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A very simple and fast method for the synthesis of pencil beams with
linear antenna arrays of equally spaced elements is presented. The pro-
posed procedure starts selecting the desired pencil beam as a Gaussian
function. This is very convenient for two reasons: first, the continuous
line-source distribution that exactly produces the desired pencil beam
(i.e. the Fourier transform of it) is in turn a Gaussian function and is
immediately calculated. Second, a suitable weighted sampling of this
distribution gives the excitations of the array elements in closed
form. Two numerical examples reveal the good performances of the
proposed approach, also in comparison with the classical method by
Dolph-Chebyshev. It is shown that the synthesised array factors well
approximate the desired pencil beams in real time, in particular ensur-
ing a very good behaviour in the side lobe regions. Furthermore, the
‘dynamic range ratio’ of the excitations, defined as the ratio between
the maximum and the minimum amplitude of the excitations, is very
low and close to unity when the array length is sufficiently small.
Introduction: In many modern applications such as, for example, radar
[1], satellite [2] and wireless communications [3], antennas are required
to radiate narrow beams with low side lobes. In the last decades, several
methods of synthesis have been developed for linear antenna arrays of
equally [4, 5] or unequally [6, 7] spaced elements. This Letter proposes
a method to synthesise pencil beams with linear antenna arrays of
equally spaced isotropic elements. The innovative key idea consists in
selecting the desired pencil beam as a Gaussian function. Then, the pro-
cedure develops as follows. First, a continuous line-source distribution
is determined, whose array factor is exactly equal to the desired
pattern. This distribution is the Fourier transform of the desired
Gaussian pattern [8] (up to a multiplicative constant), so it is in turn a
Gaussian function, and its calculation is immediate. Finally, a suitable
weighted sampling of this distribution is performed, obtaining the exci-
tations of the array elements in closed form.
In the sequel, the proposed algorithm is described in detail. Then, nu-

merical comparisons with the classical method by Dolph-Chebyshev [8]
are presented, which put into evidence some advantages of the proposed
algorithm. Finally, some conclusions are summarised.

Problem and Gaussian approach: The radiation pattern of a linear array
of length L, composed by N isotropic elements equally spaced on the
z-axis of a Cartesian system O(x, y, z), can be expressed as

F a; u( ) =
∑N
n=1

anexp(juzn) (1)

where u = k sin u, with k = 2p/l (being l the wavelength) and u the
angle from broadside, a = [a1, . . . , aN ]

T is the column vector of the
N array excitations and

zn = −L/2+ D(n− 1), n = 1, . . . , N (2)

are the positions of the array elements, with D = L/(N − 1) the inter-
element spacing. Given L and N, the problem here posed consists in
finding the N excitations an that produce a pencil beam having a
desired beamwidth. The idea is that of choosing the desired pattern
Fd(u) as the normalised Gaussian function

Fd u( ) = exp − u2

2s2

( )
(3)

where s is the mean-square deviation. In order to control the pattern
width, Fd(u) is imposed to have a desired b dB beamwidth, BWdes

(degrees). By (3), this requires to select s as
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Now, it is well known that a continuous line-source distribution a(z),
−1 , z , +1, yields the pattern

F u( ) =
∫+1

−1
a(z)exp(juz) dz (5)
1

Hence, in order to obtain F u( ) = Fd(u) in (3), 2pa(z) must be the
Fourier transform of Fd(u) (see also [8]). Recalling the integral proper-
ties of the Gaussian function, it results

a z( ) = s����
2p

√ exp −s2z2

2

( )
, for−1 , z , +1, (6)

which is a Gaussian function with standard deviation 1/s. Assuming a
finite length L of the array, (5) is replaced by

F u( ) =
∫+L/2

−L/2
a(z)exp(juz) dz (7)

so F(u) only approximates Fd(u), and the approximation is good if L is
chosen sufficiently large. Furthermore, the N excitations an must be
chosen in such a way that the pattern in (1) be a good approximation
of the pattern in (7). In the proposed synthesis procedure, the excitation
an is selected as

an =
∫zn+D/2

zn−D/2
a(z) dz (8)

as is depicted in Fig. 1. Substituting (6) into (8) and manipulating yields

an = 1
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where erf x( ) = (2/
��
p

√
)
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0 exp(− t2) dt is the error function. Equation

(9) provides the excitations an in closed form, thus simplifying the pro-
cedure and obtaining the required beam pattern in real time. As an
important remark, note that the narrower is the desired pattern in (3),
that is, the lower is s, the wider is the line source a(z) in (6). As a con-
sequence, for a given L the minimum value of a(z) in −L/2, L/2[ ]
increases when reducing s. Therefore, the dynamic range ratio (DRR)
values tend to reduce because by (8) the excitations can be approximated
by samples of a(z). In particular, DRR is close to unity if L is sufficiently
small. The numerical results confirm that low DRR values are obtained.
This is important as low values of DRR allow to use simpler feeding
networks.
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Fig. 1Graphical representation of choice of excitations: each excitation an is
chosen as area between diagram of a( z) and z-axis in corresponding interval
[ zn − D/2, zn + D/2]

Numerical examples: Let us consider an antenna array of length
L = 20l, composed by N = 41 elements equally spaced on the z-axis
at the positions in (2), where D = l/2. We want to find N excitations
an that generate a pencil beam with a first null beamwidth of 5°. To
this aim, we first calculate s imposing BWdes = 5° and b = 100 dB
in (4), obtaining s = 0.0571 rad/m. Then, substituting s into (9)
yields the excitations listed in Table 1, which by (1) provide the
array factor shown in Fig. 2. The same problem is solved also
with the Dolph-Chebyshev algorithm [8], which was demonstrated to
give an array factor with minimum beamwidth for a given (uniform)
maximum side lobe level, and vice versa. The Dolph-Chebyshev array
factor is shown in Fig. 2, and has all the side lobes at the same
maximum level of −13.47 dB and, as required, a first null beamwidth
of 5°. The array factor obtained with the proposed algorithm has a bit
lower maximum side lobe level (−14.27 dB), and a considerably
better side lobe pattern, at the expense of an increased first null beam-
width of 5.7°. Nevertheless, the maximum directivity is 16.12 dB with
the proposed approach and 13.91 dB with the Dolph-Chebyshev algor-
ithm. As a further advantage, the percentage of power radiated in the
side lobe region with respect to the total radiated power, is considerably
lower with the proposed approach (7.76 versus 51.45% of



Dolph-Chebyshev). Furthermore, the excitations obtained with the
Dolph-Chebyshev algorithm (listed in Table 1) have a DRR = 7.93,
while those obtained with the presented method have DRR = 1.18,
which is considerably lower. Finally, the results are obtained in real
time by both methods (<1 ms).
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Fig. 2 Example 1: array factor obtained with proposed approach (solid line)
and with Dolph-Chebyshev algorithm (dotted line)

Table 1: List of excitations obtained with proposed approach (PA)
and with Dolph-Chebyshev method (DC)
n
 an PA
 an DC
 n
 an PA
 an DC
 n
 an PA
 an DC
1
 1.0000
 1.0000
 8
 1.0988
 0.1674
 15
 1.1599
 0.2010
2
 1.0160
 0.1260
 9
 1.1091
 0.1733
 16
 1.1652
 0.2040
3
 1.0315
 0.1334
 10
 1.1205
 0.1790
 17
 1.1694
 0.2064
4
 1.0463
 0.1406
 11
 1.1301
 0.1843
 18
 1.1729
 0.2084
5
 1.0604
 0.1476
 12
 1.1389
 0.1891
 19
 1.1752
 0.2098
6
 1.0740
 0.1545
 13
 1.1468
 0.1935
 20
 1.1767
 0.2106
7
 1.0867
 0.1610
 14
 1.1538
 0.1975
 21
 1.1771
 0.2109
Due to symmetry, only values corresponding to n = 1, . . . , 21 are listed.
As a second example, Fig. 3 shows the array factors obtained with the
two methods for an array of length L = 30l, composed by N = 61
elements, with an inter-element distance D = l/2. The desired pattern
has a 35 dB beamwidth of 5° (i.e. s is calculated imposing
BWdes = 5° and b = 35 dB in (4), and is 0.0965 rad/m). Both algo-
rithms require only 1 ms to evaluate the optimal excitations (which
are not reported here for reasons of space). The results, which are con-
sistent with those of the first example, are summarised in Table 2.
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Fig. 3 Example 2: array factor obtained with proposed approach (solid line)
and with Dolph-Chebyshev algorithm (dotted line)
2

Table 2: Comparison of performances of two algorithms
Example 1
 Example 2
PA
 DC
 PA
 DC
beamwidth
 5.7°
 5°
 4.82°
 5°
directivity
 16.12 dB
 13.91 dB
 17.50 dB
 17.36 dB
SLLmax
 −14.27 dB
 −13.47 dB
 −21.51 dB
 −27.01 dB
PSL%
 7.76%
 51.45%
 1.47%
 5.19%
DRR
 1.18
 7.93
 2.85
 4.16
Conclusion: In this Letter, the problem of pencil beam synthesis for
linear arrays of equally spaced elements has been addressed. It has
been shown that the innovative choice of a Gaussian function to rep-
resent the desired pencil beam, in conjunction with the proposed syn-
thesis procedure, allows to solve the problem easily, in real time, in
closed form and with very satisfactory results. Two numerical compari-
sons between the proposed approach and the Dolph-Chebyshev method,
show that array factors with comparable beamwidths have been
obtained, and that the proposed approach produced side lobe patterns
considerably better than those obtained by the Dolph-Chebyshev algor-
ithm. In particular, with the presented approach the directivity resulted
to be higher, and the percentage of power radiated in the side lobe
region was much lower. Finally, the proposed method gave DRR
values very low in both the examples, and considerably lower than
those obtained by the Dolph-Chebyshev method.
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