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Notation and Constants

• Natural Units - In this thesis we will use natural units and hence c = ℏ = 1.

• Vectors - Three vectors will be written in bold font so that as x = (x1, x2, x3)
whereas four vectors will be written in plain text, hence x = (x0, x1, x2, x3).

• Set Notation - Sets will be written in blackboard bold font, for example the
set of positive real numbers is R+.

• Operators - All operators in Hilbert spaces will be noted by hats, for exam-
ple a system Hamiltonian is written Ĥ .

• Any other mathematical notation will be described were it is introduced in
the text.
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Chapter 1

Introduction

It has never been clear to even the creators of quantum mechanics how to in-
terpret the mathematical framework of the theory. Almost since its inception
the biggest issue that has plagued the interpretation of quantum mechanics is
the measurement problem [16]. This is the issue that quantum mechanics has
two forms of evolution but no set rule for when to use which form. The first
type is unitary evolution, which is time reversible and preserves superpositions.
This describes the evolution of isolated systems, and is given by the Schrödinger
equation. The second type is the evolution described by positive operator valued
measures (POVMs) which is irreversible, destroys superpositions and describes
a quantum system under going a measurement.

When describing an idealised experimental set-up these two forms of evolution
allow results to be predicted. Suppose there is a system made up of a quantum
system and classical measurement apparatus controlled by an external observer.
The quantum system evolves under unitary evolution which may result in the
state being in a superposition in a particular basis. When the observer decides to
make a measurement that basis, the system interacts with the apparatus, which
collapses the state [63, chapter 6]. This collapse occurs because the measurement
apparatus is classical and so must must a definite measurement result as it cannot
be in a superposition1. The ‘problem’ part of the measurement problem is that the
universe is not divided neatly up into quantum systems and classical observers
performing measurements. If quantum mechanics is to be a fundamental theory
which seeks to describe the behaviour of the whole universe then it must be able
to include scenarios where there are no observers performing measurement, e.g.

1One could describe the measurement apparatus as quantum as well, so that it enters a super-
position after interacting, but then one must describe how that superposition collapses to give a
definite result.
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in the very early universe. A solution to the measurement problem must therefore
offer an explanation to how and why the state collapses.

Many physicists do argue that quantum mechanics (and relativistic quantum
field theory) is a low energy limit of a more fundamental theory which is also
compatible with general relativity [22]. Addressing the measurement problem is
an important endeavor as any candidate theory will have to answer the question
of what causes the macroscopic world to appear classical when the microscopic
world is not.

Two of the most famous suggestions that reinterpret quantum mechanics to solve
the measurement problem are the many worlds interpretation [29, 62] and Bohmian
mechanics [17, 18, 55]. Both of these give exactly the same predictions for the re-
sults of experiments as quantum mechanics, which makes them unattractive as
theories to some as they are not falsifiable.

In contrast, spontaneous collapse models are a proposed alteration to quantum
mechanics, and hence offer different predictions to conventional quantum me-
chanics. Spontaneous collapse models are a class of quantum dynamics where,
in addition to the usual unitary evolution of the state given by the Hamiltonian,
there is a non-unitary stochastic part of the evolution which causes the state to
spontaneously collapse. Chapters 2 and 3 will introduce in detail two of the
most important collapse models, the Ghirardi-Rimini-Weber model and continu-
ous spontaneous localisation, but here we will give a brief, non-technical general
overview of collapse models in to prepare the reader for what is to come.

Spontaneous collapse models, first introduced by Ghirardi-Rimini-Weber [36]
and Pearle [45], solve the measurement problem by replacing the two forms of
evolution in conventional quantum mechanics with a single form of non-linear
evolution. This evolution is a combination of the normal unitary part and a
stochastic part, which has the effect of driving the system to an eigenstate of a
particular eigenbasis, hence destroying superpositions in that basis.

As there is a single form of evolution there is no need to include the idea of an
observer performing a measurement to interpret the model, states of isolated sys-
tems collapse on their own. Of course, it is known experimentally that micro-
scopic systems can remain in superpositions and do not immediately collapse, so
the effect of the stochastic dynamics must be weak enough to be negligible for a
single particle (or a low number of particles), i.e. the rate of collapse for a single
particle must be extremely low. Collapse models have one or more free param-
eters that characterise the frequency of the collapse and the spread of the state
after collapse.

However, macroscopic systems are never observed in superpositions, for a large
number of particles the dynamics must virtually guarantee that the system col-
lapses. Spontaneous collapse models successfully predict this using properties
of entanglement. Systems with large numbers of particles become entangled
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through interaction, then any single particle spontaneously collapsing will col-
lapse all particles it is entangled with. This effectively increases the rate of col-
lapse for systems with high numbers of particles, such that macroscopic bodies
are localised on extremely short time scales. This is often called the amplification
mechanism and it ensures macroscopic classicality.

We have stated that collapse models cause collapse in one particular basis; since
the intended purpose of spontaneous collapse models is to explain why macro-
scopic objects are only in one place at a time, the most common choice is the
number density or mass density basis since these ensure that superpositions in
position are destroyed.

Of course, the measurement problem extends beyond just spatial measurements,
it is necessary to explain how superpositions in all eigenbases are destroyed upon
measurement. The collapse model solution to this issue is to note that all mea-
surements involve coupling the degree of freedom of interest to the position of a
macroscopic object. For example the spin of a particle is measured by that particle
interacting with a macroscopic ‘pointer’ which is made up of a large number of
particles, whose different positions corresponds to the different outcome of mea-
surements. After interaction the particle and pointer will be entangled and if the
particle is in a spin superposition then the pointer will be in a position superpo-
sition, see [11] for a demonstration of this As the pointer is made up of a large
number of particles then the amplification mechanism acts on the pointer and
hence the particle collapses almost immediately, giving a definite measurement
result for the value of the spin.

However there are several issues that must be solved for a spontaneous collapse
model to be taken seriously as a replacement for conventional quantum mechan-
ics. The first is that most collapse models do not conserve energy and predict that
the energy of a system goes to infinity in the infinite time limit [10]. Some models
[52], known as dissipative models, do not experience this issue but these are not
Galilei covariant,[32].

A second issue is that many people view collapse models as phenomenological
models [9], meaning that there is not physical justification for additional stochas-
tic terms. On the one hand this could be viewed as a strength as it means that, if
verified empirically, collapse models leave space and act as a clue for an as-yet-
undiscovered more fundamental theory. On the other hand, this lack of underly-
ing theory means that the constants which characterise these models are not set,
making it difficult to verify the theory as the parameter space is large.

The third issue, which is the subject of this thesis, is that as originally formulated
spontaneous collapse models are not in agreement with special relativity. For col-
lapse models to replace quantum mechanics there must be a relativistic collapse
model, analogous to relativistic quantum field theory for quantum mechanics.

If it can be shown that no successful relativistic collapse model exists, then this
could imply that at best a spontaneous collapse model could be the low energy
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limit of some other theory. This would still pose a problem as high energy sys-
tems suffer from the measurement problem. The other possibility is that special
relativity itself is incorrect and therefore is not an appropriate condition to apply.
.

This thesis seeks to answer the question of if a relativistic collapse model is pos-
sible.

In chapter 2 the Ghirardi-Rimini-Weber (GRW) model is introduced, in chapter
3 the continuous spontaneous localisation (CSL) model is introduced. In chapter
4 we consider what it means for spontaneous collapse models to be consistent
with special relativity and review the existing proposed relativistic models and
their issues. In chapter 5 we show that a relativistic generalisation of a many
particle GRW type collapse model is not possible. In chapter 6 we demonstrate
that a relativistic generalisation of CSL is not possible. Finally, chapter 7 gives the
conclusions and reviews the limitations of the present work before offering some
outlook.
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Chapter 2

The Ghirardi-Rimini-Weber Model

The first consistent spontaneous collapse model to be proposed was the Ghirardi-
Rimini-Weber (GRW) Model [36]. This is a non-relativistic model describing dis-
tinguishable particles where the spontaneous collapse occurs via discreet jumps
of the state from an un-collapsed state to a collapsed state.

Here we will present the GRW model for a single particle before expanding to
the case ofN distinguishable particles. As in conventional quantum mechanics, a
single particle system at time t is described by a wave function ψt(y). For the pur-
poses of this explanation we will consider scalar particles and neglect spin, hence
the Hilbert space of the system is H = L2(R3). The system has a Hamiltonian, Ĥ
which governs the unitary evolution.

The evolution has two components. The first is the spontaneous collapse, where
the state undergoes collapse at random times given by a stochastic process. The
time interval, ∆t, between two collapses of the state is a value in the realisation of
a stochastic process labelledX , see figure 2.1. For GRWX is a Markovian Poisson
point process with mean time τ , so the probability density function for ∆t is:

P(∆t) =
1

τ
exp(−∆t/τ) (2.1)

where τ is a free parameter of the model that sets the rate of collapse.

When the state collapses, it collapses about a point x and undergoes an instanta-
neous change:

ψt(y)→ ψ(c)
t (y) =

L̂(x)ψt(y)

∥L̂(x)ψt(y)∥
(2.2)

where ∥·∥ is the norm and L̂(x) is the collapse operator:
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Figure 2.1: Schematic GRW model for a single particle. The dotted black lines show
the hypersurfaces where collapses occur. The solid blue lines show the amplitude
of the state immediately after collapse. Here the initial collapse, x0, is at the origin

and the next collapse will occur at time t = ∆t.

L̂(x) :=
(︃

1

r2cπ

)︃ 3
4

exp

[︃
−(x− q̂)2

2r2c

]︃
(2.3)

where rc is a free parameter of the model and q̂ is the position operator of the
particle. The probability that the state collapses about a point x is given by:

P (x|ψt(y)) = ∥L̂(x)ψt(y)∥2 (2.4)

The form of L̂ guarantees that the probably distribution is normalised:∫︂
d3x P (x|ψt(y)) = 1. (2.5)

The second component of the evolution is unitary evolution that occurs between
the collapses which is given by the standard Schrödinger equation:

i
d|ψt⟩
dt

= Ĥ|ψt⟩. (2.6)

where ψt|y⟩ → |ψt⟩. The model is initialised at time t = t0 with the state ψt0(y),
the first collapse occurs at time t1 = t0 +∆t. The initial state is evolved to t1 with
unitary evolution then the state collapses about a point x1 following equation Eq.
(2.2). The probability distribution for the position of x1 is given by Eq. (2.4). This
procedure then repeats itself for every value of the stochastic process.
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(a) “Large superposition” (b) “Small superposition”

Figure 2.2: Schematic diagram showing how rc affects the collapse. If the separation
between peaks of the state d is much greater than rc the state collapses to a single

peak but if rc ≫ d the state is left in a superposition.

To see how this procedure destroys spatial superpositions let us consider a simple
example. Suppose at t = t0 the initial state of the particle is in a superposition:

ψt0(y) = C(fz1(y) + fz2(y)) (2.7)

where C is a normalisation constant and f is a family of functions parameterised
by the coordinate z:

fz(y) =
1√︁
σ
√
2π
e

−(y−z)2

4σ2 (2.8)

i.e. it is a Gaussian function centred on z with width σ. We take σ ≪ |z1 −
z2| such that the tails of the two functions in ψt0(y) do not overlap significantly.
Additionally, we assume that rc ≪ |z1 − z2|, otherwise the state would not be
affected by the collapse. The GRW model tells us that after time ∆t there will be
a collapse around x. It is simple to see by substituting Eq. (2.7) into Eq. (2.4) that
the probability distribution for x is maximised at z1 and z2

1.

For example, let us assume that the collapse occurs at z1, then Eq. (2.2) gives:

ψ(c)
t1(y) =

L̂(z1)ψt1(y)

∥L̂(z1)ψt1(y)∥
(2.9)

Due to the exponential weighting of Eq. (2.3) the operator L̂(z1) will suppress the
amplitude of the state far away from z1. This means that the part of the amplitude
of the state peaked about z2 will become negligible, leaving only a peak at z1 (see
figure 2.2a). This leaves the system in the state:

ψ(c)
t1(y) ≈ fz1(y) (2.10)

1We assume that the unitary evolution between t0 and t1 has had a negligible effect on the
spread of the state.
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The effect the collapse given by Eq. (2.2) is that after the collapse the state is
localised about x, which destroys spatial superpositions. The parameter rc spec-
ifies the resolution of the collapse, i.e. only superpositions larger than rc will be
affected by the spontaneous collapse (see figure 2.2a) while smaller superpos-
tions will not be collapsed (see 2.2b). Together, the two free parameters τ and rc
characterise GRW.

2.1 The GRW Model for Distinguishable Particles

The single particle model can easily be extended to the N distinguishable particle
case. Here, the state is ψt(y1,y2...) in a Hilbert space H = L2(R3N). Instead of
there being a single stochastic process there are N independent stochastic pro-
cesses, one for each of the particles (although τ is the same for all of these pro-
cesses).

The collapse operator for the nth particle is:

L̂
n
(x) :=

(︃
1

r2cπ

)︃ 3
4

exp

[︃
−
(x− q̂n)

2

2r2c

]︃
(2.11)

where q̂n is the position operator of the nth particle. The effect of the collapse and
the probability of collapse is found in the same way as for the single particle case.

The key difference between the single and multiple particle case is the presence of
the amplification mechanism. A many particle system can have particles that are
entangled with each other. This entanglement means that if one of the particles
undergoes a spontaneous collapse then all the particles it is entangled with are
also affected and also undergo collapse. Since each particle has the same rate of
collapse, the entanglement means that the overall rate of collapse is proportional
to the number of particles, i.e. if the rate for a single particle is 1

τ
then for N

particles it is N
τ

, see [10] for further explanation of this.

This increased collapsed rate with many particles is called the amplification mech-
anism and it is what causes macroscopic bodies to behave classically; since the
effective rate of collapse is very high, they are never found in superpostions. In
this sense the parameters of GRW can be thought of as defining the transition
between the microscopic quantum and macroscopic classical realms, as rc gives
the maximum length scale superposition can persist for and τ fixes the number
of particles needed to collapse a system in a negligibly short time.

To see how the amplification mechanism works we can consider a 2 particle sys-
tem that is initially entangled, such that each particle has an amplitude peaked at
two points. The two particle system has the Hilbert space H = L2(R3)⊗ L2(R3).
The initial state is:

ψt0(y1,y2) = D
(︂
fz1+δ(y1)⊗ fz1−δ(y2) + fz2+δ(y1)⊗ fz2−δ(y2)

)︂
(2.12)
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Figure 2.3: Schematic diagram showing two the support of two initially entangled
particles, the dotted line is the support of particle one and the dashed line is the sup-
port of particle two if they did not undergo collapse. If, at t1, particle one collapses

at z1 + δ then particle two will collapse at z1 − δ.

where D is a normalisation constant and δ is a small distance (|z1 − z2| ≫ δ)
included in the state so that the two particles are not in exactly the same location,
see figure 2.3. We assume that z1 and z2 are sufficiently far apart that the overlap
between the tails of the functions fz1 and fz2 is negligible. For the sake of this
example, assume that the first particle to undergo collapse is particle one which
is localised to z1 + δ. Particle two will automatically be localised to z1 − δ as well
i.e. after collapse the state will be:

ψt1(y1,y2) ≈ fz1+δ(y1)⊗ fz1−δ(y2) (2.13)

So although the collapse rate for each particle is 1
τ

the entanglement means that
the rate is effectively doubled. This demonstrates the amplification mechanism.

2.2 The evolution of the density operator

So far we have only considered the evolution of the system in terms of the state
ψt. However, if we wished to consider the time evolution of physical quantities
then it is convenient to know how the density operator ρ̂ evolves.

For this section we will consider the single particle case, see [10] for the N particle
case.

It has been shown in [10] that this time evolution is given by:

dρ(t)ˆ

dt
= −i[Ĥ, ρ(t)ˆ ]− 1

τ
(ρ(t)− T [ρ(t)]) (2.14)
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where Ĥ is the normal system Hamiltonian and T [·] is:∫︂
d3x L̂(x)|ψt⟩⟨ψt|L̂(x) (2.15)

Equation (2.14) is referred to as the master equation. It is easy to see how the
master equation preserves the normalisation of ρ̂(t) as it is trace preserving [43].

From here we can compare the expectation and variance of the position and mo-
mentum to the conventional quantum mechanics case. For simplicity we will
work in one dimensional [10]:

⟨q̂⟩ = ⟨q̂⟩0
⟨p̂⟩ = ⟨p̂⟩0

Var(q̂) = Var(q̂)0 +
t3

6rcτm2

Var(p̂) = Var(p̂)0 +
t

2rcτ
(2.16)

where p̂ is the momentum operator,m is the mass of the particle, the subscript 0 is
the standard quantum case. The expectation values are unchanged, which makes
physical sense as this means the dynamics do not cause a drift which would break
Galilei covariance. However the master equation predicts that the variance of the
position and momentum increase with time with respect the usual case.

This has the consequence that the energy of the system is not conserved:

⟨E⟩ = ⟨E⟩0 +
t

4rcτm
(2.17)

This non-conversation of energy presents a big issue for GRW, as conservation of
energy is normally taken to be a requirement of any fundamental theory. GRW
only describes distinguishable particles, so in any case cannot be fundamental,
but non-conservation of energy is an issue for any type of spontaneous collapse
model. There is a dissipative extension [53] to GRW which does not guarantee
that the rate of change of energy is zero but does ensure that at t→∞ the energy
of any state remains finite.

2.3 Ontology of the GRW Model

As discussed in the introduction, the motivation for developing spontaneous col-
lapse models was to have a clear ontology, unlike quantum mechanics. In their
history different authors have suggested different underlying ontologies for the
GRW Model,which we will briefly list here for the interested reader.

In 1989 Bell proposed the ‘flash’ ontology in which it is the flashes, the points in
spacetime where spontaneous collapses occur, that describe physical reality, not
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the value of the observables or the state itself, [23]. Bell suggested this approach
as it has the advantage that the flashes are local and exist in the real world.

Another possible ontology of GRW was suggested in [34] which proposed an ap-
propriately averaged mass density function associated to the state. This was sug-
gested because unlike conventional quantum mechanics, GRW provides a consis-
tent value of the mass density over every point in space time and for macroscopic
objects. Additionally, mass density makes intuitive sense as it describes the con-
tinuous distribution of mass in 3D space, which matches our experience of the
world.

In [59] a version of GRW for indistinguishable particles was developed, in which
the collapse operator the mass density field at each point. In this theory it is the
value of the mass density field at each point that is the beable.

2.4 Conclusion

In this chapter we have looked at the GRW model and how it offers a mechanism
for the state to localise in a consistent way that preserves normalisation of the
state and guarantees that macroscopic superpostions are collapsed. The defining
characteristics of GRW are that However the GRW model is limited to describing
distinguishable non-relativistic particles which does not describe reality.

• The model is defined via a conditional probability distribution for the posi-
tion of a spontaneous collapse given the position of previous collapses

• The stochastic process is a piece-wise, meaning that there is a collapse at
random time intervals.

• The model is Markovian, the conditional probability for a collapse only de-
pends on the most recent collapse, not the whole prior series of collapses.

• The collapses occur in the spatial basis

• For anyN > 1 system of particles it must have an amplification mechanistic
to ensure emergence of macroscopic classicality.

These conditions have been inferred by the author from the existing literature
[36, 59, 60] and will be used as the definition of ‘a GRW model’ for the remainder
of this thesis2

The other form of collapse models are those with continuous stochastic process,
the most famous of these is Continuous Spontaneous Localisation (CSL) which is
the subject of the next chapter.

2A recent proposal [61] for a relativistic GRW model for interacting particles is non-Markovian
and so does not fit within this definition.
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Chapter 3

The Continuous Spontaneous
Localisation Model

3.1 Introduction

In the previous chapter we introduced one of the earliest spontaneous collapse
models, the GRW model, which incorporates a (piecewise) stochastic process.
The other type of spontaneous collapse model are those that use a continuous
stochastic process [21]; the most well studied of these is the Continuous Sponta-
neous Localisation model [35] (CSL). This model describes non-relativistic indis-
tinguishable particles which evolve according to a non-linear stochastic modifi-
cation of the Schrödinger equation.

Like GRW, the CSL model (and its modified versions [3, 52]) successfully accounts
for why microscopic objects remain in spatial superpostions whilst macroscopic
objects do not. It offers different experimental predictions to standard quantum
mechanics.

We will introduce the stochastic Schrödinger equation of CSL, explain how it
causes localisation of the state with reference to the model’s two free parameters.
We will also discuss the proposed ontologies of the model, the various modifica-
tions of CSL and the experiments seeking to validate or rule out CSL.

3.2 Evolution of the state

Let us consider a system of indistinguishable scalar particles each with mass m,
with Hilbert space H = F±, a Fock space where ± references to symmetric or
anti-symmetric particles1. According to CSL, the state vector |ψt⟩ in this space
evolves with:

d|ψt⟩ =
[︂
− iĤdt+

√
γ

m0

∫︂
dx

∫︂
dy(m̂(y)− ⟨m̂(y)⟩t)dWt(x)

− γ

2m2
0

∫︂
dx

∫︂
dyD(x,y)

(︁
m̂(x)− ⟨m̂(x)⟩t

)︁(︁
m̂(y)− ⟨m̂(y)⟩t

)︁
dt
]︂
|ψt⟩ (3.1)

where Ĥ is the Hamiltonian associated with the unitary evolution, γ is a coupling
constant and is one of the free parameters of the model andm0 is a reference mass

1It is possible to construct CSL for particles with different masses and values of spin [10], we
only use the simplest example here for ease of explanation
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(usually the nucleon mass). The function g is a Gaussian spread:

D(x,y) =
1

(
√
2πrc)3

exp[−(x− y)2/2r2c ] (3.2)

where rc is the other free parameter of the model. dWt(x) is an infinitesimal ele-
ment of a family of Wiener processes [21] where there is a process at each point
x.

The family of Wiener processes is characterised by having a expectation value of
zero and having the two point correlation function:

EP [dWt(x)dWt(y)] = D(x,y)dt (3.3)

Where EP is the stochastic average with respect to the probability measure of the
Wiener process. The operator m̂(x) is the mass density operator defined as:

m̂(x) = m â†(x)â(x) (3.4)

where â†(x) is the creation operator and â(x) is the annihilation operator for the
particle field at point y and m is the particle mass. Finally we use the notation:
⟨m̂(x)⟩t = ⟨ψt|m̂(x)|ψt⟩. The presence these terms mean that the evolution is non-
linear.

The overall structure of Eq. (3.1) is such that the equation for the evolution of the
density operator has a Lindblad form [38, 43] and that it causes spatial superpos-
tions to spontaneously collapse, as we will see in the next section.

3.3 Evolution of the Density Operator

To see how both of these requirements are fulfilled it is simpler to work with the
statistical operator ρ̂t rather than the state. The statistical operator is defined as
the stochastic average of the outer product of the state:

ρ̂t ≡ EP[|ψt⟩⟨ψt|] (3.5)

This stochastic average means that the statistical operator does not describe a
single run but instead describes the behaviour averaged over many instances of
the stochastic process [10] .

Through Eq. (3.5) and Eq. (3.1) the evolution of ρ̂t can be written as [21]:

dρ̂t
dt

= −i[Ĥ, ρ̂t]−
γ

2m2
0

∫︂
dx

∫︂
dyD(x,y)[m̂(x), [m̂(x), ρ̂t]] (3.6)
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where m̂(x) has the same definition as in the state equation. Equation (3.6) is
trace-preserving and completely positive2 [25, 38, 43]. This guarantees that the
norm of ρ̂t is preserved and that the evolution is completely positive, meaning
that the dynamics will never predict nonphysical negative probabilities.

The other requirement for CSL to be a successful spontaneous collapse model is
to check that the evolution causes the spatial superpositions to be destroyed, i.e
if the model localises particles in space.

To check for particle localisation, the variance of the mass density operator should
go to zero in the infinite time limit when the unitary Hamiltonian is neglected.
This condition implies that the non-unitary dynamics eventually fixes the po-
sition of the particles, as the mass density operator represents position for an
indistinguishable particle system.

The condition for the model to localise particles is thus:

lim
t→∞

EP (V ar([m̂(x)]t)) = 0 (3.7)

where:
V ar([m̂(x)]t) = ⟨m̂2(x)⟩t − ⟨m̂(x)⟩2t (3.8)

and m̂(x) is defined as in (3.4).

Note that the condition Eq. (3.7) requires that the variance goes to zero in the
infinite time limit only at the level of the stochastic average. However we shall
see that in fact it is possible to conclude that for CSL the variance is zero for
every realisation of the stochastic process, except for a subset of measure zero i.e.
a subset of realisations of the stochastic process which have zero probability of
occurring.

Using the definition of the the density operator we have:

EP[⟨m̂2(x)⟩t] = Tr(m̂2(x)ρt) (3.9)

due to the fact that m̂(x) commutes with itself and Ĥ is set to zero we have:

d

dt
EP[⟨m̂2(x)⟩t] =

d

dt
Tr(m̂2(x)ρt) = 0 (3.10)

This implies that ⟨m̂2(x)⟩t = ⟨m̂2(x)⟩0 for all values of t. This is true for both
CSL and standard quantum mechanics. The important difference comes from the
term d

dt
EP[⟨m̂(x⟩2t ]. It has been shown in [3] and [33] that a stochastic differential

equation with this form implies that:

d

dt
EP[⟨m̂(x)⟩2t ] > 0 (3.11)

2In the Markovian case this is the well known Lindblad equation.
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Since d
dt
[⟨m̂2(x)⟩t] = 0 and d

dt
EP[⟨m̂(x)⟩2t ] > 0, then the expectation of the variance

must decrease with time, going to zero in the infinite time limit. Since ⟨m̂2(x)⟩t =
⟨m̂2(x)⟩0 this then implies that that in the infinite time limit the variance must go
to zero for all realisations, except for a subset of measure zero.

Hence CSL predicts that particles are always localised in the long time limit.
The standard CSL model is Galilei invariant [10], guaranteeing that, in a non-
relativistic setting, the dynamical laws are the same in all inertial frames.

3.4 Ontologies of CSL

Similarly to the GRW model the CSL model was originally proposed to resolve
issues with the interpretation of standard quantum mechanics. For continuous
processes there are no ‘flashes’ as there are in GRW so there cannot be a flash
ontology.

However CSL (and other continuous spontaneous collapse models) have a con-
sistently defined locally averaged mass density distribution which can be inter-
preted as the ‘beable’ of the theory, which constitutes physical reality [15]. The
mass density distribution is averaged over a volume proportional to r3c [10]:

M(x) = ⟨ψ|
∫︂
dyD(x,y)m̂(y)|ψ⟩t. (3.12)

The reason that it must be averaged is that the collapse dynamics will not guar-
antee that spatial superpositions are collapsed below the rc scale. If the superpo-
sitions remain then one cannot state that the mass density field definitely has a
certain value at a certain point, which is what is required of a beable.

3.5 General form of a continuous spontaneous col-
lapse model

What we have discussed so far is the form and outcomes of CSL. However this
is not the only possible continuous spontaneous collapse model. There is also
coloured CSL [3] (so called because the stochastic noise field is no longer a white
noise), dissipative CSL [52] which has a mechanism that dissipates the energy
such that in the infinite time limit it does not go to infinity, and models in which
the collapse is caused by coupling to a gravitational field [24, 33, 48]. There is a
general form of collapse models that encompasses all these forms, which we will
give here in order to review other proposed collapse models and as any attempt
to make a relativistic generalisation of a continuous spontaneous must have this
form.

As in the case of CSL, the general form can be expressed as an evolution equation
for the state ψt (as in [33]) or as a map for the evolution of the density operator.
Since in general the latter is more compact and easier to deal with, that is the one
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we will use here. We will also switch to using 4D notation from now onwards as
this will make further discussion of the relativistic case simpler.

Independently of particle type we can write the evolution of ρ̂ as [3, 31, 33]:

ρ̂t = U0
t [Mt[ρ̂0]] (3.13)

where U0
t [·] = e−iĤt · eiĤt is the standard quantum evolution, with Ĥ as the stan-

dard unitary Hamiltonian, andMt is the contribution due to the presence of the
stochastic noise and has the following expression:

Mt =
←−
T exp

(︃
γ

m2
0

Lt

)︃
(3.14)

with

Lt=

∫︂
Ωt

d4x

∫︂
Ωt

d4yD(x, y)
[︁
Q̂

L
(y)Q̂

R
(x)−θ(x0−y0)Q̂

L
(x)Q̂

L
(y)−θ(y0−x0)Q̂

R
(y)Q̂

R
(x)
]︁

(3.15)
Q̂(x) is an arbitrary self-adjoint operator, Q̂(x) = U0†

x0 [Q̂(x)], Ωt = {x = (x, x0) |x0 ∈
[0, t], x ∈ R3}, the superscript L (R) denotes the operator acting on the statistical
operator ρ̂ from left (right), i.e. Q̂

R
(x)Q̂

L
(x)ρ̂ = Q̂(y)ρ̂Q̂(y) and

←−
T is the chrono-

logical time ordering acting on the L/R operators and is defined as:

←−
TQL/R(y)QL/R(x) =

{︃
QL/R(x)QL/R(y) if x0 > y0

QL/R(y)QL/R(x) if y0 > x0
(3.16)

Equation (3.14) suppresses the off diagonal elements of ρ̂ in the basis of the eigen-
states of Q̂(x). Due to the structure of eq. (3.13) we have thatMt and hence Lt

are in the interaction picture.

For collapse models this is a consequence of the collapse of the state, which again
occurs in the eigenbasis of Q̂(x) when the unitary Hamiltonian dynamics is ne-
glected, see [33] for a proof. It is for this reason that many collapse models have
Q̂(x) as the mass density or number density operator, since this means macro-
scopic objects do not remain in spatial superposition. Note that eq. (3.15) is a
non-unitary map, meaning that it is irreversible and can only describe forward
evolution in time.

As one can see from Eq. (3.15), all collapse models are defined by specifying
D(x, y), Q̂(x), and the coupling γ. For example the average map of the coloured
CSL model for equal mass scalar particles is characterized by the above equation
with:

D(x, y) =
1

(4πr2c )
3/2

exp[−(x− y)2/2r2c ]F (t− s)

Q̂(x) = m̂(x) (3.17)

where F (t−s) is an arbitrary positive function of time, m̂(x) is the non-relativistic
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mass density operator, m0 a reference mass (usually the nucleon mass), and rc is a
parameter of the model which determines the length scale of the collapse. Other
choices of D(x, y), Q̂(x), and the coupling γ have also been proposed [24, 33, 48,
52].

Original CSL, described by (3.6) is recovered when F (t− s) = δ(t− s).

3.6 Conclusion

In this chapter we reviewed the CSL model, introducing its form in terms of evo-
lution of the state and the density operator. It was shown that due to the structure
of CSL’s time evolution equation the state is normalised and can still be used to
find the expectation value of operators. It was also shown how CSL implies that
particles are localised in space in the infinite time limit. Finally the proposed on-
tology for CSL was briefly discussed. The defining characteristics of any CSL type
model are that the dynamics has the structure of eq. (3.14), the collapse causes
localisation in the position basis i.e. the condition given in eq. (3.7) and that the
rate of change of energy is not divergent, guaranteed by the Gaussian spread of
the correlation function.

So far we reviewed both discrete (GRW) and continuous (CSL) non-relativistic
spontaneous collapse models, outlining their mathematical structure and the prop-
erties they must have to be successful at solving the measurement problem. This
has set the stage for discussing what is required for a successful relativistic model
which will be the topic of the next chapters.
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Chapter 4

Relativity and Spontaneous Collapse
Models

4.1 Introduction

In this chapter we consider the question, ‘what is it that is required to make a
spontaneous collapse model consistent with special relativity?’. The reason that
this question is difficult to answer is that normal demonstrations of how quantum
field theory (QFT) is consistent with special relativity rely on the fact that QFT is
both unitary and deterministic whereas spontaneous collapse models are both
non-unitary and stochastic.

First, we will consider what kind of beable is suitable for forming a relativistic
condition for quantum mechanics. Then we show that when applied to sponta-
neous collapse models this implies that the following two conditions have to be
satisfied:

• initial conditions must be comparable in different inertial frames,

• the dynamics must be Poincaré covariant.

The implications of these two requirements are then discussed in more detail.
For the continuous model we reach the conclusion that in order for a relativistic
spontaneous collapse model to be viable one must accept the assumptions that:

• one may only consider systems whose initial state may be compared to the
initial state in a different inertial frame via a unitary Poincaré transforma-
tion,

• the appropriate condition for Poincaré covariance is that the evolution map
transforms under the unitary dynamics as defined in eq. (4.13).

If these assumptions are not accepted then it is not possible to construct a con-
tinuous spontaneous collapse model that describes many particles and meets the
relativistic condition given. The conclusions for GRW type piece-wise models
will be postponed until the next chapter.

For all the analysis and discussion in this chapter we we do not need to specialise
to a particular Hilbert space as the analysis applies to all particle types.

In the light of these conclusions we will then review the existing literature on
relativistic collapse models and make comparisons between them on the basis of
what particle types they describe, what relativistic conditions they are using and
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whether they are appropriate. We will also note what drawbacks such theories
suffer from, in order to avoid repeating such issues when attempting to construct
a relativistic version of GRW in chapter 5 and CSL in chapter 6.

The chapter concludes with a summary of what is required of a successful rel-
ativistic collapse model. These requirements will then be applied in the rest of
the work to evaluate if a relativistic GRW or CSL model is possible. The novel
work in this chapter is the explicit demonstration of why Lorentz boosts for non-
unitary dynamics cannot be constructed, and recognition and discussion of the
fact that there are two different definitions of Lorentz covariant dynamics in the
collapse model literature.

4.2 Consistency with special relativity for quantum
mechanical theories and the choice of relativistic
beables

It is well known that special relativity implies that the laws of physics should be
independent of the inertial (non-accelerating) frame. Mathematically, one inertial
frame F with coordinates labelled x can be compared to another F ′ (with x′ ) via
a coordinate transform:

x′µ = Λµ
νx

ν + aµ (4.1)

where Λ is an element of the proper orthochronous Lorentz group and a is a
4 vector. In this thesis we will consider passive Lorentz transformations [51],
meaning that it is the coordinates that transform between frames, and the fields
and vectors do not change but only refer to a different coordinate basis.

If a field ϕ is invariant under a passive transformation then in frame F if the field
has value ϕ0 at a point x̄ i.e. ϕ(x̄ν) = ϕ0 then in a different inertial frame F ′ with a
different coordinate system x′ where x and x′ are related to each other by eq. (4.1)
then the field in the primed frame is

ϕ′(x̄′µ) = ϕ′(Λµ
ν x̄

ν + aµ) = ϕ0. (4.2)

Conceptually, passive transforms are equivalent to describing a single system (for
example the value of the field ϕ) using two different coordinate systems to de-
scribe a field at the same point.

This is in contrast to active transformations, where it is the vectors and fields that
are different and the coordinate systems remain the same in the two frames. So
for active transformations we have that for frame F with coordinate system x
and a field ϕ; if the field at point x̄ν is ϕ0: ϕ(x̄ν) = ϕ0 then for frame F ′ with the
same coordinate system x and a field ϕ′ then the field is invariant under active
transformation if:

ϕ′(x̄ν) = ϕ(Λν
µ(x̄

µ − aµ)) = ϕ0 (4.3)
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This is conceptually the same as having one coordinate system and two different
fields which describe the same physics.

For any candidate theory of physics to agree with special relativity it must offer
predictions which are frame invariant. Since quantum mechanics is probabilistic
then the predictions are given in the form of conditional probability distributions.
But predictions for what? If one takes an instrumentalist viewpoint then the pre-
dictions are the outcomes measurements; from now on we will call this viewpoint
‘quantum mechanics with measurements’. However, if one wishes to avoid the
concept of observers, as this leads to the measurement problem, then the events
must be taken to be the value of beables. Beables are a concept introduced in [15],
to replace the language of measurements. Beables are what a candidate quantity
of physics claims to actually exist, and knowing the value of beables describes
the state of physical reality. For example, in classical Newtonian physics, beables
are the positions of point like particles (see sections 2.3 and 3.4 for a discussion of
proposed beables for collapse models).

Due to the importance of the state, one might be tempted to treat it as a beable
of quantum mechanics, and therefore ask that it is a function of 4-dimensional
spacetime that is Poincaré covariant. However in [4] Albert and Aharanov show
that, due to the non-local properties of quantum mechanics and the non-unitary
effect of measurements, it is not possible to have a state that both collapses instan-
taneously (due to measurements or otherwise) and is Poincaré covariant. Instan-
taneous collapses are required to ensure that non-local observables (for example
momentum or total charge) are conserved [4, 6]. Equally importantly, instanta-
neous collapse of the state vector is required to ensure that Bell’s inequalities are
violated. This is because in order for the outcomes of the Bell experiment to be
perfectly correlated even though the results are from space-like measurements,
the two wings of the experiment must affect each other instantly, hence the state
must collapse instantly1.

If a state collapses instantaneously in one frame, then it will not collapse instantly
in another. This implies that the state will not be normalised on a constant time
hyperplane in some inertial frames, see Figure 4.1. This is not consistent with spe-
cial relativity as a preferred frame is selected, the one where the collapse occurs
instantaneously.

So instantaneous collapses (which are required for consistency with experimental
evidence e.g. the violation of Bell’s inequality) prevent the state from being used
as a beable for a relativistic theory. Instead the beables must be local, meaning
they are defined at single points in space-time. For example in standard quan-
tum mechanics the beables could be the results of local measurements, for the
GRW model it may be points of collapse, etc. At this stage we do not need to
further specify the nature of the beables as our analysis does not require the exact
specification.

1Hence proposals like [39] where the collapse only effects the future light cone fail as they
do not predict non-local correlations between outcomes of experiments. Since these non-local
correlations are observed in nature then any successful theory must predict them.
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As quantum mechanical theories (including spontaneous collapse models) are
probabilistic, the relativistic condition therefore must be that the quantity:

P (Aa(x1), Bb(x2)....|Cc(y1), Dd(y2)...) (4.4)

must be invariant under Poincaré transformations. Here P (Aa(x1)) is the proba-
bility that a beable A will have value a at point x1 ∈ R4 and so on. The meaning
of this condition is that eq. (4.4) must have the same value in every inertial frame
where x1 etc. are fixed points which are relabelled in each frame’s coordinate
system.

This condition begs the question how are the Poincaré transformation of proba-
bilities calculated? In this work we will not transform the probabilities directly
but instead transform the operators and states that are used to find the proba-
bilities. We postpone the discussion of how these transformation operators are
constructed to section 4.4 for continuous models and chapter 5 for GRW type
models.

In quantum mechanics probabilities are calculated via states:

P (Aa(x2)|Bb(x1)) = ∥Âa(x2)Û(t2, t1)ψ1∥2 (4.5)

where ψ1 is the state at t1 = x01, the form of which is known from the fact that
Bb(x1) has occurred, Â is the operator corresponding to the beableA, and Û(t2, t1)
is the operator which evolves the state from time t1 to time t2. Due to this, even
though states cannot be considered beables in a relativistic theory, it is still crucial
to know how to deal with them in a relativistic context, this is what we will cover
in the next subsection.

4.2.1 The state on hypersurfaces

In order to offer a frame independent description of instantaneous collapse of
the state, Aharonov and Albert proposed an alternative way of describing the
collapse when a measurement is performed [5], in which the state collapses in-
stantaneously in every inertial frame.

To allow the state to collapse instantaneously in every frame, it must be defined
not on the 4D manifold but on space-like 3D hypersurfaces which make up the
manifold. Then the state, and hence normalised states in a Hilbert space can be
defined on each hypersurface. Here we will describe how this can be mathemat-
ically expressed for for a single particle, although the concept can be applied to
many particle systems.

For states are on space-like hypersurfaces, if we label a hypersurface as ω then
we can write a state on it as ψω(x). The coordinate x here labels the coordinates of
the 3D surface ω, but is a four vector x ∈ M4 as ω is understood to be embedded
in 4D spacetime. So then every inertial observer has a state defined on their con-
stant time 3D hypersurface. However, each state may have different values at the
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Figure 4.1: A spacetime diagram showing the support of the state before and after
a measurement M where the state is a function over all of spacetime. The support
is the shaded line with the amplitude proportional to the thickness of the line. The
point P is a spacetime point of interest. Suppose in one frame (left figure) the state
is initially in a spatial superposition (as seen in that the support is present in two
places and as denoted with the plus), then M occurs and the state collapses along a
specific constant time hypersurface (dotted line). The state on the surface intersect-
ing point P (thin black line) is normalised. However in a different inertial frame
(right figure) if the collapse occurs along the same hypersurface (dotted line), then
the state on the constant time hyperplane intersecting point P in the new frame

(thin black line) is not normalised.
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Figure 4.2: A spacetime diagram showing the support of the state before and after
a measurement M . Here, in every inertial frame the state collapses on a constant
time hypersurface (dotted line) so that the state is always normalised for all ob-
servers. Note that the amplitude of the state at P in different frames differs, this is

a consequence of treating the state as a function on a 3D hypersurface.

same specific space-time pointX so that ψω(X) ̸= ψω′(X ′) whereX andX ′ are the
same point in two different inertial frames. This allows states to be normalised
in every frame, as shown in Figure 4.2. This is acceptable because the state in
this framework has no ontological meaning, it is not a beable, it is simply a tool
for calculating probabilities for the value of beables. As originally formulated
the Albert-Aharonov framework was applied to the case of observers perform-
ing measurements, but for this we will adopt it for all situations where the state
undergoes collapse, as the essential point that the state must remain normalised
is the same in both cases.

In this framework every inertial observer can describe the time evolution of their
system in terms of states on parallel constant time hypersurfaces within their
frame using the Tomogana-Schwinger formalism. We will introduce this formal-
ism in chapter 5 and show that if collapses are excluded, then this description is
Lorentz covariant if it is integrable.

So how can it be that states like ψω which are not frame independent can be used
to calculate conditional probabilities which must be Poincaré invariant? It is be-
cause although the initial state used in the calculation is frame dependant 2, the
information used to construct and evolve the state (i.e. the right hand side of Eq.
(4.5)) is frame independent [5], as the local beables are point like events. Any
relativistic candidate quantum theory must therefore be initialised by point-like

2For instance if the initial state is the state at the time of the earliest observable, then as ‘earliest’
is a frame dependant quantity the state would differ in different frames
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events alone, as states cannot transform between frames and hence are not viable
candidates for beables.

Initial Conditions and Passive and Active transformations

For comparing initial conditions there is a difference between active and passive
transformations. For passive transformations there is one system, and the initial
condition can be written in terms of the coordinates of each initial frame, e.g.
frame F could have the initial condition ϕ(x) and F ′ would have ϕ′(x′). Then
then system is invariant if the description of the initial condition and dynamics
in the primed frame is the same as the the unprimed frame.

For active transformations there are two systems, each with a frame of coordi-
nates, e.g. F and F ′, where one system is the transformed (e.g. Lorentz boosted,
translated etc.) version of the other. The dynamics are invariant if the trans-
formed initial condition in F ′ follows the same equations of motion as the initial
conditions in frame F do.

The conceptual difference between these approaches is if the initial conditions
are actually describing the same system, and hence if it is possible to be able to
construct a map that directly relates the two. As we are asking for invariance in
the passive sense we are requiring that it is possible to make such a map.

The motivation for this choice is that we hold the view that coordinate systems
and inertial frames are mathematical tools for describing the same underlying
system and the passive view captures this. Therefore comparing initial conditions
is a reasonable requirement. In contrast, the concept of the two systems that is
employed by the active view is a abstract tool that does not hold meaning.

Of course, whilst we find this argument convincing so prefer the passive over
the active view and demand that it is possible to transform between initial con-
ditions for consistency with special relativity, not all readers may agree. In fact,
some people studying relativistic spontaneous collapse models [10, 46] take the
opposing view. In order to accommodate this, in this thesis we endeavor to make
it clear whenever conclusions wheaher or not they depend on this choice.

Beyond constructing the initial state, the other ingredients for calculating if the
conditional probability distribution, Eq. 4.4, is Poincaré invariant is how the time
translation operators Û(t2, t1) and the operators corresponding to values of be-
ables e.g. Âa(x2) transform under the Poincaré group.

So, for a theory of quantum mechanics to be consistent with special relativity the
initial conditions, which are local beables of the system, must be agreed upon by
all observers, and the dynamics must be Poincaré covariant. We will see how
these requirements can be applied to non-unitary dynamics in the following sec-
tions.

We will spilt the discussion into two parts, one for GRW type models and one
for models with continuous collapses. The reason of this is due to the fact that
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GRW models have instant collapse and the normal unitary time translation op-
erator. In contrast for continuous collapse models the collapse is due to the time
translation operator itself so the question of how to represent coordinates on the
Hilbert space differs, as will become clear. We will leave the discussion of rel-
ativistic GRW models for chapter 5 and concentrate only on continuous models
for the remainder of this chapter.

4.3 Continuous non-unitary dynamics

In this section we will discuss the relativistic condition for a continuous spon-
taneous collapse model in two parts: first how to compare initial conditions be-
tween frames, and second how to ensure the dynamics is Poincaré covariant.
Note here that as the purpose of collapse models is to remove the need for ob-
servers performing measurements, for the rest of this chapter we will not be con-
sidering instantaneous collapses of the state due to a local measurement.

We have stated that a relativistic dynamics must be one in which initial conditions
between frames can be compared, and that in order to be consistent with relativity
those conditions must be given by local beables, not the non-local state (or density
operator).

Non-relativistic continuous spontaneous collapse models where originally pro-
posed with the state as the initial condition. However, for all the reasons given
in the above section we insist that in order to be consistent with special relativity
the initial state must be constructed from the values of local beables.

For a system with space-like initial conditions comparing them between inertial
frames is a significant problem for creating a relativistic continuous spontaneous
collapse model, as the evolution is non-unitary.

In the next section we will demonstrate this by attempting to to relate initial con-
ditions between inertial frames by using an irreversible time evolution operator,
and show that this is not possible.

4.3.1 Relating initial conditions in different inertial frames with
non-unitary dynamics

We have already discussed that for unitary quantum mechanics with point like
events it is not possible to relate states to each other in different frames and hence
we must consider initial conditions given by local beables. It was shown by [4]
that for quantum mechanics with point like measurements, a state on a constant
time hyperplane in one frame in general cannot be mapped to the state of an
constant time hyperplane in a different inertial frame with a unitary operator.

So:
ψ′
σ0′
̸= Ûψσ0 (4.6)
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where σ0 is a constant time hyperplane in one frame, σ0′ is a constant time hy-
perplane in another inertial frame and Û is a unitary operator which is not the
appropriate map if there are point-like collapses.

But as spontaneous collapse models are non-unitary, is it possible that states
could be related between frames? We shall see that the answer is no.

By definition non-unitary dynamics are irreversible, meaning that given an initial
state ψσ0 there is a time translation map ψσt = Γt[ψσ0 ] but there is no map Γ†

t such
that ψσ0 = Γ†

t [ψσt ].

When considering only time translations this is acceptable, however when con-
sidering all possible Poincaré transformations, the irreversibility implies that the
Lorentz boost operator must also be irreversible as the Lorentz boosts mix space
and time.

This comes about because time translations can be performed via a combination
of Lorentz boosts and position translations. Suppose that time translation map is
Γt, the Lorentz boost map is Bv where v is the relative velocity between frames,
and the position translation map is Px, where x is a three vector which denotes
the distance translated. If position and Lorentz boost transformations are both
reversible then P−x and B−v must both exist. Then, as shown in figure 4.3 for an
initial state ψσ0 , a time translation can be written as:

ΓT [ψσ0 ] = P−x[B−v[Px[Bv[ψσ0 ]]]] (4.7)

where v and x are such that they give the correct value of T . As every operator
on the right hand side of this expression is reversible it follows that:

Γ−T [ψσ0 ] = Bv[Px[B−v[P−x[ψσ0 ]]]] (4.8)

This proves that if bothBv and Px are reversible ΓT must also be reversible. So, for
an irreversible ΓT , either Bv or Px must also be irreversible. Both of these options
are physically unacceptable, as the former implies that position translations are
only possible in one direction and the latter implies that an inertial frame can be
related to another frame with a relative velocity v but not one with −v.
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Figure 4.3: A graphic showing that a Lorentz boost (orange to blue) followed by
a position translation (blue to red) followed by a Lorentz boost (red to pink) and
finally a position translation (pink to green) are equivalent to a time translation

(orange to green).

Therefore, for non-unitary dynamics, Lorentz boost transformations of a state
cannot be defined consistently with all the other transformations of the Poincaré
group.

This means that for non-unitary dynamics, as is the case for standard quantum
mechanics (see section 4.2) a state on a constant time hypersurface cannot be
mapped to the state on a constant time hypersurface in a different inertial frame
using unitary transformations.

So, for a relativistic continuous spontaneous collapse model, we must both have
that the initial conditions are given entirely by local beables and that from just
those beables it is possible to construct an initial state in any inertial frame which
can be mapped to any other frame. But as we will see in the below example this
is not always possible.
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Figure 4.4: A graphic showing three space time pointsA,B and C. In the unprimed
frame F the joint conditional probably for an event at C is found from a density
operator defined on the dashed line intersecting with B whereas for the primed
frame F ′ it is found from a density operator defined on the dashed line intersecting

with A.

Consider the situation shown in figure 4.4 where the initial conditions are given
by the values of local beables at points A and B, which are space-like to each
other. We label these values as aA and bB where the subscript indicates the loca-
tion. Suppose we are interested in calculating the joint conditional probability of
a beable having the value c at point C, i.e. P (cC |aA, bB). In frame F this can be
calculated via:

P (cC |aA, bB) = Tr(ĈcMt[ρ̂B]) (4.9)

where Ĉc is projection operator associated to the beable c,Mt is the generic time
evolution map for continuous collapse model as defined in eq. (3.13) and ρ̂B is
the density operator on the constant time hypersurface that intersects the point
B. This is found by constructing the state on the constant time hypersurface
that intersects the point A and then time evolving it to tB, then acting with the
projection operator B̂b and renormalising. This procedure of updating the state
by acting with the operator associated with the beable and then renormalising is
standard for spontaneous collapse models [10].

In a different initial frame F ′, the time order of points A and B is reversed, hence
the joint conditional probability is:

P (c′C |a′A, b′B) = Tr(Ĉ
′
cMt′ [ρ̂

′
A]) (4.10)
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where Ĉ
′
c andMt′ are Lorentz transformed and ρ̂′A is the density operator on the

constant time hypersurface in F ′, see figure 4.4. In this frame, ρ̂′A is found by
constructing the state on the constant time hypersurface that intersects the point
B and then time evolving it to t′A, then acting with the projection operator Â

′
a and

renormalising.

In order to be consistent with special relativity, eq. 4.9 and 4.10 must be equal.
In the next subsection we will discuss how to construct Poincaré transformation
operators for non-unitary dynamics and hence how Ĉc and Mt transform, but
first we must consider how to compare ρ̂B and ρ̂′A. As these density operators
are defined on non-parallel hypersurfaces it is not possible to use a time evolu-
tion operator to relate them. Instead, a Lorentz boost operator for non-unitary
dynamics must be used. However, as shown previously, such an operator leads
to inconsistencies and cannot exist. Therefore, if the time evolution between the
local beables that are taken as initial conditions is stochastic is it not possible to
compare probabilities between different inertial frames.

An alternative is to only consider scenarios where the initial state in one inertial
frame may be related to that of a different frame via a unitary Poincaré transfor-
mation.

4.3.2 Comparing initial states using unitary dynamics

A possibility for overcoming this issue of comparing two different inertial frames
is to only consider situations where initially the dynamics of the system is unitary
such that an initial state constructed from the beables can be compared between
two different inertial frames. This follows the ethos of how the Poincaré trans-
formations of initial and final states in relativistic quantum field theory are dealt
with.

In quantum field theory, the paradigmatic situation considered is one in which
particles are initially far apart and non-interacting, then they travel close to one
another and interact before finally separating again [64].

This means that the initial and final fields (in and out states) must be solutions of
the free (i.e. non-interacting) equations of motion, and they must belong to the
same Hilbert space.

For this prescription to be applicable it must be the case where there is only free
dynamics as t→ ±∞ and the complete interacting dynamics at some intermedi-
ate time.

Suppose that a similar restriction is applied to continuous collapse models, where
instead of the interacting part of the Hamiltonian only taking effect for an finite
period of time, it is the stochastic non-unitary part of the dynamics that is only
in effect for a finite period of time. Then the same conclusion as for relativistic
quantum field theory can be drawn: that for this case it is possible to compare
initial conditions using unitary Poincaré operators.
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This does not apply to all initial conditions in a situation where non-unitary
stochastic effect is present at all times, as would be the case if the dynamics were
fundamentally non-unitary, as this would affect the dynamics over all of space-
time.

Hence consistency with special relativity in the in-out formalism is not sufficient
to show that a fundamental model, like a spontaneous collapse model can be
consistent with special relativity.

One caveat to make here is that so far we have been assuming that at funda-
mental theory must be in agreement with special relativity. However it is well
known, [30], that special relativity only describes nature in the limiting case of a
flat spacetime, described by the Minkowski metric, and that a more fundamental
theory must be consistent with general relativity, which describes curved space-
time. This is relevant to the discussion here as when considering long timescales,
as implied by t→ ±∞, its possible that a flat space time is no longer appropriate
for describing reality.

A full consideration of the consistency between general relativity and sponta-
neous collapse models is outside the scope of this work. We do however ar-
gue that studying the relationship between special relativity and collapse models
might be used as a stepping stone for developing a general relativistic theory,
analogously to the way that special relativistic quantum field theory is used to
attempt to construct a theory of quantum gravity.

We now turn to the other element of consistency with special relativity, the Poincaré
covariance of the dynamics.

4.4 Unitary Quantum mechanics and Poincaré Covari-
ance

As usually constructed the Poincaré covariance of quantum mechanics is closely
connected to its unitarity.

For unitary quantum mechanics, a theory is consistent with special relativity if
its Lagrangian, L, is a Poincaré scalar quantity. It is then possible to use L to de-
fine a representation of all the transformations of the Poincaré group in a specific
Hilbert space. In essence for a Hilbert space H and density operator ρ̂α (where α
labels all indices and coordinates), then L defines the set of Poincaré transforma-
tion operators Ŝ(Λ, a) such that:

ρ̂α′ = Ŝ(Λ, a)ρ̂αŜ
−1
(Λ, a) (4.11)

where α′ denotes the primed coordinates defined in Eq. (4.1). Here we are clearly
in the Schrödinger picture. See [64, pg. 58] for a detailed derivation of how
the operators Ŝ(Λ, a) are constructed. Since a time translation is included in the



Chapter 4. Relativity and Spontaneous Collapse Models 31

Poincaré transformations then the time evolution operator is:

Û(t, 0) ≡ Ŝ(I3, (t, 0, 0, 0)) (4.12)

where I3 is a three by three identity matrix. Therefore, unitary mechanics is au-
tomatically Poincaré covariant as Ŝ(Λ) is a self-consistent representation of the
transformations of the Poincaré group, i.e. the transformation operators are them-
selves covariant.

However, for non-unitary quantum mechanics, the time translation operator for
a system acting on states is non-Hermitian and not derived directly from a deter-
ministic L but either by starting from a stochastic Lagrangian [54] or by defining
the theory starting from the time evolution operator for the density operator (as
is the case with spontaneous collapse models).

How can the representation of the Poincaré group on the Hilbert space of the sys-
tem be found if not from a deterministic Lagrangian? There are two approaches
in the literature; the first is to use the representation corresponding to the unitary
part of the dynamics and the second is to use the representation corresponding
to the full non-unitary dynamics but only onto the semi-group of the future light
cone of a specific point. Both of these will be discussed in the following sections.

4.5 Covariance under the unitary dynamics

In this section we will discuss Poincaré covariance under the unitary part of the
dynamics for non-unitary dynamics. By Poincaré covariance under the unitary
dynamics, we mean that the time evolution mapMt is covariant with respect to
Poincaré transformation operators which correspond to the unitary Lagrangian.
The paradigmatic situation that this could be applied to is where there is a unitary
dynamics and a weakly coupled non-unitary dynamics. This is the case for all
continuous spontaneous collapse models as the rate of collapse must be low to be
in agreement with experiment [10].

So for the coordinate transform given in Eq. (4.1) and given the unitary La-
grangian L0 there are associated Poincaré transformation operators Ŝ0(Λ, a). A
map that is covariant under the unitary dynamics satisfies:

S−1
0 (Λ)MtS0(Λ) =MΛ(t), (4.13)

where S0(Λ, a) = Ŝ
L

0 (Λ, a) · Ŝ
†,R
0 (Λ, a).

It is obviously correct to use this representation of Poincaré transformations to
check covariance when the dynamics is given by a Poincaré scalar L0. However,
spontaneous collapse models cannot be described from this Lagrangian dynam-
ics due to their stochasticity and non-linearity. So this definition of covariance
is perturbative as there is not an underlying reason why this is the appropriate
definition.



Chapter 4. Relativity and Spontaneous Collapse Models 32

This condition for covariance can be used to describe non-Markovian dynamics
and has been used as a condition in multiple proposed relativistic collapse mod-
els, [13, 44, 46, 47]. We turn now to the other definition of Poincaré covariance for
non-unitary dynamics.

4.6 Covariance under the complete dynamics

Poincaré covariance under the complete dynamics means that the operators which
represent the Poincaré group transformations onto the Hilbert space of states cor-
responding to the non-unitary dynamics, not only the unitary dynamics. There
are three proposals in the literature for this kind of dynamics. In [46] the differen-
tial equations for the evolution of the state vector under the action of a position
translation, a time translation and a Lorentz boost are given. In [7] the Poincaré
group is represented onto Weyl operators and from this a time evolution map,
Mt, for the density operator with the correct symmetries is constructed. Then
in [19, 20] the Poincaré transformations are represented onto the probability dis-
tributions for the value of the state vector. As each of these approaches is for
irreversible dynamics they only define forward time evolution. This tells us that
each of the representations cannot be for the full Poincaré group, but of a sub-
group, where Λ is an element of the proper orthochronous Lorentz group and
a0 > 0, a group we label R+.

As explained in section 4.3.1, it is not possible find a consistent set of Poincaré
transformation operators acting on states for non-unitary dynamics.

The way this is handled in [7, 19, 20] is that only transformations into the future
light cone of a point are permitted. In essence, given the density operator at a
point x, ρ̂(x), then the relation ρ̂(x′) = Ŝ(Λ, a)ρ̂(x)Ŝ

−1
(Λ, a) only holds when x′

is in the future light cone of x. This solves the issue as it restricts the transla-
tions possible so that no inconsistency can be formulated so the issue described
in section 4.3.1 is thus avoided. Formally, the Poincaré group is represented onto
a sub-semi-group of R4 which we will label F, see figure 4.5 for an illustration of
the difference between the different regions the dynamics can describe.

Figure 4.5: A diagram illustrating R4 and some sub-groups of interest, R4 includes
the whole diagram, R+ encompasses the entire diagram with the time coordinate

positive and F is the future light cone of the origin.
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Both [7, 19] are stochastic models at the level of the state. Unlike non-relativistic
models where the dynamics is defined with an initial time and the stochastic
process is parameterised by the time coordinate, these models have dynamics
defined by initial space-time point x0 and a stochastic process parameterised by
the proper time from the initial point. The value of the state at a point x1 depends
on the four-distance (x0 − x1)

2, see figure 4.6. This means that the stochastic
process is defined in a frame independent way, at the cost of selecting a special
initial point.

Figure 4.6: A diagram illustrating how a stochastic process X is linked to time
intervals for non relativistic and relativistic processes. The left diagram shows the
non relativistic case stochastic process is parameterised by the time coordinate t so
given an initial state at time t = 0 then after ∆t, the state depends on the value of
X(∆t). TriviallyX(t) has the same value at every point of equal time, on each point
along the blue dotted line X is constant. The right diagram shows the relativistic
case where the stochastic process is parameterised by the proper time τ from an
origin point x0, so the state at a point x1 depends on the value of X(∆τ) where τ is
the proper time between x1 and x0. So the stochastic process has the same value at

every point on the blue dotted hyperboloid.

A dynamics like this is sufficient for giving the transition probability between
time-like points in a frame-independent way. However by definition the dynam-
ics cannot do this for space-like events. This limits the physical situations the
theory is able to describe, as it cannot describe space-like initial conditions.

The way that the issue of consistently defining Lorentz transforms for irreversible
dynamics is handled in [46] is different from the other two proposals, as the
authors do not select a special point. Instead the set of possible Lorentz boost
transformations is limited, such that only forward time evolution of each point
is permitted. The authors argue that this is satisfactory as only active Poincaré
transformations need to be considered, meaning that only the dynamics must be
covariant, and so the initial conditions do not need to be compared. This is not
the position we hold in this work, for the reasons given in section 4.2.
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4.7 Proposals for a relativistic Spontaneous Collapse
model

We will subdivide this section into GRW-like models and continuous models and
within these subsections we will consider them chronologically. For each model
we discuss the method that they use for the definition of relativistic, what situa-
tion they describe and any other problems that may rule them out.

4.7.1 GRW-like collapse models

Dove and Squires, 1996

In [26, 27] a Markovian local model of collapse is proposed where, after a point
of collapse, only the state in the future light cone is collapsed. It is relativistic
in the sense that the collapse operator is defined using Lorentz scalar quantities.
However, as the model is local it fails to predict the correct results for the Bell
experiment and does not have non-local correlations and hence is not viable. The
authors note in the abstract of [27]:

“It is shown that, although incompatible collapses, e.g. on opposite
sides of an EPR-type of experiment, can occur, they will not persist in
time and that eventually only compatible results will be obtained. ”

The model takes as an initial condition a state on a constant time hypersurface
and so the issue of how to compare initial conditions between inertial frames also
applies for this model.

Dowker, 2004

In [28] a collapse model on a 1 + 1 (one space and one time) lattice is presented.
The model is a GRW type model which is successful in predicting the collapse of
the state, where the state is defined on a surface on the lattice. Since the model
is on a 1 + 1 lattice, the definitions of relativistic given in this chapter cannot
apply. Instead, the authors show that the probability distribution for the value of
observables is independent of the sequence of surfaces on the lattice. The model
is a toy model which does not describe the real world but the authors suggest
that it could be used as a guide and that it may be relativistic in the continuum
limit.

Tumulka, 2006

In [59] a Markovian relativistic generalisation of GRW model is proposed for non-
interacting, distinguishable particles. This theory is the subject of chapter 5 but
we will briefly review it here.

Like GRW it has point like collapses, where the position of each collapse is found
from the previous collapse. The definition of relativistic that the model uses is
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that the transition probability distribution for the position of collapses is calcu-
lated in a Lorentz invariant way. That is, given a point of collapse, the rule for
finding the next point is frame independent.

The main limitation of this model is the limitation in the types of particles that it
can describe, only a few physical situations can be approximated by non-interacting
distinguishable particles. Chapter 5 will consider models of this form in greater
detail showing how it is not possible for there to be a relativistic extension of
GRW to describe realistic particles.

Tumulka, 2020

The model in [61] is a development of the model from [60] to account for interact-
ing (but still distinguishable particles). The definition of relativistic that is used
is the same as that of the 2006 model. The interaction is dealt with by making
the form of the time evolution operator conditional on the relative position of
the collapses. The model again does not describe indistinguishable particles. As
noted in the conclusion of the paper, it is not clear if superluminal signalling is
prohibited by the model as the value of local beables can depend on the value of
the state in their future. The author claims that this effect is negligible due to the
parameters of the theory, however this is not explicitly shown.

4.7.2 Continuous collapse models

Pearle, 1990

In chapter 13 of [46], a model for a fermionic field coupled to a real scalar meson
field is suggested. The model is Poincaré covariant under the complete dynamics,
however as discussed in secton 6.4 of [46] it suffers from a divergent change in
energy, meaning that it predicts all particles immediately gain infinite energy and
hence is non-physical.

Pearle, 1999

In [47], a non-Markovian continuous model for a Dirac fermionic field is pro-
posed, which is relativistic in the sense that it is covariant under the unitary dy-
namics. It avoids the issue of divergent energy, but at the cost of introducing
a tachyonic field. The tachyons have the effect of predicting that some massive
particles are accelerated superluminally, which is nonphysical.

Breuer and Petruccione, 1998

In [19, 20], a Markovian collapse model for a Dirac field in the one particle sector
is proposed. The model successfully3 predicts that a single particle collapses in

3Successful in the sense that they show that the model predicts collapse of spatial super-
positions, does not have nonphysical energy divergences and has a completely positive trace-
preserving dynamics.
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the relativistic regime and is Poincaré covariant under the complete dynamics.
However, as in the case of [7], the model only describes the evolution of the state
in the future light-cone of a single point, taken by the authors of [19, 20] to be an
initial measurement. Therefore the model cannot describe multiple interacting
entangled particles, see section 4.6.

Nicrosini and Rimini, 2003

In [44] an interacting non-Markovian model for multiple particles defined us-
ing a Tomonaga-Swinger equation is present. However, since the model is non-
Markovian the authors point out that it is not clear that the model is integrable,
that it is unknown if the dynamics are independent of the choice of the path in
the manifold of space-like surfaces. The problem with the integrability is due
to the fact that the stochastic term and the interaction term in the model do not
commute, meaning that the microcausality condition is not satisfied.

Bedingham, 2011

In [14], a novel idea for relativistic collapse model is proposed where a ‘pointer
field’ is introduced. We will describe this model in more detail in order to more
clearly describe an issue with normalisation in the definition of the model.

The model is defined by giving a stochastic Tomonaga-Schwinger equation for
the evolution of the state vector |Ψσ⟩, where |Ψσ⟩ describes both the state of the
matter field ψm (which is the normal quantum system) and the pointer field ψp on
the hypersurface σ. The pointer field is a quantised field at every space-time point
(unlike in normal quantum field theory where a field is quantised on a space-like
hypersurface).

The pointer field mediates between the quantum matter field and that classical
stochastic field to prevent energy divergences whilst maintaining Lorentz covari-
ance. This works by the matter field and pointer field interacting and becoming
entangled, and then the pointer field and the classical stochastic field interacting,
which collapses the pointer field, which in turn collapses the matter field. The
novel trick is the intersection between the matter field and pointer field is via
non-local smeared out operators, which prevent energy divergences.

The model is relativistic in the sense that it is covariant under the unitary dynam-
ics.

This model is interesting, however the mathematical definition of the model re-
mains a bit unclear with regards to the inner product of the state vector |Ψσ⟩. The
state vector is defined only on σ but includes the pointer field ψp which is defined
over all of space time. It then seems that ⟨Ψσ|Ψσ⟩ must contain an integral over
all of space time which would not be possible as the evolution is stochastic. If
not, and ⟨Ψσ|Ψσ⟩ only has an integral over the points in σ, then the normalisation
of the state vector is ill defined.
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In either case it is not clear to us how the pointer field can fulfill the role it needs
to in this model whilst leaving |Ψσ⟩with the required properties for a state vector.

Bedingham et al., 2014

In [12], a proposal for which events should be defined in a frame independent
way for spontaneous collapse models is given. The authors propose the quantity
of interest is the mass density and they give a frame independent way of find-
ing the mass density at each point. This is from within the Tomonaga-Swinger
formalism where the mass density at each point x is found from the state ψ on
the past lightcone of x. The proposal assumes that an initial state ψ0 is given and
that the evolution of ψ uses a non-unitary collapse model dynamics, for example
[14] or [59]. This work can be understood as an additional proposal for giving
the dynamics of a particular quantity, the mass density, built on top of previous
collapse models, and is consistent with special relativity insofar as the dynamics
for ψ are consistent with special relativity .

Tilloy, 2017

[57] is a relativistic collapse model derived from an interacting quantum field
theory. It finds a non-Markovian collapse model for fermions by starting from
a Yukawa theory of fermions and tracing out the bosons. The model is therefore
relativistic at the level of the closed system (the entire boson and fermion system),
not at the level of the collapse equation of the fermions alone. As described in
section 4A of [57], an issue with the model is that the collapse is transitory, the
model predicts that collapses of fermionic superpositions after a certain time scale
but as t→∞ the state returns to a superposition.

Bedingham, 2019

In [13], a Markovian model for Lorentz scalar particles is presented, and it is
shown that such a model predicts the collapse of the state. The model is Poincaré
covariant under the unitary dynamics, but has energy divergences as shown in
section 3 of [13] and in [37, 46] so it is nonphysical.

4.8 Conclusion

In this chapter we have studied what it means for a spontaneous collapse model
to be consistent with special relativity. We briefly reviewed Poincaré covariance
and active and passive transformations and motivated our choice of using pas-
sive transformations for this thesis.

By considering the work of Albert and Aharonov [4, 5] it was concluded that for
a collapse model to be consistent with special relativity it must be able to predict
the conditional probabilities of the values of local beables in a frame invariant
way.
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The discussion was then spilt into two parts: how the initial conditions are related
to each other in different inertial frames and how to construct Poincaré transfor-
mation operators for the non-unitary dynamics, i.e how to check that the dynam-
ics is Poincaré covariance.

This section focused on continuous spontaneous collapse models, the discussion
of a relativistic condition for discrete models is postponed to chapter 5.

It was found that it is not possible to construct a Lorentz boost operator for con-
tinuous non-unitary dynamics without creating paradoxes. Hence, the only way
that initial conditions between frames can be compared is if initial conditions can
be related to each other using unitary dynamics.

Concerning Poincaré covariance two potential definitions were discussed: covari-
ance under the unitary dynamics and covariance under the complete dynamics.
It was found that the former is able to describe non-Markovian dynamics but
lacks a deep explanation for why it is the appropriate condition. The later can
only describe Markovian models and can only describe the behaviour of the fu-
ture light cone of a particular point, and hence cannot describe the behaviour of
multi-particle systems with space-like beables as initial conditions.

Taking all of these conclusions together either one accepts that a relativistic con-
tinuous spontaneous collapse model is not possible or that we only consider sys-
tems which initially evolve under unitary dynamics and that covariance under
the unitary dynamics is the appropriate definition for Poincaré covariance. We
will operate under these assumptions in chapter 6 which attempts to find if a
relativistic version of CSL is possible.

In the light of these conclusions the existing literature on spontaneous collapse
models was reviewed and each was assessed in terms of what definition of rel-
ativistic was applied and how successful the model was in solving the measure-
ment problem.
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Chapter 5

Relativistic GRW Models

5.1 Introduction

As we have seen in chapter 2 in its original formulation the GRW model was not
relativistic and described distinguishable particles with discrete points of locali-
sation.

In this chapter we will consider models which attempt to extend GRW to be con-
sistent with special relativity. We will present a condition that a relativistic GRW
model must meet for three cases: for a single particle, for N distinguishable parti-
cles, and for N indistinguishable particles. We will only consider scalar particles
as this is sufficient to draw conclusions from the analysis. We will then show that
this relativistic condition implies that one can have a relativistic GRW model for
a single particle or for distinguishable non-interacting, non-entangled particles,
but not otherwise.

We discuss how an existing model, [60], fits into this framework .

As we have seen in chapter 4 for quantum mechanics with instantaneous col-
lapses it is not possible to treat the state as a function over 4D spacetime in a
relativistic setting. Instead, states are defined on 3D hypersurfaces. Therefore,
in this chapter we will work within the Tomogana-Schwinger formalism which
describes states evolving between hypersurfaces.

This chapter is organised as follows: in section 5.1.1 the Tomogana-Schwinger for-
malism for quantum mechanics with and without collapses is introduced. Then,
in section 5.2, the requirements for a relativistic theory from chapter 4 are applied
to GRW type models to find relativistic conditions for single, distinguishable and
indistinguishable particles. Finally, as anticipated in section 5.2.3 for the indis-
tinguishable case it is shown that a such a model is either not relativistic or does
not achieve macroscopic classicality. In novel work in this chapter is the precise
definition of what is needed for GRW to be consistent with special relativity , in
particular the fact that the intervals between collapses must be defined on an in-
variant interval. Additionally demonstration of why an indistinguishable model
with space-like collapses is not viable is novel work.

5.1.1 The Tomogana-Schwinger formalism

In this framework, every inertial observer can describe the time evolution of their
system in terms of states on parallel constant time hypersurfaces within their



Chapter 5. Relativistic GRW Models 40

frame. We will introduce this formalism and show that if collapses are excluded,
then this description is Lorentz covariant if it is integrable. For the case of quan-
tum mechanics with measurements, we will then derive a condition on the mea-
surement operator for Lorentz covariance in this framework.

The Tomogana-Schwinger formalism [50, 58] describes unitary evolution as maps
between states defined on arbitrary space-like hypersurfaces without collapses.
First, we will introduce some additional notation for hypersurfaces. Let ω sig-
nify any generic space-like 3-dimensional hypersurface, let σt denote a constant
time hyperplane at time t in a inertial frame F and thus let σ′

t′ represent a con-
stant time hyperplane in a different inertial frame F ′. Then suppose the state is
defined on an ω in the manifold M4. In this article we restrict ourselves to con-
sidering Minkowski spacetime M4 as it is sufficient to see the relevant Lorentz
transformation properties of the probability distributions. Then, in inertial frame
F which has coordinates x on a hypersurface ω, the state is ψω(x). In another
inertial frame F ′ with coordinates x′, then on the same hyperplane ω the state is
written ψ′

ω(x
′). A state under a Lorentz boost transforms as:

ψω(x)→ ψ′
ω(x

′µ) = ψω(Λ
µ
νx

ν). (5.1)

Where the coordinates are related to each other by (4.1). In this chapter from
now on we will suppress the indices for ease of reading we will not consider
translations hence consider the Lorentz group not the Poincaré group. So eq. (5.1)
tells us that, on the same hypersurface the states are equivalent up to a Lorentz
transform.

Analogously to the Schrödinger equation, Tomogana and Schwinger defined the
evolution of a state as it evolves between hypersurfaces, if there are no measure-
ments between those surfaces as:

δ

δω(x)
ψω(x) = −iH(x)ψω(x) (5.2)

where δ
δω(x)

is the functional derivative with respect to ω and H(x) is the Hamil-
tonian density. The functional derivative can be understood to be the variation in
ψω(x) with respect to a infinitesimal variation of ω about point x, see figure 5.1.
The integrability condition for this system is that [H(x),H(y)] = 0 if x and y are
space-like separated. Equation (5.2) gives rise to an unitary evolution operator
which relates two hypersurfaces:

Uω2
ω1

= T exp

[︃
−i
∫︂ ω2

ω1

d4xH(x)
]︃

(5.3)

such that ψω2(x) = Uω2
ω1
ψω1(x), where T means time ordering with respect to the

frame F . This operator is frame independent even though H(x) is not Lorentz
invariant, the only frame dependant terms from the time ordering are zero due
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Figure 5.1: A diagram showing the infinitesimal variation, δω, of the hypersurface
ω about the point x

to the integrability condition [19, 42]. Therefore, we have that for a frame F ′:

U
′ω2
ω1

= T ′ exp

[︃
−i
∫︂ ω2

ω1

d4x′H′(x′)

]︃
= Ŝ

†
(Λ)Uω2

ω1
Ŝ(Λ) (5.4)

where Ŝ(Λ) is the Lorentz transformation operator corresponding to the dynam-
ics given by H and the dagger superscript is its Hermitian conjugate, see [64] for
details about how this operator is constructed.

5.1.2 The Tomogana-Schwinger formalism with collapses

Now we wish to extend this formalism to include collapses of the state. In this
thesis we will consider only collapses in the spatial basis as this is sufficient to ex-
plain the values of any experiment performed, as any observable can be coupled
to position [11].

In a frame F the spatial collapse of the state at x ∈ M4 is described though an
operator L̂ω(x) defined on the Hilbert space on a space-like hypersurface ω pass-
ing through x. Following Albert and Aharanov we consider the that the collapse
occurs on the constant time hyperplane intersecting x, labelled σt where t = x0.
This means that the collapse is described as occurring instantaneously in F .

L̂σt(x) localises the particle it acts on about x (if the state is not already localised).
The properties of this operator are model dependant however in general it is not
unitary. In a different frame F ′, the collapse operator L′ˆ

σ′
t′
(x′) is defined on a

constant time hypersurface σ′
t′ .

To illustrate evolution with collapses, consider in a frame F two hypersurfaces
σ0 and σf before and after a collapse at a point x, see figure 5.2. The state ψσf

is found by evolving the state to a hyperplane of collapse, applying the collapse
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Figure 5.2: A schematic showing a measurement at a point M between two hyper-
surfaces σ0 and σf . It is not possible to relate states on σ0 and σf without knowing

the if there are measurement between them.

operator and normalising, then evolving to σf :

ψσ0 → ψσf
=
U

σf
σt L̂σt(x)U

σt
σ0
ψσ0

∥L̂σt(x)U
σt
σ0
ψσ0∥

. (5.5)

It is necessary that all points of collapse between σ0 and σf are known in order to con-
struct such a map between them, as in general L̂σt(x)ψω ̸= ψω for any ω. Therefore,
in order to relate states in different frames on their respective constant time hy-
persurfaces all collapses between those hypersurfaces must be known.

To find the condition on L̂σ(x) for consistency with relativity we consider the
probability P (x1, x2|ψσ1) which is Eq. (4.4) applied to the case of two measure-
ments at space-time points x1 and x2 given an initial state ψσ1

1 . σ1 is a constant
time hypersurface intersecting the point x1 in F . For quantum mechanics with
measurements the state ψσ1 can be assumed to be specified by measurements in
the past of σ1. Then special relativity implies that:

P (x1, x2|ψσ1) = P (x′1, x
′
2|ψ′

σ′
1′
), (5.6)

If the points x1 and x2 are time-like to each other and x1 occurs before x2 in all
frames the conditional probability for one frame is given by:

P (x1, x2|ψσ1) = ∥L̂σ2(x2)U
σ2
σ1
L̂σ1(x1)ψσ1∥2 (5.7)

1To keep notation simple and to highlight the invariance requirements we write Pt1(x1|ψσ1)
as P (x1|ψσ1) however as x1 is a space-time point of measurement the equation below should be
understood in the same way Eq. 4.4 is.
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To compare the two sides of Eq. (5.6) the relationship between the states ψσ1 and
ψ′
σ′
1′

must be specified. If there are no measurements (hence no collapses) between
the two hypersurfaces then they can be related by:

ψ′
σ′
1′
= Ŝ

†
(Λ)U

σ′
1′

σ1 ψσ1 . (5.8)

Here the operator U
σ′
1′

σ1 is transforming the state between the two hyperplanes
and Ŝ

†
(Λ) is transforming the coordinates so expressing the coordinate system

explicitly we have:
ψ′
σ′
1′
(x′) = Ŝ

†
(Λ)ψσ′

1′
(x). (5.9)

If there are measurements between ψσ1 and ψ′
σ′
1′

then the states can be related
with Eq. (5.5) when a measurement occurs and Eq. (5.8) for subsequent evolu-
tion, using the appropriate positions and outcomes of measurements. In standard
quantum mechanics this is acceptable as it includes the concept of observers per-
forming measurements and recording the results. Therefore all measurements
between the two surfaces can be compared between two frames. Assuming that
the Hamiltonian is covariant so that Eq. (5.10) holds, then the right hand side of
Eq. (5.6) can be written as:

P (x′1, x
′
2|ψ′

σ′
1′
) =

∥L′ˆ
σ′
2′
(x′2)U

′σ′
2′

σ′
1′
L′ˆ

σ′
1′
(x′1)ψ

′
σ′
1′
∥2 =

∥L′ˆ
σ′
2′
(x′2)Ŝ

†
(Λ)U

σ′
2′

σ2 U
σ2
σ1
Uσ1

σ′
1′
Ŝ(Λ)L′ˆ

σ′
1′
(x′1)Ŝ

†
(Λ)Uσ′

1
σ1
ψσ′

1
∥2, (5.10)

where Eq. (5.10) has been used to transform the unitary operators and σ′
1′ and σ′

2′

are hypersurfaces of collapse intersecting x1 and x2 in frame F ′ and x′ is the same
spacetime point in a different coordinate system. By inspection the condition
required for Eq. (5.6) to hold is:

L′ˆ
σ′
t′
(x′) = Ŝ

†
(Λ)U

σ′
t′

σt L̂σt(x)U
σt

σ′
t′
Ŝ(Λ). (5.11)

Eq. (5.11) requires that the collapse operator transforms covariantly and that the
collapse can be described by an operator acting on any space-like hypersurface
intersecting x. This is equivalent to requiring that the collapse happens instanta-
neously in all inertial frames.

If instead x1 and x2 are space-like to each other, then in some frames their time
ordering may be reversed. In this case, if in F ′ x1 precedes x2, then Eq. (5.7) holds
and in the primed frame we have:

P (x′1, x
′
2|ψ′

σ′
1′
) = ∥L′ˆ

σ′
1′
(x′1)U

′σ′
1′

σ′
2′
L′ˆ

σ′
2′
(x′2)U

′σ′
2′

σ′
1′
ψ′
σ′
1′
∥2. (5.12)
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Substituting in Eq. (5.8) and Eq. (5.11) it is found that for Eq. (5.6) to be satisfied:

[L̂σ1(x1), U
σ1
σ2
L̂σ2(x2)U

σ2
σ1
] = 0 (5.13)

which is met if L̂σ(x) satisfies the microcausality condition:

[L̂σ(x1), L̂σ(x2)] = 0 ∀σand x1, x2 ∈ σ (5.14)

As discussed in chapter 4 the state is a tool to calculate probabilities and in order
to be consistent with special relativity the state must collapse instantaneously in
every inertial frame. Therefore, although we have written the collapse operator
as acting on a constant time hypersurface in a particular frame, it could be written
as a collapse operator acting on the Hilbert space of any space-like surface using
the relationship:

L̂σt(x) = Uσt
ω Q̂ω(x)U

ω
σt

(5.15)

where ω is any arbitrary space-like hypersurface intersecting the point x, and
Q̂ω(x) is a collapse operator like L̂ω(x) that also satisfies Eq. (5.11) and Eq. (5.13).

In order to check that Eq. (5.6) is satisfied it has been implicitly assumed that
in any one frame the time ordering between x1 and x2 is known. Otherwise it
would not have been possible to write the explicit expressions of Eq. (5.7), (5.10),
and (5.12).

As mentioned already, standard quantum mechanics has the concept of observers
comparing results, which means that the order of measurements can be known
between frames. If in one frame observer A measured x1 to be before x2 and in
another frame observer B measures the inverse, then A and B can reconcile their
conditional probability distributions and check consistency with special relativity
. In this section we have found the condition for relativistic collapse using the
conditional probability for two collapses, however it can be easily shown that
this applies to any number of collapses.

5.2 GRW and Special Relativity

In chapter 2 the GRW model was introduced and its defining characteristics were
listed in 2.4.

In order for a model that has these features to be consistent with special relativ-
ity it the conditional probability distribution for the position of collapses must
be Poincaré covariant in the sense discussed in chapter 4 and non-physical ef-
fects such as superluminal signalling and macroscopic superpostions must be be
predicted.

In this section we will consider what these requirements imply for the form of a
relativistic spontaneous collapse model for a single particle, distinguishable par-
ticles and indistinguishable particles.
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5.2.1 Relativistic condition for a single particle

We consider a relativistic GRW model for a single particle, where there is a single
series of collapses. In analogy with the original GRW model, it may be tempting
to define the times at which, in a given frame, collapses occur via a Poissonian
distribution with average time τ , but then one is faced with the fact that due
to time dilation this prescription is not Lorentz invariant. In order to overcome
this difficulty, the time intervals between collapses have to be defined in terms
of Lorentz invariant time-like four-distances. This seems to be the only way to
ensure that the time intervals are defined in a frame independent way. The four-
distances have to be time-like not only because we are seeking a sequence of time
intervals, but also because this prescription allows us to define a time-ordered
sequence of collapses. This approach is followed in [60].

Consider then, a Poissonian point process with average τ , with initial value 0.
Let ∆Ti be the distance between the i-th and (i− 1)-th point of the process. Then
define the times at which collapses occur as follows. Given the initial point of
collapse x0 = (x0, x

0
0), the next point of collapse x1 = (x1, x

0
1) will occur at four-

distance ∆T1 from x0, therefore x1 will be on the future hyperboloid defined by all
points with same time-like four-distance ∆T1 = |x1 − x0| from x0. The following
point of collapse x2 = (x2, x

0
2) will lie in the future hyperboloid defined by all

points with same time-like four-distance ∆T2 = |x2 − x1| from x1, and so on. See
Figure 5.3.

The four-distances among consecutive collapses have an interesting physical in-
terpretation. Consider a particle whose state is well-localised in an inertial ref-
erence frame O where the particle is at rest, for simplicity we can defined this
point at the origin. As we shall see, with an appropriately defined collapse oper-
ator then in that frame, collapses are likely to occur only about the origin (where
the state is non-zero), and the four-distances ∆Ti between consecutive collapses
correspond to the coordinate time intervals ∆ti between collapses. In a different
inertial frame O′, the particle will be moving and while the four-distances among
the collapses do not change, the coordinate time intervals ∆t′i are dilated. The op-
posite would be true for a well-localised particle at rest with respect to O′, thus in
motion with respect to O. Therefore, the four-distances ∆Ti roughly correspond
to the coordinate time intervals in the frame at rest with respect to the particle;
in all other frames, the coordinate time intervals between collapses undergo time
dilation. So observers measure different rates of collapse in different frames due
to time dilation, but the overall prescription of the rate of collapse is frame inde-
pendent. This is analogous to the situation in particle physics where a particle
with a half life λ, for example a muon, appears to have a longer half life when it
is travelling at a high velocity inside a particle accelerator.

The prescription above defines, in a relativistic invariant way, when a collapse oc-
curs. The model must also define where on the hyperboloid the collapse occurs,
i.e. give a normalized probability distribution for the position of the collapse on
that hypersurface, such as done in [60]. In the spirit of GRW, this probability dis-
tribution must be equal to PΣ(x) = ∥L̂Σ(x)ψΣ∥2 in order to avoid superluminal
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Figure 5.3: A schematic diagram showing how the stochastic process defines inter-
vals between collapses. The shaded area shows the maximum of the state’s den-
sity, straight dotted lines show the future light cone of each point of collapse and
the curved dotted lines show the surfaces of constant 4-distance from the previous
point of collapse. The left diagram shows a frame where each collapse occurs at the
same spatial point so the coordinate time and the 4-distance coincide, ∆Ti = ti. The
right diagram shows a different inertial frame where the 4-distance between each

point of collapse is still ∆Ti but the coordinate time is different t′i.
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signaling, where L̂Σ(x) is the collapse operator centred around the point of col-
lapse x, defined on the hyperboloid Σ. We can leave L̂Σ(x) unspecified, but it has
to be chosen in such a way that it localises the state, is Lorentz covariant and that
the probability is correctly normalized. However once it is specified it defines the
collapse operator on all space-like hypersurfaces through Eq. (5.15).

The last ingredient is how a collapse occurs, i.e. how the state changes due to a
sudden collapse at x. [60] assumes that the wave function collapses along the
hyperboloid previously introduced; this is mathematically implemented by ap-
plying L̂Σ(x) to ψΣ, and then normalizing the collapsed state. In fact, the col-
lapses can be carried out with respect to any space-like hypersurface containing
the point of collapse as the two prescriptions can be related by a unitary transfor-
mation. Specifically, suppose the collapse is defined to occur along a space-like
hypersurface ω1 according to the prescription:

ψω1 → ψ(c)
ω1

=
L̂ω1(x)ψω1

∥L̂ω1(x)ψω1∥
, (5.16)

where x is the point of collapse. Given a second space-like hypersurface ω2 con-
taining the point of collapse x, since ψω2 = Uω2

ω1
ψω1 for the state prior to the col-

lapse, and ψ(c)
ω2

= Uω2
ω1
ψ(c)
ω1

for the state after the collapse (because by construction
there are no collapses in between ω1 and ω2 apart from x, since all collapses are
assumed to be time-like separated with respect to each other), then Eq. (5.16) can
be equivalently rewritten as:

ψω2 → ψ(c)
ω2

=
L̂ω2(x)ψω2

∥L̂ω2(x)ψω2∥
, (5.17)

with L̂ω2(x) = Uω2
ω1
L̂ω1(x)U

ω1
ω2

. See figure 5.4. Also, the probability distribution
PΣ(x) previously defined can be computed along any space-like hypersurface
passing through x, since

PΣ(x) = ∥L̂Σ(x)ψΣ∥2 = Pω(x) = ∥L̂ω(x)ψω∥2 ≡ P (x), (5.18)

as one can easily check. It is in this sense that we can say that the collapse can be
described consistently in all frames.

Therefore we are precisely in the same situations envisaged by Albert and Aharonov:
a collapse occurs instantaneously along all space-like hyper-surfaces intersecting the point
of collapse, with the only (important) difference that there, the collapses are trig-
gered by measurements, while here they are part of the dynamical law. As pointed
out by Albert and Aharonov, this is necessary so that every inertial observer can
provide a normalized state both before and after the collapse on their constant-
time hyperplanes. Constant-time hyperplanes are important because these are
the hypersurfaces where observers describe their physics.

It is for this reason that the model presented in [26] is not a successful relativistic
model, as this model has the state collapse only in the future light cone of the
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point of collapse. This means that the state is not normalised along different con-
stant time hyperplanes and hence the theory does not give normalised probability
distributions for systems with entangled particles.

We argue that the only consistent way to understand the model in [60] is that
the state collapses on every hypersurface intersecting the point of collapse, i.e.
it collapses instantly in every frame. This is the only consistent way to interpret
the model as otherwise the states on hyperplanes after a point of collapse would
be ill defined. This in agreement with Eq. 37 of [60] which gives the state on a
constant time hypersurface for given foliation of spacetime.

To see how an inconsistency would arise otherwise, consider a collapse at point x
and three hypersurfaces of interest, a hyperboloid Σ intersecting x, a hyperplane
σt1 intersecting the point x and a hyperplane σt2 a short time in the future of
σt1 . The state ψΣ will be the collapsed state. Suppose that collapses only occur
on hyperboloids then the state on σt1 would be uncollapsed. Now the question
is: what is the state on σt2? As there is unitary dynamics everywhere except on
the hyperboloid then the state can either be written as ψσt2

= Uσ2
σ1
ψσt1

, meaning
ψσt2

would be an uncollapsed state, or as ψσt2
= Uσ2

Σ ψΣ, meaning ψσt2
would

be collapsed. The only way to resolve this inconsistency and still have unitary
dynamics is to have the collapse occur along σt1 as well.

Now we are in the position to assess whether this framework for a relativistic
GRW model is consistent with special relativity. Given the initial state ψσ0 de-
fined on a space-like hyperplane σ0 and the initial point of collapse x0 on σ0, the
probability for the next collapse to occur at x is given by

P (x1|x0, ψσ0) = ∥L̂ω(x1)U
ω
σ0
ψσ0∥2 (5.19)

where ω is a surface intersecting x1. This conditional probability distribution is
analogous to Eq. (4.4) where ψσ0 gives all the possible information about the
system at (x0, t0) based on the position of previous collapses.

For a Lorentz transformed inertial frame F ′ with coordinates x′ the initial condi-
tions are the point of last collapse x′0 and the state on the hyperplane σ′

0′ . Therefore
special relativity requires that:

P (x1|x0, ψσ0) = P (x′1|x′0, ψ′
σ′
0′
). (5.20)

Here the condition of Eq. (4.4) is applied to spontaneous collapse models where
the measurements are replaced by points of spontaneous collapse2. For a single
particle the state is specified by the point of last collapse x0. As described in
chapter 4, in order to check this condition one must be able to compare the initial
conditions (here the state and position of the previous collapse) between different
inertial frames, as noted in [19]. This has consequences when considering collapse
models for multiple particles, as we will see in sections 5.2.2 and 5.2.3.

2We will keep the notation of section 5.1.2 with the understanding that now the time coordinate
of x is now probabilistic.
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Figure 5.4: Schematic diagram showing possible surfaces of collapse in relativistic
GRW. The curved thick line labeled Σ is a hyperboloid of made up of points 4-
distance ∆T1 from the previous point of collapse. The collapse operator can be
defined on the surface Σ or equivalently on the hyperplane σ via the operator Uσ

Σ

The straight thick line labeled σ.

In order to verify Eq. (5.20) the map between ψσ0 defined on the constant-time
hyperplane σ0 for O, and ψ′

σ′
0′

defined on the constant-time hyperplane σ′
0′ for O′

must be known, and in order to do this, positions of all collapses between those
surfaces must be known. For a series of time-like collapses this condition is met
as there can be no collapses between σ0 and σ′

0′ , see figure 5.5, hence the two
hyperplanes are related by Eq. (5.8). By the same argument presented in section
5.1.2, the collapse operator L̂σt(x) must transform as in Eq. (5.11) and obey Eq.
(5.13).

If these conditions are met these spatial collapses which are time-like to one an-
other may be described in a way that is consistent with special relativity for a
single particle. The model proposed by [60] for a single particle meets these con-
ditions.

On the contrary, for a single particle theory with collapses which are space-like to
each other (we do not discuss how such a model could be formulated), the initial
state in different inertial frames can no longer be related to each other by Eq. (5.8),
as there might be collapses in the region enclosed between σ0 and σ′

0′ , as shown
in figure 5.5. Then to verify Eq. (5.20) the position of all collapses in this region
must be known; since this region includes points which are in the future of x0 in
F , this is not possible.

One should notice the difference between standard quantum mechanics and spon-
taneous collapse models. Standard quantum mechanics has space-like collapses.
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However as discussed in section 5.1.2 this is consistent with relativity due to the
position of collapses being given. In spontaneous collapse models the position of
collapses are probabilistic and are not know a priori and hence it cannot be taken
for granted that initial conditions in two different inertial frames can be related.
For space-like spontaneous collapses comparing initial conditions between two
inertial frames is equivalent to requiring knowledge of future points of collapse
in one of the inertial frames, as there might be collapses between two constant
time hypersurfaces, see figure 5.5. Stochastic theories cannot meet this require-
ment, as the points of collapse are a single realisation of a random process and
hence cannot be determined with certainty.

The convention that the initial collapse occurs at the origin has been taken. Since
this is just a choice of coordinate system one would expect that the results dis-
cussed hold regardless of the choice of origin. Since in two different inertial
frames F (F ′) the initial conditions are an initial point of collapse x (x′) displaced
from the origin and a state ψ0 (ψ0′) on the hypersurface intersecting it, then the
same rules for relating the two initial conditions as in the case of collapse at the
origin can be applied.

An additional reason that space-time collapses are not permitted is that, as stated
before, for a relativistic GRW model the intervals between collapses must be a
function of an Lorentz invariant interval. If space-like separated collapses are
permitted in the theory then the Lorentz invariance interval must be permitted to
have negative values i.e. the Poissonian point process must also produce nega-
tive values as these are space-like four-distances. This of course means that some
intervals will have a negative time component meaning that there is a negative
time interval between collapses, i.e. the future is predicting the past. This would
make the theory unworkable, as it would not be possible to iteratively construct
the probability distribution for the location of each collapse, i.e. eq. (5.19). This
reasoning holds true even if one does not require that initial conditions are com-
parable.

Therefore single particle spontaneous collapse models can meet the condition in
Eq. (5.20) when collapses are time-like to each other, but for space-like collapses
the initial condition for observers in two frames cannot be compared and the
condition is not satisfied. For the model proposed in [60] for a single particle the
collapses are time-like and hence it is a viable relativistic GRW model. Of course
one does not expect space-like collapses for single particles as this would imply
superluminal velocities, however this observation is relevant for multi-particle
spontaneous collapse models.

5.2.2 Relativistic condition for N distinguishable particles

The natural generalization of the previous model to theN distinguishable particle
case is to assume that there are N series of collapses and hence N realisations of
the stochastic process. The ith realisation is: Si = {Ti1, Ti2...}. For each realization,
the construction of the collapse process—where they occur and how they change
the state—is the same as for the single particle case. Note that in general, points of
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Figure 5.5: For time-like collapses (left) initial conditions between two inertial
frames can always be related by unitary evolution as, for an initial collapse x1, there
can be no collapses between constant time hypersurfaces intersecting x1, σ0 and σ′

0′ .
For space-like collapses (right) then initial conditions between frames may not be

related since there may be points of collapse between σ0 and σ′
0′ e.g. x1.

collapse associated to different particles can be space-like separated, while points
of collapse associated to the same particle are always time-like to each other in
a series. The space-like collapses here do not present an issue with the intervals
of the stochastic process as each realisation of the stochastic process Si still only
needs to contain four-distances with positive time intervals. The Hilbert space
for N distinguishable particles is given by:

H = H1 ⊗H2...⊗HN⏞ ⏟⏟ ⏞
N

, (5.21)

where Hi is a single particle Hilbert space for the ith particle. The state on a
hypersurface may be written as Ψσ ∈ H .

Then in this case, the condition for consistency with special relativity is that:

P (x11, ...., xi1, ...xN1|x10, ..., xi0, ..., xN0,Ψσ0) =

P (x′11, ...., x
′
i1, ...x

′
N1|x′10, ..., x′i0, ..., x′N0,Ψ

′
σ′
0′
) (5.22)

where for the ith series of collapses the collapse at xi0 is followed by a collapse at
xi1 and Ψσ0 is the multiparticle state on a constant time hyperplane at the initial
time. In the single particle case the initial state was defined on a hyperplane
intersecting the initial point of collapse. As for multiple particles there are many
initial points of collapse, it is not immediately obvious which hypersurface the
initial state should be defined on. The model can be defined consistently if in
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frame O the initial hypersurface intersects the earliest point of collapse in that
frame for that generation of collapses, in this case the earliest point within the
group {x10, ..., xi0, ..., xN0}. So Ψσ0 is the state on the hyperplane intersecting the
earliest xi0. The relation Eq. (5.22) should hold true for every value of j, not only
when j = 1, however, since the model is Markovian, the relation can be easily
iterated and checked for any pair of consecutive collapses.

A necessary requirement for Lorentz invariance of the probability distribution is
that the distance between each xij and xij+1 is a time-like 4-distance given by Tij .

As in the case of the single particle sector, in order for eq. (5.22) to be satisfied
then it must be possible to relate the initial states Ψσ0 and Ψ′

σ′
0′

in any two inertial
frames. Again we note that σ′

0′ is a different hypersurface than σ0 so the states
Ψσ0 and Ψ′

σ′
0′

are not just one state expressed in different coordinate systems. For
a completely generic initial state Ψσ0 , which may be entangled, then collapses
for any particle may affect the probability for the collapse of another particle via
entanglement. As collapses for different particles may be space-like to each other
then the initial state in one frame Ψσt cannot in general be related to Ψ′

σ′
t′

, as is
shown in section IV of [4].

We will now give a simple illustrative example of an entangled initial state where
two observers cannot compare initial conditions, but for a more rigorous expla-
nation see [4]. Consider the situation shown in figure 5.6 with a system of two
distinguishable particles. At time t = 0 there are two collapses, atX1 for particle 1
and at X2 for particle 2. We assume by fiat that immediately after this the system
is in the entangled state:

|ψσ0⟩ =
1√
2

(︂
|L⟩1|L⟩2 + |R⟩1|R⟩2

)︂
(5.23)

where the subscripts refer to the particle number and |L⟩ is a localised state cen-
tred on the left and |R⟩ is a localised state centred on the right. We assume that
their centres are sufficiently far apart such that ⟨L|R⟩ ≈ 0. The entanglement en-
sures that any further collapse will localise both particles, for example if particle 2
collapses to |R⟩ then particle 1 will also collapse to |R⟩. This is a similar situation
to the well known Bell locality scenario.

For a GRW type model in frame F , the probability of particle 1 collapsing at Y1
can be given by knowing the state |ψσ0⟩ and the position of the previous collapse
X1. However in frame F ′, the initial state must be given on a constant time hy-
persurface σ′

0′ in that frame. As can be seen from figure 5.6 particle 2 may have
already collapsed in F ′, for example at Y2, which would also affect particle 1.

So, in order to compare the initial states on σ0 and σ′
0′ the position of collapses

between them (in this case Y2) must be known, which would include collapse in
the future for frame F . Since in principle it is not possible to specify the position
of future collapses for a stochastic theory, the two initial conditions cannot be
compared.



Chapter 5. Relativistic GRW Models 53

Figure 5.6: Schematic diagram showing two entangled distinguishable particles.
The time and space axis are shown for two different frames. The dashed and dotted
lines show the support for each part of the state without collapses (see Eq. (5.23)).
PointsX1 andX2 are the known initial points of collapse and Y1 and Y2 are possible

future points of collapse.
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A system described by conventional quantum mechanics (with observers per-
forming measurements) with initially entangled states and interacting dynamics
can be consistent with special relativity and have its initial conditions compared
between frames, so why is it not possible for a GRW type model? The reason
is the same one explained in section 5.2.1 for single particles. We have argued
that to be consistent with special relativity it is necessary to be able to specify the
position of each particle’s initial point of collapse. However, this is equivalent to
requiring knowledge of future points of collapse in some inertial frames, which
is not permitted in stochastic models. In conventional quantum mechanics the
position of the initial collapses is specified, as these are the positions of the exter-
nal observer’s measurements, but for a stochastic model like the GRW model this
assumption cannot be made.

In conclusion, there cannot be a special relativistic GRW model for entangled
distinguishable particles. For the special case of non-interacting particles in a
separable state it is possible to have a relativistic GRW. We now discuss the two
cases more in detail.

Non-interacting separable particles

For non-interacting particles the unitary evolution operator between two sur-
faces, ω1 ω2, may be written:

W ω2
ω1

= Uω2
ω1,1
⊗ Uω2

ω1,2
⊗ Uω2

ω1,i
...⏞ ⏟⏟ ⏞

N terms

(5.24)

Where Uω2
ω1,i

is the unitary operator for the ith particle. The collapse operator for
the the ith particle is:

L̂ω,i(x) = I⊗ I...⏞ ⏟⏟ ⏞
i terms

⊗L̂ω(x)⊗ ...I⊗ I⏞ ⏟⏟ ⏞
N-i-1 terms

(5.25)

where L̂ω(x) is the collapse operator for a single particle (here for simplicity we
assume that the form of each collapse operator is the same for every particle).
There are N of such operators.

For a separable initial condition:

Ψσ0 = ψσ0,1 ⊗ ψσ0,2...⊗ ψσ0,N (5.26)

then each side of Eq. 5.22 can be factorised into N distributions of the form:

P (xi1, |xi0, ψσ0,i) = ∥L̂σi1
(xi1)U

σi1
σ0,i
ψσ0,i∥2. (5.27)

where σij is the hyperplane intersecting the point xij . For consistency with special
relativity each P (xi1, |xi0, ψσ0,i) must satisfy Eq. (5.20). If each particle has a se-
ries of collapses that are time-like to each other, and the collapse operator L̂ω,i(x)
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transforms as in Eq. (5.11), then the model is consistent with special relativity.
The model presented in [60] with a separable initial state meets this condition.

If the initial state Ψσ0 is not separable then Eq. (5.22) will not be factorable. If it is
not factorable then the initial state Ψσ1 cannot be specified in a frame independent
way and hence the model cannot be consistent with special relativity.

Interacting particles

If the particles are interacting and the state is initially separable, then the unitary
operator cannot be decomposed as in Eq. (5.24). In this case the condition for Eq.
(5.22) to be factorable is:

[W ω2
ω1
, L̂ω,i(x)] = 0 =⇒ [Ĥ, L̂ω,i(x)] = 0 (5.28)

where Ĥ is the Hamiltonian for the system (both the free and interacting parts).
As is well known, if an operator commutes with the Hamiltonian then it corre-
sponds to a globally conserved quantity. Therefore, if the condition of Eq. (5.28)
holds then L̂ω,i(x) is a global operator and hence cannot be a local function of
the fields. In this case, it has been shown that the dynamics does not result in a
successful collapse model [2]. For example if the collapse operator is Ĥ then the
collapse rate is proportional to the distance between the energy eigenvalues of
the system, see Eq. 21 of [1]. For systems in spatial superpositions but with de-
generate energy eigenstates, then the model would not predict any collapse. This
would fail to solve the measurement problem as it would not lead to a reduction
in the state for situations where we observe that the state collapses.

Therefore, since Eq. (5.22) is not factorable, then one is faced with the same prob-
lem as the non-separable state, the initial state Ψσ0 will be different in different
frames due to the interaction. Hence it is not possible to have a special relativistic
GRW model for interacting distinguishable particles.

5.2.3 Relativistic condition for indistinguishable particles

A relativistic GRW model for indistinguishable particles must only have a single
collapse operator, L̂σ(x), which acts over every particle, to preserve the particle
interchange symmetry or anti-symmetry for bosons and fermions respectively.
Due to this, indistinguishable particles have the same relativistic condition as a
single particle, namely that the stochastic process gives the 4-distance between
points of collapse and Eq. (5.20) holds, where ψσ is an element of an N particle
Fock space. From this, the requirements Eq.(5.11) and Eq. (5.13) are derived. If
the collapses are time-like to each other then Eq. (5.8) can be used as the initial
condition in one frame, the position of last collapse x0 and the state ψσ0 can be
related to the initial condition in a different frame.

Conversely ,if the collapses are space-like to each other then Eq. (5.8) does not
hold and also it is possible for the time-interval between some points becomes
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negative, as described in section 5.2.2. So such a model is not consistent with
special relativity.

5.2.4 Emergence of macroscopicality for indistinguishable parti-
cles

As has been discussed in section 5.2.3 a relativistic GRW model for indistinguish-
able particles is possible if each collapse is time-like to the previous one. However
such a model has an issue. If, given a point of collapse, x0, the only region that the
subsequent collapse can occur in is the future light cone of x0 then macroscopic
classicality is not recovered. This can be seen with a simple example with two
macroscopic objects. Suppose there is a system made up of a large number of
indistinguishable particles N, where N is an even number. The initial state of the
system is two macroscopic objects, i.e. two areas with high densities of particles,
with a large distance separation between the centre of mass of these two areas,
labelled 2d, as in figure 5.7. Assume that initially each object is in a spatial super-
position, separated by a distance 2r, where r ≪ d. For simplicity we will work in
one dimension but the argument can be extended to three dimensions. We will
work in the framework of second quantization.

The initial state of the system on a constant time hypersurface σ0 is:

|Ψσ0⟩ =
1

2
(Â1 + Â2)(B̂1 + B̂2)|0⟩ (5.29)

where |0⟩ is the vacuum of a N particle anti-symmetric Fock space and:

Â1 =

N/2∏︂
n=0

ĝ(−d− r, n) (5.30a)

Â2 =

N/2∏︂
n=0

ĝ(−d+ r, n) (5.30b)

B̂1 =

N/2∏︂
n=0

ĝ(d− r, n) (5.30c)

B̂2 =

N/2∏︂
n=0

ĝ(d+ r, n) (5.30d)

where:
ĝ(x, n) = â†(x−Nϵ/4 + nϵ) (5.31)

were ϵ is a distance such that Nϵ/2 ≪ r ≪ d. Additionally assume that the dis-
tance scale of the collapse is much less than the size of the superposition: 1/α≪ r.
So the operator A1̂ acting on the vacuum creates N/2 fermions, each displaced a
distance ϵ from each other, centred about the point −d − r see figure 5.8, and
similarly for A2̂, B1̂ and B2̂.
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Figure 5.7: Schematic spacetime diagram showing the evolution of a pair of space-
like separated macroscopic objects separated by distance 2d. For time-like collapses
if there is a collapse at point x0 the next collapse must occur in the future light
cone of x0 (shaded grey area), and therefore the object on the right will stay in a

superposition.
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The number operator for the whole system is:

N̂T =

∫︂ ∞

−∞
dx â†(x)â(x). (5.32)

The number operator for the left part of the system is:

N̂A =

∫︂ 0

−∞
dx â†(x)â(x), (5.33)

With a the equivalent definition for N̂B. Finally the number operator for the
region to the left of −d is:

N̂A1 =

∫︂ −d

−∞
dx â†(x)â(x). (5.34)

The initial state |Ψσ0⟩ is an eigenstate of the number operator for the total system:

N̂T |Ψσ0⟩

=

∫︂ ∞

−∞
dx â†(x)â(x)

1

2
(Â1 + Â2)(B̂1 + B̂2)|0⟩

=
1

2
(NÂ1B̂1 +NÂ1B̂2 +NÂ2B̂1 +NÂ2B̂2)|0⟩

= N |Ψσ0⟩.

The initial state is also an eigenstate of the number operator for the left part of the
system:

N̂A|Ψσ0⟩ =
∫︂ 0

−∞
dx â†(x)â(x)

1

2
(Â1 + Â2)(B̂1 + B̂2)|0⟩

=
N

2
|Ψσ0⟩

and similarly for the right part of the system N̂B|Ψσ0⟩ = N/2|Ψσ0⟩. However, the
initial state is not in an eigenstate of the number operator for the region to the left
of −d:

N̂A1|Ψσ0⟩ =
∫︂ −d

−∞
dx â†(x)â(x)(Â1B̂1 + Â1B̂2 + Â2B̂1 + Â2B̂2)|0⟩

=
1

2
(
N

2
Â1B̂1 +

N

2
Â1B̂2 + I+ I)|0⟩ (5.36)

which is not proportional to |Ψσ0⟩. |Ψσ0⟩ is also not an eigenstate of N̂A2 , N̂B1 or
N̂B2 . This implies there are two objects, each in a superposition over two areas,
rather than one object in a superposition over four areas or four objects each in a
localised position.
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Figure 5.8: Diagram showing the action of the operator Â1 on the vacuum, were
particles are created separated by distance ϵ.

The amplification mechanism will cause a collapse of one of the objects almost
immediately. Suppose that the collapse is at spacetime point (t,−d + r), where t
is so small that Uσt

σ0
≈ I. Then following Eq. (5.5) we find the state immediately

after the collapse, on the constant time hypersurface σt, to be:

|Ψσt⟩ =
Ĵσt(−d+ r)|Ψσ0⟩
∥Ĵσt(−d+ r)|Ψσ0⟩∥2

(5.37)

where Ĵσt(x) is an approximation for the form of a relativistic collapse operator
L̂σt(x) in the limit of low velocity particles. The form of Ĵσt(x) is:

Ĵσt(x)|Ψσ0⟩ =
∫︂ ∞

−∞
dy K(y)fα(x− y)â†(y)â(y)|Ψσ0⟩ (5.38)

where fα(x) is a function sharply peaked about x = 0 with a width proportional
to 1/α and K(y) is a normalisation function. This form ensures that particles are
localised about the point of collapse. To evaluate Eq. (5.37) consider just the term:

Ĵσt(−d+ r)Â1B̂1|0⟩

=
1

2

∫︂ ∞

−∞
dy K(y)fα(−d+ r − y)× â†(y)â(y)

N/2∏︂
n=0

N/2∏︂
m=0

ĝ(−d− r, n)ĝ(d− r,m)|0⟩

(5.39)

is needed. The contributions from the ĝ(−d − r, n) and ĝ(d − r,m) operators are
weighted by factors of fα(−2r + nϵ/4) and fα(2d − 2r + nϵ/4) respectively. As
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−2r + nϵ/4 ≫ 1/α and 2d − 2r + nϵ/4 ≫ 1/α then fα(−2r + nϵ/4) ≈ 0 and
fα(2d− 2r + nϵ/4) ≈ 0. Hence :

Ĵσt(−d+ r)Â1B̂1|0⟩ ≈ 0. (5.40)

A similar suppression occurs for Ĵσt(−d+ r)Â1B̂2|0⟩. However, the terms Â2B̂1+

Â2B̂2 are not suppressed in this case as the integral fα is approximately 1 for the
part of the state centred on −d+ r. Therefore, we are left with:

Ĵσt(−d+ r)|Ψσ0⟩ ≈
N

4
Â2(B̂1 + B̂2)|0⟩ (5.41)

and therefore:
|Ψσt⟩ ≈

1√
2
Â2(B̂1 + B̂2)|0⟩ (5.42)

This describes how object 1 has been collapsed but object 2 remains in a super-
position. Object 2 will be left in a superposition for approximately 2d/c seconds,
where c is the speed of light, shown in figure 5.7. If d is sufficiently large then one
of the macroscopic objects will remain in a spatial superposition for an arbitrarily
long time, in violation of what we observe in nature.

To avoid this problem for macroscopic objects then a collapse model must permit
space-like points of collapse. If there are space-like collapse points, then the po-
sition of the initial collapse does not limit the region of possible collapses. Hence
any region with a high-average number density of particles is almost certain to
have a collapse occur within it in a short time interval. However, as discussed
in section 5.2.3, if one attempts to include space-like collapses into the indistin-
guishable particle model suggested here, then the model is not consistent with
special relativity.

5.3 Conclusion

In this chapter we have considered the GRW model and its consistency with spe-
cial relativity. We have emphasised that for a model to be consistent with special
relativity the dynamics must be Lorentz covariant and initial conditions in dif-
ferent inertial frames must be able to be related; we have then applied these re-
quirements for the case of relativistic GRW models. We have also shown that the
interval between points in a series of collapses in GRW models must be given by
a Lorentz invariant space-time interval. From this we concluded that these points
in a series must then be time-like to each other to prevent negative time intervals
between collapes, which would render the theory inconsistent.

In table 5.1 we summarise the conclusions of this work, showing for which cases
a relativistic GRW model is possible.

We have shown that a relativistic GRW is possible for single particles and non-
interacting, non-entangled distinguishable particles, as due to the fact that the
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collapses for each particle are time-like to each other, the initial conditions can be
related in different inertial frames. However, for entangled, non-interacting, dis-
tinguishable particles, as entanglement implies that space-like collapses for one
particle can affect the probability of collapse of another particle the initial con-
ditions in different inertial frames cannot be related. For indistinguishable par-
ticles, either the collapses are space-like and hence not compatible with special
relativity, or the collapses are time-like and the recovery of macroscopic classi-
cality is not for guaranteed hence such a model is not a viable collapse model.
For interacting particles as the interactions can entangle the particles, the initial
conditions in two frames cannot be related, and therefore there is not a relativistic
GRW model for interacting particles.

One thing to note is that this chapter only considers the fixed particle sector, and
a completely relativistic collapse model must also describe changes in particle
number. This limitation will be further discussed in the conclusion.

Summary of Conclusions
Particle Type Separable

State
Entangled
State

Single Yes N/A
N distinguishable
non-interacting

Yes No

N indistin-
guishable non-
interacting

No No

Interacting No No

Table 5.1: A table showing the regimes where a relativistic GRW model is possible.
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Chapter 6

An Attempted Relativistic CSL
Model

6.1 Introduction

In this chapter we will attempt to construct a relativistic extension of the CSL
model. The motivation for doing this is that CSL, by some measures, is the most
studied continuous spontaneous collapse model.

As we have seen in the previous chapter it is not possible to find a relativistic
extension to GRW, a model with a discrete stochastic process, we therefore ask if
it is possible to have one for a continuous process. This is done by starting from
the most general form of a continuous time spontaneous collapse model and then
applying a set of minimal requirements for a successful relativistic generalization.
We will consider the case of scalar bosons but the results of this work are not
expected to differ for fermions. These requirements are: that the dynamical map
collapses in the mass density basis covariantly, that the rate of change of energy
is finite, and that microcausality is respected. It is found that it is not possible for
all the requirements to be simultaneously satisfied.

This work is laid out as follows: in section 6.2 the requirements for a continu-
ous model to be consistent with special relativity are applied to the general non-
Markovian form of the continuous spontaneous collapse model. It is shown that
the requirements for this map to be Lorentz covariant are that the two point cor-
relation function is a function of the invariant 4-distance and that the collapse
operator is a Lorentz scalar.

The collapse operator is specified in section 6.3. In section 6.4 it is shown that the
rate of change of the energy under the map is only finite if the two point correla-
tion function tends to zero for high momentum. Finally in section 6.5 it is shown
how under the above requirements such a dynamics permits superluminal sig-
nalling.

In novel content in this chapter is the selection of the minimal set of requirements
that relativistic CSL must satisfy and all calculations; including the checks for
Poincaré covariance, the finite rate of energy change, and microcausality.
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6.2 Lorentz covariant CSL

As discussed in chapter 4, in order for a continuous model to be consistent with
special relativity we may only consider systems whose initial conditions can be
compared via unitary Poincaré transformations and where the map transforms
under the unitary evolution, see eq. (4.13). It is this second requirement that is
relevant here, as we wish to restrict the general form of the collapse model.

Since the map U0
t describing the standard unitary quantum evolution is Lorentz

covariant, we are left to verify the covariance of the collapse contribution Mt.
Therefore, in the rest of this work we will work with the mapMt and therefore
be in the interaction picture.

With the help of Eq. (3.14) and Eq. (3.15) and by exploiting the unitarity of S0(Λ),
it is straightforward to show that Eq. (4.13) is satisfied if and only if the following
condition is satisfied:

←−
T exp

{︄∫︂
Ωt

d4x

∫︂
Ωt

d4yD(x, y)
[︂
S0(Λ)[Q̂

L
(y)]S0(Λ)[Q̂

R
(x)]

− θ(x0 − y0)S0(Λ)[Q̂
L
(x)]S0(Λ)[Q̂

L
(y)]− θ(y0 − x0)S0(Λ)[Q̂

R
(y)]S0(Λ)[Q̂

R
(x)]

]︂}︄

=
←−
T exp

{︄∫︂
Λ(Ωt)

d4x

∫︂
Λ(Ωt)

d4yD(x, y)

[︂
Q̂

L
(y)Q̂

R
(x)− θ(x0 − y0)Q̂

L
(x)Q̂

L
(y)− θ(y0 − x0)Q̂

R
(y)Q̂

R
(x)
]︂}︄

(6.1)

Let us consider the case when the operator Q̂ is a Lorentz scalar:

S0(Λ)[Q̂(y)] = Q̂(Λ(y)). (6.2)

In this case the condition in Eq. (6.1) is met only if D(x, y) = D(|x − y|) [56], in
which case D(x′, y′) = D(x, y) where x′ = Λ(x).

Finally, we note that as D(x, y) is a function of the 4-distance, then it is symmetric
under exchange of x and y. This allows Eq. (3.15) to be simplified to:

Lt =

∫︂
Ωt

d4x

∫︂
Ωx0

d4y D(x, y)
[︁
Q̂

L
(y)Q̂

R
(x)+Q̂

L
(x)Q̂

R
(y)−Q̂

L
(x)Q̂

L
(y)−Q̂

R
(x)Q̂

R
(y)
]︁

(6.3)
which is a form which makes calculations easier to perform.
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6.3 Choice of the collapse operator

As discussed in Section II, the choice of the operator Q̂(x) determines the basis
that spontaneous collapse occurs in. We seek a model that is relativistically in-
variant and at the same time is able to reproduce the CSL dynamics in the non
relativistic limit. A natural choice is to select Q̂(x) to be the relativistic mass den-
sity operator, i.e.

Q̂(x) = mâ†(x)â(x) (6.4)

where â†(x) is the positive energy part of the Klein-Gorden field operator. From
now on we take Eq. (6.4) to be the collapse operator.

6.3.1 Ontology of relativistic CSL

As in the non-relativistic case (see section 3.4), only may wish to proposed an on-
tology for relativistic CSL. The beable proposed for the non-relativistic case is the
averaged density, eq. (3.12), however this beable is an average over space but not
time, so is clearly not Lorentz covariant. However the reason for the averaging, to
ensure that the beable cannot be in superpostions, is still required, so one cannot
simply use the raw mass density eq. 6.4. One suggestion for a relativistic beable
has been proposed in [12], see section 3.12, however there has not been an con-
clusive discussion of this. So currently the existence of an appropriate relativistic
beable for CSL is still an open question.

Previous attempts to derive relativistic extensions of CSL model have encoun-
tered the problem of an infinite energy rate in the dynamics. In the next section
we will find a necessary condition to avoid this unpleasant feature in a relativistic
collapse model.

6.4 Finiteness of rate of change of energy

An important physical requirement for the dynamics to satisfy is that the rate of
change of energy is finite. Some previous attempts to find a relativistic collapse
model have suffered from this divergence [10, 13]. Here we show that the dynam-
ics given by Eq. (3.15) with the choice of Eq. (6.4) as the collapse operator does not
lead to a divergent rate of change of energy provided that the correlator prevents
large transfers of momentum between momentum eigenstates. We show this for
a single particle system in the weak coupling regime.

The rate of change of the energy is given by:

d

dt
Tr(ĤMt[ρ̂]) =

d

dt
Tr(Ĥ

←−
T expλLt[ρ̂]), (6.5)

where Ĥ is the Hamiltonian for the unitary dynamics [49]:

Ĥ =

∫︂
dp

(2π)3
Epâ

†
pâp (6.6)
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where Ep =
√︁
m2 + p2, p is the three momentum and âp and â†p are the creation

and annihilation operators in momentum eigenbasis which satisfy the following
commutation relation:

[âp, â
†
q] = (2π)3δ3(p− q) (6.7)

We expand the map up to the first order in the coupling γ, to obtain:

←−
T exp γLt[ρ̂] = I+ γLt[ρ̂] +O(γ2). (6.8)

Exploiting this and dropping terms of orders higher than γ gives:

d

dt
Tr(ĤMt[ρ̂]) ≈ γTr(ĤLt[ρ̂]) (6.9)

We evaluate Eq. (6.9) in the single particle sector, where the state of the system
can be expressed as:

ρ̂ =

∫︂
dp

∫︂
dq A(p,q) â†p|0⟩⟨0|âq (6.10)

where A(p,q) is an arbitrary function such that:

Tr(ρ̂) =
∫︂
dp A(p,p) = 1 (6.11)

In order to calculate Eq. (6.9) we expand the correlation function and the collapse
operator in Fourier components, i.e.

D(x, t) =
1

(2π)3

∫︂
dq eix·qD̃(q, t)

Q̂(x, t) =
m

(2π)6

∫︂
dq

∫︂
dp

1

2
√︁
EpEq

eix·(q−p)e−i(Eq−Ep)tâ†qâp (6.12)

substituting these into Eq. (6.3) with D(x, y) = D(|x − y|) and then integrating
over the spatial variables dx and dy allows Lt be written as:

Lt =
1

(2π)12

∫︂
dq

∫︂ t

0

ds

∫︂ s

0

dτ D̃(q, s− τ)
{︁
K̂

L
(q, s)K̂

†,L
(q, τ) + K̂

R
(q, s)K̂

†,R
(q, τ)

− K̂
†,L

(q, τ)K̂
R
(q, s)− K̂

L
(q, s)K̂

†,R
(q, τ)

}︁
(6.13)

where:

K̂(q, t) = m

∫︂
dp

2
√︁
EpEp−q

ei∆E(p,q)tâ†pâp−q (6.14)

with ∆E(p,q) = Ep−q − Ep. Note that K̂(q, t) = K̂
†
(−q,−t).
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Then using Eq. (6.13) and Eq. (6.12) we have that Eq. (6.9) evaluates to:

Tr(ĤLt[ρ̂]) =

− m2

(2π)3

∫︂
dq

∫︂
dp

∫︂ t

0

ds

∫︂ s

0

dτD̃(q, s− τ) cos(∆E(p,q)(s− τ))A(p,p)
(︃

1

2Ep−q

− 1

2Ep

)︃
(6.15)

We are interested to see if this integral is finite. The integrals over both q and p
are over an infinite range, but if the system is assumed to initially have a finite
energy then the integral over p will automatically converge to a finite value. Then
in order for the integral over q to converge a necessary condition is that:

lim
|q|→∞

D̃(|q|, s− τ) = 0. (6.16)

Note here that if the noise is white, i.e. if D(x, y) = δ4(x− y) then:

D̃(|q|, s− τ) = (2π)3δ(s− τ) (6.17)

and the energy rate in Eq. (6.15) diverges. Therefore, relativistic white-noise mod-
els are physically inconsistent, as already noticed in chapter 13 of [10] and [13].
Through a similar calculation it can be seen that if the correlation functionD(x−y)
further satisfies the following condition

D̃(|q|, t) ≈ 0 for q > κm (6.18)

where κ ≫ 1 is a fixed constant, then the map described by Eq. (3.15) is well
behaved in the non-relativistic sector, i.e. it leaves non-relativistic particles non-
relativistic.

Notice that condition Eq. (6.16) is a weaker condition than Eq.(6.18), hence if the
model has a non-relativistic limit then it also has a finite energy rate.

6.5 Superluminal Signalling and Micro-causality

We have given the minimal requirements for the map in Eq. (6.3) to guarantee
that the state collapses and has a finite energy rate. Here we check the conditions
under which the model does not allow superluminal signalling by checking if
the model satisfies the microcausality condition. We will show that given the
requirements from sections 6.2, 6.3 and 6.4, the dynamics described by Eq. (6.3)
violates microcausality. For this section we will work in the Heisenberg picture,
therefore operators evolve with the dual mapM∗

t [U0∗
t [ · ]].

In standard quantum mechanics where the dynamics Ut is unitary the micro-
causality condition reads

[Â(z1), B̂(z2)] = 0 ∀ |z1 − z2| < 0 (6.19)



Chapter 6. An Attempted Relativistic CSL Model 67

where Â(z1) = U0∗
t1
Â[(z1, 0)] and B̂(z2) = U0∗

t2
[B̂(z2, 0)] are local operators, and z1

and z2 are two points in spacetime such that z1 = (z1, t1) and z2 = (z2, t2) where
z1 and z2 are two points in 3D space. The above condition is synonymous with no
superluminal signalling, because it guarantees that local measurements at space-
like separated points do not influence each other. For the case of a non-unitary
dynamics it is not possible to evaluate Eq. (6.19) because:

M∗
t1
[U0∗

t1
Â(z1, 0)U0∗

t1
B̂(z2, 0)] ̸=M∗

t1
[U0∗

t1
Â(z1, 0)]M∗

t1
[U0∗

t1
B̂(z2, 0)]. (6.20)

In other words, for non-unitary dynamics the evolution of the product of two op-
erators Â and B̂ cannot be described by the product of the independently evolved
operators.

One way around this problem is if the non-unitary map admits a unitary stochas-
tic unravelling Ũ t, i.e. E(Ũ t) = U0

tMt as in the case of the map in Eq. (6.3) (for an
explicit expression of the unitary stochastic unravelling see [3, 10]).
In this case one could define a microcausality condition as:

E([Â(z1), B̂(z2)]) = 0 ∀ |z1 − z2| < 0 (6.21)

where Â(z1) ≡ Ũ
∗
t1
[Â(z1, 0)] and B̂(z2) ≡ Ũ

∗
t2
[B̂(z2, 0)] are local operators.

However the presence of the stochastic average makes the equation hard to eval-
uate in full generality, but for our purpose it is sufficient to restrict the study to
the less general case Â = B̂ = ϕ̂(x), t1 = t and t2 = 0. Under these assumptions
Eq. (6.21) reduces to:

E([Ũ∗
t [ϕ̂(z1, 0)], ϕ̂(z2, 0)]) = [M∗

t [ϕ̂(z1, t)], ϕ̂(z2, 0)] = 0 (6.22)

where ϕ̂(z1, t) = U0∗
t [ϕ̂(z1, 0)] is the field operator evolved under the standard

unitary evolution dynamics. We expand the mapM∗
t to first order in γ. By sub-

stituting the Fourier expansion for ϕ̂(x) (see 8.0.2) we arrive at:

[M∗
t [ϕ̂(z1, t)], ϕ̂(z2, 0)] ≈ [ϕ̂(z1, t) + γL∗

t [ϕ̂(z1, t)], ϕ̂(z2, 0)]

= [ϕ̂(z1, t), ϕ̂(z2, 0)] + γ

∫︂
Ωt

d4x

∫︂
Ωx0

d4y D(x− y)[[Q̂(y), [ϕ̂(z1, t), Q̂(x)]], ϕ̂(z2, 0)]

= [ϕ̂(z1, t), ϕ̂(z2, 0)] + γm2

∫︂ t

0

dτ

∫︂
dxD(x, τ) {F (z1 − z2,x, t, τ)− F (z2 − z1,−x, t, τ)}

(6.23)

where

F (z1 − z2,x, t, τ) =

∫︂
dk

2Ek

∫︂
dk′

4E2
k′
ei[k·(z1−z2)−Ekt]e−i[(k−k′)·x−(Ek−Ek′ )τ ] (6.24)

The first term is the microcausality condition for standard quantum fields while
the second term is due to the non-unitary evolution. From this equation one
immediately notices that the microcausality condition could be satisfied only if:
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• D(x) = 0, i.e. the dynamics is unitary and no collapse mechanism is present,
but this is not the working hypothesis of this paper

• F (z1−z2,x, t, τ) = F (z2−z1,−x, t, τ), a simple inspection at Eq. (6.24) shows
that in general this is not true

• D(x− y) = δ(4)(x− y),1.

In this case the model produces an infinite energy rate and cannot be reduced to
the CSL model in the non relativistic limit, as shown in Section 6.4.

6.6 Conclusion

In this chapter we have analysed the possibility of a relativistic extension of the
CSL model. The study was done by constructing a candidate relativistic general-
ization of the CSL model.

Starting from the prototypical structure of a generic continuous collapse model
it was required that the model was Lorentz covariant, had a well defined non-
relativistic sector, did not have a divergent energy rate, reduced to a mass coupled
spontaneous collapse model in the non-relativistic limit and prohibits superlumi-
nal signalling. It was found that it is not possible to construct a model that fulfils
all of these requirements. This is because the need for a finite rate of change of en-
ergy implies that the stochastic noise associated with the model must be coloured,
however this requirement implies that the microcausality condition is violated.

1exploiting the invariance of integral measure
∫︁

dk
2Ek

it is not difficult to show thatF (z, 0, t, τ) =
F (0, 0, t, τ) for any value of z
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Chapter 7

Discussion and Conclusions

In this thesis we asked the question: is a relativistic spontaneous collapse model
possible? In order to answer this we first introduced the motivation behind the
spontaneous collapse models and gave a brief non-technical introduction to them
in chapter 1. In chapters 2 and 3, we review two of the most studied spontaneous
collapse models, the GRW model and the CSL model respectively were intro-
duced in detail. In chapter 4 we studied how to define consistency with special
relativity for different spontaneous collapse models. Here we first considered
special relativity and conventional quantum mechanics and then moved on to
the more involved question of how collapse models which are non-unitary fit
into this picture.

Our starting point for considering quantum mechanics and special relativity to-
gether was the seminal works by Albert and Aharonov [4, 5]. The key takeaway
from these works is that in a relativistic setting it is not the state vector that should
transform covariantly between inertial frames, but the conditional probability of
local beables. This is because quantum mechanics is irreversible due to the col-
lapses of the state and that collapses may occur at space-like locations, so their
order may be frame dependant. These facts together imply that there is not a
consistent way to assign the evolution of the state in every inertial frame.

It is therefore the probability for local beables, not states, that must be Poincaré co-
variant in different frames for agreement between quantum mechanics and spe-
cial relativity.

The remainder of chapter 4 specialised to continuous spontaneous collapse mod-
els (like CSL), and considered two factors required for consistency with special
relativity. The first is that initial conditions between different inertial frames must
be comparable and the second is that the dynamics must be Poincaré covariant.
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It was shown that it is not possible to construct a set of Poincaré transforma-
tion operators that are self consistent for non-unitary dynamics. Hence, it is not
possible to compare initial states on two different hyperplanes using non-unitary
dynamics. We conclude that the other option is to take inspiration from the ap-
proach in relativistic quantum field theory and to consider situations where the
initial state evolves under unitary evolution.

Two approaches for extending covariance to continuous non-unitary dynamics
were then given; covariance under the unitary dynamics and covariance under
the complete dynamics. Covariance under the unitary dynamics can be applied
but there is no underlying justification for why this would be the appropriate
check for covariance.

The other approach, covariance under the complete dynamics was considered. It
was shown that, as models with this dynamics require the introduction of a spe-
cial initial spacetime point (rather than a initial time) from which the stochastic
process is defined, there is an issue when specifying joint probabilities of space-
like events. The issue is that since the time-ordering between space-like events
is frame dependant, irreversible evolution between events can only be defined in
some frames. This implies that single particles and non-interacting, distinguish-
able particles can be described using this method, but neither interacting particles
nor indistinguishable particles can be.

From this evaluation we conclude that a relativistic continuous spontaneous col-
lapse model can exist only if one considers systems that initially evolve under
the unitary evolution and the definition of covariance used is covariance under
the unitary dynamics. These were the assumptions made in chapter 6 where we
attempted to construct a relativistic generalisation of coloured CSL.

In chapter 6 it was found that no model that did not have immediate energy
divergence and did not permit superluminal signaling exists for a collapse model
with the mass density operator as the collapse operator. This is in line with the
spirit of result given in [8], although they consider a Markovian model and the
mathematical condition they use for causality is different.

The limitations to this analysis is that it is still, in principle, possible that there
exists another choice of collapse operator for this model that avoids non-physical
predictions of energy divergence and faster-than-light signalling, and also has
coloured CSL as its non-relativistic limit. The obvious extension to this work is to
attempt to prove whether or not such an operator exists.

An additional limitation is that currently there is no candidate for a beable for
relativistic CSL that has been shown to be able to give a compelling description
of nature.

In chapter 5 we considered GRW-type collapse models and to what extent they
can be consistent with special relativity. As in the continuous case, the condition
for this is if the conditional probabilities of the relevant beables are Lorentz in-
variant. For GRW type models, the relevant beables are for example the locations
of the points of collapse themselves.
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We showed how such models can be consistent with special relativity for a series
of time-like collapses, as the interval between each collapse can be specified in a
Lorentz invariant way and it is possible to compare the initial state between two
different inertial frames. With this framework it is possible to describe single par-
ticles. However, any GRW type model for multiple particles must have space-like
collapses, in order to recover macroscopic classicality. If there are space-like col-
lapses then the time ordering of these events are frame dependant. This causes
problems because the definition of the model relies on initial points of collapse
being specified and hence, if initial points (and therefore states) are frame depen-
dant, the model can’t be initialised in a frame independent way. Additionally, if
there is a series of space-like collapses, it is not possible to define the intervals
between collapses in a Lorentz invariant way.

Putting this all together, we see that for both discrete and continuous sponta-
neous collapse models there is an issue for many particle systems were the initial
conditions are described by space-like beables. This is because in this case, com-
paring initial conditions between frames is not possible due to the irreversibly of
the dynamics.

It is worth noting that a way out of this issue is to just assume by fiat that the
initial conditions between two inertial frames are equivalent, and hence only re-
quire that the dynamics are Lorentz covariant, which would be considering only
active transformations. We do not support this view, as discussed in section 4.2.1.

The conclusions reached in this thesis do not reach the level of a proof that a rel-
ativistic collapse model is not possible, as at least for the continuous case; if one
accepts the caveats required for covariance there is still the potential for a differ-
ent choice of the collapse operator and correlation function combination which
destroy spatial superpositions and do not have physically unacceptable predic-
tions. However, given the findings of this thesis, we believe that there is not much
hope for such a path.
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Chapter 8

Appendices

8.0.1 Existence of the Non-relativistic Sector

In this appendix we will provide necessary conditions under which the map in
Eq. (6.3) does not produce relativistic phenomena such as creation or annihilation
of NR particles, nor accelerate NR particles to relativistic velocities. We restrict
our analysis to the one particle sector and we will work in the interaction picture.

For single particle system ρ̂, has the form given in Eq. (6.10). We consider a one
particle system to be in a non-relativistic state ρ̂NR if the state satisfies the follow-
ing condition:

⟨pL|ρ̂NL|pR⟩ ≃ 0 if |pL| > κm or |pR| > κm (8.1)

where |p⟩ is a one particle state with 3-momentum p and κ ∈ R+ that acts as a
momentum cut off κ≪ 1. In other words, the system is characterised by momen-
tum much less than the rest energy m.

Substituting Eq. (6.10) into Eq. (8.1) shows that condition Eq. (8.1) is met if:

A(pL,pR) = 0 if |pL| > κm or |pR| > κm (8.2)

With this in hand we can say that the mapMt is “well behaved" in the NR sce-
nario if the following conditions are met:

⟨pL|Mt[ρ̂NL]|pR⟩ ≃ 0 if |pR| > κm or |pL| > κm (8.3)

and
⟨pL,qL|Mt[ρ̂NL]|pR,qR⟩ ≈ 0 (8.4)

Where |pR,qR⟩ is a two particle state. Equation (8.3) guarantees that a NR one
particle state is not driven to a relativistic states by the mapMt. Equation (8.4)
forbids the creation of particles in the NR regime.

We check these conditions by expanding in γ using Eq. (6.8), which simplifies eqs.
(8.3) and (8.4) to:

⟨pL|Lt[ρ̂NL]|pR⟩ ≃ 0 if |pL| > κm or |pR| > κm (8.5)

and
⟨pL,qL|Lt[ρ̂NL]|qR,pR⟩ ≈ 0 (8.6)
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With this equation in hand it is straightforward to verify that condition Eq. (8.6)
is always satisfied 1. To evaluate condition Eq. (8.5) we use Eq. (6.13), Eq. (6.12)
and Eq. (6.10) and find that:

⟨pL|Lt[ρ̂NL]|pR⟩ = −
m2

4

∫︂
dq

∫︂ t

0

ds

∫︂ s

0

dτD̃(q, s− τ){︄
A(pL,pR)

(︄
ei∆E(pL,q)(x0−y0)

EpL
EpL−q

+
e−i∆E(pR,q)(s−τ)

EpR
EpR−q

)︄
−

A(pR − q,pL − q)√︁
EpL

EpR
EpR−qEpL−q

(︄
e−i∆E(pR,q)sei∆E(pL,q)τ + ei∆E(pL,q)se−i∆E(pR,q)τ

)︄}︄
(8.7)

In order for the map to have a well behaved NR sector this quantity must be
negligible when pL or pR are relativistic, i.e. when |pR| > κm or |pL > κm. For the
term in the first curly brackets, this condition is automatically met due to Eq. (8.2)
which ensures that A(pL,pR) ≈ 0 for a non-relativistic state ρNL. However, the
condition in Eq. (8.2) is not enough to guarantee that the term in the second pair of
curly brackets vanishes for pR > κm or pL > κm, due to the explicit dependency
of A(pL−q,pR−q) on the momentum transfer q which can be only bounded by
the form of the correlation function D̃(q, s − τ). This means that assuming that
D̃(q, s− τ) vanishes for relativistic momentum transfer

D̃(q, s− τ) ≈ 0 for q > κm. (8.8)

will be sufficient to guarantee that Eq. (8.7) vanishes when when |pL| > κm or
|pR > κm. To summarise, a sufficient condition for the map specified by Eq. (6.3)
to be well behaved in the NR regime is if D̃(q, t) satisfies Eq. (8.8), or in other
words,s if the Fourier transform of the noise correlation function is only charac-
terized by non-relativistic momentum transfer.

8.0.2 Calculation details for checking necessary condition for mi-
crocausality

Here we evaluate Eq. (6.22). We expand the mapM∗
t to first order in γ to obtain:

[M∗
t [ϕ̂(z1, t)], ϕ̂(z2, 0)] ≈ [ϕ̂(z1, t) + Lt[ϕ̂(z1, t)]

)︁
, ϕ̂(z2, 0)]

= [ϕ̂(z1, t), ϕ̂(z2, 0)] + γ

∫︂
Ωt

dsdx

∫︂
Ωs

dτdyD(s, τ,x,y)[[Q̂(y, τ), [ϕ̂(z1, t), Q̂(x, s)]], ϕ̂(z2, 0)]

(8.9)

1Indeed writing |p1,p2 . . . ,pn⟩ = âp1 , âp2 . . . âpn |0⟩ one immediately notices that the expres-
sion will always contain an odd number of creation and annihilation operators.
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The first term is the normal microcausality condition that we will leave as it is
and only consider the second term.

We evaluate this expression from the inner commutator outwards. Recalling that

ϕ̂(x, t) = a(x, t) + a†(x, t)

=
1

(2π)3

∫︂
dk√
2Ek

(︂
ei(k·x−Ekt)âk + e−i(k·x−Ekt)â†k

)︂
(8.10)

and exploiting commutation relations in Eq. (6.7) its easy to obtain

[ϕ̂(z1, t), Q̂(x, s)] = m

∫︂
dk

2Ek

(︁
ei[k·(z1−x)−Ek(t−s)]â†(x, s)− h.c.

)︁
(8.11)

This expression can be used to find that

[[Q̂(y, τ), [ϕ̂(z1, t), Q̂(x, s)]], ϕ̂(z2, 0)] =

= m2

∫︂
dk

2Ek

∫︂
dk′

2Ek′

∫︂
dk′′

2Ek′′

(︂
ei[k·(z1−x)−Ek(t−s)]e−i[k′·(x−y)−Ek′ (τ−s)]ei[k

′′·(y−z2)−Ek′′ (τ)] − h.c.
)︂

(8.12)

Finally, substituting this expression back into Eq. (8.9), sending x → x + y, τ →
s+ τ and integrating over dy gives:

[Lt[ϕ̂(z1, t)], ϕ̂(z2, 0)] (8.13)

= γm2

∫︂
Ωt

dsdx

∫︂
Ωs

dτdyD(x− y, s− τ)[[Q̂(y, τ), [ϕ̂(z1, t), Q̂(x, s)]], ϕ̂(z2, 0)]

= γm2

∫︂ t

0

ds

∫︂ s

0

dτ

∫︂
dxD(x, τ) {F (z1 − z2, t, τ,x)− F (z1 − z2,−t,−τ,x)}

(8.14)

with

F (z1 − z2, t, τ,x) =

∫︂
dk

2Ek

∫︂
dk′

4E2
k′
ei[k·(z1−z2)−Ekt]e−i[(k−k′)·x−(Ek−Ek′ )τ ] (8.15)

Further making the transformation (x, τ)→ (x,−τ) in the second term of Eq. (8.13)
and making use of the symmetry D(x, τ) = D(−x, τ) and F (z2 − z1, t, τ,−x) =
F (z1 − z2,−t,−τ,x) we get

= γm2

∫︂
Ωt

dsdx

∫︂
Ωs

dτdyD(x− y, s− τ)[[Q̂(y, τ), [ϕ̂(z1, t), Q̂(x, s)]], ϕ̂(z2, 0)]

= γm2

∫︂ t

0

ds

∫︂ s

0

dτ

∫︂
dxD(x, τ) {F (z1 − z2, t, τ,x)− F (z2 − z1, t, τ,−x)} .

(8.16)
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