our model is equal
to 13.710%. The frequency of death in our simulation results under the static approach
(i.e. when surrender is not admitted) is 13.955%. Under the mixed approach, instead,
and in the last six examples reported in Tables 6, 7 and Figs. 6, 7, 8, 9, 10, 11, this
frequency reaches on average the level of 15.744% (minimum 15.507%; maximum
15.973%) ifwe, very roughly,measure the risk exposure during the 15years of contract
duration by subtracting from the total number of simulated paths those ending with
surrender. Suchmethod, of course, overestimates the real frequency because also paths
ending with surrender have been exposed to risk for a while. On the other hand, if we
consider also the surrender paths, byweighting themwith their time of exposure to risk,
we get an average frequency of 12.905% (minimum 12.673%; maximum 13.114%),
that very likely provides an underestimation of the real one due to the fact that these
paths have been exposed to risk in the first years of contract (i.e. at younger ages),
when the probability of death is presumably lower. Anyway, we do not detect any

14 See Figs. 9 and 6.
15 See Figs. 10 and 7.
16 See Figs. 11 and 8.
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trend, and in particular any type of monotonicity of these frequencies with respect
to the number of surrenders, so that it would be completely hazardous to draw some
conclusion from these results, that we show just for information.

5 Summary and conclusions

In this paper we have proposed a quite general Monte Carlo-based valuation model
for variable annuities providing guarantees at death andmaturity and financed through
the application of a state-dependent fee structure of the threshold type. The interac-
tion among fee rates, death/maturity guarantees, fee thresholds and surrender penalties
under alternative policyholder behaviours has been extensively analysed fromanumer-
ical point of view, letting us to better finalize the contract design. For the numerical
implementation of the valuation model we have used Monte Carlo and least squares
MonteCarlomethods. In particular, a straightforward application of LSMC techniques
has turned out to be a bit problematic for low levels of the fee, due to the shape of the
surrender region, but a suitable arrangement of the LSMC algorithm based on a the-
oretical result first derived in MacKay et al. (2017) and here generalized has allowed
us to stem this problem.

Our analysis suggests that the adoption of a threshold expense structure can be
effective in order to achieve a first goal, that is to reduce/eliminate the surrender
incentive, especially if combined with suitable surrender penalties. However, this may
come at the cost of seriously compromising the marketability of the variable annuity
product due to the high level of the fee rate required to price it fairly. As we have
seen from the numerical examples, this effect can be damped by suitably increasing
the barrier level, but in this way the second goal of state-dependent fees, that is to
eliminate the misalignment between fees and cost of the guarantees, can be hampered.
Hence, the problem of choosing the contract parameters, trying to ‘optimize’ the trade-
off between them, becomes very crucial, particularly in this period of low interest rates.
In this sense our numerical analysis can be helpful. An alternative way to partially
pursue the above-mentioned goals without charging fees at an excessively high rate
could be to keep constant the total (instantaneous) fees once the account value reaches
(and exceeds) the barrier β. More precisely, this could be achieved by defining the
state-dependent fee rate ψt introduced in Sect. 2 as ψt = ϕ · (At ∧ β)/At , so that it
would preserve continuity with respect to the account value, as in the case of constant
fees. In particular, ψt would still converge to 0 when the account value At diverges,
without, however, jumping immediately to 0 when At reaches β (from below).

Acknowledgements We are very grateful to two anonymous referees for providing us with focused com-
ments and suggestions that led to an enriched version of the paper.
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Appendix: Proof of Theorem 1

For convenience, we let

bLu = bSu1{u<T } + bAT 1{u≥T }, (26)

so that we can rewrite equation (19) in the following, more compact, way:

Vt (λ) = E

[∫ λ∧T

t
bDy e

− ∫ y
t (rv+μv)dvμydy + bLλe

− ∫ λ∧T
t (rv+μv)dv

∣∣∣∣Gt

]
. (27)

Recall that At ≥ β, and define

ε = inf{u ∈ (t, T ) : Au < β} ∧ T . (28)

In particular, ε ≤ T . Moreover, Au ≥ β ∀u ∈ [t, ε), so that, ‘before’ ε, the fee is not
applied and hence the discounted account value behaves as a martingale. Of course, ε
is a stopping time with respect to the filtration G, i.e. ε ∈ T

c
t . Then the continuation

value satisfies

V c
t = sup

λ∈Tc
t

Vt (λ) ≥ Vt (ε) = E

[∫ ε

t
bDy e

− ∫ y
t (rv+μv)dvμydy + bLε e

− ∫ ε
t (rv+μv)dv

∣∣∣∣Gt

]
.

Observe that

bDy = max
{
Ay, Pe

δy} ≥ Ay ≥ Ay [1 − p(y)] ≥ Ay [1 − p(t)] ∀y ∈ [ t, T ],

where, for convention, we set p(T ) = 0. The second inequality is due to the fact that
p(y) ≥ 0 and the third to the (weak) monotonicity of the surrender charge function
p. In particular, if p(t) > 0 then bDy > Ay [1 − p(t)]. Similarly,

bLε = Aε [1 − p(ε)] 1{ε<T } + max
{
Aε, Pe

δε
}
1{ε=T } ≥ Aε [1 − p(t)] .

All this implies

V c
t ≥ [1 − p(t)] E

[∫ ε

t
Aye

− ∫ y
t (rv+μv)dvμydy + Aεe

− ∫ ε
t (rv+μv)dv

∣∣∣∣Gt

]
, (29)
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again with a strict inequality if p(t)>0. Now we have:

E
[
Aεe

− ∫ ε
t (rv+μv)dv

∣∣Gt

]
= E

[
E

[
Aεe

− ∫ ε
t (rv+μv)dv

∣∣ε,Gt

] ∣∣∣Gt

]

= E
[
E

[
Aεe

− ∫ ε
t rvdv

∣∣ε,Gt

]
E

[
e− ∫ ε

t μvdv
∣∣ε,Gt

] ∣∣∣Gt

]

= E
[
At Q(τ > ε|τ > t, ε,Gt )

∣∣∣Gt

]

= At E
[
Q(τ > ε|τ > t, ε,Gt )

∣∣∣Gt

]
. (30)

In particular, (30) follows from the law of iterated expectations, the stochastic inde-
pendence of the mortality intensity μ from the financial variables r and A, and the
martingale property of the discounted account value when working ‘before’ ε. Fur-
thermore, with similar algebraic manipulations we obtain:

E

[∫ ε

t
Aye

− ∫ y
t (rv+μv)dvμydy

∣∣∣Gt

]
= E

[
E

[∫ ε

t
Aye

− ∫ y
t (rv+μv)dvμydy

∣∣∣ε,Gt

] ∣∣∣∣Gt

]

= E

[∫ ε

t
E

[
Aye

− ∫ y
t (rv+μv)dvμy

∣∣∣ε,Gt

]
dy

∣∣∣∣Gt

]

= E

[∫ ε

t
E

[
Aye

− ∫ y
t rvdv

∣∣∣ε,Gt

]
E

[
e− ∫ y

t μvdvμy

∣∣∣ε,Gt

]
dy

∣∣∣∣Gt

]

= E

[∫ ε

t
At E

[
e− ∫ y

t μvdvμy

∣∣∣ε,Gt

]
dy

∣∣∣∣Gt

]

= At E

[
E

[∫ ε

t
e− ∫ y

t μvdvμydy
∣∣∣ε,Gt

] ∣∣∣∣Gt

]

= At E

[
Q(τ ≤ ε|τ > t, ε,Gt )

∣∣∣∣Gt

]
. (31)

Finally, combining (31) and (30) with (29) gives

V c
t ≥ [1 − p(t)] At = bSt . �
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