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ABSTRACT In this paper we describe a scan-matching based registration algorithm for tracking moving
objects which falls in the emerging area that predicates the integration between robotics and big data
applications. The scan matching approaches track paths of a mobile object by comparing maps of the
environment seen by the object during its movement. Algorithms described in this paper are hybrid, i.e. they
compare maps by using first a genetic pre-alignment based on a novel metrics, and then performing a finer
alignment using a deterministic approach. This kind of hybridization is, indeed, not new. However, the novel
metrics used in this paper leads to important new properties, namely to correct arbitrary rotational errors
and to cover larger search spaces. The proposed algorithm is experimentally compared to other approaches,
and better performance in terms of accuracy and robustness are reported. Finally, our algorithm is also very
fast thanks to the genetic pre-alignment task and the novel metrics we propose.

INDEX TERMS Moving Objects, Scan-Matching Algorithms, Intelligent Systems, Genetic Optimization

I. INTRODUCTION
Nowadays, a great deal of interest is growing around the
mobile object tracking problem, especially due to the emerg-
ing integration between robotics and big data applications
(e.g., [40]–[42]). Following this trend, several mobile object
tracking approaches have recently appeared in literature,
considering different aspects of the target issue, such as
coverage, completeness, effectiveness, efficiency, etc. The
category of algorithms that goes under the name of scan-
matching (e.g., [43]–[45]) supports mobile objects position-
ing in indoor environments based on the acquisition of maps
of the environment surrounding the target mobile objects.
Maps are acquired from two successive points in the objects’
path using a range-scanner sensor positioned on mobile ob-
jects themselves. The first acquisition is called reference scan
and the second actual scan. The actual scan is sometimes also
called new scan. By overlapping the maps acquired at two
successive positions on the path it is possible to estimate the
relative movement of the object between these two positions.

In this paper we describe a scan-matching based regis-

tration algorithm called HGLASM-g which perform scan-
matching based on a hybrid approach. First, an approximate
pre-alignment of two adjacent maps is performed via a new
genetic optimization method called GLASM-g; then a variant
of the Iterative Closest Point (ICP) algorithm is applied to
pre-aligned maps to obtain the final overlap.

In other proposed genetic scan-matching pre-alignment al-
gorithms, the fitness functions are based on metrics between
actual and reference scan points that require to know the
correspondence of point pairs and the translation and rotation
between the two scans. However, when scan acquisitions
include noise, correspondence errors may arise. Moreover,
also translation and rotation corrections can lead to errors
when they are too large.

In order to overcome such issues, in this paper we propose
a novel metric which does not require neither points pair
correspondences nor translations and rotation corrections.
Indeed, our metric is based on lookup tables built around the
reference scan points. The fitness function weights the hits
of actual scan points in the lookup table. The genetic pre-
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alignment then finds the scan with the highest fitness within a
search space of given size. This guarantees also the maximum
robustness towards both the acquisition errors and the Initial
Position Errors (IPE). It is well known that ICP performance
depends on the quality of points pair correspondence and on
the accuracy of the starting point estimation. We overcome
this limitation by choosing the initial guess of ICP via genetic
pre-alignment, which makes it close to the true solution. This
way, point correspondence, translation and rotation estima-
tions are performed correctly and, as a consequence, iteration
failures are reduced.

The algorithms described in this paper form a family in the
sense that each algorithm is characterized by different values
of the target search space size. Each size allows us to solve
different registration problems and hence different mobile
object tracking scenarios. If the search space size is small,
in fact, the algorithm can recover from small errors only,
while, if the search space is higher, also higher errors can
be recovered. However, computation complexity increases as
the search space size gets higher.

A similar hybrid algorithm is described by Martinez et
al. in [2]. Therefore, we consider the latter algorithm in a
comparative approach, and we experimentally show that all
the terms of comparison with this algorithm are improved
thanks to the hybrid algorithms proposed in this paper. Fur-
thermore, we also show that our approach is able to recover
from greater initial positioning and acquisition errors. The
key for improvement is the definition of a new metric used for
computing the fitness function of the genetic procedure. The
proposed target scan-matching algorithm is described for the
2D case, but it can be used in the 3D case as well. Improve-
ments obtained with our proposed algorithm are measured
both in terms of accuracy and noise robustness. Indeed, the
estimation of the initial position of target mobile object often
comprises significant errors. For instance, when the mobile
object is equipped with a legged or wheeled locomotion,
and the initial position is estimated by means of odometric
approaches, there may be slippage with respect to the floor,
which entails significant errors in the initial position of the
object. As a consequence, accuracy of algorithms is seriously
affected by IPE.

The paper is organized as follows. In Section II we briefly
describe the problem and introduce basic terminology. Sec-
tion III describes principles of the classical rigid registration
based on ICP and summarizes numerical derivations. The
choice of evolutionary algorithm and ICP for solving the
described problem are discussed in Section IV. Section V
introduces the proposed hybrid solution. Section VI reports
experimental results, by also comparing performance of the
proposed algorithm with those of other iterative and genetic
algorithms. Section VII provides an overview on the huge
research in the field of scan-matching approaches, by divid-
ing it into three main areas: ICP, probabilistic and genetic
approaches. Here, as regards genetic approaches, we also
provide the principle of the lookup metrics we use in our
algorithm. Finally, in Section VIII, concluding remarks and

Reference (Previous) scan
Actual scan

X

Y

a
a

1b
b

1
2

2

FIGURE 1. An example of point pair correspondences.

future works are reported.

II. PRELIMINARY
We are given two sets of bi-dimensional points A =
a1, . . . , aN and B = b1, . . . , bM , where ai and bi are 2 × 1
column vectors. The two sets A and B are scan descriptions
of the environment as seen by a range sensor put on a mobile
object from two points PA and PB . The first scan represented
by the set A is the reference scan while B is the new scan
taken after a movement of the mobile object. If we overlap
the two scans, that is by determining the optimum rotation
and translation of the set B wrt the set A, an estimation
of the movement can be obtained. First of all, points corre-
spondences must be estimated between A and B. A generic
correspondence search algorithm takes the points from the
two scans, pik , i = 1 . . . N and pjk , j = 1 . . .M , and
establishes a set of k corresponding points pairs (pik , pjk),
k = 0 . . .K where 0 ≤ K < M · N . A straightforward
and fast algorithm for establishing point correspondences
between two scans simply considers the polar coordinates
of the reference and the actual scan points projected in the
same coordinate frame of the reference scan. The scan is then
traversed with increasing angle and points that belong to the
same angle step which are closer than a distance threshold
are matched. An example of the correspondence between
the points ai and bi obtained with such ’polar coordinate’
approach is reported in Figure 1 by the lines connecting the
points. This ’polar coordinates’ approach has been used in
[2] in their hybrid two phase genetic + ICP approach for
the genetic phase. However the experiments have shown that
using this simple approach in iterative correspondence point
algorithms leads to convergence failures and poor perfor-
mance.

III. LASER SCAN MATCHING OVERVIEW
Scan matching can be described according to several in-
terpretations, for example geometric, correlative or proba-
bilistic. According to a geometric interpretation, the scan
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matching approach can briefly be described as follows. Start-
ing from two scans acquired by a range sensor from two
consecutive different positions in which the object is located
during its movements, the environment maps are obtained.
The correspondence between two maps is obtained by finding
the translation and rotation of the actual scan which lead to
the best overlap of the two maps. The resulting translation
and rotation describe the movement of the object between
the two positions and its integration leads to the mobile
object path estimate. We now give a sketch of the derivations
involved in the scan matching approach.

The problem is to determine the translation vector t and the
rotation matrix R that minimize the quadratic error reported
in Equation (1).

E(R, t) =
1

N

N∑
i=1

(R · bi + t− ai)2 (1)

The translation vector t can be found by setting ∂E(R,t)
∂t = 0.

Developing the partial derivative we obtain:

∂E

∂t
=

2

N

N∑
i=1

(Rbi + t− ai) =
2

N

R N∑
i=1

bi +Nt−
N∑
i=1

ai


= 2 (R · µB + t− µA)

(2)
where

µA =
1

N

N∑
i=1

ai and µB =
1

N

N∑
i=1

bi (3)

are the barycenters of the two sets of points. By setting the
partial derivative developed in Equation (2) equal to zero it
turns out that the translation vector t is given by Equation
(4).

t = µA −R · µB (4)

Rotation matrix derivation is more complex. Aron et al. and
Horn proposed two different methods to compute the rotation
matrix, described in [3] and [4] respectively. The first method
uses SVD and the second is based on quaternions. Later,
Horn et al. proposed an algorithm based on orthonormal
matrices [5] and Walker et al. proposed an algorithm based
on dual quaternion [6]. Stability and accuracy comparison
among [3], [4], [5] and [6], reported in [7] shows that there
are no significant differences among the four algorithms,
although the method based on SVD has slightly lower com-
putational complexity.

We now briefly summarize the SVD approach for the
estimation of the rotation matrix reported in [3]. Substitute
Equation (4) into the error function defined above by Equa-

tion (1).

E(R, t) =

∑N
i=1 (R · bi + µA −R · µB − ai)2

N
=

=

∑N
i=1

(
R · b′i − a′i

)2
N

=

=
1

N

N∑
i=1

(
(R · b′)T ·R · b′i + a′Ti a

′
i − 2(R · b′i)T · a′i

)
=

=
1

N

N∑
i=1

(
b′Ti b

′
i + a′Ti a

′
i − 2b′Ti R

Ta′i

)
(5)

The points a′i, b
′
i in Equation (5) are obtained by subtracting

from each original point the barycenters of the two sets of
points, namely a′i = ai − µA and b′i = bi − µB .

From Equation (5) the minimum of E(R, t) is obtained by
maximizing Equation (6).

N∑
i=1

b′Ti R
Ta′i = trace(RW ) (6)

where W =
∑N

i=1 a
′
ib
′
i
T . In other terms, the minimization of

the squared error described by Equation (1) is obtained with
the translation vector t described in Equation (4) and with the
rotation matrix R given by:

R = argmax
R

(
trace(R ·W )

)
(7)

Let us consider the Singular Value Decomposition of the
W matrix.

W = UΣV T (8)

where U , V are orthonormal and Σ is a diagonal matrix
whose diagonal values are the singular values of W . As
shown in [3], the matrix

R = UV T (9)

maximizes trace(RW ) and therefore minimizes Equation
(5). In conclusion the translation vector t and the rotation
matrix R which minimizes the quadratic error reported in
Equation (1) are given by Equations (4) and (9) respectively.

However, the correspondences between actual and ref-
erence scans points is not known in advance. Therefore
the solution may be obtained using an iterative approach,
called Iterative Closest Point algorithm (ICP), which is the
most popular registration approach. The scheme of the ICP
algorithm is reported in Algorithm 1.

Typically, this method converges if the starting position
is close enough to the true position. We remark that the
initial position of scan matching algorithms is given by other
position estimation methods, for example odometry. Since
odometry measurements can often fail, due for instance to
wheel slippage, IPE can be high. In this paper the perfor-
mances of scan matching algorithms are measured versus
initial translation and rotation errors.
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Algorithm 1 ICP Scheme
Input: A,B, threshold
Output: R, t
k = 0;
Bk = B;
µA = computeµA(A);
µB = computeµB(B);
repeat

for (each point of A) do
find its closest point in Bk;

W =
∑Np

i=1 a
′
ib
′
i
T ;

SV D = SV D(W );
R = (SV D.U) · (SV D.V )T ;
t = µA −RµB ;
Bk = transform(Bk, R, t);
k = k + 1;

until E(R, t) < threshold;
return (R, t);

IV. PRE-ALIGNMENT BY MEANS OF EVOLUTIONARY
ALGORITHMS
Evolutionary Algorithms, such as for example Genetic Al-
gorithms (GA) or Particle Swarm Optimization (PSO) algo-
rithms are heuristic processes inspired by the natural evolu-
tion in biological systems. Evolutionary optimization algo-
rithms are popular in solving complex or nonlinear problems
such as for example optimization or classification. These
algorithms are characterized by some key concepts, such as
the generation of an initial number of solutions, called the
population or swarm of individuals, the calculation of the
function to optimize, called fitness, and the generation of a
new population until the best individual survives. These steps
are represented in Algorithm 2.

Algorithm 2 Generic Evolutionary Algorithm
Input: gen
Output:best individual
k = 0;
P = generateInitialPopulation(�);
repeat

f = computeF itness(P );
P = generateNewPopulation(P );
k = k+1;

until k > gen;
return best individual;

The procedures for initial creation and generation of the
new population are different in the various versions of the
evolutionary algorithms. Since in GA each solution is en-
coded in binary notation, GA performs basically discrete op-
timization. PSO instead represents the solutions as particles
with position and speed encoded as real variables. All the
particles form a swarm, while positions are the real variable
to be optimized.

GLASM-g MBICP

x',y',Φ' x,y,Φ

A
(reference scan)

B
(new scan with 

odometry estimate)

FIGURE 2. Block diagram of the proposed technique.

FIGURE 3. A detail of a lookup table surrounding an isolated point of the
reference scan. Left: Radial, Gradual. Right: Squared, Binary.

The proposed hybrid algorithm consists in the discrete
estimation of translation and rotation by means of an evolu-
tionary algorithm followed by a fine optimization by means
of a deterministic algorithm. In has to be remarked that the
discrete variables (x, y, φ) are related to the discretization
of the search space. Sub-optimal values of the variables can
be obtained by discrete optimization algorithms and a finer
optimization by continuous optimization algorithms. In this
paper we perform discrete optimization with Genetic Algo-
rithms and finer optimization with Iterative Closest Point
algorithms which are very efficient if the starting point is
close to the true value.

V. NOVEL HYBRID SCAN MATCHING ALGORITHMS
The pre-alignment step is inspired by the algorithm called
Genetic Lookup based Algorithm for Scan Matching
(GLASM) described by Lenac et al. in [29]. The algorithm
described in [29] uses a metric based on a binary lookup
table.

In the proposed approach we first improve GLASM by
using the 8-bit encoding to store the probability density of
measurements being close to points of reference scan in the
lookup table. We call this improved variant of the existing
binary GLASM technique as GLASM-g. Then, this improved
variant of the existing GLASM technique is combined with
MbICP [13]. In more details, Figure 2 shows a block diagram
of the proposed approach. Here, the new scan B, evaluated
starting from the odometric estimation of robot movements,
is fed as input to GLASM-g, together with the previous scan,
A. The output of GLASM-g x′, y′, φ′, is then used as starting
point of the MbICP algorithm that compares A and B, thus
producing the final output x, y, φ.

In Figure 3 the difference between the two algorithms is
shown: in the GLASM-g version the lookup table is dis-
played as a gray scale image, while in the GLASM version
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the lookup table is seen as a black and white image.
While in the GLASM lookup table each cell was either 1

or 0 the GLASM-g table can contain a range of values that
model the probability of matching a point using a normal
distribution. In the proposed implementation 256 different
values are used requiring 1 byte of memory per cell.

The computation of the fitness function works as follows.
For each point of the new scan a roto-translation and a
discretization are performed to bring the point in the same
reference frame of the lookup table and select the correspond-
ing cell. However, once the cell is selected, instead of simply
incrementing the fitness with a binary value, the fitness is
incremented with a value corresponding to the probability
of matching a point that was saved in the lookup table. A
representation of this probability is shown in Figure 3, left
panel, with gray levels.

In Algorithm 3 we report the pseudo code of the fitness
computation used in GLASM-g.

Algorithm 3 GLASM-g Fitness Computation
Input: B // new scan
Output: fitness
fitness = 0;
for (each point p of B) do

// roto-translation to lookup reference frame
p′ = changereferenceframe(p)
fitness = fitness · lookup(p′);

return fitness;

The fitness function is essential for the proper functioning
of genetic optimization algorithms. For each individual and
for each execution it is computed only once. Its correct defi-
nition is therefore fundamental also from the point of view of
computational complexity, given that a fitness function that
requires simple calculations translates into a fast execution
of the entire algorithm, leading to an exploration of a greater
search space with a greater success ratio.

The goal of two-dimensional scan matching algorithms is
to obtain the path of a mobile object by estimating its relative
movements during the path. In other words, we can speak of
a space (translationX × translationY , rotation) within
which the scan matching algorithm searches for its estimate.

The individual algorithms withing the family differ in
the search space size and the parameters selected for the
genetic algorithm. Typically, in order to cover a larger search
space, a larger population is used, as well as the number of
generations and runs of the genetic algorithm.

In this paper we selected and studied three different al-
gorithms from within the family that we simply call small,
medium, and large. The search space size and the combi-
nation of genetic parameters of the selected algorithms are
depicted in Figure 4 and listed in Table 1. The Table 1

FIGURE 4. Search space size of the algorithms small (A), medium (B), and
large (C).

TABLE 1. Search space size of the selected algorithms and the
corresponding parameters used for the genetic algorithm

Algorithm Search Space Size Genetic Configuration

(dX, dY, dRot) (pop× gen× runs)

small (A) ±0.3m, ±0.3m,±17.2◦ 20× 6× 1
medium (B) ±1.0m, ±1.0m, ±57.3◦ 100× 10× 1
large (C) ±2.0m, ±2.0m, ±180.0◦ 200× 12× 2

The search space of the small algorithm is sufficient to
recover from small initial errors, while medium and large
are able to correct progressively larger errors, at the cost of
computational time. The large algorithm is able to recover
from arbitrary orientation errors and large translation errors.
The search space is obviously centered on the reference scan.

For the refinement step we selected the MbICP algorithm
[13] which determines the correspondences between the
points of the current scan and the reference scan considering
both the rotation and the distance between the points. The
algorithm has characteristics of accuracy and low calculation
times. MbICP has better characteristics than other iterative
scan matching algorithms based on point correspondences,
for example [32], [33].

Visual examples of the algorithm in operation are shown in
Figure 5. In addition a video file is available attached to this
manuscript that illustrates the problem and shows in more
detail the proposed algorithms in in operation.

VI. EXPERIMENTAL ASSESSMENT AND ANALYSIS
The performance of the algorithms described in this paper
has been verified through several experiments carried out
with a publicly available scan dataset. The dataset used in
our experiments was produced by the RAWSEED project,
[34], [35]. The aim of the RAWSEED project was to produce
tools to compare the performance of robotic systems. The
laser data considered in this dataset was obtained from a
Sick sensor. To simplify the experiments, a significant subset
of the whole data was randomly extracted across the entire
dataset.

The dataset concerns internal and external environments.
The movable objects traced in the dataset entered and exited
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FIGURE 5. Visualization of HGLASM-g operation. In the top-left frame the
initial position estimate of the new scan is depicted in green and the reference
scan in blue. The next three frames show the pre-alignment process depicting
the population after 0,5, and 12 generations of the genetic algorithm with the
best estimate shown in red. The last two frames show the refinement of the
solution using the MbICP algorithm (the first and the last iteration are shown).

from various environments, and also covered urban environ-
ments. The dataset thus provides the opportunity to study
the performance of complex navigation algorithms in various
types of environments.

It is worth to note moreover that the results reported in this
Section have been obtained with a PC equipped with Intel
Core 2 Quad Q9550 CPU running at 2,83 GHz.

The assessment of the accuracy obtained by the algorithms
requires not only the laser scanning data but also the ground
truth data. The Rawseed dataset contains ground truth data,
but not for all scans. Furthermore, the reported positioning
error is 1 cm, which is not sufficient for our evaluations.
To address this inadequacy, the ground truth values were
constructed by using a translated and rotated copy of the
reference scan as the new scan. The ground truth value is
thus known exactly as it corresponds to the position of the
reference scan. To prevent the scan from being compared to
a copy of itself the scan was split between the two scans with
the reference scan consisting of the odd readings in the scan,
and the new scan consisting of the even ones.

In all experiments it is important to study how algorithms
converge under different conditions. To quantitatively ex-
press the robustness of the algorithms with respect to initial-
ization errors, scanning noise and falling in local minima, we
defined the Success Ratio. Success Ratio is the percentage of
successful comparisons, computed as the number of success-
ful comparisons divided by the total number of comparisons.
A success is the case in which the resulting translation
and rotation fall within a fixed size ellipsoid around the
true values. In all the experiments the pre-established size
is 10 cm for distance and 0.57◦(0.01[rad]) for rotation,
respectively. In cases where genetic optimization was used
to achieve a coarse pre-alignment of the hybrid algorithm,
the predetermined size was 30 cm and 5.73◦ (0.1 [rad])

respectively. This relaxation of the thresholds was introduced
because the purpose of the pre-alignment is not to provide
an accurate estimate, but an estimate that is close enough
to the true position to be significant for the next step of the
algorithm. When the scan matching reached convergence, the
mean and standard deviation of the error (estimated position
- true position) were computed for the considered algorithms.

In the first set of experiments, the MbICP algorithm was
studied, and the results using the described dataset are re-
ported in Section VI-A. In addition to the obtainable ac-
curacy, it is important to study how robust is the MbICP
to the initial position estimate errors, i.e. to establish its
convergence area. Since the MbICP algorithm is used in
the refinement step of the proposed hybrid approach the
pre-alignment step should always produce a good enough
alignment that falls inside this area thus enabling MbICP to
further refine the solution.

In the second set of experiments we compared the ge-
netic algorithm using three different definitions of the fitness
function. The results are described in the VI-B Section. The
results presented are fundamental to the algorithm described
in this paper.

Finally, the third set of experiments concerns the com-
parison of the algorithms proposed in this paper with the
algorithm proposed by Almeida et al. (MbICP) [13] that we
have taken as a reference. These comparisons are listed in the
VI-C Section..

A. MBICP

To verify the robustness of the algorithm, before the scan
matching process, an initial error was added to the position of
the new scan. The error has been added both in the Cartesian
directions and in the rotational component. Scan matching
was then performed for all error combinations (± Ex, ± Ey,
± Erot) for a total of 8000 scan matchings. Table 2 shows
the accuracy of different combinations of initial positioning
errors. The table shows the Success Ratio, the average calcu-
lation time and the average translation and rotation accuracy
respectively.

We can see in the table that the initial error has a strong
impact on the performance of the MbICP algorithm. In
particular conditions, the iteration does not end and remains
stacked in local minimums. The algorithm converges only for
small initial error values but in any case the Success Ratio
remains lower than 100%. If the initial error exceeds 15◦ s,
the Success Ratio collapses because the algorithm is not able
to associate a sufficient number of points of the new scan with
the reference one. These results are perfectly understand-
able and they are indeed what is expected from an iterative
algorithm based on point correspondences. In cases where
the MbICP algorithm converges correctly, the accuracy and
standard deviation results remain fairly constant with respect
to different initial error values.
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TABLE 2. Performances of MbICP for three Initial Orientation Errors – The numbers in each cell are Success Ratio, computation time, displacement and rotation
accuracies respectively.

IPE MbICP ±5◦ MbICP ±30◦ MbICP ±60◦
±0.2m, ±0.2m 82.3% 0.68ms 1.78mm 2.91mrad 6.0% 1.24ms 1.13mm 2.70mrad 0.1% 1.08ms 0.95mm 1.26mrad
±0.3m, ±0.3m 77.9% 0.74ms 1.77mm 2.95mrad 5.8% 1.23ms 1.18mm 2.76mrad 0.1% 1.10ms 1.37mm 2.36mrad
±0.4m, ±0.4m 69.6% 0.79ms 1.79mm 3.00mrad 5.6% 1.20ms 1.27mm 2.78mrad 0.1% 1.01ms 0.99mm 1.89mrad
±1.0m, ±1.0m 14.9% 1.02ms 2.87mm 3.13mrad 2.5% 1.04ms 2.38mm 2.97mrad 0.2% 0.86ms 2.17mm 2.69mrad
±1.5m, ±1.5m 1.5% 1.02ms 3.67mm 2.61mrad 0.6% 0.86ms 2.51mm 3.90mrad 0.1% 0.82ms 1.35mm 2.10mrad

FIGURE 6. Translation Error Versus the Number of Fitness Evaluations.

FIGURE 7. Rotation error versus the number of fitness evaluations.

B. GENETIC PRE-ALIGNMENT
The performance of the genetic algorithm has been studied by
varying the configuration of genetic parameters such as the
size of the population and the number of generations. Figure
6 and Figure 7 show the translation and rotation errors versus
the number of evaluations of the fitness function for the Polar
Genetic Algorithm (PGA), GLASM and GLASM-g.

The calculation time of the algorithms based on the
GLASM and GLASM-g lookup tables respectively repre-
sents the time taken only by the matching of the new scan
with respect to the reference scan and not by the initialization
phase of the lookup table. The figures show the times in
milliseconds relating to various Success Ratios for small and
large search spaces. As we can see in Figure 8 and Figure 9
the best Success Ratio results, calculation time and accuracy
are always obtained with the fitness function used by the

FIGURE 8. Time needed to get various levels of Success Ratio for different
sets of genetic algorithms (the search size is small).

FIGURE 9. Time needed to get various levels of Success Ratio for different
sets of genetic algorithms (the search size is large).

GLASM-g algorithm. In particular we see that the GLASM-g
algorithm always offers better Success Ratio and calculation
speed results than the PGA algorithm of Martinez et al.. The
GLASM algorithm provides the same results as GLASM-g if
the size of the population and the number of generations are
both high.

This slower convergence toward high Success Ratios is
explained by the nature of the GLASM fitness function. Ac-
tually, in addition to the smaller marking pattern, the GLASM
fitness function also produces variations of the fitness score
that are less refined than GLASM-g.

C. PROPOSED HYBRID ALGORITHM
The objectives of the hybrid algorithm proposed in this paper
is to improve the robustness of the approaches based on
Iterative Correspondence Point with respect to the initial
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HGLASM-g  large

FIGURE 10. Success Ratio behavior versus rotation and translation errors for
large search space size.

HGLASM-g  medium

FIGURE 11. Success Ratio behavior versus rotation and translation errors for
medium search space size.

positioning errors, to convergence issues and to the presence
of noise in the scans. The increase in robustness must main-
tain accuracy and must not be introduced at the expense of
computing time. Here we report the results of the third set
of experiments, i.e. those obtained with the hybrid approach
presented in this paper. The parameters of the genetic al-
gorithm are described in the previous section and shown in
Table 1 for the search spaces small, medium and large.

We describe now some results concerning the Success
Ratios obtained with different values of initial position errors,
both rotation and translation errors. On the other hand, the
computation time slightly increases going from small to
large sizes. But it is very important to observe that also the
range of errors that can be corrected increases going from
small to large sizes.

Figure 10, Figure 11, Figure 12 show the Success Ratio
curves versus different values of rotation and translation
initial positioning errors.

As we can see in these figures, the Success Ratio for large
search space size is about 90% for arbitrarily large rotation
errors and all considered translation errors up to 2.12 meters.
This large range of errors that can be corrected means that
global positioning and tracking applications are possible. As
the search space size decreases the range of errors that can
be corrected is reduced, because the solution is searched in a
reduced space. This allows to reduce the computation time in

HGLASM-g  small

FIGURE 12. Success Ratio behavior versus rotation and translation errors for
small search space size.

MBICP

FIGURE 13. Success Ratio behavior versus rotation and translation errors for
the MbICP algorithm.

applications where a smaller search space size is sufficient.
For comparison we report in the following the Success

Ratios obtained with the MbICP algorithm. Figure13 shows
that the rotation and translation errors that can be corrected
by the MbICP algorithm are much worse than that corrected
by the hybrid algorithm described in this paper. Just to
highlight a couple of results reported in Figure 13, consider
the following initial positioning errors: 20 degree of rotation
error and 0.57 meter of translation error. With these errors
we have a Success Ratio of about 93% for large and medium
search space sizes and about 85% for small search space size.

In the same condition the Success Ratio of the MbICP
algorithm drops at about 20%. It is also important to consider
the rotation error after which it is not possible to get signif-
icant Success Ratio. While HGLASM-g medium cannot get
significant Success Ratio after 110 degrees and HGLASM-
g small after 60 degree, the MbICP algorithm stops at 40
degrees.

If the IPE is inside the realignment margins of the local
scan matcher, the addition of the pre-alignment step in theory
would not be necessary since the ICP based algorithms is
capable by itself of successful matching. On the first thought
the addition of the pre-alignment step would then just add to
execution time incurring speed penalty. However, in practice
this often is not true because the addition of the pre-alignment
step typically reduces the number of iterations for the ICP
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step. The reason for this speed-up lies in the iterative nature
of ICP based algorithms. If the iteration starts from an initial
point that is very far from the true position, it normally
requires many iterations to improve the position. If we look
at the last row of the table we see that if the search space is
large, the proposed algorithm obtains a high Success Ratio in
a very short time even if the initial position error is high.

An important aspect of the proposed algorithms is their
robustness against uncertainty. Scan matching algorithms in
general cannot adequately overcome singularity cases like
navigation in long hallways. The uncertainty alongside the
direction of the corridor cannot be addressed using the infor-
mation contained in the scan alone. The proposed approach
however manages to correct the error along the direction
orthogonal to the direction of the hallways even for large
errors of the initial position.

VII. RELATED WORK
A large literature is available concerning the scan matching
problem. In this Section we briefly describe some relevant ap-
proaches, namely the ICP, the Probabilistic and the Genetic-
based scan matching approaches. The Section concludes with
a highlight of Hybrid approaches.

A. ICP SCAN-MATCHING APPROACHES

Since the ICP approach was proposed initially by Besl and
McKay in [8], numerous variants of the original tech-
nique have been proposed. The variants mainly concerned
the following issues: Selection of points; Correspondence
weighing; Association of data; Rejection of anomalous pairs
of points. The variants modify different characteristics of the
original algorithm, for example its speed, the stability of the
solution and the management of local minima, its robustness
to noise or anomalous values and the maximum initial error.

Data acquired by range sensors describe the environment
considering two or three dimensions. The environment seen
by the sensor in adjacent positions along the path of the mo-
bile object is described by a sequence of points. Data can be
elaborated point by point or using a suitable transformation
of the sequences. The sensors measures the distance of the
object closest to the sensor itself along its current orientation.
The orientation of the sensor is periodically changed. The
environment map seen by the sensor is represented by a
series of points described by two (distance of the closest
point, polar angle) or three parameters (distance of the closest
point to the sensor, polar angle, azimuth angle) depending on
the dimension considered. For example Park and Kee in [9]
transformed the maps into the spectral domain, while Censi
et al. used a transformation in the Hough domain, [10], [11].
The advantage of a comparison between the maps through
a transformation of the maps into suitable domains is that
the amount of data compared to a point-to-point comparison
is much less and therefore the computational complexity of
the comparison is less than that required by a point to point
comparison. On the other hand, the robustness and accuracy

of the comparison worsen as the level of structure of the
environment increases.

Some of the proposed variants use various reference sys-
tems. For example, Lu and Milios propose in [12] an ICP
based on Cartesian coordinate frame called Iterative Dual
Correspondence (IDC). The IDC variant evaluates translation
with ICP and the rotation with an iterative matching-range-
point. Their variant brings to an accurate estimation of the
translation and rotation but its efficiency is lower than that of
[1], [10]. Minguez et al. describe in [13] the MbICP variant.
The family of ICP algorithms uses the minimum Euclidean
distance criteria to establish the points correspondences and
to apply the least squares for estimating the pose. MbICP
adopts a new metric distance, which takes into account both
the translation and rotation error to improve the rotation
estimating.

Diosi et al. propose in [14] an ICP variant called Polar
Scan Matching based on polar coordinate frame. Unlike ICP
or MbICP, the Polar Scan Matching separately estimates the
robot pose including the rotation estimation and translation
estimation at each iteration. The problem of Polar Scan
Matching is that it fails if two consecutive scans in polar
coordinate frame have similar distribution.

Other variants concern the devices used to acquire the
maps. Normally these are laser devices, more rarely acoustic
sensors [15], [16] or infrared sensors [17].

In the case of laser sensors, the distance of the robot with
the obstacles in the environment is estimated by sending a
laser pulse and measuring the arrival time of the impulse
reflected by the obstacle. The distance to the nearest obstacle
is given by the minimum arrival time. In this way we obtain
the map of the room where the mobile object is located,
also including any fixed objects. In the context of locating
a mobile object, the range-finder sensors are positioned on
the robot.

B. PROBABILISTIC SCAN-MATCHING APPROACHES

The approaches described so far are essentially variants of
the Iterative Closest Point technique. These techniques have
difficulty estimating translation and rotation correctly at the
same time. Another limitation is related to noise manage-
ment and uncertainty introduced by the range sensors used.
These limitations were one of the reasons that led to the
development of probability-based scan matching approaches.
For example, Biber and Strasser in [18], [19] propose using
the Normal Distribution Transform (NDT) to describe data
collected with laser scans. As in ICP approaches there is
a reference scan and a new scan and the purpose of the
algorithm is to find the displacement and rotation that allows
the two scans to overlap. In this case, the two-dimensional
space is divided into cells of equal size. For each cell, all
the occupied points contained in it are considered, their
average q and their covariance matrix Σ are computed. With
these statistical parameters, the probability of each two-
dimensional point x of the actual scan is evaluated, according
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to a Gaussian bivariate distribution:

p(x) =
e−

(x−q)T Σ−1(x−q)
2√

(2π)2|Σ|
∼ e−

(x−q)T Σ−1(x−q)
2 (10)

In this way, a continuous and differentiable description
of the points coming from the range sensor is obtained,
which can be used to minimize cost factors using classic or
numerical methods. The displacement and rotation between
two scans correspond to the minimization of a continuous
function defined on the rotation and translation between
previous and actual scans. Biber and Strasser propose the
use of Newton’s iterative algorithm to minimize the function
(10). Newton’s algorithm is particularly suitable for NDT-
based approaches because it requires the calculation of first
and second order derivatives that are simply obtainable with
these approaches. In [20] Montesano et al. propose another
probabilistic formulation of the problem of scan matching.
The approach is divided into two phases: the probabilistic
calculation of the correspondences and the estimate of the
relative displacements between the two scans. The correspon-
dences between the points of the two scans are evaluated
using the Mahalanobis distance between the points. The
estimate of the relative displacement between the two scans
is obtained through an iterative approach based on the least
squares criterion. In [21] Olson presents another probabilistic
approach for solving the scan matching problem. The algo-
rithm proposed by Olson is based on the cross-correlations
between two laser scans. The algorithm maximizes the prob-
ability that two scans overlap. To avoid local maxima, the
cross correlation algorithm searches for the maxima in the
space of parameters obtained from additional sensors such as
odometric sensors.

Recently the NDT approach has been extended to three
dimensions by many authors. For example Magnusson in
[22] describe the 3D-NDT algorithm for navigating an au-
tonomous vehicle in a mine. In [23] Magnusson et al.
compared several recently proposed three-dimensional scan
matching algorithms. The results confirm that the three-
dimensional Normal Distribution Transform algorithm im-
proves the convergence characteristics even with the increase
in initial position errors. Takeuchi and Tsubouchi proposed
in [24] an extension of Biber’s algorithm into a three-
dimensional space, dividing the space into voxels and assign-
ing each voxel a normal probability distribution. The authors
experiment with the algorithm in a vast indoor space In [25]
Ulas and Temeltas introduce an algorithm that extends the
3D-NDT approach by inserting different layers that depend
on how the environment is structured. In each layer the cells
are of different sizes. The size of each individual cell is
automatically determined by the input data. Unlike the Biber
and Strassen algorithm, the function to be minimized is based
on the Mahalanobis distance. The probabilistic approaches
described above are based on good initial assumptions.

Su Pang et al. report in [36] a comparison between NDT
and ICP under realistic conditions as two prevailing ap-
proaches. They conclude that the two scan matching ap-

proaches are similar in terms of accuracy. However, NDT is
more robust versus environmental modifications.

The core concept behind NDT and our idea is very similar:
to construct a 2D plane representation with cells of constant
size where the cells contain a probability density of measure-
ment being close to points of the reference scan. The main
difference is that NDT uses Newtons algorithm to iteratively
search for the optimal solution, requiring additional steps in
the preparation of the 2D plane representation, while we use
a genetic algorithm directly with a lookup table.

C. GENETIC-BASED SCAN-MATCHING APPROACHES
The matching of successive laser scans has been accom-
plished by several authors using genetic optimization (GA).
The main advantage of GA is that it can explore all the solu-
tion space avoiding local minima and is more robust to initial
alignment errors. Its disadvantage is that its computational
complexity is usually high.

1) Fitness Definition based on Squared Error Metric
The alignment between the two scans by genetic optimization
is obtained by randomly changing, from one generation to
the next, one scan with respect to the other according to
the minimization of an objective function, i.e. the fitness.
The most important issue of this type of matching is the
definition of the fitness to be minimized. The most intuitive
fitness definition is that reported in Equation (1). Yamany et
al. [26] and Robertson and Fisher [27] use the mean squared
error objective function. Martinez in [2], [28] introduce the
following definition:

Fitness =

N∑
k=1

ej(k)/N (11)

where N is the number of points and ej is the distance
between the point k in the reference and the new scans.

2) Fitness Definition based on Lookup Metric
However to calculate Squared Error Metric based fitness, it
is required to know the correspondences between the points
of the two scans. For this reason Lenac et al. [29] propose a
genetic scan matching algorithm based on a binary lookup
table based fitness function called GLASM, which avoids
the points pair correspondences. In Figure 14 the idea of the
proposed fitness function is depicted. In short, each reference
point is surrounded by squares or circles (in this case we
consider circles of radius radius). The points of the new scan
that hit the circles are counted. Using this concept of scan
similarity we do not have to compute point correspondences.

The lookup table is built using the reference (i.e. previous)
scan. The computation of the fitness function based on the
binary lookup table is described in Algorithm 4. As it is
shown, for each point of the new scan first a roto-translation
is performed to bring the point in the same reference frame as
the lookup table, followed by a selection of the corresponding
lookup cell. The fitness is then incremented only if the lookup
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FIGURE 14. Lookup-based laser scan scheme.

cell is marked with value 1, i.e. there was at least one point of
the reference scan in the vicinity. A detail of the lookup table
is shown in Figure 3, right panel.

Algorithm 4 Binary Lookup Fitness Computation
Input: B // new scan
Output: fitness
fitness = 0;
for (each point p of B) do

// roto-translation to lookup reference frame
p′ = changereferenceframe(p)
if lookup(p′) = 1 then

fitness+ +;
return fitness;

Other interesting approaches that are related to our re-
search are [51], [52]. In particular, [51] proposes a novel GP-
based method (GPFD) to extract feature vectors and evolve
image descriptors for image registration without supervision.
The method designs a set of simple arithmetic operators and
first-order statistics to construct feature descriptors in order to
reduce noise interference. [52] instead introduces a Particle
Swarm Optimization (PSO) sample consensus algorithm for
remote sensing image registration. Different from Random
Sample Consensus (RANSAC) algorithm, the proposed so-
lution directly samples the modal transformation parameter
rather than randomly selecting tentative matches. Thus, the
method is less sensitive to the correct rate than RANSAC,
and it has the ability to handle lower correct rate and more
matches. Meanwhile, PSO is utilized to optimize parameter
as its efficiency.

D. HYBRID APPROACHES
Several recent works have shown that the combination of
different optimization approaches for estimating the rotation
and translation of one scan with respect to the other can
increase the robustness and accuracy in the registration of
laser scans. Moreover, Martinez in [2] shown that the use
of the cascade genetic optimization - ICP for estimating the
translation and rotation of the second scan with respect to
the first one improves the accuracy of ICP alone. They call
their fitness function as Polar Fitness Function. Luck et al.
have shown in [30] that the cascade Simulated Annealing
- ICP leads to a better overlap of the two recordings with
better iteration convergence. The hybrid pre-registration ap-
proach described by Lomonosov et al. in [31] is applicable
to arbitrarily oriented surfaces and is composed by genetic
search followed by iterative alignment. In [29] Lenac et al.
described a hybrid genetic scan matching based on binary
lookup table. Depending on the search space size dimension,
the algorithm can be used both in local and global navigation
applications. The algorithm described in this paper aims at
increasing accuracy and robustness with respect to [29].

VIII. FINAL REMARKS AND FUTURE WORK
In this paper we have presented a hybrid algorithm for the
problem of scan matching. The algorithm better solves some
scan-matching problems as compared to state-of-the-art al-
gorithms, such as the problem of initial positioning errors
and blocking the iterations in local minima. The proposed
algorithm introduces a fitness function based on the look
up tables whose content is used as a weight in the fitness
calculation. Values in look up tables are gradually modified
starting from the reference position. The algorithm was tested
with a dataset consisting of laser scans obtained in various
environments. The main contribution is that better results
of the scan matching operation are obtained in terms of
accuracy and robustness. The main reason is due to the new
metric adopted that allows to compare not just single points
but an entire scan. This permits to avoid the preliminary
steps of point correspondence and the translation and rotation
computation, that introduce errors in classical scan matching
algorithms.

Future works will be directed towards the extension of the
described hybrid algorithms to the 3-D case, and higher di-
mensions. Also, we plan to make our comprehensive frame-
work suitable to the emerging big data trend (e.g., [37]–[39]),
as to make it able of dealing with specific features of such
innovative settings, like also dictated by some recent studies
(e.g., [48]–[50]).
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