UNIVERSITÀ degli STUDI di CASSINO e del LAZIO MERIDIONALE

COLLANA SCIENTIFICA

© CC - Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) https://creativecommons.org/licenses/by-nc/4.0/

2019

Università di Cassino e del Lazio Meridionale
Centro Editoriale di Ateneo
Palazzo degli Studi Località Folcara, Cassino (FR), Italia

ISBN 978-88-8317-108-6

CLADAG 2019

Book of Short Papers

Giovanni C. Porzio
Francesca Greselin
Simona Balzano
Editors

Contents

Keynotes lectures

$$
\begin{aligned}
& \text { Unifying data units and models in (co-)clustering } \\
& \text { Christophe Biernacki }
\end{aligned}
$$

Statistics with a human face 4
Adrian Bowman
Bayesian model-based clustering with flexible and sparse priors 5
Bettina Grün
Grinding massive information into feasible statistics: current challenges 6 and opportunities for data scientists
Francesco Mola
Statistical challenges in the analysis of complex responses in biomedicine 7
Sylvia Richardson
Invited and contributed sessions
Model-based clustering of time series data: a flexible approach using 8 nonparametric state-switching quantile regression models
Timo Adam, Roland Langrock, Thomas Kneib
Some issues in generalized linear modeling 12
Alan Agresti
Assessing social interest in burnout using functional data analysis through 16 google trends
Ana M. Aguilera, Francesca Fortuna, Manuel Escabias
Measuring equitable and sustainable well-being in Italian regions: a non- 20 aggregative approach
Leonardo Salvatore Alaimo, Filomena Maggino
Bootstrap inference for missing data reconstruction 22
Giuseppina Albano, Michele La Rocca, Maria Lucia Parrella, Cira Perna
Archetypal contour shapes 26
Aleix Alcacer, Irene Epifanio, M. Victoria Ibáñez, Amelia Simó
Random projections of variables and units 30
Laura Anderlucci, Roberta Falcone, Angela Montanari
Sparse linear regression via random projections ensembles 34
Laura Anderlucci, Matteo Farnè, Giuliano Galimberti, Angela Montanari
High-dimensional model-based clustering via random projections 38
Laura Anderlucci, Francesca Fortunato, Angela Montanari
Multivariate outlier detection in high reliability standards fields using ICS 42
Aurore Archimbaud, Klaus Nordhausen, Anne Ruiz-Gazen
Evaluating the school effect: adjusting for pre-test or using gain scores? 45
Bruno Arpino, Silvia Bacci, Leonardo Grilli, Raffaele Guetto, Carla Rampichini
ACE, AVAS and robust data transformations 49
Anthony Atkinson
Mixtures of multivariate leptokurtic Normal distributions 53
Luca Bagnato, Antonio Punzo, Maria Grazia Zoia
Detecting and interpreting the consensus ranking based on the weighted 57
Kemeny distance
Alessio Baldassarre, Claudio Conversano, Antonio D'Ambrosio
Predictive principal components analysis 61
Simona Balzano, Maja Bozic, Laura Marcis, Renato Salvatore
Flexible model-based trees for count data 63
Federico Banchelli
Euclidean distance as a measure of conformity to Benford's law in digital 67 analysis for fraud detection
Mateusz Baryła, Józef Pociecha
The evolution of the purchase behavior of sparkling wines in the Italian 71 market
Francesca Bassi, Fulvia Pennoni, Luca Rossetto
Modern likelihood-frequentist inference at work 75
Ruggero Bellio, Donald A. Pierce
Ontology-based classification of multilingual corpuses of documents 79
Sergey Belov, Salvatore Ingrassia, Zoran Kalinić, Pawet Lula
Modeling heterogeneity in clustered data using recursive partitioning 83
Moritz Berger, Gerhard Tutz
Mixtures of experts with flexible concomitant covariate effects: a 87 bayesian solution
Marco Berrettini, Giuliano Galimberti, Thomas Brendan Murphy, Saverio Ranciati
Sampling properties of an ordinal measure of interrater absolute 91 agreement
Giuseppe Bove, Pier Luigi Conti, Daniela Marella
Tensor analysis can give better insight 95
Rasmus Bro
A boxplot for spherical data 97
Davide Buttarazzi, Giuseppe Pandolfo, Giovanni C. Porzio, Christophe Ley
Machine learning models for forecasting stock trends 99
Giacomo Camba, Claudio Conversano
Tree modeling ordinal responses: CUBREMOT and its applications 103
Carmela Cappelli, Rosaria Simone, Francesca Di Iorio
Supervised learning in presence of outliers, label noise and unobserved 104 classes
Andrea Cappozzo, Francesca Greselin, Thomas Brendan Murphy
Asymptotics for bandwidth selection in nonparametric clustering 108
Alessandro Casa, José E. Chacón, Giovanna Menardi
Foreign immigration and pull factors in Italy: a spatial approach 112
Oliviero Casacchia, Luisa Natale, Francesco Giovanni Truglia
Dimensionality reduction via hierarchical factorial structure 116
Carlo Cavicchia, Maurizio Vichi, Giorgia Zaccaria
Likelihood-type methods for comparing clustering solutions 120
Luca Coraggio, Pietro Coretto
Labour market analysis through transformations and robust multilevel 124 models
Aldo Corbellini, Marco Magnani, Gianluca Morelli
Modelling consumers' qualitative perceptions of inflation 128
Marcella Corduas, Rosaria Simone, Domenico Piccolo
Noise resistant clustering of high-dimensional gene expression data 132
Pietro Coretto, Angela Serra, Roberto Tagliaferri
Classify X-ray images using convolutional neural networks 136
Federica Crobu, Agostino Di Ciaccio
A compositional analysis approach assessing the spatial distribution of 140 trees in Guadalajara, Mexico Marco Antonio Cruz, Maribel Ortego, Elisabet Roca
Joining factorial methods and blockmodeling for the analysis of 142 affiliation networks
Daniela D'Ambrosio, Marco Serino, Giancarlo Ragozini
A latent space model for clustering in multiplex data 146
Silvia D'Angelo, Michael Fop
Post processing of two dimensional road profiles: variogram scheme 150 application and sectioning procedure
Mauro D'Apuzzo, Rose-Line Spacagna, Azzurra Evangelisti, Daniela Santilli, Vittorio Nicolosi
A new approach to preference mapping through quantile regression 154
Cristina Davino, Tormod Naes, Rosaria Romano, Domenico Vistocco
On the robustness of the cosine distribution depth classifier 158
Houyem Demni, Amor Messaoud, Giovanni C. Porzio
Network effect on individual scientific performance: a longitudinal study 162 on an Italian scientific community
Domenico De Stefano, Giuseppe Giordano, Susanna Zaccarin
Penalized vs constrained maximum likelihood approaches for clusterwise 166 linear regression modelling
Roberto Di Mari, Stefano Antonio Gattone, Roberto Rocci
Local fitting of angular variables observed with error 170
Marco Di Marzio, Stefania Fensore, Agnese Panzera, Charles C. Taylor
Quantile composite-based path modeling to estimate the conditional 174 quantiles of health indicators
Pasquale Dolce, Cristina Davino, Stefania Taralli, Domenico Vistocco
AUC-based gradient boosting for imbalanced classification 178
Martina Dossi, Giovanna Menardi
How to measure material deprivation? A latent Markov model based 182 approach Francesco Dotto
Decomposition of the interval based composite indicators by means of 186 biclustering Carlo DragoConsensus clustering via pivotal methods190Leonardo Egidi, Roberta Pappadà, Francesco Pauli, Nicola Torelli
Robust model-based clustering with mild and gross outliers 194
Alessio Farcomeni, Antonio Punzo
Gaussian processes for curve prediction and classification 198
Sara Fontanella, Lara Fontanella, Rosalba Ignaccolo, Luigi Ippoliti, Pasquale Valentini
A new proposal for building immigrant integration composite indicator 199
Mario Fordellone, Venera Tomaselli, Maurizio Vichi
Biodiversity spatial clustering 203
Francesca Fortuna, Fabrizio Maturo, Tonio Di Battista
Skewed distributions or transformations? Incorporating skewness in a 207 cluster analysis
Michael Gallaugher, Paul McNicholas, Volodymyr Melnykov, Xuwen Zhu
Robust parsimonious clustering models 208
Luis Angel Garcia-Escudero, Agustin Mayo-Iscar, Marco Riani
Projection-based uniformity tests for directional data 212
Eduardo García-Portugués, Paula Navarro-Esteban, Juan Antonio Cuesta-Albertos
Graph-based clustering of visitors' trajectories at exhibitions 214
Martina Gentilin, Pietro Lovato, Gloria Menegaz, Marco Cristani, Marco
Minozzo
Symmetry in graph clustering 218
Andreas Geyer-Schulz, Fabian Ball
Bayesian networks for the analysis of entrepreneurial microcredit: 222 evidence from Italy
Lorenzo Giammei, Paola Vicard
The PARAFAC model in the maximum likelihood approach 226
Paolo Giordani, Roberto Rocci, Giuseppe Bove
Structure discovering in nonparametric regression by the GRID procedure 230
Francesco Giordano, Soumendra Nath Lahiri, Maria Lucia Parrella
A microblog auxiliary part-of-speech tagger based on bayesian networks 234
Silvia Golia, Paola Zola
Recent advances in model-based clustering of high dimensional data 238
Isobel Claire Gormley
Tree embedded linear mixed models 239
Anna Gottard, Leonardo Grilli, Carla Rampichini, Giulia Vannucci
Weighted likelihood estimation of mixtures 243
Luca Greco, Claudio Agostinelli
A canonical representation for multiblock methods 247
Mohamed Hanafi
An adequacy approach to estimating the number of clusters 251
Christian Hennig
Classification with weighted compositions 255
Karel Hron, Julie Rendlova, Peter Filzmoser
MacroPCA: an all-in-one PCA method allowing for missing values as well 256 as cellwise and rowwise outliers
Mia Hubert, Peter J. Rousseeuw, Wannes Van den Bossche
Marginal effects for comparing groups in regression models for ordinal 258 outcome when uncertainty is present
Maria Iannario, Claudia Tarantola
A multi-criteria approach in a financial portfolio selection framework 262
Carmela Iorio, Giuseppe Pandolfo, Roberta Siciliano
Clustering of trajectories using adaptive distances and warping 266
Antonio Irpino, Antonio Balzanella
Sampling and learning Mallows and generalized Mallows models under 270 the Cayley distance: short paper
Ekhine Irurozki, Borja Calvo, Jose A. Lozano
The gender parity index for the academic students progress 274
Aglaia Kalamatianou, Adele H. Marshall, Mariangela Zenga
Some asymptotic properties of model selection criteria in the latent 278 block model
Christine Keribin
Invariant concept classes for transcriptome classification 282
Hans Kestler, Robin Szekely, Attila Klimmek, Ludwig Lausser
Clustering of ties defined as symbolic data 283
Luka Kronegger
Application of data mining in the housing affordability analysis 284
Viera Labudová, Lubica Sipková
Cylindrical hidden Markov fields 288
Francesco Lagona
Comparing tree kernels performances in argumentative evidence 292 classification
Davide Liga
Recent advancement in neural network analysis of biomedical big data 296
Pietro Liò, Giovanna Maria Dimitri, Chiara Sopegno
Bias reduction for estimating functions and pseudolikelihoods 297
Nicola Lunardon
Large scale social and multilayer networks 301
Matteo Magnani
Uncertainty in statistical matching by BNs 305
Daniela Marella, Paola Vicard, Vincenzina Vitale
Evaluating the recruiters' gender bias in graduate competencies 309
Paolo Mariani, Andrea Marletta
Dynamic clustering of network data: a hybrid maximum likelihood 313 approach
Maria Francesca Marino, Silvia Pandolfi
Stability of joint dimension reduction and clustering 317 Angelos Markos, Michel Van de Velden, Alfonso Iodice D'Enza
Hidden Markov models for clustering functional data 321
Andrea Martino, Giuseppina Guatteri, Anna Maria Paganoni
Composite likelihood inference for simultaneous clustering and 325 dimensionality reduction of mixed-type longitudinal data Antonello Maruotti, Monia Ranalli, Roberto Rocci
Bivariate semi-parametric mixed-effects models for classifying the effects 329 of Italian classes on multiple student achievements Chiara Masci, Francesca Ieva, Tommaso Agasisti, Anna Maria Paganoni
Multivariate change-point analysis for climate time series 333
Gianluca Mastrantonio, Giovanna Jona Lasinio, Alessio Pollice, Giulia Capotorti, Lorenzo Teodonio, Carlo Blasi
A dynamic stochastic block model for longitudinal networks 337
Catherine Matias, Tabea Rebafka, Fanny Villers
Unsupervised fuzzy classification for detecting similar functional objects 339
Fabrizio Maturo, Francesca Fortuna, Tonio Di Battista
Mixture modelling with skew-symmetric component distributions 343
Geoffrey McLachlan
New developments in applications of pairwise overlap 344
Volodymyr Melnykov, Yana Melnykov, Domenico Perrotta, Marco Riani, Francesca Torti, Yang Wang
Modelling unobserved heterogeneity of ranking data with the bayesian 346 mixture of extended Plackett-Luce models
Cristina Mollica, Luca Tardella
Issues in nonlinear time series modeling of European import volumes 350
Gianluca Morelli, Francesca Torti
Gaussian parsimonious clustering models with covariates and a noise 352 component
Keefe Murphy, Thomas Brendan Murphy
Illumination in depth analysis 353
Stanislav Nagy, Jiři Dvořák
Copula-based non-metric unfolding on augmented data matrix 357
Marta Nai Ruscone, Antonio D'Ambrosio
A statistical model for software releases complexity prediction 361
Marco Ortu, Giuseppe Destefanis, Roberto Tonelli
Comparison of serious diseases mortality in regions of V4 365
Viera Pacáková, Lucie Kopecká
Price and product design strategies for manufacturers of electric vehicle 369 batteries: inferences from latent class analysis
Friederike Paetz
A Mahalanobis-like distance for cylindrical data 373
Lucio Palazzo, Giovanni C. Porzio, Giuseppe Pandolfo
Archetypes, prototypes and other types 377
Francesco Palumbo, Giancarlo Ragozini, Domenico Vistocco
Generalizing the skew-t model using copulas 381
Antonio Parisi, Brunero Liseo
Contamination and manipulation of trade data: the two faces of 385 customs fraud
Domenico Perrotta, Andrea Cerasa, Lucio Barabesi, Mario Menegatti, Andrea Cerioli
Bayesian clustering using non-negative matrix factorization 389 Michael Porter, Ketong Wang
Exploring gender gap in international mobility flows through a network 393 analysis approach
Ilaria Primerano, Marialuisa Restaino
Clustering two-mode binary network data with overlapping mixture 395 model and covariates information
Saverio Ranciati, Veronica Vinciotti, Ernst C. Wit, Giuliano Galimberti
A stochastic blockmodel for network interaction lengths over continuous 399 time
Riccardo Rastelli, Michael Fop
Computationally efficient inference for latent position network models 403
Riccardo Rastelli, Florian Maire, Nial Friel
Clustering of complex data stream based on barycentric coordinates 407
Parisa Rastin, Basarab Matei, Guénaël Cabanes
An INDSCAL based mixture model to cluster mixed-type of data 411 Roberto Rocci, Monia Ranalli
Topological stochastic neighbor embedding 415
Nicoleta Rogovschi, Nistor Grozavu, Basarab Matei, Younès Bennani, Seiichi Ozawa
Functional data analysis for spatial aggregated point patterns in seismic 419 science
Elvira Romano, Jonatan González Monsalve, Francisco Javier Rodríguez Cortés, Jorge Mateu
ROC curves with binary multivariate data 420
Lidia Sacchetto, Mauro Gasparini
Silhouette-based method for portfolio selection 424
Marco Scaglione, Carmela Iorio, Antonio D'Ambrosio
Item weighted Kemeny distance for preference data 428
Mariangela Sciandra, Simona Buscemi, Antonella Plaia
A fast and efficient modal EM algorithm for Gaussian mixtures 432
Luca Scrucca
Probabilistic archetypal analysis 436
Sohan Seth
Multilinear tests of association between networks 438
Daniel K. Sewell
Use of multi-state models to maximise information in pressure ulcer 442 prevention trials
Linda Sharples, Isabelle Smith, Jane Nixon
Partial least squares for compositional canonical correlation 445
Violetta Simonacci Massimo Guarino, Michele Gallo
Dynamic modelling of price expectations 449
Rosaria Simone, Domenico Piccolo, Marcella Corduas
Towards axioms for hierarchical clustering of measures 453
Philipp Thomann, Ingo Steinwart, Nico Schmid
Influence of outliers on cluster correspondence analysis 454
Michel Van de Velden, Alfonso Iodice D'Enza, Lisa Schut
Earthquake clustering and centrality measures 458
Elisa Varini, Antonella Peresan, Jiancang Zhuang
Co-clustering high dimensional temporal sequences summarized by 462 histograms
Rosanna Verde, Antonio Irpino, Antonio Balzanella
Statistical analysis of item pre-knowledge in educational tests: latent 466 variable modelling and optimal statistical decision Chen Yunxiao, Lu Yan, Irini Moustaki
Evaluation of the web usability of the University of Cagliari portal: an eye 468 tracking study
Gianpaolo Zammarchi, Francesco Mola
Application of survival analysis to critical illness insurance data 472
David Zapletal, Lucie Kopecka

CONSENSUS CLUSTERING VIA PIVOTAL METHODS

Leonardo Egidi ${ }^{1}$, Roberta Pappadà ${ }^{1}$, Francesco Pauli ${ }^{1}$ and Nicola Torelli ${ }^{1}$
${ }^{1}$ Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche 'Bruno de Finetti', Università degli Studi di Trieste, (e-mail: legidi@units.it, rpappada@units.it, francesco.pauli@deams.units.it, nicola.torelli@deams.units.it)

Abstract

We propose an approach to the cluster ensemble problem based on pivotal units extracted from a co-association matrix. It can be seen as a modified version of K-means method, which utilizes pivots for careful seeding. Different criteria for identifying the pivots are discussed, as well as preliminary results concerning the comparison with alternative ensemble methods.

KEYWORDS: cluster ensemble, pivot, K-means.

1 Introduction

Ensembles methods have recently emerged as a valid alternative to conventional clustering techniques and have shown to effectively improve the quality of clustering results and achieve robustness (see, e.g., Strehl \& Ghosh, 2002, Jain, 2010). Such methods require a strategy to generate multiple clusterings of the same data set (the ensemble) and then combine them into a consensus partition (presumably superior), by following the idea of evidence accumulation, i.e., by viewing each clustering result as an independent evidence of data structure. A common way to do this is to obtain a new pairwise similarity matrix, or co-association matrix, by taking the co-occurrences of pairs of points in the same group across all partitions (Fred \& Jain, 2005). Then, a similarity-based clustering algorithm can be applied to this matrix to yield the final partition.

We propose to use the co-association matrix to find some specific units (hereafter, pivots) which are representative of the group they belong to (because they never or very rarely co-occur with members of other groups). Various criteria for detecting the pivots are proposed in Section 2. Section 3 illustrates the use of pivotal methods for data clustering, and compare the proposed approach with classical K-means and other common ensemble methods.

Pivotal methods and related clustering procedures are implemented via the R package pivmet, available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=pivmet.

2 Pivotal methods based on co-association

Let $\mathbf{Y}=\left(y_{1}, \ldots, y_{n}\right)$ be a set of n observations, where $y_{i} \in \mathbb{R}^{d}$. Consider a set $\mathcal{P}=\left\{P^{1}, P^{2}, \ldots, P^{H}\right\}$ of H partitions of the data points into K disjoint clusters, derived from an arbitrary clustering algorithm. Note that the number of groups is pre-specified and equal for all $P^{h} . \mathscr{P}$ can be summarized via the $n \times n$ coassociation matrix C with generic element

$$
\begin{equation*}
c_{i, j}=\frac{1}{H} \sum_{h=1}^{H}\left|P^{h}\left(y_{i}\right)=P^{h}\left(y_{j}\right)\right|, \tag{1}
\end{equation*}
$$

where $|\cdot|$ denotes the indicator function, and $P^{h}\left(y_{i}\right), P^{h}\left(y_{j}\right)$, represent the clusters of the objects y_{i} and y_{j} in P^{h}, respectively. Clearly, units which are very dissimilar from each other are likely to have zero co-occurrences; as a consequence, C is expected to contain a non-negligible number of zeros. Given a large and sparse 0-1 matrix, the Maxima Units Search (MUS) algorithm seeks those elements, among a pre-specified number of candidate pivots, whose corresponding rows contain more zeros compared to all other units (Egidi et al., 2018c). Define a reference partition, G_{1}, \ldots, G_{K} of y_{1}, \ldots, y_{n} obtained by applying, for instance, an agglomerative hierarchical algorithm into K groups. The MUS procedure takes C as input and outputs a set of K units-one for each group of the reference partition-that exhibit the highest degree of separation (Egidi et al., 2018b). As an alternative approach, the pivot $y_{i_{k}}$ for group G_{k} can be chosen so that it is as far as possible from units that might belong to other groups and/or as close as possible to units that belong to the same group, according to one of the following objective functions

$$
\begin{equation*}
\text { (a) } \max _{i_{k}} \sum_{j \in G_{k}} c_{i_{k}, j} \quad \text { (b) } \min _{i_{k}} \sum_{j \notin G_{k}} c_{i_{k}, j} \quad \text { (c) } \max _{i_{k}} \sum_{j \in G_{k}} c_{i_{k}, j}-\sum_{j \notin G_{k}} c_{i_{k}, j}, \tag{2}
\end{equation*}
$$

where $c_{i, j}$ is defined as in (1). Ideally, the $K \times K$ submatrix of C with only the rows and columns corresponding to i_{1}, \ldots, i_{K} will be the identity matrix. In practice, it may contain few nonzero elements off the diagonal.

3 A simulation experiment

In order to illustrate the proposed algorithm, we simulate bivariate data from a mixture of three Gaussian distributions with mean vectors $\boldsymbol{\mu}_{1}=(1,5), \boldsymbol{\mu}_{2}=$

Figure 1. Mixture of three Gaussian distributions (sample size $n=620$). Cluster centers and/or pivots for each method are marked via asterisks and triangles, respectively.
$(4,0), \boldsymbol{\mu}_{3}=(6,6)$, and the 2×2 identity matrix as covariance matrix. The components have sample size 20, 100 and 500, respectively (see Figure 1, topleft panel). The K-means algorithm with random seeds is used to generate a cluster ensemble of $H=1000$ partitions, and obtain the co-association matrix C. For each simulated dataset, we proceed as follows:

1. For a given number of clusters K, obtain a partition of the data G_{1}, \ldots, G_{K} (reference partition);
2. Apply the MUS algorithm or one alternative criterion in (2) to the matrix C to find K (distinct) pivots $y_{i_{1}}, \ldots, y_{i_{K}}$;
3. Run the K-means algorithm using the pivots as initial cluster centers.

The proposed modification of the standard K-means technique introduces a pivot-based initialization step with the aim of reducing the effect of random seeding (see also Egidi et al., 2018a). An alternative approach to careful seeding can be found in Arthur \& Vassilvitskii, 2007. Figure 1 shows the solution from K-means, using $K=3$, and by pivotal methods MUS and criterion (b) in Eq. (2), where Average-Linkage (AL) agglomerative clustering is used to obtain the reference partition. The results of consensus clustering using PAM (Partitioning Around Medoids) method and AL-agglomerative hierar-
chical clustering (agnes) are also shown (Single Linkage (SL) and Complete Linkage (CL) give similar results). Table 1 reports the comparison between the different methods in terms of Adjusted Rand Index (ARI), used to quantify the agreement between two partitions. The mean value is considered for 1000 simulations. Preliminary results suggest that the pivot-based approach outperforms the competing similarity-based ensemble methods and the standard K-means, which gives a mean ARI of 0.659 .

Table 1. 2D Gaussian data: mean ARI (1000 simulations) between the final clustering and the true data partition. Ensemble methods use dissimilarities $1-c_{i, j}$.

Pivotal	MUS	(a)	(b)	(c)
methods	0.857	0.865	0.883	0.779
Ensemble	agnes $(A L)$	agnes $(S L)$	agnes $(C L)$	PAM
methods	0.512	0.535	0.514	0.506

References

Arthur, D., \& VASSILVitskiI, S. 2007. k-means++: The advantages of careful seeding. Pages 1027-1035 of: Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete algorithms.
Egidi, L., PappadÀ, R., Pauli, F., \& Torelli, N. 2018a. K-means seeding via MUS algorithm. Pages 256-262 of: Book of Short Papers SIS 2018.

Egidi, L., PappadÀ, R., Pauli, F., \& Torelli, N. 2018b. Maxima Units Search (MUS) algorithm: methodology and applications. Pages 71-81 of: Studies in Theoretical and Applied Statistics.
Egidi, L., Pappadà, R., Pauli, F., \& Torelli, N. 2018c. Relabelling in Bayesian mixture models by pivotal units. Statistics and Computing, 28, 957-969.
Fred, A. L. N., \& Jain, A. K. 2005. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans. Pattern Anal. Mach. Intell., 27, 835-850.
Jain, A. K. 2010. Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651 - 666.
Strehl, A., \& Ghosh, J. 2002. Cluster ensembles - A knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research, 3, 583-617.

