COLLANA SCIENTIFICA

© CC – Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

2019

Università di Cassino e del Lazio Meridionale Centro Editoriale di Ateneo Palazzo degli Studi Località Folcara, Cassino (FR), Italia

ISBN 978-88-8317-108-6

CLADAG 2019 Book of Short Papers

Giovanni C. Porzio Francesca Greselin Simona Balzano *Editors*

Contents

Keynotes lectures

Unifying data units and models in (co-)clustering Christophe Biernacki	3
Statistics with a human face Adrian Bowman	4
Bayesian model-based clustering with flexible and sparse priors Bettina Grün	5
Grinding massive information into feasible statistics: current challenges and opportunities for data scientists Francesco Mola	6
Statistical challenges in the analysis of complex responses in biomedicine <i>Sylvia Richardson</i>	7
Invited and contributed sessions Model-based clustering of time series data: a flexible approach using nonparametric state-switching quantile regression models Timo Adam, Roland Langrock, Thomas Kneib	8
Some issues in generalized linear modeling <i>Alan Agresti</i>	12
Assessing social interest in burnout using functional data analysis through google trends Ana M. Aguilera, Francesca Fortuna, Manuel Escabias	16
Measuring equitable and sustainable well-being in Italian regions: a non-aggregative approach Leonardo Salvatore Alaimo, Filomena Maggino	20
Bootstrap inference for missing data reconstruction Giuseppina Albano, Michele La Rocca, Maria Lucia Parrella, Cira Perna	22
Archetypal contour shapes Aleix Alcacer, Irene Epifanio, M. Victoria Ibáñez, Amelia Simó	26

Random projections of variables and units Laura Anderlucci, Roberta Falcone, Angela Montanari		
Sparse linear regression via random projections ensembles Laura Anderlucci, Matteo Farnè, Giuliano Galimberti, Angela Montanari	34	
High-dimensional model-based clustering via random projections Laura Anderlucci, Francesca Fortunato, Angela Montanari	38	
Multivariate outlier detection in high reliability standards fields using ICS Aurore Archimbaud, Klaus Nordhausen, Anne Ruiz-Gazen	42	
Evaluating the school effect: adjusting for pre-test or using gain scores? Bruno Arpino, Silvia Bacci, Leonardo Grilli, Raffaele Guetto, Carla Rampichini	45	
ACE, AVAS and robust data transformations Anthony Atkinson	49	
Mixtures of multivariate leptokurtic Normal distributions Luca Bagnato, Antonio Punzo, Maria Grazia Zoia	53	
Detecting and interpreting the consensus ranking based on the weighted Kemeny distance Alessio Baldassarre, Claudio Conversano, Antonio D'Ambrosio	57	
Predictive principal components analysis Simona Balzano, Maja Bozic, Laura Marcis, Renato Salvatore	61	
Flexible model-based trees for count data Federico Banchelli	63	
Euclidean distance as a measure of conformity to Benford's law in digital analysis for fraud detection Mateusz Baryła, Józef Pociecha	67	
The evolution of the purchase behavior of sparkling wines in the Italian market Francesca Bassi, Fulvia Pennoni, Luca Rossetto	71	
Modern likelihood-frequentist inference at work Ruggero Bellio, Donald A. Pierce	75	
Ontology-based classification of multilingual corpuses of documents Sergey Belov, Salvatore Ingrassia, Zoran Kalinić, Paweł Lula	79	
Modeling heterogeneity in clustered data using recursive partitioning <i>Moritz Berger, Gerhard Tutz</i>	83	

Mixtures of experts with flexible concomitant covariate effects: a bayesian solution Marco Berrettini, Giuliano Galimberti, Thomas Brendan Murphy, Saverio Ranciati	87
Sampling properties of an ordinal measure of interrater absolute agreement Giuseppe Bove, Pier Luigi Conti, Daniela Marella	91
Tensor analysis can give better insight Rasmus Bro	95
A boxplot for spherical data Davide Buttarazzi, Giuseppe Pandolfo, Giovanni C. Porzio, Christophe Ley	97
Machine learning models for forecasting stock trends Giacomo Camba, Claudio Conversano	99
Tree modeling ordinal responses: CUBREMOT and its applications Carmela Cappelli, Rosaria Simone, Francesca Di Iorio	103
Supervised learning in presence of outliers, label noise and unobserved classes Andrea Cappozzo, Francesca Greselin, Thomas Brendan Murphy	104
Asymptotics for bandwidth selection in nonparametric clustering Alessandro Casa, José E. Chacón, Giovanna Menardi	108
Foreign immigration and pull factors in Italy: a spatial approach Oliviero Casacchia, Luisa Natale, Francesco Giovanni Truglia	112
Dimensionality reduction via hierarchical factorial structure Carlo Cavicchia, Maurizio Vichi, Giorgia Zaccaria	116
Likelihood-type methods for comparing clustering solutions Luca Coraggio, Pietro Coretto	120
Labour market analysis through transformations and robust multilevel models Aldo Corbellini, Marco Magnani, Gianluca Morelli	124
Modelling consumers' qualitative perceptions of inflation Marcella Corduas, Rosaria Simone, Domenico Piccolo	128
Noise resistant clustering of high-dimensional gene expression data Pietro Coretto, Angela Serra, Roberto Tagliaferri	132
Classify X-ray images using convolutional neural networks	136

A compositional analysis approach assessing the spatial distribution of trees in Guadalajara, Mexico Marco Antonio Cruz, Maribel Ortego, Elisabet Roca	
Joining factorial methods and blockmodeling for the analysis of affiliation networks Daniela D'Ambrosio, Marco Serino, Giancarlo Ragozini	142
A latent space model for clustering in multiplex data Silvia D'Angelo, Michael Fop	146
Post processing of two dimensional road profiles: variogram scheme application and sectioning procedure Mauro D'Apuzzo, Rose-Line Spacagna, Azzurra Evangelisti, Daniela Santilli, Vittorio Nicolosi	150
A new approach to preference mapping through quantile regression Cristina Davino, Tormod Naes, Rosaria Romano, Domenico Vistocco	154
On the robustness of the cosine distribution depth classifier Houyem Demni, Amor Messaoud, Giovanni C. Porzio	158
Network effect on individual scientific performance: a longitudinal study on an Italian scientific community Domenico De Stefano, Giuseppe Giordano, Susanna Zaccarin	162
Penalized vs constrained maximum likelihood approaches for clusterwise linear regression modelling Roberto Di Mari, Stefano Antonio Gattone, Roberto Rocci	166
Local fitting of angular variables observed with error Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor	170
Quantile composite-based path modeling to estimate the conditional quantiles of health indicators Pasquale Dolce, Cristina Davino, Stefania Taralli, Domenico Vistocco	174
AUC-based gradient boosting for imbalanced classification Martina Dossi, Giovanna Menardi	178
How to measure material deprivation? A latent Markov model based approach Francesco Dotto	182
Decomposition of the interval based composite indicators by means of biclustering <i>Carlo Drago</i>	186
Consensus clustering via pivotal methods Leonardo Egidi. Roberta Pappadà. Francesco Pauli. Nicola Torelli	190

Robust model-based clustering with mild and gross outliers Alessio Farcomeni, Antonio Punzo		
Gaussian processes for curve prediction and classification Sara Fontanella, Lara Fontanella, Rosalba Ignaccolo, Luigi Ippoliti, Pasquale Valentini	198	
A new proposal for building immigrant integration composite indicator <i>Mario Fordellone, Venera Tomaselli, Maurizio Vichi</i>	199	
Biodiversity spatial clustering Francesca Fortuna, Fabrizio Maturo, Tonio Di Battista	203	
Skewed distributions or transformations? Incorporating skewness in a cluster analysis Michael Gallaugher, Paul McNicholas, Volodymyr Melnykov, Xuwen Zhu	207	
Robust parsimonious clustering models Luis Angel Garcia-Escudero, Agustin Mayo-Iscar, Marco Riani	208	
Projection-based uniformity tests for directional data Eduardo García-Portugués, Paula Navarro-Esteban, Juan Antonio Cuesta-Albertos	212	
Graph-based clustering of visitors' trajectories at exhibitions Martina Gentilin, Pietro Lovato, Gloria Menegaz, Marco Cristani, Marco Minozzo	214	
Symmetry in graph clustering Andreas Geyer-Schulz, Fabian Ball	218	
Bayesian networks for the analysis of entrepreneurial microcredit: evidence from Italy Lorenzo Giammei, Paola Vicard	222	
The PARAFAC model in the maximum likelihood approach Paolo Giordani, Roberto Rocci, Giuseppe Bove	226	
Structure discovering in nonparametric regression by the GRID procedure Francesco Giordano, Soumendra Nath Lahiri, Maria Lucia Parrella	230	
A microblog auxiliary part-of-speech tagger based on bayesian networks Silvia Golia, Paola Zola	234	
Recent advances in model-based clustering of high dimensional data Isobel Claire Gormley	238	
Tree embedded linear mixed models Anna Gottard, Leonardo Grilli, Carla Rampichini, Giulia Vannucci	239	

Weighted likelihood estimation of mixtures Luca Greco, Claudio Agostinelli		
A canonical representation for multiblock methods Mohamed Hanafi	247	
An adequacy approach to estimating the number of clusters Christian Hennig	251	
Classification with weighted compositions Karel Hron, Julie Rendlova, Peter Filzmoser	255	
MacroPCA: an all-in-one PCA method allowing for missing values as well as cellwise and rowwise outliers Mia Hubert, Peter J. Rousseeuw, Wannes Van den Bossche	256	
Marginal effects for comparing groups in regression models for ordinal outcome when uncertainty is present Maria Iannario, Claudia Tarantola	258	
A multi-criteria approach in a financial portfolio selection framework Carmela Iorio, Giuseppe Pandolfo, Roberta Siciliano	262	
Clustering of trajectories using adaptive distances and warping Antonio Irpino, Antonio Balzanella	266	
Sampling and learning Mallows and generalized Mallows models under the Cayley distance: short paper Ekhine Irurozki, Borja Calvo, Jose A. Lozano	270	
The gender parity index for the academic students progress Aglaia Kalamatianou, Adele H. Marshall, Mariangela Zenga	274	
Some asymptotic properties of model selection criteria in the latent block model Christine Keribin	278	
Invariant concept classes for transcriptome classification Hans Kestler, Robin Szekely, Attila Klimmek, Ludwig Lausser	282	
Clustering of ties defined as symbolic data Luka Kronegger	283	
Application of data mining in the housing affordability analysis Viera Labudová, Ľubica Sipková	284	
Cylindrical hidden Markov fields	288	

Comparing tree kernels performances in argumentative evidence classification Davide Liga	292
Recent advancement in neural network analysis of biomedical big data <i>Pietro Liò</i> , <i>Giovanna Maria Dimitri</i> , <i>Chiara Sopegno</i>	296
Bias reduction for estimating functions and pseudolikelihoods Nicola Lunardon	297
Large scale social and multilayer networks Matteo Magnani	301
Uncertainty in statistical matching by BNs Daniela Marella, Paola Vicard, Vincenzina Vitale	305
Evaluating the recruiters' gender bias in graduate competencies Paolo Mariani, Andrea Marletta	309
Dynamic clustering of network data: a hybrid maximum likelihood approach Maria Francesca Marino, Silvia Pandolfi	313
Stability of joint dimension reduction and clustering Angelos Markos, Michel Van de Velden, Alfonso Iodice D'Enza	317
Hidden Markov models for clustering functional data Andrea Martino, Giuseppina Guatteri, Anna Maria Paganoni	321
Composite likelihood inference for simultaneous clustering and dimensionality reduction of mixed-type longitudinal data Antonello Maruotti, Monia Ranalli, Roberto Rocci	325
Bivariate semi-parametric mixed-effects models for classifying the effects of Italian classes on multiple student achievements Chiara Masci, Francesca Ieva, Tommaso Agasisti, Anna Maria Paganoni	329
Multivariate change-point analysis for climate time series Gianluca Mastrantonio, Giovanna Jona Lasinio, Alessio Pollice, Giulia Capotorti, Lorenzo Teodonio, Carlo Blasi	333
A dynamic stochastic block model for longitudinal networks Catherine Matias, Tabea Rebafka, Fanny Villers	337
Unsupervised fuzzy classification for detecting similar functional objects Fabrizio Maturo, Francesca Fortuna, Tonio Di Battista	339
Mixture modelling with skew-symmetric component distributions Geoffrey McLachlan	343

New developments in applications of pairwise overlap Volodymyr Melnykov, Yana Melnykov, Domenico Perrotta, Marco Riani, Francesca Torti, Yang Wang	
Modelling unobserved heterogeneity of ranking data with the bayesian mixture of extended Plackett-Luce models Cristina Mollica, Luca Tardella	346
Issues in nonlinear time series modeling of European import volumes <i>Gianluca Morelli, Francesca Torti</i>	350
Gaussian parsimonious clustering models with covariates and a noise component Keefe Murphy, Thomas Brendan Murphy	352
Illumination in depth analysis Stanislav Nagy, Jiří Dvořák	353
Copula-based non-metric unfolding on augmented data matrix Marta Nai Ruscone, Antonio D'Ambrosio	357
A statistical model for software releases complexity prediction Marco Ortu, Giuseppe Destefanis, Roberto Tonelli	361
Comparison of serious diseases mortality in regions of V4 Viera Pacáková, Lucie Kopecká	365
Price and product design strategies for manufacturers of electric vehicle batteries: inferences from latent class analysis Friederike Paetz	369
A Mahalanobis-like distance for cylindrical data Lucio Palazzo, Giovanni C. Porzio, Giuseppe Pandolfo	373
Archetypes, prototypes and other types Francesco Palumbo, Giancarlo Ragozini, Domenico Vistocco	377
Generalizing the skew-t model using copulas Antonio Parisi, Brunero Liseo	381
Contamination and manipulation of trade data: the two faces of customs fraud Domenico Perrotta, Andrea Cerasa, Lucio Barabesi, Mario Menegatti, Andrea Cerioli	385
Bayesian clustering using non-negative matrix factorization Michael Porter Ketong Wang	389

Exploring gender gap in international mobility flows through a network analysis approach Ilaria Primerano, Marialuisa Restaino	393
Clustering two-mode binary network data with overlapping mixture model and covariates information Saverio Ranciati, Veronica Vinciotti, Ernst C. Wit, Giuliano Galimberti	395
A stochastic blockmodel for network interaction lengths over continuous time Riccardo Rastelli, Michael Fop	399
Computationally efficient inference for latent position network models <i>Riccardo Rastelli, Florian Maire, Nial Friel</i>	403
Clustering of complex data stream based on barycentric coordinates Parisa Rastin, Basarab Matei, Guénaël Cabanes	407
An INDSCAL based mixture model to cluster mixed-type of data <i>Roberto Rocci, Monia Ranalli</i>	411
Topological stochastic neighbor embedding Nicoleta Rogovschi, Nistor Grozavu, Basarab Matei, Younès Bennani, Seiichi Ozawa	415
Functional data analysis for spatial aggregated point patterns in seismic science Elvira Romano, Jonatan González Monsalve, Francisco Javier Rodríguez Cortés, Jorge Mateu	419
ROC curves with binary multivariate data Lidia Sacchetto, Mauro Gasparini	420
Silhouette-based method for portfolio selection Marco Scaglione, Carmela Iorio, Antonio D'Ambrosio	424
Item weighted Kemeny distance for preference data Mariangela Sciandra, Simona Buscemi, Antonella Plaia	428
A fast and efficient modal EM algorithm for Gaussian mixtures Luca Scrucca	432
Probabilistic archetypal analysis Sohan Seth	436
Multilinear tests of association between networks	438

Use of multi-state models to maximise information in pressure ulcer prevention trials Linda Sharples, Isabelle Smith, Jane Nixon	442
Partial least squares for compositional canonical correlation Violetta Simonacci Massimo Guarino, Michele Gallo	445
Dynamic modelling of price expectations Rosaria Simone, Domenico Piccolo, Marcella Corduas	449
Towards axioms for hierarchical clustering of measures Philipp Thomann, Ingo Steinwart, Nico Schmid	453
Influence of outliers on cluster correspondence analysis Michel Van de Velden, Alfonso Iodice D'Enza, Lisa Schut	454
Earthquake clustering and centrality measures Elisa Varini, Antonella Peresan, Jiancang Zhuang	458
Co-clustering high dimensional temporal sequences summarized by histograms Rosanna Verde, Antonio Irpino, Antonio Balzanella	462
Statistical analysis of item pre-knowledge in educational tests: latent variable modelling and optimal statistical decision Chen Yunxiao, Lu Yan, Irini Moustaki	466
Evaluation of the web usability of the University of Cagliari portal: an eye tracking study Gianpaolo Zammarchi, Francesco Mola	468
Application of survival analysis to critical illness insurance data David Zapletal, Lucie Kopecka	472

CONSENSUS CLUSTERING VIA PIVOTAL METHODS

Leonardo Egidi¹, Roberta Pappadà¹, Francesco Pauli¹ and Nicola Torelli¹

¹ Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche 'Bruno de Finetti', Università degli Studi di Trieste, (e-mail: legidi@units.it, rpappada@units.it, francesco.pauli@deams.units.it, nicola.torelli@deams.units.it)

ABSTRACT: We propose an approach to the cluster ensemble problem based on pivotal units extracted from a co-association matrix. It can be seen as a modified version of *K*-means method, which utilizes pivots for careful seeding. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the comparison with alternative ensemble methods.

KEYWORDS: cluster ensemble, pivot, K-means.

1 Introduction

Ensembles methods have recently emerged as a valid alternative to conventional clustering techniques and have shown to effectively improve the quality of clustering results and achieve robustness (see, e.g., Strehl & Ghosh, 2002, Jain, 2010). Such methods require a strategy to generate multiple clusterings of the same data set (the ensemble) and then combine them into a *consensus* partition (presumably superior), by following the idea of evidence accumulation, i.e., by viewing each clustering result as an independent evidence of data structure. A common way to do this is to obtain a new pairwise similarity matrix, or co-association matrix, by taking the co-occurrences of pairs of points in the same group across all partitions (Fred & Jain, 2005). Then, a similarity-based clustering algorithm can be applied to this matrix to yield the final partition.

We propose to use the co-association matrix to find some specific units (hereafter, pivots) which are representative of the group they belong to (because they never or very rarely co-occur with members of other groups). Various criteria for detecting the pivots are proposed in Section 2. Section 3 illustrates the use of pivotal methods for data clustering, and compare the proposed approach with classical *K*-means and other common ensemble methods.

Pivotal methods and related clustering procedures are implemented via the R package pivmet, available from the Comprehensive R Archive Network at

http://CRAN.R-project.org/package=pivmet.

2 Pivotal methods based on co-association

Let $\mathbf{Y} = (y_1, \dots, y_n)$ be a set of n observations, where $y_i \in \mathbb{R}^d$. Consider a set $\mathcal{P} = \{P^1, P^2, \dots, P^H\}$ of H partitions of the data points into K disjoint clusters, derived from an arbitrary clustering algorithm. Note that the number of groups is pre-specified and equal for all P^h . \mathcal{P} can be summarized via the $n \times n$ coassociation matrix C with generic element

$$c_{i,j} = \frac{1}{H} \sum_{h=1}^{H} |P^h(y_i)| = P^h(y_j)|, \tag{1}$$

where $|\cdot|$ denotes the indicator function, and $P^h(y_i)$, $P^h(y_j)$, represent the clusters of the objects y_i and y_j in P^h , respectively. Clearly, units which are very dissimilar from each other are likely to have zero co-occurrences; as a consequence, C is expected to contain a non-negligible number of zeros. Given a large and sparse 0-1 matrix, the Maxima Units Search (MUS) algorithm seeks those elements, among a pre-specified number of candidate pivots, whose corresponding rows contain more zeros compared to all other units (Egidi *et al.*, 2018c). Define a reference partition, G_1, \ldots, G_K of y_1, \ldots, y_n obtained by applying, for instance, an agglomerative hierarchical algorithm into K groups. The MUS procedure takes C as input and outputs a set of K units—one for each group of the reference partition—that exhibit the highest degree of separation (Egidi *et al.*, 2018b). As an alternative approach, the pivot y_{i_k} for group G_k can be chosen so that it is as far as possible from units that might belong to other groups and/or as close as possible to units that belong to the same group, according to one of the following objective functions

(a)
$$\max_{i_k} \sum_{j \in G_k} c_{i_k, j}$$
 (b) $\min_{i_k} \sum_{j \notin G_k} c_{i_k, j}$ (c) $\max_{i_k} \sum_{j \in G_k} c_{i_k, j} - \sum_{j \notin G_k} c_{i_k, j}$, (2)

where $c_{i,j}$ is defined as in (1). Ideally, the $K \times K$ submatrix of C with only the rows and columns corresponding to i_1, \ldots, i_K will be the identity matrix. In practice, it may contain few nonzero elements off the diagonal.

3 A simulation experiment

In order to illustrate the proposed algorithm, we simulate bivariate data from a mixture of three Gaussian distributions with mean vectors $\mu_1 = (1,5)$, $\mu_2 = (1,5)$

Figure 1. Mixture of three Gaussian distributions (sample size n=620). Cluster centers and/or pivots for each method are marked via asterisks and triangles, respectively.

(4,0), $\mu_3 = (6,6)$, and the 2×2 identity matrix as covariance matrix. The components have sample size 20, 100 and 500, respectively (see Figure 1, top-left panel). The *K*-means algorithm with random seeds is used to generate a cluster ensemble of H = 1000 partitions, and obtain the co-association matrix *C*. For each simulated dataset, we proceed as follows:

- 1. For a given number of clusters K, obtain a partition of the data G_1, \ldots, G_K (reference partition);
- 2. Apply the MUS algorithm or one alternative criterion in (2) to the matrix C to find K (distinct) pivots y_{i_1}, \ldots, y_{i_K} ;
- 3. Run the *K*-means algorithm using the pivots as initial cluster centers.

The proposed modification of the standard K-means technique introduces a pivot-based initialization step with the aim of reducing the effect of random seeding (see also Egidi $et\ al.$, 2018a). An alternative approach to careful seeding can be found in Arthur & Vassilvitskii, 2007. Figure 1 shows the solution from K-means, using K=3, and by pivotal methods MUS and criterion (b) in Eq. (2), where Average-Linkage (AL) agglomerative clustering is used to obtain the reference partition. The results of consensus clustering using PAM (Partitioning Around Medoids) method and AL-agglomerative hierar-

chical clustering (agnes) are also shown (Single Linkage (SL) and Complete Linkage (CL) give similar results). Table 1 reports the comparison between the different methods in terms of Adjusted Rand Index (ARI), used to quantify the agreement between two partitions. The mean value is considered for 1000 simulations. Preliminary results suggest that the pivot-based approach outperforms the competing similarity-based ensemble methods and the standard *K*-means, which gives a mean ARI of 0.659.

Table 1. 2D Gaussian data: mean ARI (1000 simulations) between the final clustering and the true data partition. Ensemble methods use dissimilarities $1 - c_{i,j}$.

Pivotal methods	MUS	(a)	(b)	(c)
	0.857	0.865	0.883	0.779
Ensemble methods	agnes (AL) 0.512	agnes (<i>SL</i>) 0.535	agnes (<i>CL</i>) 0.514	PAM 0.506

References

- ARTHUR, D., & VASSILVITSKII, S. 2007. k-means++: The advantages of careful seeding. *Pages 1027–1035 of: Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete algorithms*.
- EGIDI, L., PAPPADÀ, R., PAULI, F., & TORELLI, N. 2018a. K-means seeding via MUS algorithm. *Pages 256–262 of: Book of Short Papers SIS 2018*.
- EGIDI, L., PAPPADÀ, R., PAULI, F., & TORELLI, N. 2018b. Maxima Units Search (MUS) algorithm: methodology and applications. *Pages 71–81 of: Studies in Theoretical and Applied Statistics*.
- EGIDI, L., PAPPADÀ, R., PAULI, F., & TORELLI, N. 2018c. Relabelling in Bayesian mixture models by pivotal units. *Statistics and Computing*, **28**, 957–969.
- FRED, A. L. N., & JAIN, A. K. 2005. Combining Multiple Clusterings Using Evidence Accumulation. *IEEE Trans. Pattern Anal. Mach. Intell.*, **27**, 835–850.
- JAIN, A. K. 2010. Data clustering: 50 years beyond K-means. *Pattern Recognition Letters*, **31**, 651 666.
- STREHL, A., & GHOSH, J. 2002. Cluster ensembles A knowledge reuse framework for combining multiple partitions. *Journal on Machine Learning Research*, **3**, 583–617.