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Abstract

In this paper we give a new and simplified proof of the theorem on selection of standing
waves for small energy solutions of the nonlinear Schrodinger equations (NLS) that we
gave in [6]. We consider a NLS with a Schrédinger operator with several eigenvalues,
with corresponding families of small standing waves, and we show that any small
energy solution converges to the orbit of a time periodic solution plus a scattering term.
The novel idea is to consider the “refined profile”, a quasi—periodic function in time
which almost solves the NLS and encodes the discrete modes of a solution. The refined
profile, obtained by elementary means, gives us directly an optimal coordinate system,
avoiding the normal form arguments in [6], giving us also a better understanding of
the Fermi Golden Rule.

1 Introduction

In this paper, we consider the following nonlinear Schrodinger equation (NLS):
i0u = Hu + g(uPu, (1,x) e RT3, (1.1)

Here H := —A+V isaSchrddinger operatorwith V € S (R3, R) (Schwartz function).
For the nonlinear term we require g € C*(R, R) with g(0) = 0 and the growth
condition:
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vn e NU{0}, 3C, > 0, |g™(s)] < C, (s)>™" where (s) := (1 + |s|>)'/%.
(1.2)

We consider the Cauchy problem of NLS (1.1) with the initial condition u#(0) = ug €
H'(R3, C). It is well known that NLS (1.1) is locally well-posed (LWP) in H I see
e.g. [4,14].

The aim of this paper is to revisit the study of asymptotic behavior of small (in ')
solutions when the Schrodinger operator H has several simple eigenvalues. In such
situation, it have been proved that solutions decouple into a soliton and dispersive
wave [6,22,24].

To state our main result precisely, we introduce some notation and several assump-
tions. The following two assumptions for the Schrodinger operator H hold for generic
V.

Assumption 1.1 0 is neither an eigenvalue nor a resonance of H.

Assumption 1.2 There exists N > 2 s.t.
oq(H) ={wj|j=1,---,N}, withw; <--- <oy <0,

where o4 (H) is the set of discrete spectrum of H. Moreover, we assume all w; are
simple and

vm e ZV \ {0}, m-w # 0, (1.3)
where w := (w1, - -+, wy). We set ¢; to be the eigenfunction of H associated to the
eigenvalue w; satisfying ||¢;];2 = 1. We also set ¢ = (¢1, -+ , dn).

Remark 1.3 The cases N = 0, 1 are easier and are not treated it in this paper. Unfortu-
nately, Assumption (1.2) excludes radial potentials V (r), for r = |x|, where in general
we should expect eigenvalues with multiplicity higher than one. In fact the symmetries
imply that each eigenspace ker(H — w;) is spanned by functions which in spherical
coordinates are separated and are of form %u j,l(r)ei’”@ P/"(cos(¢)) for appropriate
1 € NU {0} with P;" Legendre polynomials, and m taking all values between —/ and
1, so that, if [ > 1, the multiplicity is at least 2/ 4 1. See p. 778 [5].

As it is well known, ¢ ;’s are smooth and decays exponentially. For s > 0,y > 0,
we set

H;,‘ ={ue H| lull g == | cosh(yx)ullms < oo}

The following is well known.
Proposition 1.4 There exists yg > 0 s.t. forall 1 < j < N, we have ¢; € ﬂson)‘fo.

Using yp > 0, we set

B = HS ifs 20, B = (H,*)* ifs <0, 207 := (%% and ™ := Nz 2"
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We will not consider any topology in £°° and we will only consider it as a set.

In order to introduce the notion of refined profile, we need the following combina-
torial set up.
We start the following standard basis of RY , which we view as “non—resonant” indices:

NRg:={e;j|[j=1,---,N}, e := (81, ---,0n)) € ZN,(SU the Kronecker delta.
(1.4)

More generally, the sets of resonant and non-resonant indices R, NR, are

Ri=meZ"'|) m=1,0-m>0, NR:=meZ'|) m=1 0 m<0},
(1.5)

where > m := Zj-v:l mjform = (my,--- ,mpy) € ZN.
From Assumption 1.2 itis clear that {m € Z" | > m = 1} = RUNRandNR( C NR.
Form = (m,--- ,my) € Z", we define

N
m| = (Imi|,- |y € ZV, m] =) "jm| = "|m;l,  (1.6)
j=1

and introduce partial orders < and < by

m=n &grVjef{l,---, N}, mj <nj, and m=<n &grm=n andm # n,
1.7

where n = (n1, - - - , ny). We define the minimal resonant indices by
Ruin ;= {m e R | #n e Rs.t. n| < m|}. (1.8)

We also consider NR; formed by the nonresonant indices not larger than resonant
indices:

NR; :={m € NR | Vn € Rpj,, [n| £ |m|}. (1.9

Lemma 1.5 Both Ry, and NR are finite sets.

For the proof see Appendix A.

We constructively define functions {Gm}meR,,, C X which will be important in
our analysis.

For m € NRj, we inductively define am (0) and gm (0) by

$e,(0) =}, g, () =0, j=1,--- N, (1.10)
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and, form € NR; \ NRy, by

$m(0) := —(H —m - ©) ' gm(0), (1.11)
o0
1 ~ ~
gm(©0) =) —g"(0) > Gmy (0) -+ Pmy,,,, (0), (1.12)
m=1"" (myp,- ,myy41)€A(m,m)
where
m m 2m+1
Am,m) = m " e (NRDHH Y "myj =) myj=m, ) m;| = |m|
j=0 j=1 Jj=0
(1.13)

Remark 1.6 For eachm > 1 and m € NR|, A(m, m) is a finite set. Furthermore, for
sufficiently large m, we have A(m, m) = ¢. Thus, even though we are expressing
gm(0) in (1.12) by a series, the sum is finite.

For m € Ry, we define Gy, by

o
1 ~ ~
Gm =) %g(’")(O) > Gy (0) - - - by, (0). (1.14)
m=1 """ (my, - ;M) €A (m,m)

Remark 1.7 g (0) and Gy, are defined similarly. We are using a different notation to
emphasize that g, (0) has m € NR, while Gy, has m € Ry

The following is the nonlinear Fermi Golden Rule (FGR) assumption.

Assumption 1.8 For all m € Ry,j,, we assume
/ IGm(0)>dS #0, (1.15)
¢ >=m-©

where 6,,, is the distorted Fourier transform associated to H.

Remark 1.9 Inthe case N = 2 and w; + 2(wy — w1) > 0, we have Gy, = g/(O)qblqb%,
which corresponds to the condition in Tsai and Yau [25], based on the explicit formulas
in Buslaev and Perelman [3] and Soffer and Weinstein [21]. These works are related to
Sigal [20]. Other partial results are in [8—11]. More general situations are considered in
[6], where however the G, are obtained after a certain number of coordinate changes,
so that the relation of the G, and the ¢;’s is not discussed in [6] and is not easy to
track.

For a generic nonlinear function g the condition (1.15) is a consequence of the
following simpler one, which is similar to (11.6) in Sigal [20],

/| . |p™(¢)|?dS # 0 for all m € Ruin (1.16)
{|f=m-w
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where ¢™ = ]_[j=1 .... N ¢7j. Both conditions (1.15) and, even more so, (1.16) are
simpler than the analogous conditions in Cuccagna and Maeda [6].
We have the following.
" [y =1
Proposition 1.10 Let L = sup — m € Ry,in ¢ and suppose that the operator
H satisfies condition (1.16). Then there exists an open dense subset @ of RE™! s.t. if
(&'(0), ..., g'P(0)) € Q such that Assumption 1.8 is true for (1.1).

Proof See Sect. A. O
Forz= (z1,---,zy) € CV,m = (my,--- ,my) € Z¥, we define
. (my) (mpy) (m) .__ " m = 0
™= e C, where = and 1.17
7 iy z :2_’" m <0, (1.17)
N
2 = (al, oL lanl) €RY, 2l =) Jl2l = ) 1zl € R (LI8)
j=1

We will use the following notation for a ball in a Banach space B:
Bg(u,r):={veB||v—ulp<r} (1.19)

The “refined profile” is of the form ¢(z) = z - ¢ + o(]|z||) and is defined by the
following proposition.

Proposition 1.11 [Refined Profile] For any s > 0, there exist §; > 0 and Cy > 0 s.t.
85 is nonincreasing w.r.t. s > 0 and there exist

(YmImeng, € C¥ By (0,87), (EH™NR), @ () € C®(Bn (0, 67), RY)
and R € C®(Ben (0, 85), &%),

st.w(0,---,0) =, Yym(0) =0 forallm € NR; and

IR@llss < Collzl> D 12, (1.20)
meRpyin
and if we set
¢@ =z-¢+ Y 2"Ym(lz]*) andz;(t) = i (7 (1.21)
meNR;

then, setting z(t) = (z1(t), - - - , 2n(2)), the function u(t) := ¢ (z(t)) satisfies

0 = Hu+g(ul>u— Y 2()™Gm — R((1)), (1.22)
meRpin
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16  Page 6 of 34 S.Cuccagna, M. Maeda

where {Gm}R,,;, C (Z"")’:Rmin is given in (1.14). Finally, writing Yrm = ,(,f), w =

@ and R = R, for s < 52 we have ySV (|- 12) = ¥32 (|- 1), w0 (|- |?) =
w2 (|- 12) and REY = R in By (0, 8y,).
Proof See section 4. O

The refined profile ¢ (z) contains as a special case the small standing waves bifur-
cating from the eigenvalues, when they are simple.

Corollary 1.12 Let s > O and j € {1,---, N}. Then, for z € Bc(0, &), ¢ (z(t)ej)
solves (1.1) for z(t) = emimi(ize P,
Proof Since (ze;)™ = 0 for m € Ry;,, we see that from (1.20) and (1.22) the

remainder terms ZmERmin z(t)™Gm + R(z(2)) are 0 in (1.22). Therefore, we have the
conclusion.

Remark 1.13 1If the eigenvalues of H are not simple the above does not hold anymore
in general. See Gustafson-Phan [12].

We call solitons, or standing waves, the functions

(@) == P(ze)). (1.23)
The main result, which have first proved in [6] is the following.

Theorem 1.14 Under the Assumptions 1.1, 1.2 and 1.8, there exist 8o > 0 and C > 0
s.t. for all ug € H' with ||lug| 1 < 8o, there exists j € {1,---, N}, z € C'(R, C),
ny € H and p; > 0 s.t.

lim [lu(t) — ¢, (z(1) — e “nyll g =0,
11— 00
and
Jim 120 = py. CHuolln < pF + In4ll7 < ClluollZ,r.

The organization of the paper is the following. In the rest of this section, we outline
the proof of the main theorem (Theorem 1.14). In Section 2, we introduce the mod-
ulation and Darboux coordinate and compute the Taylor expansion of the energy. In
section 3 we prove the main theorem (Theorem 1.14). In section 4 we prove Proposi-
tion 1.11. In section 5, we state an abstract Darboux theorem with error estimate and
apply it to prove Proposition 2.4. In the appendix of this paper, we prove Lemma 1.5
and Proposition 1.10.

We now outline the proof of Theorem 1.14. First of all, the fact that NLS (1.1) is
Hamilton is crucial. Indeed, when we consider the symplectic form

Q(-, ) :== (i-, ), (u,v) := Re(u, v) where (u, v) := f3 u(x)v(x)dx, (1.24)
R

@ Springer



Coordinates at Small Energy and Refined Profiles... Page70f34 16

and the energy (Hamiltonian) by

1
E(u) = 5 (Hu.u) + % /RS G(u@)?) dx, (1.25)

where G(s) := fg g(s)ds, we can rewrite NLS (1.1) as
o = XV ().

Here, for F € C! (H 1 R), X ;O) is the Hamilton vector field of F associated to the
symplectic form ¢ defined, for D F is the Fréchet derivative of F, by

QxY, ) = DF.

Next, as usual for the study of stability of solitons, we give a modulation coordinates
in H! in the neighborhood of 0. In this paper, we use

(z,n) = u=d¢@+n, (1.26)

while in [6] we were using

@m>u= Y ;) +R@n (1.27)

j=1,...N

for specific near identity operator R(z) which was first introduced in [13]. Here, in both
(1.26) and (1.27), n is taken from the continuous component of H. That is, P.n = n,
where

Pt i=u— Z (u, ¢j)pj + (u.ig;)ig;) . (1.28)

The difference between the two coordinates (1.26) and (1.27) is that in (1.26) we are
using the refined profile which takes into account the nonlinear interactions within the
discrete modes. While the discrete part in (1.26) is more complicate than in (1.27), to
prove Theorem 1.14 for N > 1 we do not need the R(z) in front of 7.

Unfortunately, even though €2 is a deceptively simple symplectic form, in the
coordinates (1.26) it is complicated (it is very complicated also using coordinates
(1.27)). We thus introduce a new symplectic form

Q1(, ) = Q0(D2¢(2) Dz -, Dy¢(2) Dz ) + Qo(D1) -, D1p-), (1.29)

which is equal to Q¢ at u = 0. Here, D, is the Fréchet derivative w.r.t. the z variable.

By Darboux theorem there exists near O an almost identity coordinate change ¢
such that Q1 = ¢*Qq. In section 5 we give a rather simple proof of the type of Darboux
theorem needed, viewing it in an abstract framework simplifying the analogous part
of [6].
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16  Page 8 of 34 S.Cuccagna, M. Maeda

For K = ¢*E, the system becomes
iz = (1+O0(|2|*)V,K, idn= VK,

where V, and V,, are the gradient corresponding to the Fréchet derivative w.r.t. z and
1. In the new coordinates, the energy K expands

K = E(¢(@) + E(n) + (R(2), n) + error.

When using the coordinate system (1.27), in order to estimate the solutions it is
necessary like in [6] to make further normal forms changes of variables. But using
coordinates (1.26) we are ready for the estimates and there is no need of normal forms.
First of all, we have R(z) = ZmERmin ™G + error, see the First Cancellation
Lemma, Lemma 2.6. This implies that

i1 = Hn + Peg(Inn+ Y (2 Gm, 1)+ error. (1.30)

meRpin

Thus, by the endpoint Strichartz estimate, to show that »n scatters it suffices to show
M ¢ L2(]R) for m € Rpin. To check this point, we consider

d
S E@®) = > {E@ @), (z"Gm, )} + error,

meRpin

where {-, -} is the Poisson bracket associated to £2;. We obtain
{E@@), (2" Gm. n)} = (@ m)(iz" Gm, n) + error, (1.31)

where, see below (3.11) and as a consequence of the Second Cancellation Lemma,
Lemma 2.8,

lerror| < |z Z |z™| for all |z| < 1.

meRp;,

Notice that z’f does not satisfy this inequality no matter how large we take £ € N, so
the error term in (1.31) is not just small, but has a specific combinatorial structure. In
[6], to get the structure (1.30) and to bound z, a painstaking normal forms argument
was required, but here these fact come for free.

From this point on, the proof ends in a standard way. Since n ~ —z™(H — w -
m — i0)~! G, where the latter is the solution of (1.30) without the nonlinear term
and “error”, we have, omitting errors

%E(qﬁ(z)) = Z (@ - m)|z™|? <iGm, (H—w-m— iO)_le>.

mGRmin
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Since (iGm., (H — @ - m — i0) "' G ) equals (1.15) in Assumption 1.8 which we have
assumed positive, this above idealized identity yields

E@@o)+ Y 12™72,, < E@@O0)).

meRpiy

Using this, we can close estimates.

We conclude with a few comments on refined profiles, which play a central role
in our proof. One of the distinctive features of our system is the existence or non
existence of small quasi—periodic solutions which are not periodic. Sigal [20] stated
their absence, and this follows from [6] and our analysis here. The z™ G, terms in R (z)
are resonant, cannot be eliminated from the equation exactly if (1.15) holds and are an
obstruction to the existence of quasi—periodic solutions. On the other hand, there are
no resonant terms in the discrete NLS with N = 2, where quasi-periodic solutions are
proved to exist in Maeda [15]. Furthermore, in Maeda [15] an equivalence is observed
between being able to see quasi—periodic solutions, absence of resonant terms in the
equations and, finally, existence of coordinate systems where the mixed term (R(z), n),
that is nonlinear degree 1 in 7, is absent from the energy. Our main insight here is that,
since there are no small quasi—periodic solutions, we might try to replace them with
a surrogate (refined profiles), in the expectation of an equivalence, analogous to that
considered in Maeda [15], between this surrogate and optimal coordinate systems. This
works and, while in [6] we searched directly, and with great effort, for the coordinates,
here we find, with a relatively elementary method, the refined profiles. Starting from
the refined profiles we define a natural coordinate system. It turns out that these
coordinates are optimal, as is seen in elementary fashion noticing that the fact that
the refined profiles are approximate solutions of (1.1), specifically they solve (1.22),
provides us the two Cancellation Lemmas, which in turn guarantee that our coordinates
are optimal. We end remarking that refinements of the ansatz were already in the great
series by Merle and Raphael [16—19], which has inspired our notion of refined profile.

2 Darboux Coordinate and Energy Expansion

We start from constructing the modulation coordinate. First, we have the following.

Lemma 2.1 Forany s € R there exist 8, > 0 andz € C*®(Bx (0, 8;), CN) s.t.
u—¢@m) e P.x7,

where P, is given by (1.28).

Proof This is animmediate consequence of the implicit function theorem. We consider
Fi(z,u) =(¢p@) —u,¢;)+i{u — ¢(2),ip;) for j =1, ..., N.

Wehave F := (F1, ..., Fy) € C® (27 xBcn (0, 8o), CN) for 8y > 0 given in Propo-
sition 1.11. Obviously F|; ,)=.0) = 0 and from ¥, (0) = O for all m € NRy , it
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16  Page 10 of 34 S. Cuccagna, M. Maeda

follows Dz F'|(z ,y=(0,0) = Idcw~, where D, F is the Fréchet derivative w.r.t. the z vari-
able. By implicit function theorem we obtain the desired z € C*®(Byx-s (0, &5), CV)
for some &5 > 0.

By Lemma 2.1, we have our first (modulation) coordinate.

Proposition 2.2 For any s € R there exist §g > 0 s.t. the map

Ben (0, 85) x Bp,x-s(0,85) > (z,n) — ¢(z) +ne X °, X =X or H',
@.1)

is a C* local diffeomorphism. Moreover, we have

llellxs ~s Nzl + lnllxs-

Proof 1t is an direct consequence of Lemma 2.1.

For Banach spaces X, Y, we set L(X, Y) to be the Banach space of all bounded
linear operators from X to Y. Moreover, we set L(X) := L(X, X).
For F € C'(By1(0, 8), R), we write

F(z,m) = F(¢(2) +1n).

We define D, F(z,n) € C(By1(0,9), L(P.H',R)) and V,F(z,n) € C(By1(0,6),
P.H™ ") by

d
VY € P.H', D,F(z, )Y = (V,F(z,1),Y):= —

F(z, .
Ie (z,n + €v)

e=0

Here, for Banach spaces A, B, L(A, B) is the Banach space of all bounded operators
from A to B. Similarly, we define V, F'(u) = V,F(z,n) € C(By1(0, d), CM) by

d
vw e CN, (V,F(z, 1), Wyen i= Dy F(z, )W = —

F(z W, n),
7e (z+ew,n)

e=0

N _
where (w1, w2)cv = Re ijl w1 jwa; for wi = (wkp, -+, win).
Using the above notations, foru € By1(0,8) and Y € H ! we have

DF(Zv 77)Y = <VZF(Z’ n)ﬂ DZY)(CN + D?’]F(Zﬂ 77)D77Y’ (22)
where Dz and Dn are Fréchet derivatives of functions z(u), n(u) := u — ¢ (z(un)).
Notice that, since the Fréchet derivative of the identity map u +— u is an identity,
we have
Idxs = Du = D,¢(z) Dz + Dn. 2.3)

Remark 2.3 Even though n = P.n, Dn is not P, except at u = 0.
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By (2.3), we have

Qo =Q0(D,$(2) Dz, Dy (2) Dz) + Q0(D1, D) + S20(D2¢(z) Dz, D)
+ Q0(Dn, D¢ (z) Dz).

Therefore, removing the cross terms (the latter two terms), we have the symplectic
form € givenin (1.29). Given F € c! (By1(0, 8), R), the Hamilton vector field Xg,l)

associated to the symplectic form €21 is defined by €2 (X (Fl), -) = DF.Thus, by (2.2),
we have

<iDz¢(z)DzX(l), Dz¢(z)DzY> + <ian<”, DnY> = (V,F, DzY)ex + Dy FDnY.
2.4)

In particular, we have
. (nH _
iDnXp = V,F. 2.5)

We turn to z. Setting ¥ (z) := ZmeNRl 2™V (1z|%), we have ¢(z) = z - ¢ + ¥ (z)
with [¥(@)]lzs S llzl*. Then, since V,p()w = w - ¢ + Opcon x5 (2w,
le @, Wy - ) = (iwy, wa) v and L(CN x CN,R) ~ £(CV), we see there exists
A € C®(Ben (0, 89), LICV)) s.t.

(iqub(z)DzX(l), Dz¢(z)DzY> = <i (1+ A(@) DzxV DzY>CN ,

with || A()| £V S NIzl Thus, setting A € C®(Ben (0, ), LICV)) by 1+A(z) =
(1+ A()~", we have |A@)| ¢ vy < ll2]* and

iDzxY = (1 4+ A@)V,F. (2.6)

The following proposition allows us to move to the “diagonalized” symplectic form
Q.

Proposition 2.4 For any s > 0 there exists §g > 0 and ¢ € C®(Bx-s(0, 85), %)
satisfying

lp@) — ullss < Cyllz@) [ 10l 2.7
which is a local diffeomorphism and such that
(p*Qo = Ql.

We give the proof of Proposition 2.4 in section 5. It will be a direct consequence
of an abstract Darboux theorem with error estimate (Proposition 5.8).
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16  Page 12 of 34 S. Cuccagna, M. Maeda

We study the dynamics of u™ = @~ (u), where u is the solution of NLS (1.1) with
l(0)|| g1 < 1, which reduces to the study of the dynamics of z(u*) and n(u*). Since

u(t) is the integral curve of the Hamilton vector field X (0), u*(t) is the integral curve

of the Hamilton vector field Xg), where K := ¢*E = E(¢(-)). By (2.5), (2.6), we
have

ion =VyK(z,n), idz= (1+ A(2))V,K(z,n). (2.8)

To compute the r.h.s. of (2.8), we expand K. Before going into the expansion, we
prepare a notation to denote some reminder terms.

Definition 2.5 Let F € C!(By1(0, 8), R) for some § > 0. We write F = R if, for
s > 0, there exists 8; > 0 s.t. for ||u|| ;1 < 85 we have

IV F@)llzs + | (Vo F @), ia@) | S lullgn | I3+ Y. 2™ |, @9
meRyin
where a(z) =z or ||a(z)|| < ZmeRmin |z™|. In our notation, if F = R and G = R,

we will have F + G = R;. So, an equation like F + R = R will not mean F = 0
but only /' = R;. This rule will also be applied to R, below.

By Taylor expanding F (s, t) = K (sz, tn), we have
1
K@ n) =K(©O.n) + K(z.0) +/ 9,0,K (52, 0) ds
0

1 1
+/ / (1 — 1)3,0°K (sz. tn) dids. (2.10)
0 0

Since ¢(n) = n by (2.7), we have K (0, n) = E(n). Similarly, since ¢(¢(z)) = ¢(z),
we have K (z, 0) = E(¢(z)). The third term of the r.h.s. of (2.10) is

1
/ 050:K (sz,0)ds = 0;K(z,0) = (V,,K(z, 0), n),
0

because D; K (0, 0) = 0. The following lemma is the crux of this paper.

Lemma 2.6 (First Cancellation Lemma) We have, near the origin,

VyK (z,0) = P.Do(¢(z))* Z 2"Gm+R@) |. (2.11)
meRpin
Proof We fix arbitrary zo = (zo1, - - - , zon) € Bcn (0, 8o) with 8¢ sufficiently small.
It is enough to prove (2.11) with z = zy. We set zo(t) = (zo1(¢), - -+ , zon (1)) € CcN
with
20, () = e~ @117,
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where w; is also given in Proposition 1.11. Consider the non-autonomous Hamiltonian

Eyy(u,t) == E(u) - Z (20()™Gm, u) — (R(zo (1)), u) .

meRmin

Then, the Hamilton vector field X g)) (u, t) of Eyy(u, t) associated with the symplectic
Z0
form Qg is

iXg) (1) = Hu+ g(ulPu— Y~ 20()™Gm — R(zo(1)) -

meRpin

Thus, by Proposition 1.11, ¢ (zo(¢)) is the integral curve of this flow with initial value

¢(20).
Consider now the pullback of Ey,(u, t) by the ¢ of Proposition 2.4. By Taylor expan-
sion we get

w*Ezo(u,z>=K(u>—< > Zo(t)me+R(Zo(l)),w(u)>=

meRy,in

1
K(u) — < Y ®™Gm + Rz(1)), $(2) + Do(p(2)n +/0 (1= )D?p(p(z + s1) (. n)>~
mERmm

Differentiating in n at n = 0, yields

Vi (9" Eey )], = VoK |,_o — Pe(De(¢ (@) ( Y 2(®"Gm +R<zo<r>>) :

meRpin

Because of (2.7), we know that (p‘l (¢ (z)) = ¢(z) for all z. Then, ¢ (zg) is an integral
trajectory also for ¢* E, (u, t). But since, in (z, n), integral trajectories satisfy i =
v, ((p*EZO (t)), from n = 0 and, thus, from 7 = 0, it follows that V,, ((p*EZO (t)) |

—0 =
0. So, for = 0, we obtain (2.11). !
By Proposition 2.4, Definition 2.5 and (2.11), we have
(VoK@ 0).n)= ) ("Gm.n)+Ri. (2.12)

mERmin
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We next study the last term in r.h.s. of (2.10). By direct computation, for the linear
part of the energy we have

0507 (Ho(s¢ (@) + 1), ¢(s (@) + 1)
= 4(HD (9@ + 1) (@. ). D56 @) + 1))
+2(HD?¢(s¢@ + )0, ), Dp(s9 (@) + 1))

+2(HD 656 @ + 1)@, 0. 1), 956 @ + ).

Thus,

1 1 1
5/0 /0 (1 — 10,0} (Ho(sp (2) + tn), p(s¢(2) + tn)) dtds =Ry.  (2.13)

For the nonlinear part of the energy, we have

0,07 /R GlursP)dx = 4(28"ur, (Re (s 7)) +2¢Re (s 7) + ¢'ue 1, @)
+2 <2g’uz,sRe (uz,schp(n, n)) +gD*p(n. ), 5)
+4(2¢'us e (15 ) + 7. D*0(6 @). )
+ 2<guz,s, D ¢(¢(2), n, n)>. (2.14)
where u;, := ¢(s¢(z) + 1), i = Do(sdp(2) + tn)n, § = De(sp(z + 11))¢ (2),

g® = ¢® (Ju; 51*) and DMlg = Do (s (z) + 1) fork = 0,1, 2.
To handle these terms, we introduce another notation of error terms.

Definition 2.7 Let § > O and F € C3(BH1(0, 8),R). We write F = Ry if Fisa
linear combination of functions of the form

1 1
/0 /0 (1 ) (f Gur.e). FCurs) . 7. m)) dtds,

where f(u)(x) = f(Reu(x), Imu) with f € C®°(R2, C) and where either one or
the other of the following two conditions are satisfied:

M [f1 )] S IsH)% 10y, fs1,5] S (92 (= 1,2), 185,05, f(s1.52)] S (s)
(j.k=1,2) and f(u)(¢. 1. 1) := (De(u)$) (De(u)n)*; )

D) | f (s, sl S 15 ()% 105, f(s1.5)] S sl ()* (G = 1,2), 105,95, f(s1.52)] <
()% (j.k = 1,2) and f(u) (¢, 1. n) = (Dpu)$) D*p(u)(n. n) or De(u)nD*¢
() (¢. ) or D> (u) (¢, 1. ).

Here, s = (s1, 52) and |s| = (s7 4+ s3)1/2, (s) = (1 + 57 +53)1/%.

@ Springer



Coordinates at Small Energy and Refined Profiles... Page150f34 16

Thus, we have

1 pl
l/ / (1— t)3s3t2/ G(lp(s¢ @) + ) dx = Ra. (2.15)
2 Jo Jo R3

We record that under the assumption |ull ;1 < 1, we have
IV2Rall S Hlaell o Il 6. (2.16)

Summarizing, (2.10), (2.12), (2.13) and (2.15) we have

Kw) =E@@)+Em+ Y (2"Gm.n)+Ri+Ra. (2.17)

mMeERmin

We can study the structure of E (¢ (z)) by an argument similar to the proof of Lemma
2.6.

Lemma 2.8 (Second Cancellation Lemma) We have
(14 A@)V,E(¢(@) = A(|z]P)z + B(2), (2.18)

where, A(1z])w := (w1 (z]))wy, -+, oy (2P wy) and |B@) | S Yomer,,;, 12"

|z

Proof Fix zg € Bcw (0, 8p) and consider zo(¢) and Ey, (u, t) as in the proof of Lemma
2.6. Then (zo(t), 0) is an integral curve of ¢* E,, (u, t) and for t = O we have

A(1zoM)z0 = (1 + A(20)) Valy—gg.n—0.1=0 (¢* Ezo (u, 1))

= (1 + A@)) Valyeyy E<¢(z>)—< 3 za“Gm+R<zO>,¢<z>>

mERmm

This yields the equality (2.18) at z = z( with the desired bound on the remainder term,
thanks to

vzlz:zo < Z zlonGm + R(zo), ¢(Z)>

meRyin

< > PG+ Ria), vzlz_zo¢<z)>

meRpin

=

> 2'Gm+ R(z0)

meRpiy

I Valozy 8@l 2@y S D 1281-
L2(R3) meRy;iy

3 Proof of the Main Theorem

Given an interval I C R we set

Stz/ (1) := L HI(I) N L2W/S(1), Stz* (1) := LI HI (1) + L>W/%/3(1), j =0,1,
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where H = L? and W7 = L?. We will be using the Strichartz inequality, see [26]:

t
—itH —i(t—s)H .
le ™  Povllg,i S vl g, ||f eI £y dslgyi S I fllgyris 7 =0, 1.
0

We now consider the Hamiltonian system in the (z, n) with Hamiltonian K and sym-
plectic form €21. Then we have the following.

Theorem 3.1 (Main Estimates) There exist §g > 0 and Cy > 0 s.t. if the constant
luopll g1 < 8o for I = [0, 00) and C = Cqy we have:

Il + Y 12™0 20, < Cliuollg, 3.0

meRyin

121l 1., < Clluoll 1. (3.2)

Furthermore, there exists p1 € [0, 0c0) s.t. there exist a jo with p4; = 0 for j # jo,
and there exists ny € H' with I+l g1 < Ce for C = Co, such that

: A _ . OV —
im0 — el =0 L lim [z = p. (3.3)

Note that from the energy and mass conservation, Definitions 2.5 and 2.7, (2.16),
(2.17) and Lemma 2.8 and we have the apriori bound

||z||Wt1~°°(]R) + ||77||L;’0H1(R) 5 ||M()||Hl

The proof that Theorem 3.1 implies Theorem 1.14 is like in [6]. Furthermore, by
completely routine arguments discussed in [6], (3.1) for I = [0, c0) is a consequence
of the following Proposition.

Proposition 3.2 There exists a constant cy > 0 s.t. for any Co > co there is a value
8o = 60(Co) s.t. if (3.1) holds for I = [0, T] for some T > 0, for C = Cy and for
ug € By1(0, &), thenin fact for I = [0, T'] the inequalities (3.1) holds for C = Cy/2.

The rest of this section is devoted to the proof of Proposition 3.2. In the following,
we always assume (3.1) holds for C = Cj and the integration w.r.t. ¢ is always be over
I.

We fist estimate the contribution of R, j =1, 2.

Lemma 3.3 Under the assumption of Proposition 3.2, there is a constant C(Cy) such
that

IVyR st < CCOlluoll. j=1,2.
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Proof For R, we have

1y Rl < IV Rill 251y S ol (nnnsml(,) + ) ||zm|L;(,)) < Colluoll -

meRy;i,

We next estimate type (I) of Ry. Ignoring the integral w.r.t. # and s and the complex
conjugate, which are irrelevant in the estimate, we have

Dy Row = (f (ww, §7%) + (f ), D*@()(¢, w)TF* + 267 D*p(u) (n, w) + 2¢7w). (3.4)

where f/(u)w = g f(u)Rew + 9; f(u) Im w and @, 7 are defined in (2.14). The
contribution of the first term in the r.h.s. of (3.4) can be estimated as

T2 3 3
1 @0 Nl 2 o5 S Nzllzgenll eepslinlizzre < Colluollz, (3.5

where we have used || (u) [l ;6 < 1 and the Sobolev embedding H! — L°
Furthermore,

19 (/@) 200 S 1" OVl 2605 + 1LF V2B 2o
+ 1 @SNVl 205, (3.6)

and, using Sobolev’s embedding W16 < L%,

T~2 7 3 3
1" O VeudiPl 205 S 1) Bll e 61 Vatell e 2 1l 2o Il o6 S CFlluoll3r-

Similar estimates hold for the other two terms in (3.6).
Turning to the contribution of the second term in (3.4), we have

sup  [(f @), Do) (@, w)T)| S IF@n*lg-1lls-1 w1 < Nzl f @l Loss

lwll y1.6/5)« <1
S lzlllull g2ngs Il ) 16, poolln 36
where we have used (W!6/5)* < $~1 and L%> < £~! which hold by duality.
Thus, we have the estimate < Cy||ug ”?’-I' for this term too. The third term in (3.4) can
be estimated just as the second term and the fourth term can be estimated just as the

first term.
The estimates of the type (II) terms in R, is similar, easier and is omitted.

From

i =V, K@) =P [ Hn+g(nPn+ Y 2"Gm+VyRi+VyRa |,

meRpin
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by Lemma 3.3 we obtain

nllser S luollg + CColluolizy + Y 2™l 2. 3.7

meRpin

We need bounds on z. We set Z := ZmeRmin "R, (m - w)P.Gy and & :=n + Z,
where R (L) := (H — A —i0)~!. Then,

0§ = Pe (HE + gy + VyR1 + V,Ra + Rs )
where R3 :=10;Z — HZ + ZmeRmm z™ P.Gp,, which satisfies

R3 = Z amR4 (M - ©) P-Gry, where ap = i0;(z™) — (m - @)z™.

meRyi,

Lemma 3.4 Under the assumption of Proposition 3.2, there is a constant C(Cy) such
that

lamll 2y < C(Co)lluol 31 (3.8)

Proof We have ay = Zj-vzl am,j With

m-(iaz-—w-z~)£ifm‘>0
am,.,:{ I TR ! (3.9)

mj(idzj — ijj)%_ ifm; <0.
By (2.6), (2.17) and Lemma 2.8, we have

iale —w;Zj = (iB,z — A(O)Z) c€j

= ((A(|z|2) —A®)z+ B@) + (14 A@)V, (Z (Z"Gm. )+ R + Rz)) -ej.

Rmin

(3.10)

We estimate each ay,, ; by distinguishing the contribution coming from the terms in
the last line in (3.10).
Using (A(|z|2) — A(O)) Z-ej = (wj(|z|2) — w;)z, for the first term we have

m

mjll (A2 = ) 2 ¢ 17 = mj ) @) = @

2 3 3
S lzllzeliz™l 2 < Colluoliy -

@ Springer



Coordinates at Small Energy and Refined Profiles... Page190f34 16

Similarly, by Lemma 2.8,
z" < an n z" < 3 3
LIRS S > mjlz ol = > mjlz Izl S Coluollz

neRmin nERmin

from the fact that m € Rppimplies ||m| > 3.
For n € Ryin, we have

™ ™ 5 5
mjll(1+ A2) Vg (2"Gm, n) - ej;lng Smjlnllg2ge V22" || 1o ”?j”L?" S ColluollZ -

Similar estimates using (2.9) and (2.16) can be obtained for the terms with R| and
Ro.

When we seek for the nonlinear effect of the radiation n on the z, we think of Z as
the main term and of £ as a remainder term. We first estimate &.

Lemma 3.5 Under the assumption of Proposition 3.2, there is a constant C(Cy) such
that

1E 1 2 z0- < lluoll g1 + C(Co)lluolGys-

Here, the the key difference from (3.7) is that the last summation in the r.h.s. of
(3.7) has been eliminated. This because the formula & = 1 + Z is a normal form
expansion designed exactly to eliminate that summation from the equation of &.

Proof Since & = n + Z, we have
161 250- Sle™ ™ nOllsyo + e ZO)l 250- + 18U llgye0 + 1VyRillggs0

t .
+ IVyR2llg,0 + |l / eI PRy dsll 2 50- -
0

Using the estimate e " R, (m - @) P f|lz0- < ()% || fllxo for m € Rpyn, we
have

e ZO)ll2go- S Y 12@)1™F < Jlugll,, and

meRyip

t .
/ e t=9H p 101 ds
0

3
S lamll 2 < C(Co)lluolly
1250~ !
t

Therefore, we have the conclusion.

We recall that for F, G € C1(B g1(0, 8), R) we have the Poisson brackets given by

{(F,G):=DFxY =, xP, x).
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Obviously {F, G} = —{G, F}. The relevance here is that, if u(¢) is an integral curve
of the Hamilton vector field X 8), then %F (u(t)) = {F, G}. Therefore

d
7 E@@) =(E@®@). K@) ={E@@), Y ("Gmn)+Ri+Rayp.

meRp;,

3.11)

where we used that {E(¢(z)), E(¢p(z))} = {E(¢(z)), E(n)} = 0 because Poisson

brackets are anti-symmetric and the symplectic form is diagonal w.r.t. z and 7. For the
main Poisson bracket in the r.h.s. (3.11) we claim

> {EG@). (G} == 32 (Ve Gmon), D2X )

E(¢(2)
meRyi, meR iy
= D (i@ -m)z"Gm. n)+ R, (3.12)
meRpin

where Ry = 3" (i@mGm, 1) With am = D, (z™) ((A(zI*) — A(0)z + B(2)).
To prove formula (3.12), using Lemma 2.8 we compute

E(¢(2))
= (V2 ("G, n), i1 + AR E@ @) = (Vo (2" G, 0) . 1A 0)2) oy

+ (V2 (2"Gm, ) i (A (2P) = AODZ+ B@)) -

1
[E@@), (2 Gm, 1)} = —<vz ("G, ), Dzx ) >c~
By elementary computations, we have the following, which completes the proof of
(3.12):
(Vz (Zmea 71) s iA(O)Z)CN = 2*1 Z <VZZ“"(Gm7 ﬁ) —+ szim(am’ 7]), iwjzjej>cN

=2""i(@ - m)zZ™(Gm, ) — 27 (@ - MZ™ (G, 1) = (i(@ - M)2™ G, 1).

Proceeding as in Lemma 3.4 we have

~ 3
||am||L[2(1) < C(Cop) ||u0||Hl .

(3.13)
Entering the expansion n = —Z + &, we obtain
Y (i@ mz"Gmn)=~ Y (@ m)z™ (iP.Gm. Ry(m-®)P:Gm) +Rs + Re.
meRpy, meRpin
(3.14)
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where

Rs=— ) (i@ mz"Gm "R (m - ©)P:Gn).

m,ne€Rpin, m#n

Re= Y (i@ mz"Gn,£).

meRyin

Lemma 3.6 We have, for a fixed constant cq
1
>R D2X ) ity + D2 IRy < coColluollys
j=12 j=4,6
+C(Co) (lluo Iy + ol ) (3.15)
Here the crucial point is that in the quadratic term we have Cy instead of Cg, while
the exact dependence in Cq of C(Cy) is immaterial.

Proof The main bound is the following, using Lemma 3.5 and the a priori estimate
(3.1,

IRelLyy S 1EN2go- . 12520y S Co (lnollgr + CCodlluolldy ) ol

meRyin
Turning to the remainders, for j = 1 the upper bound < C(C)) ||uo||il , follows from

(2.9) combined with Lemma 2.8 and for j = 2 follows from (2.16) and the a priori
estimates (3.1). The upper bound < C(Co)||uo||‘}{1 for j = 4 follows from (3.13).

/RSdZ‘
1

Proof Let m # n. By (2.8), (2.17) and Lemma 2.8, we have

Lemma 3.7 We have

< Colluolly, - (3.16)

10;(z™z™) = (m —n) - @2™z7 " + R7,

where
R7 =(m—n) - (@(z*) — @)z"z "

+ D, (z™z ™) (B(z) + (1 + A(z)) (Vz (Z <szm, 17> + R+ 'Rz))) .

Rmin

Then, we have

4
IR71I2 < Colluoll -
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Therefore, since

(i(@ - m)zZ™ G, 2" Ry (@ - n)Gp)
®-Mm m n
= —m (3t (Z Gm.z R+(a)-n)Gn>—|— (R7Gm, R+(w-n)Gn)),

integrating the above equation over I, we have (3.16).

From (3.11), (3.12), (3.14), Lemmas 3.6 and 3.7, and

(iGm, (H ~ 0 m 107 Gm) = Cm®)lds 2 1,

1
167 /@ - m /|42:w~m

(for the latter see (H — @ -m —i0)~! = P.V. wa,m +1i7§(H — @ - m) and formula

(2.5) p. 156 [23]) and Assumption 1.8, we have

> 12™122 £ Colluollz; + C(Co)lluoll3 - (3.17)

mGRmm

By taking |lup||z1 < 8o with 8¢ > O sufficiently small, the L.h.s. in (3.17) is smaller
than c(z)Co ||u()||%1l for a fixed cp. Adjusting the constant and using (3.7) we conclude
that (3.1) with C = Cj implies

Co
Ilseray + D 1220y < cov/Colluoll g < - luoll

mGRmm

where cq is a fixed constant and we are free to choose Co > 4c(2), so that the last
inequality is true. This completes the proof of Proposition 3.2. O

4 Soliton and Refined Profile

In this section, we prove Proposition 1.11. We first note that due to our notation (1.17),
Z™1z™ is not zZ™ ™2 in general. In fact, we have the following elementary lemma.

Lemma4.l Letrm;, m; € Z andz € CV. Then,

ZM M |Z|Im1|+|m2\—lm1+m2\zm1+m2.

Proof 1t suffices to consider N = 1, where m;,my € Z. If they are both
> 0 or < 0, then |m{| + |my| — |m; + my| = O and it is immediate from
(1.17) that zZ™z™2 = zM+Mm2  Otherwise, we reduce to m; > 0 > my. Then
m;| + [my| — |m; +my| = 2{m;j| with |mj,| = minj [m;|. If jo = 2, we have
2™ ™ = gMiziml — |z 2im2lzmi+me which is the desired formula. If jo = 1, then
2™ = gMiglml — |z 2miglmalom — g 2migmitme which again is the desired
formula.
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Remark 4.2 Each component of |m;| + |mj| — |m; 4+ my| are nonnegative and even
integers.

Proof of Proposition 1.11 Recall ¢ = (¢, -+, pn) € (EOO)N are the eigenvectors of
H given in Assumption 1.2. We look for an approximate solution of (1.1) of form
u = ¢(z(t)) for appropriate

$@ =z-¢+ Y 2"Ym(z), “.1)
m€NR1
with real valued ¥/, and orthogonality conditions(we.i, ¢ j> =Oforall j € {1,---, N}.
We set
~ Ve, (217 ifm=e;j,
Fm(lz?) = |27 Ve m = e, 2)
Ym(|2[7) if m € NR; \ NRy.

Remark 4.3 We will show that 5m(|Z|2) for z = 0 are equal to the am(O) given in
(1.10) and (1.11).

. P 2 . .
Assuming z;(t) = e~ 1@z )’zj, with @; to be determined, from %|zj > =0 we
have

i@ = Y 2" (@ m)fm. (4.3)
m€NR1
Next, we have
Hp@z) = Y 2Z"Hom. (4.4)
meNR;

We need to Taylor expand the nonlinearity g till the remainder becomes sufficiently
small. We will expand now g(|¢(z)|>)¢(z) = 3 meng, Z™gm + R with [R]lss <,
|lz]? ZRmm |z™|. We start with

5 ~ L
p@F = > ™¢m || D z™¢m
m1€NR1 m2€NR1
2|m| 72 -m7 7
= Y 2R+ Y 2™ ™ m, fm,-
meNR; m;,myeNR|
m; #my
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Claim 4.4 Assume ||¢7m||):J
all z € CN with ||z]| < 1,

1 for all m € NR. Then, there exists M > 0 s.t. for

~S

M+1

-my 7 oy 2
> ™M™ G, b,y D 2™ || Sollzl® D] 12"

m; #my m3eNR; s meRpin

4.5)

Proof An M € N such that w1 + M minj<j<y—_1 (a)j+1 — a)j) > 0 will work. To
begin, we remark that for ||z < 1 we have |zZ™z"™2| < ||z||> for m| % m». Indeed,
by Lemma 4.1 this can only fail if |m;| 4+ |my| — |[m; — my| = 0. This implies
myjmp; > 0forall j =1, ..., N. Furthermore, if the inequality fails, we can reduce
to the case |m| — |my| = e, for an index jo. So my; = my; for all j # jo, and
mij, = maj, = 1. This is incompatible with ) "m; =) my = 1.

With the above remark, we can take one of the factors of the M + 1-th power in
(4.5) bounding it with ||z||?, concluding that to prove (4.5) it suffices to show that for
my;, my;, m3 € NRy withmy; # my;, there exists m € Ry .t

M M
2™ | [ 1™z ) < 27 ] [ 2™ 7™ < |2 when ||zl| <1, (4.6)
j=1 j=1

where the first inequality follows from Lemma 4.1. Noticing that complex conjugation
does not change absolute value, we conclude that each factor |z™1/~™2/| has at least
one factor Izaijjl with a; > b;. There is a nonzero component m3; # 0 of mj3. Set

M
= Z €a; — €

Obviously > n = 1. Moreover, n € R, since, by our choice of M,

M
Wy: — >a) + M min wit] —w;i) > 0.
X_: a; b 1 lgjngl( Jj+1 1)

But for any n € R there exists an m € Ry, s.t. [m| < [n|. Obviously, all the factors
of the Lh.s. of (4.6) which we ignored are < 1. This proves (4.6) and completes the
proof of Claim 4.4.
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We consider a Taylor expansion

g(p@)1He ()

M m
1 ~ ~ ~
— Z Eg(m) Z |Z|2\m|¢12n Z |Z||ml\+|Il12|—\m|—mz\zml—mz(bmld)m2
m=0 " meNR; m; #m;
X ( Z zm3$m3) +R, 4.7)

m3eNR;

where R = O (Ilzl? Y meR,;, 12™1), by Claim 4.4, and so can be absorbed in the
R(z(t)) in (1.22). Thus, we only have to consider the contribution of the summation.
For 0 <m < M, we have

m

Z |z||m1|+‘m2|_|m1_m2|zml_m2¢ml¢m2 Z Zm3¢m3

mj #my m3eNR|
_ § |Z|Z;‘n:1(|mlj‘+|m2j‘)+|m3‘—|Z;‘nzl(mlj—ij)-Fmﬂ

mj j #my;
m3

m
~ ~ ~ m
=1 (M j—my;)-+m3
X l_[ ¢m|j ¢m2_/ ¢m3 ZZ'/_I J J
j=1

Thus, if for each m € ZV, we set

m=0

M
1 ~
._ 2 — - ,m) 2[n| 32
gm = gm (2, (Umlmeng,) = ) — g ( % 2| ¢n)
ne 1

x 3 (2|t (0 o )+ fms (1—[ $ml,¢7mz,) e

m3 my;eNRy, k=1,2, j=1,-.m j=1
> (myj—my;)+m3=m
myj#my;

for R the term given in (4.7) we obtain

elp@Mp@ = Y 2"gm+ Y 2"gm+R. (4.8)

meNR| m¢NR|

Remark 4.5 Notice that gm(|z|%, {m(|z|*)}meNR,)|,_, coincides with the gm(0) in
(1.10) and (1.12).
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Summing up, we obtain the following (where in the 2nd line we have a finite sum)

i0¢(2) — Hp(@) — g(lp@ @) = Y 2™ (@ - m)pm — Hhm — gm)

mENRl
— Z ™gm — R.
m¢NR|
4.9

Notice that, by the definition of NR; and Ry, we have

2
I Y 2gmllss Szl ) 2™

m¢NR| URpin meR iy

Thus, entering Gy, for m € Ry, defined in (1.14) and

R@i= Y m+ Y 2" (¢m(2®) —Gm)+ R,

m¢NR | UR i meRyin

we have the estimate (1.20). Thus the proof of Proposition 1.11 follows if the Ist
summation in the r.h.s. of (4.9) cancels out, that is, if we solve the system

(w - m)¢m = Hpm + gm, m € NR;. (4.10)

Here the unknowns are w and v/, since the latter determines am by (4.2), while g,
are given functions of both the variables |z|> and {¥m}menRr, . We will later determine
{¥m}meNR, as a function of |z|?, and so at the end @ and g, will depend only on |z|2.
We first focus on (4.10) for m = e; splitting in the direction parallel to ¢; and the
space orthogonal to ¢ ;. In the direction parallel to ¢, that is taking inner product with
¢; (and recalling assumption <We ’» ¢.,~) = 0), we have

(12, (Ymlmenk,) = ©; + (ge, (2, (Vmlmenw,), 6). @11)

This determines @ as a function of |z|> and {¥m}menR, . Later we will determine
{¥m}menRr, as a function of |z|2, so in the end w will be a function of |z|2. Notice
also that @ (0, {/m}meNR,) = @; because 8e; 0, {¥m}menr,) = 0, as can be seen
from the definition of gp,.

Next, set

<(H_“’j)|{¢j}i) m =e¢; € NRy,
(H-—m-w)™! m € NR; \ NRy.

Am =

The following lemma is standard and we skip the proof.

Lemma4.6 Forallm € NR; and any s € R we have ||Amllss_ ss+2 S L
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It is elementary that (4.10) holds if and only if both (4.11) and the following system
hold:

Fn (2%, {Vn)lneNr)) = ¥m — Am (@ — ®) - MY — gm) =0, m € NR;.
(4.12)

We have {Fin}meng, € C®(RY x TXR, > ZNR, ) for

IR, = Zag, ®.R)
= { UmImenk, € (5 @ RN | (e 6} =0, j=1,-- N}
Since, for Dy} eng, F the Fréchet derivative of F' w.r.t. the {{/m}meNR;
{Fm (0. 0)}menr, = 0 and Dy jeng, £(0,0) = Idyg, .

by implicit function theorem there exist §; > 0 and {/m(-) }meNr, € C*°(Bgn (0, &),
Y3n ) st
NR;

Fn(1z1%, {¥n(1z1*)}nenr,) = 0, m € NR;.

Setting @ ([2I?) := @ (1217, (Yn([2I*)nenr,): gm(12P%) := gm (|2, {Yn (121" nenw,),
and u(t) = ¢ (z(t)) with z;(r) = e~ @77z ; and ¢ defined in (4.1), we obtain the
conclusions of Propositionl.11.

Remark 4.7 From (4.12) we have Ve, (0) = 0, since ge; (0) = 0 and @ (z, {Ym}m €

NR)) 0= wj, as we remarked under (4.11).
7=

5 Darboux Theorem and Proof of Proposition 2.4

In this section, we will always assume B Cgense H (i.€. B is a dense subset of H)
where B is a reflexive Banach space and H is a Hilbert space. We further always
identify H* with H by the isometric isomorphism H > u +— (u, -) € H*, where (-, -)
is the inner product of H. We will also denote the coupling between B* and B by
(f,u).

When we have B Cgense H Cdense B*, we think B as a “regular” subspace of H
and B*. We introduce several notation.

Definition 5.1 Let U C B*. Let ¢ be a C°°-diffeomorphism from U C B*to ¢(U) C
B*. We call ¢ a (B-)almost identity if p(u) —u € C*®°(U, B).

Definition 5.2 Let U C B*. We define B-regularizing vector fields X;(U) and regu-
larizing 1-forms Qé (U) by

X(U) == C®(U, B) C X(U) := C™(U, B*) and Q}(U) := Q' (U).
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Here, for a Banach space B and an open subset U; C By, the space of k-forms is
given by Qk Uy, £(’j (B1, R)) where Efl (B1, R) is the Banach space of anti-symmetric
k-linear operators.

Remark 5.3 B-regularizing 1-forms are mere 1-forms on B*. However, if we think
“standard” 1-forms as differential forms defined on H, B-regularizing 1-forms are
more regular than “standard” 1-forms because they make sense with more “rough”
vectors which are in B* and not in H. We further remark

QL(U) = C™®(U, L(B*,R)) ~ C®(U, B) = £;(U).

Definition 5.4 (Symplectic forms) Let U C H.Wesay that Q € Q*(U) isasymplectic
form on U if d2 = 0 and if for each u € U the following map is an isomorphism:

Hv— Qu),)e H" "~ H 5.1

Following [7], we call the map in (5.1) symplector, denoting it by J («). The symplector
satisfies J € C*®°(U, L(H)). If there exists an open set V C B* s.t. U C V and we
can extend J and J~! on V so that both are in C®(V, L(B)), we say that Q2 is a
B-compatible symplectic form.

Remark 5.5 Our symplectic form is the strong symplectic form of [1].

Let 2 be a symplectic form and J be the associated symplector. Then, we have
QuX,Y)=({JwX,Y), X,Y € H. (5.2)

Moreover, if € is a B-compatible symplectic form, then for X € B and Y € B*,
we can define Q(u)(X, Y) by (5.2). Of course we can also define Q2(u)(Y, X) by
Qu)(Y,X):=-Qu)(X,Y).

The symplector corresponding to the symplectic form 2¢ given in (1.24) is J(u) =
i. Obviously, this symplectic form is B compatible for any Banach space B Cgense H
satisfying the property f € B = if € B. In particular, if H = L*(R?, C) and
B =H; (R3,C), Qisa H (R3, C)-compatible symplectic form.

We next consider a small perturbation of a B-compatible symplectic form.

Lemma5.6 LetU; C H andU, C B*withU| C U,, Q be a B-compatible symplectic
formand F € Qé(Uz). Let ug € Uy and assume F (uog) = 0 and DF (ug) = 0. Then,
there exists an open set V.C Uy in H s.t. Q +dF is an B-compatible symplectic form
onV, wheredF € Qz(U) is the exterior derivative of F.

Remark 5.7 Since F € QL(U) = C™(U, L(B*,R)), we have DF € C*(U, L*(B¥,

R)).If DF (ug) = 0, then from the definition of exterior derivative, we have d F (i) =
0 too.
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Proof We identify L£2(B*, R) with L(B*, L(B*,R)) = L(B*, B**) ~ L(B*, B). In
this case, we can write DF (u)(X,Y) = (DF )X, Y) for X,Y € B*. Therefore, we
have

dF(u)(X,Y) = (DFu)X,Y) — (DFw)Y, X) = ((DF(u) — (DF(u))*) X, Y),

where (DF (u))* € L(B*, B) is the adjoint of DF (u) € L(B*, B). Thus, for J €
C°°(Uy, L(H)) the symplector of 2, we have

Qu)(X,Y)+dFu)(X,Y)=((Jw) + DF(u) — (DF)*) X, Y). (53)

Since DF (ug) = 0, there exists an open neighborhood V of ug in B* s.t. J(u) +
DF(u)—(DF(u))*isinvertible forallu € V.Hence Q+dF is asymplectic form with
symplector J (u) + DF (u) — (DF (u))*. Since DF (u) — (DF (u))* € L(B*, B), the
restriction of DF (u) — (D F (u))* to B is in L(B). Therefore, we have the conclusion.

We are now in the position to prove a Darboux theorem with appropriate error
estimates.

Proposition 5.8 (Darboux theorem) Let Uy C H and U, C B* be open sets with
U, C U, and let 21 be a B-compatible symplectic form and F € Qé(Uz). Let
ug € Uy and assume F(ug) = 0 and DF (ug) = 0. Set Q2 := Q| + dF. Then, there
exists an open neighborhood V. C Uj of ug in B* and a map ¢ € C*(V, B¥) s.t.
©*Qy = Qy, and

YueV, low) —ullp S I1F @5 (5.4
Proof We first set
Q41 = Q1 +5(22 — Q) =Qp +sdF,
and look for a vector field X that satisfies iy, Q41 := Q541 (X541, ) = —F.
Claim 5.9 There exists an open neighborhood V| of ug in B* s.t. there exists
X1 € C®((=2,2) x V1, B) satisfying iy, | Q541 = —F (5.5)
and such that there exists a C; > 0 s.t.

sup || Xsr1()llp < CillF(u)l|p forall u € Vy. (5.6)
s€(=2,2)

Proof of Claim 5.9 Since F € Q;(Uz) = C®(U,, L(B*,R)) >~ C*(U,, B), we can
express F(u)X = (F(u), X) for any X € B*. Therefore, using also (5.3), (5.5) can

be expressed as

(J1(u) + s (DF(u) — (DF ()" ) Xy11 = —F (u),
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where J; € C*(U, L(H)) is the symplector of €. Since €21 is a B-compatible
symplectic form, we can extend Jy to J; € C®(V’, L(B)) for some U C V’ with
V' C B*.

Take now 8; > 0 sufficiently small, so that Bg+(ug, §1) C V' and

sup  IDF@)licen <@  sup 171 e ™"

ueBpx (uo,81) u€Bpsx (uo,81)

Then, we have

1
Vu € Bp+(uo, 81), 171)"" (DF () — (DF)*) llces+.5) < %

4
Thus, by Neumann series we have
Xor@ ==Y (s (DF@) = (DF@)®)) N1~ Flw,
n=0

where the r.h.s. absolutely converges uniformly for s € (-2, 2). Therefore, setting
Vi = Bp+(ug, 81), we have the conclusion. O

Claim 5.10 There exit an open neighborhood V, C Vj of up in B* and a map ¢. €
C*®((—2,2) x Vo, B) s.t.

d . - ~
PR (u) = Xor1(u + 05 (w)), @o(u) =0 (5.7
and
sup @5 (w)llp < 2C1||F(u)| p forallu € ;. (5.8)
s€[0,1]

Proof of Claim 5.10 The existence of ¢ satisfying (5.7) is standard so we concentrate
on the estimate (5.8). First, by the assumption F(ug) = 0 and DF (ug) = 0, there
exists 8 € (0, 81] s.t. for u € Bp«(ug, 82), we have ||F(u)|zg < %Hu — uo|| g,

where C; > 0 is the constant (5.6). We define s*(u) € [0, 1] by
s*(u) := min(inf{s € (0,2) | ¢5(u) ¢ Bp+(uo, 52/2)}, 1).

Then, since @; is continuous, we have s*(u) > 0 foru € Bg+(ug, §2/2). Furthermore,

s
sup  [@s()llg < sup / Xy 1 (u + @5 )| p= ds’
s€0,s*(u)] s€0,s*(u)] /O

~ 1 ~
<Cy sup [[F(u+osu)lp < — (Ilu —upllg + sup II%(M)IIB*> .
sel0,1] 4 s€l0.1]
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Thus, we conclude that s*(u) = 1 from

~ 1 1 1
sup (|5 @)l B+ < llu —uollp+ = -2 < 562. (5.9)
s€[0,s*(u)] 3 6 2

Since B C H C B*, there exists C» > 1 s.t. forall u € B, ||u|l g+ < Ca||lu| . Now,
take 83 € (0, 82] s.t. if u € Bp«(uog, 83), then ||[DF (u)| g+, By < (2C1C2)~ L. Then,
for all u € Bp«(ug, 83/2) and all s, s; € [0, 1], we have u + s1@;(u) € Bp=(ug, 83)
by (5.9). Therefore, by Taylor expansion and (5.5),

sup |@s)llg < CillF@)llp +C1 sup [|[DF(u+ s1@s@)ll s s @) g
s€[0,1] s1€[0,1]

1 ~
SClllF(M)HB—l-E sup {|@s ()| -

s5€[0,1]
This completes the proof of Claim 5.10. O
We set @; (1) := u + @5 (u). Then, by Cartan’s formula, see (7.4.6) [1], we have

d
Epjgm =9 (Lx,, Q1 +dF) =9} ((dix,,, +ix,,d) Qi1 +dF) =0.
(5.10)

Therefore, since ¢y = id, we have
Qz = goikﬂl.

Setting ¢ := ¢, we have the conclusion.
We show now that Proposition 2.4 follows from Proposition 5.8.

Proof of Proposition 2.4 Let B = ¥° and H = L2. Set F := 27 'Q(D,¢ (2) Dz, ).
Then, by F € Q;(Bgﬂ(O, 8s)) and by the identification Qé(BZ*S(O, 8s)) =~
C®(Bs-(0, 85), £%), we have F(u) = —i2~"(D,¢(z)Dz)*in. Notice the cancel-
lation

(D29 (2)D2)*in = (D,¢(2) Dz — Dy (2¢) Dz)"in.

So from (4.1) and by [[(Dz(Z™Ym(|21*)D2)* |l £(s-s,55) = D@ Ym(|2]*)) Dz
| c(s-s,55), we have

[F)les < Z (D (2™ Yrm(|2I%)) D2)*in || 25

meNR;

< > IDE™Ym(ZP) Dzl s 5, 50 Inll5 s

mGNRl
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Next we use the fact that, for m € NR, we have
||Dz(zmlpm(|z|2))Dz”£(2*S,ES) < IIDz(mem(IZ|2))|IzsIIDZIIg(z—s,cN) < Gllzll?,

where for m € NRg, || D, (Z™y¥m(1z|?))||zs < C|z||> follows from Remark 4.7, and
for m € NR{\NRy it follows from |z™| < ||Z||3, since z™ has an odd number of
factors.

Summing up, we have proved

IF@)lss < Csllzllinlls-s. (.11

Then the statement of Proposition 2.4 is a consequence of 29 = 2 + dF and of
Proposition 5.8.
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A Proofs of Lemma 1.5 and of Proposition 1.10

Proofof Lemma 1.5 For j,k € {1,---, N}, j <k, setnj; to be the smallest integer
satisfying n jx (wy — w;) + wy > 0. Then, for mUb = (m(ljk), S, m%k)) defined by
m;jk) = —njk, mi — njr+1and ml(jk) =00 #j.k), (A.1)

we have mY% € Rpin. Suppose Rpin is an infinite set. Then, there exists j €

k .
{1,---,N} and (mg}32, C Rpin S.t. [myj] 7% 0. If there exists M > 0 s.t.
foralll # j, |myj| < M, then my cannot satisfy > my; = 1. Therefore, if neces-

sary taking a subsequence, there exists [ # j s.t. |[my| Lindad oo. However, for k
sufficiently large, we have [mU"| < |my| with mY? € Ry, defined by (A.1). This,
by the definition of Ry, in (1.8), implies mg ¢ Ryin, contradicting the hypothesis
my € Ryp.

Letm € NRj. Itis elementary, by the definition of NR (1.9), that for alln € Ryjp,

either there exists j s.t. [n;| > |m;| or ]n| = |m|. So, for n = mY% in (A.1),
we have either |m| = [mY%| or |m;| < |ml(]k)| for I = j or k. Since there are
finitely many m € NRj s.t. m| = [mY%|, we can assume |m| # [mU%| for all

Jj < k. Thus, for all j < k, we have |m;| < ml(jk) for at least one of [ € {j, k}.

It is easy to conclude that |m ;| < maxj<x</<ny (|ng|+ 1) for all j except for at
most one. However, from Y m = 1 it is immediate that this special j must satisfy
|m ;| < Nmaxj<k<i<y (|nx] + 1). Thus, mis in a fixed bounded set. Hence NR is
a finite set.

Proof of Proposition 1.10 The simple proof is analogous to Bambusi and Cuccagna [2,
p.1444]. For m € Ry set N > Ly, = % Then from (1.13)—(1.14), for any
m € R,y we have
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(Lm) (0
Gm = ng—()¢m + Km»
Lpy!

where N, € N is the number of elements of A(Lp,, m), which in this particular case
is given by the set

Lm Lm
A(Lm, m) = {ezj}‘]l-l:l]‘ e (NRg)™| X:e;zzj-Jrl — Zegzj =my,
j=0 j=1

and where

1 ~ ~
Ky = Z %g(m)(o) Z ém; (0) - - - dmy,, 4, (0).

l1<m<Lm (my, - ;mop41)EA(m,m)

So, expanding we have on the sphere Sy, = {£ : I€]> = m - @} we obtain

(Lm) (0)\ >
a2 _ 8" ™ (0) 2
”GmHLZ(Sm) - (Nm Lm' ”d) ||L2(Sm)
(Lm)
gm0y  ~ ~
+ ZNmT <¢ma Km)Lz(Sm) + ”Km”L2(Sm)-

Equating the above to 0 we obtain, in view of (1.16), a quadratic equation for g“m) (0)
which expresses it in terms of (g’(0), ..., g“m~1(0)). This proves Proposition 1.10.
O
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