
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. ??, 2021 1

A Room Impulse Response Measurement Method
Robust towards Nonlinearities based on

Orthogonal Periodic Sequences
Alberto Carini, Senior Member, IEEE, Stefania Cecchi, Member, IEEE, Alessandro Terenzi,

and Simone Orcioni, Senior Member, IEEE

Abstract—An open problem in room impulse response (RIR)
measurement is the effect of nonlinearities, especially those with
memory, present in the measurement system, specifically in
the power amplifier and in the loudspeaker. The nonlinearities
can corrupt the measurement introducing artifacts. The paper
discusses a RIR measurement method that is robust towards
these nonlinearities. The proposed methodology allows measuring
the RIR using the cross-correlation method, i.e., computing the
cross-correlation between the output signal and an appropriate
sequence. In contrast to other cross-correlation based methods,
the proposed approach directly estimates the first-order kernel
of the Volterra filter modeling the measurement systems, i.e.,
the system impulse response for small signals. The proposed
approach exploits the concepts of orthogonal periodic sequences,
recently proposed in the literature. The input signal can be
any periodic persistently exciting sequence and can also be
a quantized sequence. Measurements performed both on an
emulated scenario and in real environments illustrate the validity
of the approach and compare it with other competing RIR
measurement methods.

Index Terms—Room impulse response, orthogonal periodic
sequences, Volterra filters, nonlinear systems.

I. INTRODUCTION

ONE of the most common operations in acoustics and
audio processing is the measurement of the room im-

pulse response (RIR). The measurement is used to estimate
the characteristics of the acoustic environment [1], [2] and
to compensate, improve, or exploit these characteristics [3]–
[17]. Many different approaches have been proposed over the
years. The first methodologies used for RIR measurement
are based on impulsive signals [18], directly estimating the
impulse response of a linear system. Periodic pulses [19], [20]
were proposed to contrast the effect of noise. These approaches
present a limitation in the amplitude of the pulses. When the
pulses are electronically generated, a too high pulse could
damage the loudspeaker or could activate the protection circuit
of the amplifier, invalidating the measurement. To overcome
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this limitation, time-stretched pulses [21], [22], consisting of
an expanded pulse excitation, were proposed. An approach that
had great success and is still popular today uses as input signal
a maximal length sequence (MLS) [23], which is a periodic
binary pseudo-noise sequence of period 2k − 1 with k ∈ N
[24]. Since the MLSs have an almost perfect autocorrelation
function, it is possible to estimate the room response with
the cross-correlation method, computing the cross-correlation
between the output sequence and the input MLS. Also in
noiseless conditions, there is an estimation error due to the
not perfect autocorrelation, but this error is usually negligible
and tends to 0 increasing the period of the MLS. The perfect
periodic sequences (PPSs) for linear filters [25]–[27] overcome
this error by guaranteeing a perfect autocorrelation function,
a train of unit pulses. In noiseless conditions, these PPSs
allow the perfect identification of the impulse response of any
linear system using the cross-correlation method. The main
limit of MLSs and also of PPSs for linear systems is the
sensitivity to the nonlinearities of the measurement system.
To contrast the effect of noise, it is common to increase the
reproduction volume beyond the limit of linearity of the power
amplifier or the loudspeaker and nonlinear effects arise in
these components of the measurement system. These nonlinear
effects are particularly evident in the identification with MLSs,
where they cause the appearance of artifacts in the form of
impulsive noises [28]. These pulses are in reality replicas
of the same impulse response at different delays and with
different amplitudes. The replicas are originated by the fact
that the product of an MLS b(n) with the same delayed MLS
b(n− i) is again the same MLS delayed by another quantity
b(n− j) [29].

The problems of the MLS approach highlighted the need for
room response measurement methods robust not only towards
the noise but also towards the nonlinearities that inevitably
arise in the measurement system at high reproduction volumes.
Sweeps signals have been largely employed for RIR estimation
due to their robustness towards noise and nonlinearities. The
first sweeps used for impulse response measurement were the
linear sweeps of the time delay spectrometry technique [30],
[31]. Nowadays, the most popular RIR measurement technique
is based on exponential sweeps, independently developed
by different researchers [32], [33]. The approach has been
improved in [34], where a synchronized exponential sweep
technique is presented. The popularity of the exponential
sweeps derives from their robustness towards the nonlinear-
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ities of the measurement system. In the paper introducing
the exponential sweep technique [32], it was shown that if
the measurement system is an Hammerstein system, i.e., is
a memoryless nonlinearity with in cascade a linear system
[35], the artifacts originated by the nonlinear terms can be
segregated at negative times and windowed out. In reality, it
was shown recently in [36] that the measures with exponential
sweeps performed according to [32]–[34] are still affected
by the nonlinear kernels of the Hammerstein model, unless
the measurement is corrected accounting for the higher-order
kernels. As in other papers (e.g., [37]–[40]) the approach of
[36] uses the exponential sweeps to identify Hammerstein
models for nonlinear system emulation but the results are
applicable also to room response estimation. We must point
out that almost all measurement systems based on exponential
sweeps do not implement the correction of [36]. Moreover,
the correction is effective only for memoryless nonlinearities,
which rarely occur. Many papers [41], [42] have shown
that nonlinear distortions with memory can affect the RIR
measurement based on exponential sweep technique. The
same weakness appears also in another technique we have
to mention: the Perfect Sweeps introduced in [43], which
are periodic sequences with the sinusoidal characteristics of
sweeps and with a perfect autocorrelation function.

Since the robust measurement of the RIR in presence of
nonlinearities with memory is an open and challenging prob-
lem, the authors and colleagues started researching possible
solutions. A first approach was proposed in [44]–[47]. The
approach is based on modeling the entire measurement system
with an orthogonal nonlinear filter, a Legendre nonlinear (LN)
filter in [44], [45] or a Wiener nonlinear (WN) filter in [46],
[47]. The first-order kernel of this system is then identified us-
ing a PPS for nonlinear filters using again the cross-correlation
method. In the context of nonlinear filters, PPSs are periodic
sequences that guarantee the perfect orthogonality of the basis
functions over a sequence period. PPSs for LN and WN filters
differ in their input sample distribution, which is uniform in
LN filters and Gaussian in WN filters. The first-order kernel of
the measurement system is given by the convolution between
the RIR and the first-order kernel of the power amplifier and
loudspeaker system. This is already a good estimate of the
RIR and can be further improved by compensating the power
amplifier and loudspeaker system inverting their frequency
response with the Kirkeby algorithm, as done in [48]. It should
be noted that the first-order kernel of LN or WN filters does
not coincide with the impulse response for a small amplitude
of the measurement system. Changing the amplitude of the
input signal will change the measured first-order kernel.

A novel approach for nonlinear system identification was
proposed in [49], [50], where the concept of orthogonal
periodic sequence (OPS) was introduced. OPS can be used
for the identification of any Functional Link Polynomial filter
(FLiP), which is a broad class of nonlinear filters comprising
also LN, WN, and Volterra filters [51]. Given a periodic
input signal, by definition, an OPS is a sequence that cross-
correlated with the output of the system provides one of the
diagonals of the nonlinear model. The input signal can be any
persistently exciting sequence and can also be a quantized

sequence.
The OPSs are interesting candidates also for coping with the

problem of the robust RIR measurement in presence of nonlin-
earities with memory. RIR measurement using OPSs was first
proposed by the authors in the conference paper of [52]. In the
present paper, we fully detail and study the RIR measurement
based on OPSs, modeling the entire measurement system as
a Volterra filter. The approach measures the first-order kernel
of the Volterra filter using the cross-correlation method, i.e.,
computing the cross-correlation between the system output
and an appropriate OPS. It should be noted that the first-
order kernel of the Volterra model is also the impulse response
for small signals of the model. The proposed approach is the
first that allows to directly and robustly estimate the impulse
response for small signals of the measurement system with the
cross-correlation method. The input signal can be generated as
any persistently exciting periodic sequence with samples that
can have uniform, Gaussian, or pink distribution [53].

The main original contributions of this paper are the fol-
lowing: i) Full detailed presentation and study of a novel RIR
measurement approach robust towards nonlinearities based on
OPS. ii) Detailed description of how OPS suitable for RIR
measurement can be obtained. iii) Comprehensive analysis of
the harmful effects that can corrupt RIR measurement, i.e., of
an underestimation of the memory or the nonlinearity of the
measurement system, including an original study of the effect
of Gaussian and non-Gaussian noises. iv) Experimental results
that include emulated measurements and real measurements
taken in a room, comparing the proposed approach with
competing approaches (MLSs, exponential sweeps, and PPSs
for LN and WN filters).

It has to be pointed out that the approaches modeling the
measurement with a Volterra, LN, or WN filter, as well as the
proposed approach, are ineffective against the sub-harmonic
distortions that sometimes may affect loudspeakers [54]–[57].
It was shown in [58] that polynomial filters cannot describe
the sub-harmonic distortions.

There are many related papers, mainly about nonlinear
system identification, that for space limitations could not be
mentioned in the review of the state of the art of this Introduc-
tion. For some recent contributions about the identification or
control of nonlinear systems the interested reader is referred
to [59]–[65].

The rest of the paper is organized as follows: Section II
reviews Volterra filters and provides a Volterra representation
of the measurement system. Section III discusses OPSs and
how OPSs, suitable for the first-order kernel measurement, can
be derived. Section IV studies RIR measurement using OPSs
and all detrimental effects that can influence this measurement.
Section V provides experimental results that compare the
proposed approach with competing approaches. Section VI
reports concluding remarks.

The following notation is used throughout the paper: N is
the set of natural numbers and R that of real numbers, R1

is the interval [−1,+1], < a(n)>L is the sum of a(n) over
a period of L consecutive samples, E[·] indicates expectation
and ∗ convolution, δ(n) is the unit pulse sequence, and d·e is
the ceil operator.
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Fig. 1. A typical RIR measurement system.

II. A VOLTERRA MODEL OF THE MEASUREMENT SYSTEM

A. The measurement system
Figure 1 represents a typical scheme of the RIR measure-

ment system. The system is composed of a power amplifier,
a loudspeaker, the room acoustic path, and a microphone. At
the sound pressure levels normally used for the measurement,
the acoustic path is a linear system1 and the objective of
the measurement is to estimate its impulse response hR(n).
This estimate is performed by observing the room response
indirectly via the measurement system and, thus, is affected
by the characteristics of the power amplifier, the loudspeaker,
and the microphone. Very often at the high reproduction
volumes used in the measurement to contrast the effect of
noise, the power amplifier and the loudspeaker behave as
mildly nonlinear systems, making the entire measurement
chain nonlinear. Due to the low levels of the acquired signals,
the microphone can still be considered as a linear system
and in what follows its response will be neglected or, better,
incorporated in the amplifier and loudspeaker response.

To account for their nonlinearities, the power amplifier and
loudspeaker cascade will be modeled as a Volterra filter.

B. Volterra filters
Volterra filters are polynomial filters that derive from the

double truncation, with respect to the order and memory of
the Volterra series [66]. According to the Stone-Weierstrass
theorem [67], they can arbitrarily well approximate any dis-
crete time invariant, finite memory N , continuous nonlinear
system,

y(n) = f [x(n), x(n− 1), ..., x(n−N + 1)], (1)

with x(n) the input signal and x(n) ∈ [−1,+1], y(n) the
output signal, and f [·, ..., ·] a continuous function from RN to
R.

In triangular form, a discrete time Volterra filter of order K
and memory N has the following input-output relationship

y(n) = h0 +

K∑
r=1

N−1∑
n1=0

N−1∑
n2=n1

. . .

N−1∑
nr=nr−1

hr,n1,...,nr ·

· x(n− n1)x(n− n2)...x(n− nr). (2)

It is useful to interpret the Volterra filters as a linear combi-
nation of basis functions

x(n− n1)x(n− n2)...x(n− nr).
1Nonlinearities can be observed in the acoustic paths only for sound

pressure levels larger than the pain threshold.

Each of these basis function is a product of delayed input
samples and, without loss of generality, we can assume n1 ≤
n2 ≤ ... ≤ nr and r ∈ N. By definition, r is the order of the
basis function, and the maximum time difference between the
involved input samples, nr − n1, is its diagonal number. For
r = 0, the basis function reduces to the constant 1.

By considering a change of variables, the input-output
relationship of the Volterra filter can also be expressed in
diagonal form [68], i.e.,

y(n) = h0 +

K∑
r=1

D∑
s1=0

D∑
s2=s1

. . .

D∑
sr−1=sr−2

N−1−sr−1∑
m=0

hm,m+s1,...,m+sr−1x(n−m)x(n−m−s1)...x(n−m−sr−1),
(3)

where D is the maximum diagonal number, and D = N − 1
for the Volterra filter in (2). Since natural systems typically
have the most relevant coefficients at low diagonal numbers,
the maximum diagonal number is conveniently limited con-
sidering D � N − 1.

Equation (3) highlights the filter-bank nature of Volterra
filters: for each tupla (s1, s2, ..., sr−1), the zero-lag basis
function fp(n) = x(n)x(n − s1)...x(n − sr−1) is processed
by a linear filter having impulse response

hp(n) =
{
hm,m+s1,...,m+sr−1

for 0 ≤ m ≤ N − sr−1 − 1
}

of length Np = N − sr−1. The hp(n) are the diagonals of
the Volterra filter. For compactness, in what follows we will
rewrite (3) in the following equivalent forms

y(n) =

R−1∑
p=0

Np−1∑
m=0

hp(m)fp(n−m), (4)

y(n) =

R−1∑
p=0

hp(n) ∗ fp(n), (5)

where the zero lag basis functions fp(n) are

f0(n) = 1,

f1(n) = x(n),

f2(n) = x2(n),

f3(n) = x(n)x(n− 1),

...
fD+2 = x(n)x(n−D)

fD+3 = x3(n), ...;

R =
(
D+K
D+1

)
+ 1 is the number of zero lag basis functions;

Np is the memory length of the basis function fp(n) with
Np = N −Dp where Dp is the diagonal number of fp(n).

C. Volterra representation of the measurement system

Let us assume that the system composed of the power
amplifier and the loudspeaker can be modeled as a Volterra
filter of order K, memory N̂ , and diagonal number D and that
the acoustic path has impulse response hR(n) of length M . In
this condition, the entire measurement system of Figure 1 can
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also be modeled as a Volterra filter with the same order K and
diagonal number D, but with memory length N = N̂+M−1.
This can be easily proved by modeling the power amplifier and
loudspeaker system following (5) as

ŷ(n) =

R−1∑
p=0

ĥp(n) ∗ fp(n), (6)

with ĥp(n), the p-th Volterra diagonal of the power amplifier
and loudspeaker system, having length N̂p = N̂ − Dp. The
measurement system has the following input-output relation-
ship

y(n) = hR(n) ∗ ŷ(n)

= hR(n) ∗
R−1∑
p=0

ĥp(n) ∗ fp(n)

=

R−1∑
p=0

hR(n) ∗ ĥp(n) ∗ fp(n)

=

R−1∑
p=0

hp(n) ∗ fp(n), (7)

where hp(n) = hR(n) ∗ ĥp(n) is the p-th diagonal of the
entire measurement system. The system is composed of the
same zero lag basis functions, and thus has the same order
and diagonal number. Each basis function is convolved with
hp(n) of length N̂p + M − 1. In particular, the linear basis
f1(n) = x(n) is convolved with h1(n) = hR(n) ∗ ĥ1(n),
which is the first-order kernel of the measurement system and
has length N̂ +M − 1 = N .

We will measure h1(n) using an appropriate OPS. h1(n)
approximates the RIR hR(n) but the measure is affected by
convolution with ĥ1(n), the first-order kernel of the amplifier
and loudspeaker system. ĥ1(n) can be measured and character-
ized in an anechoic chamber, maybe using the same input-OPS
pair used for measuring h1(n). As was proposed for linear
systems [48], hR(n) can be obtained by equalizing h1(n)
with the inverse response of ĥ1(n), exploiting the Kirkeby
algorithm, as follows [69]:

hR(n) = IFFT

[
FFT[h1(n)] · FFT[ĥ1(n)]∗

FFT[ĥ1(n)] · FFT[ĥ1(n)]∗ + ε(ω)

]
, (8)

where FFT[·] and IFFT[·] are direct and inverse FFT oper-
ators, respectively, ε(ω) is a frequency-dependent regulariza-
tion parameter, and all operations are performed per single
frequency bin. In reality, the Kirkeby algorithm estimates the
RIR hR(n) only when the loudspeaker has a uniform response
at all directions in the frequency range of interest. This is never
the case. Therefore, researchers and technicians performing the
measure are usually satisfied with the knowledge that amplifier
and loudspeaker affects the measurement in a known, mild
manner, and hR(n) is usually approximated with h1(n).

III. ORTHOGONAL PERIODIC SEQUENCES

We will present now a methodology for obtaining the first-
order kernel of a Volterra filter of order K, diagonal number

D, and memory N based on the cross-correlation method. By
definition, an OPS is a periodic sequence that cross-correlated
with the filter output provides one of the diagonals hp(m) of
the Volterra filter in (4). In RIR measurement the interest is
focused on the estimation of h1(m) for all m ∈ [0, N−1]. Let
us consider a periodic input sequence x(n) of a sufficiently
large period L, better specified later in this Section. To
guarantee the invertibility of the data matrices introduced in
the following, the input sequence is assumed to persistently
excite the Volterra filter. The condition is easily satisfied and
is guaranteed if the input samples have a Gaussian distribution,
a white uniform distribution, a pink distribution, or any other
sufficiently rich random distribution. The input sequence could
also be quantized, provided that a sufficiently large number of
levels are used. In fact, an independent, identically distributed
sequence must have at least K+1 distinct values to persistently
excite an order K Volterra filter [70].

We want to develop the OPS z(n) of period L such that

h1(j) =< y(n)z(n− j) >L, (9)

for 0 ≤ j ≤ N − 1 and <.>L is the sum of argument over a
period of L consecutive samples. Inserting (4) in (9), we have

h1(j) =

R−1∑
p=0

Np−1∑
m=0

hp(m) < fp(n−m)z(n− j) >L . (10)

For j = 0, to meet (9) it must be

< f0(n)z(n) >L=< z(n) >L= 0, (11)
< f1(n)z(n) >L=< x(n)z(n) >L= 1, (12)

< f1(n−m1)z(n) >L=< x(n−m1)z(n) >L= 0, (13)
< fp(n−mp)z(n) >L=0, (14)

for all 1 < m1 ≤ N−1, 0 ≤ mp ≤ Np−1 and 1 < p ≤ R−1.
For j > 0, to meet (9) together with (11)–(14) it must also

be

< fp(n)z(n− j) >L=< fp(n+ j)z(n) >L= 0. (15)

for all 0 < j ≤ N − 1 and for all 0 < p ≤ R− 1.
Thus, the OPS z(n) must satisfy the linear equation system

< z(n) >L=0, (16)
< x(n)z(n) >L=1, (17)

< x(n−m1)z(n) >L=0, (18)
< fp(n−mp)z(n) >L=0, (19)

for all −(N − 1) < m1 ≤ N − 1 and m1 6= 0, −(N − 1) ≤
mp ≤ Np − 1 and 1 < p ≤ R − 1. The equation system has
Q equations and L variables (z(n) for n ∈ [0, L− 1]), with

Q = ND + (R− 1)(N − 1). (20)

The equation system is critically determined for L = Q
and under-determined for L > Q. If the periodic input is
persistently exciting, the system always admits a solution. In
matrix form, it can be written as follows,

Sz = d (21)

where z is a vector collecting the samples of z(n), d is the
vector [0, 1, 0, ..., 0]T with just one nonzero element, and S is



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. ??, 2021 5

a square or fat matrix. Each row of S is formed by the samples
of a basis function fp(n−mp), with n ranging along the row
from 0 to L − 1, and mp and p changing along the columns
with −(N − 1) ≤ mp ≤ Np− 1 and 0 ≤ p ≤ R− 1. The first
row, corresponding to p = 0, is formed by all ones. The other
rows come in groups of Np+N−1 rows formed by the same
rotated elements, for the periodicity of x(n). The system has
minimum norm solution given by

z = S(SST )−1d. (22)

The matrix SST has a peculiar form. Its elements are cross-
correlations between basis functions with different time delays,
i.e., are

< fp1(n−mp1)fp2(n−mp2) >L (23)

where 0 ≤ p1, p2 ≤ R − 1, −(N − 1) ≤ mp1 ≤ Np1 − 1,
and −(N − 1) ≤ mp2 ≤ Np2 − 1. SST is a block matrix
whose entries are Toeplitz matrices with different sizes. For
each couple of basis functions fp1 and fp2 with 1 ≤ p1, p2 ≤
R−1, the corresponding block matrix has size (Np1 +N−1)×
(Np2 +N − 1). Efficient algorithms exist for the inversion of
the matrix SST or for computing the product (SST )−1d [71].
Working with the polynomial basis functions of Volterra filters,
SST could have a bad conditioning. In all our experiments,
working with double precision arithmetic, for a sufficiently
large L, we have always been able to find a solution with
good accuracy.

In summary, to develop an OPS suitable for the identifi-
cation of the first-order kernel of a Volterra filter, we must
choose the filter parameter N , K, D, a periodic input sequence
with period equal to or grater than Q given in (20), and then
compute (22) with some efficient algorithm as that of [71].

IV. RIR MEASUREMENT USING OPSS

Measuring the RIR using an OPS involves first deciding
the memory length of the room response N , the order of
nonlinearity K, and the diagonal number D of the measure-
ment system. An input-OPS pair suitable for the identification
of the first-order kernel of a Volterra model of memory N ,
order K, and diagonal number D must be chosen. The input-
OPS pair can be precomputed, and many of these pairs have
been prepared and made available in [53]. The periodic input
sequence has to be applied for at least a period L plus N − 1
samples, to guarantee a stationary response over a period L.
The RIR is then measured from the cross-correlation between
the microphone signal and the OPS.

Let us assume that the measurement system can be repre-
sented as a Volterra filter of memory length NSys, order KSys,
and diagonal number DSys. According to (4), its input-output
relationship can be written as

y(n) =

RSys−1∑
p=1

NSys−Dp−1∑
m=0

h̃p(m)fp(n−m) + ν(n), (24)

where we have neglected the constant term h̃0, RSys =(
DSys+KSys

DSys+1

)
+ 1 is the number of zero lag basis functions,

and ν(n) is the measurement noise.
In noise absence, i.e., when ν(n) = 0, and if NSys ≤ N ,

KSys ≤ K, and DSys ≤ D, the theory of Section III
guarantees a perfect estimation of the measurement system
first-order kernel.

In this Section we analyze the effect of an underestimation
of the memory length, order, or diagonal number of the
measurement system, and study the effect of noise. Moreover,
the computational complexity of the RIR measurement with
the proposed approach is also discussed.

A. Memory underestimation

We separately analyze the effect of memory underestimation
and of the nonlinearity underestimation. The case of an
underestimation of the memory of the measurement system
is first considered. Let us assume NSys = N + ∆N , with
∆N > 0, KSys ≤ K, DSys ≤ D, and let us neglect the noise
effect ν(n) = 0. In this case, RSys = R and the system in
(24) can be written as

y(n) =

R−1∑
p=0

N+∆N−Dp−1∑
m=0

h̃p(m)fp(n−m). (25)

The coefficients h̃p(n) are estimated with (9) using an OPS
for a Volterra filter of memory N , order K, diagonal number
D. The memory underestimation causes an aliasing error,
which influences only the first ∆N terms of h1(n). This can
be understood considering that, for j ∈ [0,∆N − 1], the
estimation of h̃1(j) with < y(n)z(n − j) >L is affected
by the cross-correlations < x(n − k)z(n − j) >L with
k ∈ [N + j,N + ∆N − 1]. In contrast, for j ∈ [∆N , N − 1]
and k ∈ [N,N + ∆N − 1], the cross-correlations

< x(n− k)z(n− j) >L=< x(n− k + j)z(n) >L= 0

for the orthogonality conditions imposed by (16)–(19).

B. Underestimation of the nonlinearity

We turn our attention to the case of an underestimation of
the order or diagonal number of the Volterra filter. Let assume
KSys > K or DSys > D, NSys ≤ N , and ν(n) = 0. The
system in (24) can be written as

y(n) =

R−1∑
p=0

N−Dp−1∑
m=0

h̃p(m)fp(n−m) + ∆K,D(n), (26)

where ∆K,D(n) is a term formed by the linear combination
of all basis functions of order greater than K and diagonal
number greater than D. The coefficients h̃p(n) are again
estimated with (9). The underestimation of the nonlinearity
causes an aliasing error which affects all coefficients of RIR.
In fact, the estimation of h̃1(j) with (9) is affected by an error
equal to < ∆K,D(n)z(n− j) >L. The error is deterministic.
But, if we assume to work with a large period L and a
large number of basis functions in ∆K,D(n), for the law
of large numbers, the error can be assumed stochastic and
Gaussian distributed and its effect can be deemed similar to
a measurement noise. The larger the order K or the diagonal
number D, the smaller is the error < ∆K,D(n)z(n − j) >L.
Thus, we can increase the protection against nonlinearities



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. ??, 2021 6

of the RIR measurement method increasing the order K or
diagonal number D. The improved protection is paid with an
increase of the period L of the input sequence. Due to the
“curse of dimensionality”, i.e., the exponential increase in the
number of coefficients with the order K, only small values of
K can be used in practice.

C. The measurement noise effect

We now study the effect of a measurement noise ν(n) on
the room response identification. Let us assume NSys ≤ N ,
KSys ≤ K, and DSys ≤ D, while ν(n) 6= 0. The measurement
system has input-output relationship

y(n) =

R−1∑
p=1

Np−1∑
m=0

h̃p(m)fp(n−m) + ν(n). (27)

We consider separately the case of a Gaussian and non-
Gaussian noise.

1) Gaussian noise: We assume ν(n) to be a colored
Gaussian noise,

ν(n) = hν(n) ∗ ν(n), (28)

where ν(n) is a zero-mean, variance σ2
ν , white Gaussian noise.

hν(n) is the causal, finite memory forming filter with memory
Nν . Without loss of generality we assume

Nν−1∑
n=0

hν(n)2 = 1. (29)

Note that for hν(n) = δ(n) the measurement noise is zero-
mean white Gaussian with variance σ2

ν .
Applying (9), for the properties of OPSs we have

h1(j) = h̃1(j)+ < (hν(n) ∗ ν(n))z(n− j) >L, (30)

which shows that the identification in this conditions is unbi-
ased, since ν(n) is zero mean and E[hi(j)] = h̃i(j).

It is interesting to estimate the mean square deviation
(MSD) of the j-th coefficient of the impulse response, which
is defined as

MSDj = E[(h1(j)− h̃1(j))2], (31)

and according to (9) is

MSDj = E[(< (hν(n) ∗ ν(n))z(n− j) >L)2]. (32)

It was shown in the appendix of [50] that

MSDj = σ2
ν

L−1∑
m=−Nν+1

< hν(n−m)z(n− j) >2
L . (33)

When the measurement noise is white Gaussian (hν(n) =
δ(n)), the mean square deviation simplifies to

MSDj = σ2
ν < z(n)2 >L, (34)

and is independent of the delay j.
As can be expected, equations (33) and (34) show that

MSDj is proportional to the noise power σ2
ν . Moreover,

MSDj is proportional to < z(n)2 >L and, thus, inversely
proportional to < x2(n) >L, i.e., the energy of the input

sequence over a period, as it can be seen from (17). For
a constant power of x(n), < x2(n) >L is proportional to
L. Consequently, MSDj is also inversely proportional to the
period L. Similar to all other cross-correlation methods, the
accuracy of the estimation can be improved by increasing the
period L or by computing the cross-correlation over multiple
periods.

To compare different OPSs on equal terms, the noise gain
Gν was introduced in [49]. For the measurement of the first-
order kernel of a Volterra filter, the noise gain is

Gν =
MSDj
σ2
ν

< x2(n) >L, (35)

and evaluated for a white measurement noise is equal to

Gν =< z2(n) >L · < x2(n) >L . (36)

Gν depends on the distribution of the input samples and on the
period L. For a specific input sample distribution, Gν can vary
greatly with L, which influences the power of the OPS z(n). In
this regard, the minimum period of the OPS L = Q has been
found to be a bad choice. For L = Q, Gν assumes very large
values that often make the identification using OPSs useless.
In contrast, for L � Q it is possible to obtain reasonable
values of Gν , which take to a robust estimate of the RIR.

2) Non Gaussian noise: It is also interesting to study the
RIR measurement in presence of a non-Gaussian measurement
noise. Applying (9) and taking into account the properties of
OPSs,

h1(j) = h̃1(j)+ < ν(n)z(n− j) >L . (37)

If ν(n) is zero mean, also in this case E[hi(j)] = h̃i(j)
and the measurement method is unbiased. Moreover, for the
central limit theorem the error hi(j) − h̃i(j) has a Gaussian
distribution, with

MSDj = E[(< ν(n)z(n− j) >L)2]. (38)

MSDj depends on the auto-correlation function of the noise
and on the OPS z(n). The average over a large number of
samples L provides also a certain protection towards outliers,
even if the identification does not resort to any algorithmic
protection as in [72]–[75] to guarantee robustness towards
outliers.

D. Computational cost

The proposed approach can be implemented in time domain
or in frequency domain. In time domain, the computational
cost of the cross-correlation in (9) is of LN operations, i.e.,
multiplications and additions. If the cross-correlation is com-
puted in the frequency domain, it is of (log2(L)+1)L complex
operations, assuming a FFT costs L log2(L) operations and
that the FFT of z(n) is precomputed. These computational
costs are identical to those of RIR measurement using MLSs.

V. EXPERIMENTAL RESULTS

Two sets of experiments are presented. The first set consid-
ers an emulated scenario, where the input signals are applied
to a nonlinear pre-amplifier and the recorded outputs are
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convolved with a known RIR. The second set of experiments
considers the identification of a real RIR. The measurements
performed with the proposed approach based on OPSs with
input samples having Gaussian, uniform, and pink distribu-
tion, are compared with measurements based on PPSs for
LN and WN filters, MLSs, and exponential sweeps. In both
experiments, we consider the same set of input signals. The
OPSs have memory length N = 8192 samples, order K = 3
(the maximum order allowed by the curse of dimensionality),
diagonal number D ranging from 0 to 5, period

L = ε2dlog2(Q)e, (39)

and ε = 4. The OPS input samples are quantized in the set
[−512 : +512]/512. Figure 2 shows the noise gain of the
OPSs for N = 8192, K = 3, D = 2, and for different periods
L. For L = Q = 163, 820 the noise gain is unacceptably
high, but it reduces to acceptable values increasing L. In our
experience the best compromise is obtained when in (39) ε = 4
or ε = 8, i.e., L = 220 or 221 in this case. In the paper we
present the results for ε = 4 but comment also the case of
ε = 8. The PPSs for WN and LN filters have N = 8192,
K = 3, D ranging from 0 to 4, and L ranging from 217

till 221. The MLSs have period ranging from 217 − 1 till
221 − 1. The exponential sweeps have lengths ranging from
217 till 221 and sweep from 20 Hz till 20, 000 Hz. They have
been constructed as in [34] and the beginning and end of the
exponential sweeps have been multiplied by a half Hamming
window of length L/100 to avoid fringe effects. The sampling
frequency is 44 100 Hz. All input sequences have the same
power, which means that they have different peak amplitude.
Table I shows the ratio between the peak amplitude of different
sequences and the amplitude of the MLSs for the same signal
power. Working with negligible or mild nonlinearities, audio
engineers and technicians typically choose the power of the
input signal in order to contrast the noise. This suggests to
use the same power for all input sequences. It should be
observed that working with strong nonlinearities the choice
is typically different. The maximum amplitude of the input
signal is chosen to limit the maximum nonlinear distortion,
which depends on the amplitude of the input signal. In this
paper, we prefer to work with the same power for all input
sequences in order to stress the robustness of the proposed
method. According to Table I, the OPSs with input samples
having Gaussian or uniform distributions have peak amplitudes
much larger than the other signals and thus will be affected by
larger nonlinear distortions. The interested reader is referred to
[52] for a comparison of the different measurement methods
considering the same peak amplitude for all signals.

A. Experiment 1

In the first experiment, the input signals were applied to a
Behringer MIC 500 vacuum tube preamplifier (set in ”valve”
mode) and the corresponding output, recorded with a Focusrite
Scarlett 2i2 audio interface, was convolved with a previously
measured RIR of 8192 samples. A white Gaussian noise has
also been added to the resulting signals to have a 40 dB
signal to noise ratio. The pre-amplifier has a potentiometer,
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Fig. 2. Noise gain of OPSs with Gaussian, uniform or pink input distribution
for N = 8192, K = 3, D = 2 versus period L.

TABLE I
RATIO BETWEEN THE PEAK AMPLITUDE OF DIFFERENT INPUTS AND THE

AMPLITUDE OF THE MLSS FOR THE SAME SIGNAL POWER.

Sequence Ratio

OPS Gaussian
√
12

OPS Uniform
√
3

OPS Pink
√
24

PPS WN
√
12

PPS LN
√
3

Exponential Sweep
√
2

MLS 1
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Fig. 3. Experiment 1: Second, third, and total harmonic distortion of the
MIC-500 preamplifier at the different settings.

which allows to change the amount of nonlinear distortion.
Fifteen different potentiometer settings have been considered
and Figure 3 shows the second, third, and total harmonic
distortion on a 1 kHz tone at the maximum amplitude of
the sequences for the different potentiometer settings (briefly
indicated as Setting 0 to 14 in the Figures). The harmonic
distortion is the ratio in percent between the power of an
harmonic (or all harmonics in case of total distortion) and that
of the fundamental frequency. Most of the harmonic distortions
of Figure 3 are much greater than those envisaged in the
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Fig. 4. Experiment 1: Log-spectral distance in the band [100, 18000] Hz at the different settings for (a) PPSs for WN filters, (b) PPSs for LN filters, (c)
MLSs, (d) exponential sweeps, (e) OPS with Gaussian distribution, (f) OPS with uniform distribution, (g) OPS with pink distribution, without compensation
of the MIC 500.
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Fig. 5. Experiment 1: Log-spectral distance in the band [100, 18000] Hz at the different settings for (a) PPSs for WN filters, (b) PPSs for LN filters, (c)
MLSs, (d) exponential sweeps, (e) OPS with Gaussian distribution, (f) OPS with uniform distribution, (g) OPS with pink distribution, with compensation of
the MIC-500,
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RIR measurement system. They have been specially selected
in such a way to underline the robustness of the proposed
approach and the differences between the compared methods.
Many parameters could be used to compare the different mea-
surement approaches. In what follows the different methods
are compared in terms of log-spectral distance (LSD) [3],
[76] between the measured room magnitude response and its
actual value. The LSD is a well-known distance measure used
in audio processing to compare different magnitude spectra.
Its success is motivated by its simplicity and effectiveness in
compressing the spectral differences in a single parameter in
dB. The LSD is defined in the band B = [k1

FS

T , k2
FS

T ], with
k1 and k2 ∈ N, FS the sampling frequency and T the number
of samples of the discrete Fourier transform (DFT), as follows:

LSD =

√√√√ 1

k2 − k1 + 1

k2∑
k=k1

[
10 log10

|HR(k)|2

|ĤR(k)|2

]2

, (40)

where |HR(k)| is the actual room magnitude response and
|ĤR(k)| is the measured room magnitude response.

Figure 4 shows the LSD in the band [100, 18 000] Hz,
falling strictly inside the passband, measured with the different
methods without compensation of the MIC 500 preamplifier.
Figure 5 shows the same LSD plots with the preamplifier
compensation using the Kirkeby algorithm in (8). The reader
should first notice the improvement of performance that can
be obtained in all PPSs and OPSs by increasing the diago-
nal number D. The protection against nonlinearities can be
increased by augmenting the diagonal number or the order of
nonlineary, at the cost of a larger period of the sequence. In
Figure 4 and 5, the best performance is offered by the PPSs
for WN filters (where the input samples have a Gaussian dis-
tribution) and the OPSs for Gaussian distribution for diagonal
number D at least 3. These methods combine the robustness
towards nonlinearity of the considered approaches with a input
sample distribution that concentrate most of the power on low
amplitude samples and less excites the nonlinearities of the
MIC 500. The PPSs for LN systems and the OPSs with input
samples having uniform distribution, provide also good results
for the larger diagonal numbers (D = 4, 5), i.e., for larger
protection against nonlinearities. In reality, they tend to excite
more the nonlinearities of the system, as is apparent for larger
distortion settings, i.e., setting 8 to 14, and D lower than 4.
The OPSs with input samples having Pink distribution are the
most affected by the nonlinearities. Many of their samples
are much larger than those of the other sequences and are
thus much more affected by nonlinear distortion. We must
point out that, if the same peak amplitude is imposed to all
sequences, the OPSs for Pink distribution provide the best
performances, with perfornance similar to WN filters and the
OPS for Gaussian distribution. The OPSs with samples having
Gaussian or uniform distribution give here worse results than
the PPSs for WN and LN systems, respectively, because of
the worse noise gain. Similar results have been obtained also
doubling the period of the OPS, i.e., for ε = 8 in (39),
with a small improvement visible only on the OPSs with
smaller D. The MLSs are well known to suffer the effect
of nonlinearities and the results of Figure 4 and 5 confirm
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Fig. 6. Experiment 2: Floor plan of the room used in the measurements.
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Fig. 7. Experiment 2: Second, third, and total harmonic distortion of the
MIC-500 preamplifier at the different settings.

this general knowledge. Different MLSs are affected in a
different manner by the nonlinearity artifacts and the MLS
with period 220 − 1 here gives worse results than the shorter
period MLSs. The exponential sweeps provide robust behavior
with a uniform LSD at all settings, albeit larger than with the
other methods. In Figure 4 the LSD of the exponential sweeps
tends to reduce slightly with the settings since the spectral
variations introduced by the MIC 500 preamplifier tend in this
case to reduce with the setting. As a matter of fact, with the
preamplifier compensation the LSD of the exponential sweep
measurement becomes almost constant.

The preamplifier compensation significantly reduces the
LSD. The reader should note the different vertical scale of
Figures 4 and 5. Nevertheless, the different methods are
affected in the same way by the nonlinearites and by the noise
with and without compensation of the preamplifier.

B. Experiment 2

The second set of experimental results considers real room
impulse response measurements performed in a room of 2.7 m
× 3.7 m × 4.3 m. Figure 6 shows the floor plan of the
room used in the measurement. The loudspeaker and the
microphone are positioned 2.5 m apart at an height of 1.2 m.
The measurement system is composed of a Focusrite Scarlett
2i2 audio interface, a RCF Arya Pro5 loudspeaker, a Behringer
EMC 8000 microphone. Since previous mesurement shows
the room impulse response at 44.1 kHz sampling frequency
has less than 8 000 samples, the same input signals of the
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previous experiment are applied also in this case. To stress
the difference between the different methods, the signals are
again passed through a MIC 500 preamplifier in “valve” mode
before being applied to the loudspeaker. The output of the
MIC 500 preamplifier has been recorded simultaneously to the
microphone to allow compensation of the preamplifier. Eight
different settings (Setting 0 to 7) of the MIC 500 potentiometer
controlling the nonlinearity are considered in this case. Figure
7 shows the second, third, and total harmonic distortion on a
1 kHz tone at the maximum amplitude of the sequences for
the different settings. The output SNR is at around 20 dB for
most settings, apart from Setting 0 and 1 where it is 6 dB and
15 dB respectively.

In this case the actual room impulse response is unknown.
To compare the different measurement in terms of LSD, we
assume as reference for each setting the result obtained with
the PPS of WN filters of order k = 3, memory N = 8192,
diagonal number D = 4, that gave the best results in the
previous experiment. Figure 8 shows the LSD in the band
[100, 18 000] Hz measured with the different methods with-
out compensation of the MIC 500 preamplifier. The results
obtained are for the most similar to those of the previous
experiment. The best performance is obtained with the PPSs
for WN filters and with the OPSs for Gaussian inputs for
diagonal number D at least 3, but also the PPSs for LN
filters and the OPSs for uniform inputs provide here similar
good results for sufficiently large D. In the OPSs with smaller
D, a small improvement of performance can be obtained by
doubling the period of the OPS, i.e., for ε = 8 in (39). The
OPSs with input samples having Pink distribution are the most
affected by the nonlinearities, for the same reason explained
in first experiment related to the larger amplitude of the input
samples. Also in this case, if the same peak amplitude would
be considered for all sequences, the OPS for Pink distribution
are among the best performing sequences with performance
similar to those of the PPSs for WN filters and with the
OPSs for Gaussian inputs. The MLSs are affected by the
larger nonlinearities, but provide anyhow acceptable results.
The exponential sweeps provide a uniform LSD at all settings,
albeit larger than that achievable with the other methods.

The LSD in the band [100, 18 000] Hz measured when the
MIC 500 preamplifier, compensated with the inverted filter,
has also been computed. Since in this case also the reference
magnitude response is compensated with the inverted filter,
the results are very similar to those of Figure 8 and have not
been included for space limitations.

VI. CONCLUSION

The paper has presented a novel RIR measurement method
robust towards the nonlinearities that may affect the power
amplifier or the loudspeaker. The proposed approach allows
measuring the RIR with the cross-correlation method. A
periodic input sequence is applied to the measurement system
and the corresponding output is measured. The room impulse
response is then obtained by computing the cross-correlation
between the output signal and an appropriate OPS sequence
over a period. The output signal should be at steady state in

this period, which means that an input sequence sufficiently
longer than one period should be used in the measurement
to guarantee this condition. The robustness towards mea-
surements is achieved taking into account the nonlinearities
in the development of the OPS sequence. The input se-
quence can be any periodic persistently exciting sequence
and can also be quantized, but the best results have been
obtained with Gaussian sequences. Using OPSs, protection
against nonlinearities can be increased augmenting the order
or the diagonal number of the considered nonlinear model,
at the cost of an increased period of the input sequence.
In contrast to other cross-correlation methods discussed in
the literature, the proposed approach is the only one that
directly estimates the first-order kernel of the Volterra filter
modeling the measurement systems, i.e., the system impulse
response for small signals. Measurements performed both on
an emulated scenario and in a real environment have illustrated
the validity of the approach also in comparison with other
competing approaches, e.g., MLSs, exponential sweeps, and
PPSs for WN and LN systems. While the proposed approach is
particularly suitable for coping with nonlinearities affecting the
measurement system, it can be effectively used also when the
measurement system has negligible nonlinearities obtaining an
identification performance similar to those of other methods
currently adopted in practice, i.e., MLS, exponential sweeps,
PPSs. Many OPSs with different order and diagonal numbers
have been developed for measuring room impulse responses as
long as 262 144 samples and are freely available for download
from [53].
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Università Politecnica delle Marche. He has published more than fifty papers
in journals, and more than a hundred in proceeding of international conference
and chapters of international books. He was Guest Editor for EURASIP
Journal on Embedded Systems, Frontiers in Energy Research and MDPI
Sensors, Reviewer for many International Journals, Program Chair of three
International Conferences, and Editor of four International Books. He has
been working in statistical device modeling and simulation, analog circuit
design, cyber-physical system simulation and linear and nonlinear system
identification. His current research interests include dsp and power electronics
for renewable energies.


