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ABSTRACT
In this paper, a threat discrimination methodology is proposed for cyber-physical systems with event-
triggered data communication, aiming to identify sensor bias faults from two possible types of threats:
replay attacks and sensor bias faults. Event-triggered adaptive estimation and backward-in-time sig-
nal processing are the main techniques used. Specifically, distinct incremental systems of the event-
triggered cyber-physical system resulting from the considered threat types are established for each
threat type, and the difference between their inputs are found and utilized to discriminate the threats.
An event-triggered adaptive estimator is then designed by using the event-triggered sampled data
based on the system in the attack case, allowing to reconstruct the unknown increments in both the
threat cases. The backward-in-time model of the incremental system in the replay attack case is pro-
posed as the signal processor to process the reconstructions of the increments. Such a model can
utilize the aforementioned input difference between the incremental systems such that its output has
distinct quantitative properties in the attack case and in the fault case. The fault discrimination con-
dition is rigorously investigated and characterizes quantitatively the class of distinguishable sensor
bias faults. Finally, a numerical simulation is presented to illustrate the effectiveness of the proposed
methodology.

1. Introduction
Cyber-physical systems (CPS) have attracted many re-

search efforts recently owing to their wide applications. How-
ever, CPS are highly vulnerable to malicious cyber attacks
as a result of integrating computation, communication and
control [3]. Therefore, state-of-the-art cyber attack diagno-
sis technologies should be developed.

In the past decade, model-based detection of integrity
attacks such as covert attacks [21, 1], zero-dynamics attacks
[25] and replay attacks [19], has been investigated by the
research community [27]. Several survey papers, such as
Dibaji et al. [5] and Ding et al. [6], have detailed the main
model-based detection methodologies. Replay attacks are
commonly used by malicious adversaries due to their sim-
plicity in implementation. The famous “Stuxnet worm” virus
occurring in the Iranian nuclear facilities is a typical imple-
mentation example of replay attacks [11]. In a replay attack
event, the attacker records the data from the normal plant
operation over a time interval and then replays the data to
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the supervisory system [22]. Hence, replay attacks possess
high stealthiness properties with respect to most of the tra-
ditional anomaly detectors such as the ones in Ding [7] and
Blanke et al. [2] as a result of the used malicious data taken
from the normal system operation. In general, replay at-
tacks are usually performed along with other types of un-
stealthy cyber attacks, such as data-injection attacks, aiming
to cover them up. In more detail, during the replaying pro-
cedure of a replay attack, the other un-stealthy attacks can
deteriorate significantly the operation of the system, at the
same time, remain concealed from the typical anomaly de-
tectors due to the cover provided by the replay attack. There-
fore, the main objective of replay attacks is to hide the ad-
ditional attack events that are launched during the replaying
procedure of the replay attacks. Watermarking is the main
methodology to detect replay attacks, which is proposed in
[19] and is achieved by adding watermarks to the control in-
puts. However, such additive watermarks may cause control
performance degradation. A model inversion-based water-
marking is proposed in [20] to alleviate this issue. Further-
more, a multiplicative watermarking approach is proposed
in [9] and recently extended in [10].

The threat discrimination (TD) problem arises when tak-
ing into account two types of threats: physical faults and cy-
ber attacks. The aim of TD is to identify the occurring threat
type, namely determining which type of threats (attacks or
faults) is occurring. However, in the aforementioned litera-
ture and references therein, the TD problem is rarely men-
tioned and is generally overseen by the research communi-
ties. TD is very important for practical applications, since
it can help operators make correct decisions and take suit-
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able remediation actions against threats. Mitigation strate-
gies against cyber attacks and physical faults are usually dif-
ferent. Physical maintenance, such as replacing communi-
cation cables, can be effective in mitigating physical faults,
but cannot remediate the issues caused by cyber attacks. Up-
dating communication protocols and firewalls are the gen-
eral prevention approaches against cyber attacks. In the case
of a cyber attack, it may be preferable to take drastic ac-
tions such as shutting down the whole system rather than
trying to fix it alongside the actions of the attacker. There-
fore, TD identifies the type of the occurring threats, thereby
guiding the corresponding remediation measures for avoid-
ing catastrophic consequences. The TD problem was first
considered in Chanthery and Subias [4], in which simula-
tion results of distinguishing between faults and attacks in a
two-tank benchmark based on some traditional model-based
and data-based anomaly diagnosis methods were presented.
A TD scheme is also designed in Taheri et al. [24] by ap-
plying filters in both the plant side and the control side of
the closed-loop CPS. Such a TD scheme may increase the
communication load because the filter signals in the plant
side should be independently transmitted to the control side.
Typical fault detection and isolation methods cannot be ex-
ploited directly to solve the TD problem, which is also the
reason that the TD problem between replay attacks and phys-
ical sensor bias faults remains an open problem. One chal-
lenge of TD is the stealthiness of replay attacks. In general,
typical fault detection and isolation methods do not consider
the stealthiness issue by design, which prevents them from
sensing the stealthy replay attacks. Another challenge of
TD is that the time responses of a detector to replay attacks
possess distinct characteristics with respect to the responses
of the same detector to physical sensor faults. Traditional
fault detection and isolation methods may not consider suf-
ficiently such time response characteristics and thus, cannot
take full advantage of the difference between replay attacks
and sensor bias faults. Therefore, based on the aforemen-
tioned challenges, traditional anomaly detection and isola-
tion methods may be not able to discriminate between replay
attacks and sensor bias faults.

Event-triggering techniques are proposed to save com-
munication resources and are generally used in the fields
of control and observer design for complex systems, such
as [23, 18, 13]). Model-based fault diagnosis problem for
event-triggered control system has also been studied in re-
cent years. Many related results, such as [29, 16], have dealt
with this problem. However, only a few results take into
account both the attack diagnosis and the event-triggered
communication. A sliding mode observer based attack de-
tection and estimation scheme is proposed in [14] for linear
autonomous vehicle platoons using the event-triggered com-
munication.

This paper develops an attack and fault discrimination
methodology using event-triggered communication data to
distinguish between replay attacks and physical sensor faults.
Specifically, a threat discriminationmethodology is proposed
in this paper using event-triggered communication data for

identifying the case of sensor bias faults between the two
types of threats: replay attacks and sensor bias faults. An
event-triggered adaptive estimator and a backward-in-time
model are designed to achieve the discrimination task. In
particularly, the incremental systems of the event-triggered
CPS resulting from the replay attacks and the sensor faults
are established and their different inputs are found. An event-
triggered adaptive estimator is designed using the event-
triggered communication data based on the structural char-
acteristics of the CPS in the attack case, allowing to recon-
struct the unknown increments in both of the threat cases.
The backward-in-time model of the incremental system in
the attack case is then proposed as the signal processor to
process the reconstruction of the increments, which can uti-
lize the distinct inputs of the incremental systems to generate
distinguishable outputs. Such a backward-in-timemodel can
guarantee that in the presence of the replay attacks, its output
is lower than a threshold, whereas in the fault case its out-
put exceeds the threshold, and therefore, allowing to identify
the sensor bias faults. The fault discrimination condition is
rigorously investigated and characterizes quantitatively the
class of distinguishable faults. In conclusion, the main con-
tributions of this paper are summarized as follows:

• A threat discrimination framework consisting of an
estimator and a backward-in-time signal processor is
proposed and realized, for identifying sensor bias faults
between two threat scenarios, namely replay attacks
and sensor bias faults;

• Using the event-triggered communication data, an event-
triggered adaptive estimator is designed to provide the
estimates of the system states, output transmission er-
rors and the threat parameters for reconstructing the
unknown system increments;

• The backward-in-time model of the incremental sys-
tem due to the replay attack is introduced, which is
able to utilize the distinct increments due to the replay
attack and the sensor bias faults and generate distin-
guishable outputs.

The rest sections of this paper are organized as follows.
In Section 2, the problem formulation is given. In Section 3,
the threat discrimination scheme including an event-triggered
estimator and a backward-in-time model is designed and rig-
orously analyzed, and a numerical simulation is presented in
Section 4. Finally, the conclusions are drawn in Section 5.
Notations: The notation | ⋅ | is used in this paper to represent
the absolute value for scalars, and the 2-norm for vectors
and matrices. For a square matrix A ∈ ℝn×n, �max(A) and
�min(A) represent the maximum eigenvalue of the minimum
eigenvalue of A respectively.

2. Problem Formulation
2.1. CPS with Event-Triggered Communication

In this paper, we consider a type of CPS depicted in Fig.
1, which consists of a physical plant  , an event-triggering
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Figure 1: Structure diagram of CPS with event-triggered com-
munication in the presence of replay attacks.

mechanism (ETM), a data transmission network , a zero-
order holder (ZOH), a controller  and an anomaly detector
. The physical plant  is a linear time-invariant system,
and  is a linear static output-feedback controller. The plant
 and  in the nominal case (no attack or fault) are described
by

ẋn(t) = Axn(t) + BKỹn(t), (1)
yn(t) = Cxn(t), (2)

where xn ∈ ℝnp is the state of the physical plant in the nom-
inal case, yn ∈ ℝny represents the sensor measurements and
ỹn ∈ ℝny is the sampled sensor measurements. The matrices
A ∈ ℝnp×np , B ∈ ℝnp×nu , K ∈ ℝnu×ny and C ∈ ℝny×np are
known by the defender. We suppose that A is a Hurwitz ma-
trix and the pair (A,C) is observable. In the case thatA is not
a Hurwitz matrix, the discrimination schemes in this paper
can be developed based on an asymptotically stable observer,
which, however, will lead to complicated notations and pre-
sentation. Hence, for simplification purposes, the matrix A
is assumed to be a Hurwitz matrix throughout the paper.

For simplicity, only the sensor data communication net-
work and the ETM in the sensor-to-controller channel are
considered. The task of the ETM is to determine whether the
data at the current time instant is transmitted or not, thereby
scheduling the transmission of  and reducing the load.
The event-triggering condition of the ETM in the nominal
case is given by

tnk+1 = inf
{

t > tnk| |yn(t
n
k) − yn(t)|

2 > �|yn(t)|2
}

, (3)
where � > 0 is a pre-specified threshold. It should be noted
that the event-triggering instants tn1, tn2,⋯ , tnk can be exactly
indicated by the jumps of the signal ỹn(t). Thus, t1, t2,⋯ , tkcan be obtained in real time.
Remark 1. In general, the event-triggering condition is eval-
uated using the actual output measurement y(tk) and y(t)
rather than the corresponding nominal values indicated in
(3), since yn(tnk) and yn(t) in the presence of a threat are un-
known. ▾

Based on the transmission time instants of the ETM, the
ZOH possesses a holding time t ∈ Γnk ≜ [tnk, t

n
k+1), and re-

tains its input during Γnk. Note that yn is the input of the

ETM, and ỹn is the output of the ZOH. The transmission of
the ETM and ZOH can be characterized by ỹn(t) = yn(tnk) =
Cx(tnk) for t ∈ Γnk. Thus, the transmission error �n of the
ETM and ZOH can be defined by

�n(t) ≜ ỹn(t) − yn(t)
= Cxn(tnk) − Cxn(t), ∀ t ∈ Γ

n
k, (4)

�+n (t
n
k+1) = 0, ∀ t = tnk, k ∈ ℤ+, (5)

where �+n (t) is given in the footnote1, and with the defined
�n, ỹn between two consecutive transmission instants can be
described by

ỹn(t) = yn(tnk) = yn(t) + �n(t), ∀ t ∈ Γ
n
k. (6)

Therefore, by synthesizing (1)-(6), the closed-loop CPS in
the nominal case is described by the following impulsive sys-
tem:

n ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋn(t) = Axn(t) + BKỹn(t),
�̇n(t) = −CAxn(t) − CBKỹn(t),
�+n (t

n
k) = 0,

yn(t) = Cxn(t),
ỹn(t) = yn(t) + �n(t).

(7)

2.2. Potential Threats
In this paper, we consider two types of threats: 1) re-

play attack in the communication network  and 2) single
or multiple sensor bias fault(s). Themodeling of such threats
will be described in the sequel. To this end, in order to dis-
tinguish the variables in the attack case and in the fault case,
the subscripts a and f are used respectively. For example,
xa and xf represent the plant states in the attack case and in
the fault case respectively.
2.2.1. Replay Attack Scenarios.

In general, replay attacks have recording and replaying
procedures. The adversary first records the sensor measure-
ment yn communicated through starting at a time Ta − Tand for a recording time T , so that the recording ends at the
time Ta. Then, the replaying procedure starts from Ta andlasts till Ta + T . In this paper, for the sake of simplifying
the presentation, we only consider a single replay and no re-
peat. In addition, we consider that T is sufficiently long such
that the developed scheme has enough time to carry out the
discrimination task. Therefore, the replaying procedure is
limited in the time interval [Ta, Ta+T ), and the networkrecovers to the normal operation after Ta + T .Let Γa represent the time interval of the replaying pro-
cedure, i.e., Γa ≜ [Ta, Ta + T ). For a time-varying variable
p(t), we use p′(t) to represent its value at the time t− T , i.e.,
p′(t) ≜ p(t − T ). Then, in the presence of the replay attack,
we have

ỹa(t) = ỹ′n(t), ∀ t ∈ Γa. (8)
1For a signal x ∶ [0,+∞) → ℝn, we denote the limit from above at

time t ∈ [0,+∞) by x+(t) = lims↓t x(s).
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Moreover, the data transmission time instants specified by
the event-triggering condition (3) may shift in the presence
of the replay attack (see Remark 1), which are now denoted
by tak with k ∈ ℤ+, and the time interval between two con-
secutive transmission instants is denoted by Γak ≜ [tak, tak+1).Then, it follows from (6) and (8) that

ỹa(t) = ỹ′n(t) = y
′
n(t) + �

′
n(t), ∀ t ∈ Γ

a
k. (9)

Now, a virtual attack signal a(t) of the replay attack is defined
as follows

Ca(t) ≜ Cx′n(t) + �
′
n(t) − Cxa(t) − �a(t), (10)

where xa is the state of the plant in the attack case, and �a isdefined based on (4) as follows:
�a(t) ≜ Cxa(tak) − Cxa(t), ∀ t ∈ Γ

a
k. (11)

Then, n in (7) in the attack case can be described by the
following impulsive system:

a ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋa(t) = Axa(t) + BKỹa(t),
�̇a(t) = −CAxa(t) − CBKỹa(t),
�+a (t

a
k) = 0,

ya(t) = Cxa(t),
ỹa(t) = Cxa(t) + �a(t) + Ca(t).

(12)

In order to guarantee the stealthiness, a(t) should be suf-
ficiently small, and hence, the following assumption gives
the boundedness restriction on a(t).
Assumption 1. The attack signal a(t) is sufficiently small in
amplitude, i.e.,

a(t) ∈ Θa ≜
{

� ∈ ℝnp |
|

|�| ≤ �a, �a > 0
}

, ∀ t ∈ Γa, (13)
where �a is sufficiently small and known by the defender. ▾

2.2.2. Sensor Bias Fault Scenarios.
In this work, in order to simplify the presentation, we

consider the case of a single/multiple sensor bias fault(s) oc-
curring simultaneously at time Tf . Let Γf denote the time
interval after the occurrence of the sensor faults, i.e., Γf ≜
[Tf ,+∞). Then, the sensor measurement is described by

yf (t) = Cxf (t) + Cf (t), ∀ t ∈ Γf , (14)
where xf is the state of the plant in the presence of the fault
and f ∶ [0,+∞) → ℝnp represents the sensor bias fault
function. Moreover, the time transmission instants specified
by the event-triggering condition (3) may also shift in the
presence of the sensor bias faults (see Remark 1). The new
time transmission instants in the fault case are denoted by tfkwith k ∈ ℤ+, and the time interval between two consecutive
transmission instants is denoted by Γfk ≜ [tfk , t

f
k+1). By

defining �f as

�f (t) ≜ Cxf (t
f
k ) − Cxf (t), ∀ t ∈ Γ

f
k , (15)

it follows from (6) and (14) that
ỹf (t)=yf (t

f
k ) = Cxf (t)+�f (t)+Cf (t

f
k ), ∀ t ∈ Γ

f
k . (16)

Consequently, in the presence of the sensor bias fault,
n in (7) can be described by the following impulsive sys-
tem:

f ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋf (t) = Axf (t) + BKỹf (t),
�̇f (t) = −CAxf (t) − CBKỹf (t),
�+f (t

f
k ) = 0,

yf (t) = Cxf (t) + Cf (t),
ỹf (t) = Cxf (t) + �f (t) + Cf (t

f
k ).

(17)

In addition, the sensor bias fault vector f (t) is assumed
to satisfy the following assumption.
Assumption 2. The fault vector f (t) is norm bounded, i.e.,

f (t) ∈ Θf ≜
{

� ∈ ℝnp |
|

|

|�| ≤ �f , �f > 0
}

, ∀ t ∈ Γf ,

(18)
where �f is known by the defender. ▾

Remark 2. The boundedness requirement for f (t) in Assump-
tion 2 is commonly used in the fault diagnosis literature (see,
e.g., [28]). ∇

Regarding the threat scenarios considered in this paper, we
have the following assumption.
Assumption 3. It is assumed that only one type of threat can
occur in the system: either a replay attack or sensor bias
fault(s). ▾

2.3. Objective
Suppose that a threat has been detected by the anomaly

detector  in Fig. 1 at the time Td where Td ≥ Ta and Td ≥
Tf , but the type of such a threat can not be identified by .
The aim of this paper is to design a scheme to identify the
sensor bias fault(s), i.e., whether the occurring threat is the
sensor bias fault(s).

3. Threat discrimination Scheme
In this section, a framework is proposed to distinguish

the sensor bias faults from the two considered threat scenar-
ios. Based on this framework, the discrimination scheme
consisting of an estimator and a signal processing model are
designed and rigorously investigated.
3.1. Threat Discrimination Framework
3.1.1. Incremental Systems.

Considering the replay attack case, the virtual attackmodel
is first presented in the sequel. The attack signal during the
replaying procedure is the sensor measurements yn ofn in(7) during the recording procedure. Thus, the virtual attack
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model implemented by the attacker is the nominal system
n during the recording procedure [19], i.e.,

 ′
n ∶

⎧

⎪

⎨

⎪

⎩

ẋ′n(t) = Ax′n(t) + BKỹ
′
n(t),

y′n(t) = Cx′n(t),
ỹ′n(t) = y′n(t) + �

′
n(t),

(19)

where, as mentioned previously, p′(t) is defined as p′(t) =
p(t − T ) for p ∈ {xn, ỹn, yn, �n}.The incremental system due to the replay attack is de-
fined as the deviation betweena and ′

n. In particular, fora time-varying variable q(t) (q ∈ {x, y, e, ỹ}), the increment
is defined as

Δqa(t) ≜ qa(t) − q′n(t). (20)
According to this definition, we have
Δxa = xa − x′n, Δya = CΔxa, Δ�a = �a − �

′
n, Δỹa = 0.

Then, froma in (12) and ′
n in (19), the incremental sys-

tem can be obtained as

Δa ∶

⎧

⎪

⎨

⎪

⎩

Δẋa(t) = AΔxa(t),
Δya(t) = CΔxa(t),
Δỹa(t) = 0.

(21)

We now proceed to define the incremental system in the
sensor fault case. The incremental system is defined as the
deviation between f and n. Specifically, for a time-
varying variable q(t) (q ∈ {x, y, �, ỹ}), the change is defined
as

Δqf (t) ≜ qf (t) − qn(t). (22)
According to this definition, we have

Δxf = xf − xn, Δyf = CΔxf + Cf,

Δ�f = �f − �n, Δỹf = CΔxf + Δ�f + Cf (t
f
k ).

Hence, fromf in (17) andn in (7), the incremental sys-
tem due to the sensor bias fault can be obtained as

Δf ∶

⎧

⎪

⎨

⎪

⎩

Δẋf (t) = AΔxf (t) + BKΔỹf (t),
Δyf (t) = CΔxf (t) + Cf (t),
Δỹf (t) = CΔxf (t) + Δ�f (t) + Cf (t

f
k ).

(23)

The following proposition is derived based on the above
definitions (20) and (22) of the increments.
Proposition 1. (i) In the context of the definition (20), the
virtual attack signal a(t) satisfies

a(t) = −Δxa(tak), ∀ t ∈ Γ
a
k. (24)

(ii) In the context of the definitions (20) and (22),Δxa(t) and
Δxf (t) can be jointly described by

Δxi(t)=eA(t−Td )Δxi(Td)+∫

t

Td
eA(t−�)BKΔỹi(�)d�, (25)

where Δỹa = 0 in (21) and Δỹf is given in (23). ■

PROOF. (i) According to the definition in (10), Ca(t) in (10)
can be equivalently written as

Ca(t) = −CΔxa(t) − Δ�a(t) = −CΔxa(tak), ∀ t ∈ Γ
a
k,

whereΔxa(t) = xa(t)−x′n(t) andΔ�a(t) = Cxa(tak)−Cxa(t)−
(Cx′n(t

a
k) − Cx

′
n(t)) = C(Δxa(t

a
k) − Δxa(t)) are used. Thus,(24) follows.

(ii) According to (21), for t > Td , Δxa(t) is described by
Δxa(t) = eA(t−Td )Δxa(Td).

By solving the differential equation in (23), Δxf (t) can be
described by (25). Hence, result (ii) follows. □

3.1.2. Technical Framework.
Considering the incremental systems Δa in (21) and

Δf in (23), the difference between Δỹa = 0 in Δa and
Δỹf ≠ 0 inΔf is utilized in this paper to achieve the threatdiscrimination task. More specifically, the threat discrimi-
nation framework integrates an event-triggered adaptive es-
timator and a backward-in-time signal processor in a cas-
cade way. The estimator is proposed based on the structure
of a such that Δxa can be reconstructed more accurately
than Δxf . The task of the backward-in-time signal proces-
sor is to process the reconstructions ofΔxi, i = {a, f}. Thissignal processor is designed as the backward-in-time model
of Δa such that in the presence of Δxa, its output is lowerthan a threshold, whereas under Δxf the output potentially
exceeds the threshold. Hence, the sensor bias fault can be
identified.
3.2. Event-triggered Adaptive Estimator Design

In this subsection, an event-triggered adaptive estimator
will be designed based on the structure of a in (12). To
this end, a unified form of a in (12) and f in (17) are
given. We start by writing a(t) in (10) in a linear parame-
terization form. It follows from (25) in Proposition 1 that
Δxa(t) can be written as Δxa(t) = eA(t−Td )Δxa(Td). By let-
ting �a ≜ Δxa(Td) and F a(t) ≜ −eA(t−Td ), then based on
(24) in Proposition 1, we have

a(t) = F a(tak)�
a, ∀ t ∈ Γak. (26)

To maintain form consistence with a(t), f (tfk ) inf is also
written in the linear parameterization form as follows:

f (tfk ) = [f1(t
f
k ),⋯ , fnp (t

f
k )]

T = Ff (t
f
k )�f , (27)

where Ff (tfk ) ≜ diag{f1(t
f
k ),⋯ , fnp (t

f
k )} ∈ ℝnp×np and

�f ≜ [1, 1,⋯ , 1]T ∈ ℝnp . Therefore,a in (12) andf in
(17) can be written in the following unified form:

 ∶

⎧

⎪

⎨

⎪

⎩

ẋ(t) = Ax(t) + BKỹ(t),
�̇(t) = −CAx(t) − CBKỹ(t),
�+(tk) = 0,
ỹ(t) = C0[x(t), �(t)] + CF (tk)�,

(28)

where C0 ≜ [C, I], x, �, ỹ, tk and F (tk)� are given in Tab.
1. Such a system can representa in the attack case andcan also represent f in the fault case.
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Table 1
Unified notations.

Notation Fault case Attack case
x xf xa
� �f �a
ỹ ỹf ỹa
tk tfk tak

F (tk)� F f (tfk )�
f F a(tak)�

a

Next, the threat discrimination estimator activated at time
Td is designed based on  given in (28) in the attack case.
Let x̂, �̂, ̂̃y and �̂ be the estimates of x, �, ỹ and �, respec-
tively. Then, the discrimination estimator is proposed as fol-
lows:

 ∶

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̂x = Ax̂ + Lx( ̂̃y − ỹ) + BKỹ + Ωx
̇̂�,

̇̂� = −CAx̂ + Le( ̂̃y − ỹ) − CBKỹ + Ω�
̇̂�,

Ω̇x = (A + LxC)Ωx + LxΩ� + LxCF a(tk),
Ω̇� = (−CA + LeC)Ωx + LeΩ� + LeCF a(tk),
̂̃y = C0[x̂, �̂] + CF a(tk)�̂,
̇̂� = Θa{
(C0Ω + CF a(tk)))T }(ỹ − ̂̃y),

(29)
where Ω ≜ [ΩTx ,Ω

T
� ]
T , the initial conditions are chosen as

x̂(Td) = 0, �̂(Td) = 0, Ωx(Td) = 0 and Ω�(Td) = 0. The
gains Lx ∈ ℝnp×ny and Le ∈ ℝny×ny are to be specified
later. The scalar 
 > 0 is the learning rate, and the projection
operator  restricts the parameter estimate �̂ to a predefined
convex region Θa where Θa is given in Assumption 1.
Remark 3. It should be noted that tk is used in the estimator
 , which indicates that tak is actually used in the attack case
and tfk is actually used in the fault case. Such a design can
eliminate the effects of the different event-triggering time in-
stants in the attack case and in the fault case on the estimator
 . It is also worth pointing out that the distribution matrix
F a in the attack case is used to match the system structure of
a such that estimation results are better in the attack case.
∇

We now turn to investigate the stability in both of the con-
sidered threat scenarios (i.e., the replay attack scenario and
the sensor fault scenario), and only investigate the learning
capability in the replay attack case. We start by defining the
estimation errors. By letting

ẑ1(t) ≜ x̂(t) −Ωx(t)�̂(t), ẑ2(t) ≜ �̂(t) −Ω�(t)�̂(t), (30)
and considering both of the threat scenarios, we define the
following estimation errors:

ex ≜ x − Ωx� − ẑ1, e� ≜ � − Ω�� − ẑ2,

ey ≜ ỹ − ̂̃y, ēy ≜ Cex + e� , �̃ ≜ � − �̂.

Then, from (28) and (29), the error system is obtained as
ėx(t) = (A + LxC)ex(t) + Lxe�(t), (31a)

ė�(t) = (−CA + LeC)ex(t) + Lee�(t), (31b)
e+x (tk) = ex(tk), e+� (tk) = 0, (31c)
ey(t) = ēy(t)+C0Ω(t)�̃(t)+C(F (tk)�−F a(tk)�̂(t)),

(31d)
̇̃�(t) = −Θa{
(C0Ω(t) + CF a(tk)))T }ey(t). (31e)

The error system (31a)-(31c) is a time-dependent impul-
sive dynamical system. The stability theory of impulsive
systems in Haddad et al. [12] will be exploited to investi-
gate the stability and learning properties of the estimator 
in (29).
Theorem 1. Consider the system (7) potentially subject to
the threat cases satisfying Assumption 3 with the replay at-
tack and the sensor faults satisfying Assumptions 1 and 2
respectively, and consider also the estimator  in (29).
(i) If the gains Lx and Le are designed such that there exists
a matrix P = P T > 0 satisfying

AT0 P + PA0 + �P <0, (32)
JTPJ − P ≤0, (33)

where � > 0 is any scalar and

A0 =
[

A + LxC Lx
−CA + LeC Le

]

, J =
[

In 0
0 0

]

,

then the estimator  in (29) can guarantee that in both of
the considered threat scenarios, the estimation errors x− x̂,
� − �̂, ey and �̃ are uniformly bounded.
(ii) There exists a bounded function �̄1(t) > 0 such that

|ēy(t)| ≤ �̄1(t), ∀ t ≥ Td , (34)
where �̄1(t) is given by

�̄1(t) ≜ |C0|
√

w(t)∕�min(P ). (35)
In the above equations, w(t) is given by

w(t) = k0e−�(t−Td ), ∀ t ≥ Td , (36)
where k0 ≥ �max(P )(|x(Td)|2 + |�(Td)|2).
(iii) In the replay attack case, there exist a constant �2 > 0
and a bounded function � (t) such that for any finite time tm ≥
Td , the output estimation error ey satisfies

∫

tm

Td
|ey(�)|2 dt ≤ �2 + 2∫

tm

Td
|� (�)|2 dt, (37)

where � (t) is specified later. ■

PROOF. (i) Let �(t) ≜ [eTx (t), e
T
� (t)]

T . Then, the dynamics
of ex(t) and e�(t) in (31a), (31b) and (31c) can be written in
the following compact form

�̇(t) = A0�(t), ∀ t ∈ Γk, (38a)
�+(t) = J�(t), ∀ t = tk+1, (38b)
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where �(Td) = [eTx (Td), eT� (Td)]T = [xT (Td), �T (Td)]T . Let
V1(�(t)) = �T (t)P�(t) be a Lyapunov function candidate.
Then, by using the condition (32), the time derivative of V1in the time interval Γk along the solution of (38a) satisfies

V̇1=�T (t)(AT0 P + PA0)�(t)

≤−��min(P )|�(t)|2 < 0, ∀ |�(t)| ≠ 0, t ∈ Γk. (39)
Based on the condition (33) and the jump given in (38b), we
have

V1(�+(t)) − V1(�(t)) ≤ 0, ∀ t = tk+1. (40)
Thus, according to Theorem 2.8 in [12], �(t) ∈ L∞ and
thus, ex(t), e�(t) ∈ L∞. Due to the parameter projection,
�̂(t) ∈ L∞. In addition, (29) indicates that Ωx(t),Ω�(t) ∈
L∞. From (30), based on the definition of ex(t) and e�(t),we can conclude that x(t)− x̂(t) ∈ L∞, �(t)− �̂(t) ∈ L∞ and
ēy(t) ∈ L∞. Furthermore, according to Assumptions 1 and
2, F (tk) ∈ L∞ and � ∈ L∞. Hence, it follows from (31d)
that ey ∈ L∞.
(ii) It follows from (39) and (40) that

V̇1(�(t)) = �T (t)(AT0 P + PA0)�(t)

≤ −��T (t)P�(t) = −�V1(�(t)), ∀ t ≥ Td .

Based on the comparison principle given in [15], we can ob-
tain that V1(�(t)) ≤ w(t) for any t ≥ Td where

ẇ(t) = −�w(t), w(Td) ≥ �max(P )|�(Td)|2.

Recalling �(Td) = [xT (Td), �T (Td)]T , w(t) and k0 in (36)
can be obtained. Furthermore, it follows from the fact that
|�(t)| ≤

√

V1(t)∕�min(P ) and ēy = Cex + e� = C0�, we canobtain
|ēy(t)| ≤ |C0�(t)| ≤ |C0|

√

w(t)∕�min(P ).

Thus, �̄1(t) in (35) can be obtained, and result (ii) follows.
(iii) By splitting �(t) as �(t) = �1(t) + �2(t) for t > Td , itfollows from (38a) and (38b) that

�̇j(t) = A0�j(t), ∀ t ∈ Γk, (41a)
�+j (t) = J�j(t), ∀ t = tk+1, j = 1, 2, (41b)

where �1(Td) = 0 and �2(Td) = �(Td). Also, from (31d), eyin the attack case satisfies
ey(t) = C0(�1(t) + �2(t)) + (C0Ω(t) + CF a(tak))�̃(t).

Considering the following Lyapunov function candidate

V2(�̃(t), �2(t)) =
1
2

�̃T (t)�̃(t) + ∫

∞

t
|C0�2(�)|2d�,

the time derivative ofV2 along the solution of (31e) and (41a)is given by

V̇2=−
1


�̃T (t) ̇̂�(t) + |C0�2(t)|2

= 1


�̃T (t)Θa{
(C0Ω(t) + CF a(tak))}

T ey(t) + |C0�2(t)|2.

By using the definition of the projection operator Θa and
following the logic in [8], we have

1


�̃TΘa{
(C0Ω + CF a(tak))}

T ey

≤ �̃T {(C0Ω + CF a(tak))}
T ey.

Hence, by completing the squares, it yields

V̇2 ≤ −
|ey(t)|2

2
+ |C0�1(t)|2, ∀ t ∈ Γak.

Moreover, at the jump time instant, it follows from (31c) and
(41b) that

V2(�̃+(t), �+2 (t)) − V2(�̃(t), �2(t))

= ∫

∞

t
|C0J�

+
2 (�)|

2 − |C0�2(�)|2d�

= −∫

∞

t
|C0(I − J )�2(�)|2d� ≤ 0, ∀ t = tak+1.

Thus, by letting � (t) = |C0�1(t)|, we can deduce that for any
tm ≥ Td ,

V2(tm) − V2(Td) ≤ ∫

tm

Td

|ey(�)|2

2
dt + ∫

tm

Td
|� (�)|2 dt.

Due to the boundedness of �(t) and �̃(t), we can conclude
�1(t) and � (t) are also bounded. Therefore, by letting �2 ≜
suptm≥Td (V2(Td) − V2(tm)), the inequality (37) follows. □

The existence of k0 satisfying k0 ≥ �max(P )(|x(Td)|2 +
|�(Td)|2) in (36) can be guaranteed by Assumptions 1 and 2.
In the presence of any type of threats, the replay attack sat-
isfying Assumption 1 or the sensor bias fault satisfying As-
sumption 2, x(Td) and �(Td) can be guaranteed to be bounded,thereby guaranteeing the existence of k0. In addition, the
value of k0 has few effects on the final threat discrimination
since w(t) in (36) converges to zero asymptotically.
3.3. Backward-in-time Signal Processing Model

In this section, a backward-in-time signal processor is
proposed and analyzed separately in the attack scenario and
in the fault scenario. We start by reconstructing Δxi(t), i ∈
{a, f} based on the estimates provided by the estimator  .
According to ẑ1 in (29) and ẑ2 in (30) provided by the esti-
mator  , Cẑ1 + ẑ2 can be considered as a reconstruction of
ỹ′ in the attack case since ỹa = ỹ′, and ẑ1 and ẑ2 are the es-timates of x′ and �′ respectively. In the fault case, Cẑ1 + ẑ2can be considered as a reconstruction of ỹ in the nominal
case since ẑ1 and ẑ2 are the estimates of xn and �n in the
nominal case respectively. Hence, based on the definitions
of Δỹa in (20) and Δỹf in (22), ex and e� defined after (30),a unified reconstruction for both of Δỹa and Δỹf , denoted
by Δ ̂̃y, is proposed as

Δ ̂̃y(t) ≜ ỹ(t) − (Cẑ1(t) + ẑ2(t))
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= (C0Ω(t) + CF (tk))� + (Cex(t) + e�(t))
= (C0Ω(t) + CF (tk))� + ēy(t), (42)

where Δ ̂̃y is a reconstruction of Δỹa in the replay attack
case and is a reconstruction of Δỹf in the sensor bias fault
case. Moreover, a unified reconstruction for both of Δxaand Δxf is proposed based on the estimator  . It follows
from (24) and (25) in Proposition 1 and �a = Δxa(Td) that
Δxa(t) = eA(t−Td )�a + ∫ tTd e

A(t−�)BKΔỹa(�)d�. Thus, by
using �̂ and Δ ̂̃y, the unified reconstruction for Δxa(t) and
Δxf (t), denoted by Δx̂(t), is proposed as

Δx̂(t) = eA(t−Td )�̂(t) + ∫

t

Td
eA(t−�)BKΔ ̂̃y(�)d�. (43)

It should be mentioned that Δx̂ may reconstruct Δxa well
whereas it can not be guaranteed to be able to reconstruct
Δxf well enough.

The backward-in-time signal processor is proposed in
the sequel. To this end, we introduce the concept of backward-
in-time models. Given a forward-in-time model driven by
a time-varying signal, the corresponding backward-in-time
model is driven backwards in time, starting from a “termi-
nal" state, by a particularly designed time-varying signal,
such that the states of the backward-in-timemodel equal those
of the forward-in-time model. Backward-in-time models for
Markovian processes have been defined in several papers
such as [17, 26], which are extended in the sequel to ob-
tain the backward-in-time model for the deterministic pro-
cess Δa.To describe the time running backwards, a time variable
tb running reversely from t is defined and indicated as tb|t.Then, a variable x running backwards in time and starting
from t can be denoted by x(tb|t). Given Δa in (21), the
backward-in-time signal processor is proposed as the backward-
in-time model of Δa, i.e.,

 ∶

⎧

⎪

⎨

⎪

⎩

dxb(tb|t)
dtb

= Axb(tb|t),

�(tb|t) = Cxb(tb|t), ∀ t ≥ Td ,
(44)

where xb(tb|t) ∈ ℝnp is the state at the time tb, �(tb|t) ∈ ℝny

is the output and acts as the discrimination residual. The
model  is activated at time instant Td , and proceeds back-
wards to the time tb. The initial condition (i.c.) of the state
vector is xb(t|t) and is chosen as the reconstruction ofΔx(t),i.e.,

xb(t|t) ≜ Δx̂(t), (45)
where Δx̂(t) is given in (43).

The output �(tb|t) under the i.c. (45) is explicitly given
in the following. From (43) and by solving the differential
equation in (44), we have

�(tb|t) = CeA(tb−Td )�̂(t) + Cg(t,Δ ̂̃y), (46)

where
g(t,Δ ̂̃y) ≜ ∫

t

Td
eA(tb−�)BKΔ ̂̃y(�)d�. (47)

Then, the threat discrimination approach based on the bound-
edness properties of �(tb|t) is shown in the following theo-
rem.
Theorem 2. Consider the system (7) subject to the threats
satisfying Assumption 3 with the replay attack and the sen-
sor faults satisfying Assumptions 1 and 2 respectively, and
consider also the estimator  in (29). Then, we have the fol-
lowing results:
(i) In the replay attack case, the output �(tb|t) of the backward-
in-time signal processor in (44) with the i.c. (45) is bounded
as follows:

|�(tb|t)| ≤ Jtℎ(tb, Td , t, tak), ∀ t ≥ Td , (48)
where Jtℎ is given by

Jtℎ≜k1�ae−�(tb−Td )+k1k2 ∫

t

Td
e−�(tb−�)�a(�, tak)d�. (49)

In the above equation, k1 > 0 and � > 0 satisfy |CeA(tb−Td )| ≤
k1e−�(tb−Td ), k2 ≜ |CBK| and

�a(t, tak) ≜ �̄1(t) + |C0Ω(t) + CF a(tak)|�a,

where �̄1(t) is given in (35).
(ii) The occurrence of a replay attack is excluded if for a fixed
time tb < Td , there exists a time instant tf > Td such that
|�(tb|tf )| > Jtℎ(tb, Td , tf , t

f
k ). Then, the occurring threat

type is guaranteed to be the sensor bias fault(s), and the suf-
ficient discrimination condition is

|CeA(tb−Td )�f + Cg(tf ,Δỹf )|

≥ Jtℎ(tb, Td , tf , t
f
k ) + k1(�a +

√

np)e−�(tb−Td )

+ k1k2 ∫

tf

Td
e−�(tb−�)�̄1(�)d�, (50)

where �̄1(t) is given in (35). ■

PROOF. (i) According to [28], for the Hurwitz matrix A,
there exist � > 0 and k1 > 0 such that |CeA(tb−Td )| ≤
k1e−�(tb−Td ). Thus, from |�̂| ≤ �a due to the projection op-
erator Θa , we can obtain

|eA(tb−Td )�̂(t)| ≤ k1�ae
−�(tb−Td ).

Moreover, based on (34) in Theorem 1 and Assumption 1,
and using the triangle inequality, Δ ̂̃y in (42) in the attack
case satisfies

|Δ ̂̃y(t)| ≤ �a(t, tak).

Thus, based on the definition of g in (47) and � in (46), we
can derive

|�(tb|t)|≤k1�ae−�(tb−Td )+k1k2 ∫

t

Td
e−�(tb−�)�a(�, tak)d�.
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Hence, Jtℎ in (49) can be obtained and result (i) follows.
(ii) In the fault case, Δỹf (t) ≠ 0. From (43) and the initial
condition (45), we have

�(tb|t) = CeA(tb−Td )(�f − �̃(t))
+ Cg(t,Δỹf ) − Cg(t,Δỹf − Δ ̂̃y).

Using the reverse triangle inequality, we have
|�(tb|t)| ≥ |CeA(tb−Td )�f + Cg(t,Δỹf )|

− |CeA(tb−Td )�̃(t)| − |Cg(t,Δỹf − Δ ̂̃y)|.

By considering Cz1 + z2 as ỹn, it follows from (42) that in
the fault case, Δỹf −Δ ̂̃y = ēy(t). Thus, it follows from (34)
in Theorem 1 that in the fault case, |Δỹf − Δ ̂̃y| ≤ �̄1(t).From the definition of g in (47), we have

|Cg(t,Δỹf − Δ ̂̃y)| ≤ k1k2 ∫

t

Td
e−�(tb−�)�̄1(�)d�.

In addition, it follows from �f = [1, 1,⋯ , 1]T ∈ ℝnp that
|�f | ≤ √

np. Additionally, |�̂| ≤ �a due to the projection
operator Θa . Thus, in the fault case |�̃(t)| ≤ |�̂| + |�f | ≤
�a +

√

np, and further, for the Hurwitz matrix A, we have
|CeA(tb−Td )�̃(t)| ≤ k1(�a +

√

np)e−�(tb−Td ).

In order to exclude the replay attack, the inequality |�(tb|t)| >
Jtℎ(tb, Td , t, t

f
k ) must hold at some time tf > Td . Therefore,the sufficient condition (50) can be obtained, and a sensor

bias fault is identified if (50) holds for some time tf > Td .□
Based on Theorem 2, the fault discrimination principle is
given as follows: if there exists a time tf such that |�(tb|tf )| >
Jtℎ(tb, Td , tf , t

f
k ), then the detected threat is identified as sen-sor bias fault(s) (since the attack case is excluded). However,

in the case that |�(tb|t)| ≤ Jtℎ(tb, Td , t, tak) or |�(tb|t)| ≤
Jtℎ(tb, Td , t, t

f
k ) for any t ≥ Td , the threat may be either a

replay attack or sensor fault(s), and thus, no decision regard-
ing the type of threat (attack or sensor fault) can be made.
Remark 4. The limitations of the developed methodology in
this paper are discussed in the sequel. One limitation of the
developed methodology is that it can not distinguish the re-
play attack from the considered two threat scenarios (i.e., the
replay attack scenario and the sensor bias fault scenario). In
order to be able to identify the replay attacks as well, an ad-
ditional signal processing model is required to be designed
based on the characteristics of the incremental system Δf
(due to the sensor bias fault(s)). Another limitation is the
design conditions for the observer gains Lx and Le given in
result (i) of Theorem 1. Theses conditions, specifically (32)
and (33), are somewhat conservative in terms of guarantee-
ing the stability of the impulsive error system (31a)-(31c),
which results in the fact that the requiredLx andLe are hard
to be found or even do not exist for some practical systems.
Hence, additional work is required to relax conditions (32)
and (33) for the stability of the impulsive system (31a)-(31c).
∇
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Figure 2: The estimates of the states x and the estimates of
the transmission errors � in the attack scenario.

4. Simulation
In this section, a numerical simulation is presented. The

matrices of the CPS described in (7) are given as follows

A =
[

−1 0.1
0.3 −0.99

]

, B =
[

1
1

]

, C = I2.

The feedback gain is given by K = [0.1286, 0.2614]. In
addition, the parameter � in the event-triggering condition
given in (3) is set as � = 0.2. Regarding the potential threats
with the replay attack satisfying Assumption 1 and the sen-
sor bias faults satisfying Assumption 2, �a in Assumption 1
and �f in Assumption 2 are given by �a = 3 and �f = 40
respectively.

The adaptive estimator is constructed based on  given
in (29) where the learning rate 
 is set as 
 = 400000, and the
gain matrices Lx and Le are calculated based on Theorem 1
as
Lx =

[ −3.1661 0.1563
−0.0233 −3.6866

]

× 104, Le =
[ −1.8789 −0.0020
0.2546 −1.5917

]

× 104.

In order to construct the threshold Jtℎ given in (49) in The-
orem 2, we choose k1 = 1.5, k2 = 0.5 and � = −0.82. In
addition, we assume that a threat is detected at Td = 21s,
and the time tb is set as tb = 20s. Thus, the residual is
constructed based on (46), and the threshold is constructed
based on (49).

For the simulation purpose, the details of the replay at-
tack event is given. In the attack scenario, the attacker records
the sensor measurements from 10s to 20s, and then replays
it from 20s to 30s. The estimation results of the estimator
 and the event-triggering time instants tak in the replay at-
tack case are shown in Fig. 2 and 3. As it can be seen from
Fig. 2, the estimates of the states x and the estimates of the
transmission errors � converge to the real values asymptoti-
cally. The attack reconstruction â(t) in Fig. 3 also converges
to a(t) asymptotically. The residual in (46) and the threshold
in (49) are constructed using the transmission time instants
tak given in Fig. 3. The threat discrimination results in the
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Figure 3: The reconstruction â(t) = Fa(tak)�̂(t) of the virtual
attack signal a(t) and the event-triggering time instants tak in
the attack scenario.
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Figure 4: The residuals and the threshold in the attack sce-
nario.

replay attack scenario are shown in Fig. 4. The third sub-
figure illustrates that for t > Td , |�(tb|t)| (blue solid line)
remains below the threshold Jtℎ(tb, Td , t, tak) (red dot line),
which are in line with the theoretical finding (i) in Theorem
2. However, a decision regarding the type of the threat (i.e.,
an attack is occurring) can not be made.

In the sensor fault scenario, the sensor bias fault signal
f (t) = [−20, 20 − 12 sin(t)]T is considered to occur and
present for t ≥ 20s. The estimations provided by the estima-
tor  and the event-triggering time instants tfk in the pres-
ence of the sensor bias faults are shown in Figs. 5 and 6.
As it can be seen from Fig. 5, the estimates of the states x
and the estimate of the transmission errors � are bounded in
the presence of the sensor faults, and also, the fault recon-
struction f̂ (t) in Fig. 5 is bounded, but can not converge to
f (t). Note that the estimates provided by the estimator 
in the fault case are not good, which satisfies our expecta-
tion since  is particularly designed for the attack case. This

creates sufficiently discrepancy to allow the identification of
the sensor fault case. The residual in (46) and the threshold
in (49) are constructed using the transmission time instants
tfk given in Fig. 6. The threat discrimination results in the
sensor bias fault scenario are shown in Fig. 7, in which the
third sub-figure illustrates that at about tf = 21s, |�(tb|tf )|
(blue solid line) exceeds the threshold Jtℎ(tb, Td , tf , tfk ) (reddot line). Hence, at around tf = 21s, the attack case is ex-
cluded and the threat is identified to be the case of a type of
sensor bias fault(s).

5. Conclusions
Using an event-triggered data communication, a threat

discrimination methodology has been proposed for CPS to
identify the sensor bias fault(s) case between two threat cases:
replay attack and sensor bias fault(s). Distinct incremental
systems due to the replay attack and the sensor fault(s) have
been established. An event-triggered adaptive estimator has
been designed to reconstruct the unknown increments, and
a backward-in-time model has been proposed for utilizing
the difference between the incremental systems to generate
distinguishable outputs. The threat discrimination condi-
tion was rigorously investigated and characterizes the class
of distinguishable sensor bias faults. In the future, we will
focus on developing a comprehensive scheme for identify-
ing both threat scenarios, and also on developing a unified
framework, allowing to discriminate between general cyber
attacks and physical faults, rather than between the specific
replay attacks and sensor bias faults.
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