
Annals of PDE            (2021) 7:16 
https://doi.org/10.1007/s40818-021-00105-2

MANUSCRIPT

Coordinates at Small Energy and Refined Profiles for the
Nonlinear Schrödinger Equation

Scipio Cuccagna1 ·Masaya Maeda2

Received: 30 April 2020 / Accepted: 16 June 2021
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
In this paper we give a new and simplified proof of the theorem on selection of standing
waves for small energy solutions of the nonlinear Schrödinger equations (NLS) that we
gave in [6]. We consider a NLS with a Schrödinger operator with several eigenvalues,
with corresponding families of small standing waves, and we show that any small
energy solution converges to the orbit of a time periodic solution plus a scattering term.
The novel idea is to consider the “refined profile”, a quasi–periodic function in time
which almost solves the NLS and encodes the discretemodes of a solution. The refined
profile, obtained by elementary means, gives us directly an optimal coordinate system,
avoiding the normal form arguments in [6], giving us also a better understanding of
the Fermi Golden Rule.

1 Introduction

In this paper, we consider the following nonlinear Schrödinger equation (NLS):

i∂t u = Hu + g(|u|2)u, (t, x) ∈ R
1+3. (1.1)

Here H := −�+V is a Schrödinger operatorwithV ∈ S(R3, R) (Schwartz function).
For the nonlinear term we require g ∈ C∞(R, R) with g(0) = 0 and the growth
condition:
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∀n ∈ N ∪ {0}, ∃Cn > 0, |g(n)(s)| ≤ Cn 〈s〉2−n where 〈s〉 := (1 + |s|2)1/2.
(1.2)

We consider the Cauchy problem of NLS (1.1) with the initial condition u(0) = u0 ∈
H1(R3, C). It is well known that NLS (1.1) is locally well-posed (LWP) in H1, see
e.g. [4,14].

The aim of this paper is to revisit the study of asymptotic behavior of small (in H1)
solutions when the Schrödinger operator H has several simple eigenvalues. In such
situation, it have been proved that solutions decouple into a soliton and dispersive
wave [6,22,24].

To state our main result precisely, we introduce some notation and several assump-
tions. The following two assumptions for the Schrödinger operator H hold for generic
V .

Assumption 1.1 0 is neither an eigenvalue nor a resonance of H .

Assumption 1.2 There exists N ≥ 2 s.t.

σd(H) = {ω j | j = 1, · · · , N }, with ω1 < · · · < ωN < 0,

where σd(H) is the set of discrete spectrum of H . Moreover, we assume all ω j are
simple and

∀m ∈ Z
N \ {0}, m · ω �= 0, (1.3)

where ω := (ω1, · · · , ωN ). We set φ j to be the eigenfunction of H associated to the
eigenvalue ω j satisfying ‖φ j‖L2 = 1. We also set φ = (φ1, · · · , φN ).

Remark 1.3 The cases N = 0, 1 are easier and are not treated it in this paper. Unfortu-
nately, Assumption (1.2) excludes radial potentials V (r), for r = |x |, where in general
we should expect eigenvalues with multiplicity higher than one. In fact the symmetries
imply that each eigenspace ker(H − ω j ) is spanned by functions which in spherical
coordinates are separated and are of form 1

r u j,l(r)eimθ Pm
l (cos(ϕ)) for appropriate

l ∈ N ∪ {0} with Pm
l Legendre polynomials, and m taking all values between −l and

l, so that, if l ≥ 1, the multiplicity is at least 2l + 1. See p. 778 [5].

As it is well known, φ j ’s are smooth and decays exponentially. For s ≥ 0, γ ≥ 0,
we set

Hs
γ := {u ∈ Hs | ‖u‖Hs

γ
:= ‖ cosh(γ x)u‖Hs < ∞}.

The following is well known.

Proposition 1.4 There exists γ0 > 0 s.t. for all 1 ≤ j ≤ N, we have φ j ∈ ∩s≥0Hs
γ0
.

Using γ0 > 0, we set


s := Hs
γ0

if s ≥ 0, 
s := (H−s
γ0

)∗ if s < 0, 
0− := (
0)∗ and 
∞ := ∩s≥0

s .
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We will not consider any topology in 
∞ and we will only consider it as a set.
In order to introduce the notion of refined profile, we need the following combina-

torial set up.
We start the following standard basis ofRN , whichwe view as “non–resonant” indices:

NR0 := {e j | j = 1, · · · , N }, e j := (δ1 j , · · · , δN j ) ∈ Z
N , δi j the Kronecker delta.

(1.4)

More generally, the sets of resonant and non–resonant indices R, NR, are

R := {m ∈ Z
N |

∑
m = 1, ω · m > 0}, NR := {m ∈ Z

N |
∑

m = 1, ω · m < 0},
(1.5)

where
∑

m := ∑N
j=1m j form = (m1, · · · ,mN ) ∈ Z

N .

FromAssumption 1.2 it is clear that {m ∈ Z
N | ∑m = 1} = R∪NR andNR0 ⊂ NR.

For m = (m1, · · · ,mN ) ∈ Z
N , we define

|m| := (|m1|, · · · , |mN |) ∈ Z
N , ‖m‖ :=

∑
|m| =

N∑

j=1

|m j |, (1.6)

and introduce partial orders � and ≺ by

m � n ⇔def ∀ j ∈ {1, · · · , N }, m j ≤ n j , and m ≺ n ⇔def m � n and m �= n,

(1.7)

where n = (n1, · · · , nN ). We define the minimal resonant indices by

Rmin := {m ∈ R | �n ∈ R s.t. |n| ≺ |m|}. (1.8)

We also consider NR1 formed by the nonresonant indices not larger than resonant
indices:

NR1 := {m ∈ NR | ∀n ∈ Rmin, |n| ⊀ |m|}. (1.9)

Lemma 1.5 Both Rmin and NR1 are finite sets.

For the proof see Appendix A.
We constructively define functions {Gm}m∈Rmin ⊂ 
∞ which will be important in

our analysis.
For m ∈ NR1, we inductively define φ̃m(0) and gm(0) by

φ̃e j (0) := φ j , ge j (0) = 0, j = 1, · · · , N , (1.10)
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and, form ∈ NR1 \ NR0, by

φ̃m(0) := −(H − m · ω)−1gm(0), (1.11)

gm(0) :=
∞∑

m=1

1

m!g
(m)(0)

∑

(m1,··· ,m2m+1)∈A(m,m)

φ̃m1(0) · · · φ̃m2m+1(0), (1.12)

where

A(m,m) :=
⎧
⎨

⎩{m j }2m+1
j=1 ∈ (NR1)

2m+1 |
m∑

j=0

m2 j+1 −
m∑

j=1

m2 j = m,

2m+1∑

j=0

|m j | = |m|
⎫
⎬

⎭

(1.13)

Remark 1.6 For each m ≥ 1 and m ∈ NR1, A(m,m) is a finite set. Furthermore, for
sufficiently large m, we have A(m,m) = ∅. Thus, even though we are expressing
gm(0) in (1.12) by a series, the sum is finite.

For m ∈ Rmin, we define Gm by

Gm :=
∞∑

m=1

1

m!g
(m)(0)

∑

(m1,··· ,m2m+1)∈A(m,m)

φ̃m1(0) · · · φ̃m2m+1(0). (1.14)

Remark 1.7 gm(0) and Gm are defined similarly. We are using a different notation to
emphasize that gm(0) has m ∈ NR1, while Gm has m ∈ Rmin.

The following is the nonlinear Fermi Golden Rule (FGR) assumption.

Assumption 1.8 For all m ∈ Rmin, we assume

∫

|ζ |2=m·ω
|Ĝm(ζ )|2 dS �= 0, (1.15)

where Ĝm is the distorted Fourier transform associated to H .

Remark 1.9 In the case N = 2 and ω1 + 2(ω2 − ω1) > 0, we have Gm = g′(0)φ1φ
2
2 ,

which corresponds to the condition in Tsai andYau [25], based on the explicit formulas
in Buslaev and Perelman [3] and Soffer andWeinstein [21]. These works are related to
Sigal [20]. Other partial results are in [8–11].More general situations are considered in
[6], where however the Gm are obtained after a certain number of coordinate changes,
so that the relation of the Gm and the φ j ’s is not discussed in [6] and is not easy to
track.

For a generic nonlinear function g the condition (1.15) is a consequence of the
following simpler one, which is similar to (11.6) in Sigal [20],

∫

|ζ |2=m·ω
|φ̂m(ζ )|2 dS �= 0 for allm ∈ Rmin (1.16)
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where φm := ∏
j=1,...,N φ

m j
j . Both conditions (1.15) and, even more so, (1.16) are

simpler than the analogous conditions in Cuccagna and Maeda [6].
We have the following.

Proposition 1.10 Let L = sup

{‖m‖ − 1

2
: m ∈ Rmin

}
and suppose that the operator

H satisfies condition (1.16). Then there exists an open dense subset 
 of R
L−1 s.t. if

(g′(0), ...., g(L)(0)) ∈ 
 such that Assumption 1.8 is true for (1.1).

Proof See Sect. A. ��
For z = (z1, · · · , zN ) ∈ C

N , m = (m1, · · · ,mN ) ∈ Z
N , we define

zm := z(m1)
1 · · · z(mN )

N ∈ C, where z(m) :=
{
zm m ≥ 0

z̄−m m < 0,
and (1.17)

|z|k := (|z1|k, · · · , |zN |k) ∈ R
N , ‖z‖ :=

∑
|z| =

N∑

j=1

|z j | ∈ R. (1.18)

We will use the following notation for a ball in a Banach space B:

BB(u, r) := {v ∈ B | ‖v − u‖B < r}. (1.19)

The “refined profile” is of the form φ(z) = z · φ + o(‖z‖) and is defined by the
following proposition.

Proposition 1.11 [Refined Profile] For any s ≥ 0, there exist δs > 0 and Cs > 0 s.t.
δs is nonincreasing w.r.t. s ≥ 0 and there exist

{ψm}m∈NR1 ∈ C∞(BRN (0, δ2s ), (

s)�NR1), � (·) ∈ C∞(BRN (0, δ2s ), R

N )

and R ∈ C∞(BCN (0, δs),

s),

s.t. � (0, · · · , 0) = ω, ψm(0) = 0 for all m ∈ NR1 and

‖R(z)‖
s ≤ Cs‖z‖2
∑

m∈Rmin

|zm|, (1.20)

and if we set

φ(z) := z · φ +
∑

m∈NR1

zmψm(|z|2) and z j (t) = e−i� j (|z|2)t z j , (1.21)

then, setting z(t) = (z1(t), · · · , zn(t)), the function u(t) := φ (z(t)) satisfies

i∂t u = Hu + g(|u|2)u −
∑

m∈Rmin

z(t)mGm − R(z(t)), (1.22)
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where {Gm}Rmin ⊂ (
∞)�Rmin is given in (1.14). Finally, writing ψm = ψ
(s)
m , � =

� (s) and R = R(s), for s1 < s2 we have ψ
(s1)
m (| · |2) = ψ

(s2)
m (| · |2), � (s1)(| · |2) =

� (s2)(| · |2) and R(s1) = R(s2) in BRN (0, δs2).

Proof See section 4. ��
The refined profile φ(z) contains as a special case the small standing waves bifur-

cating from the eigenvalues, when they are simple.

Corollary 1.12 Let s > 0 and j ∈ {1, · · · , N }. Then, for z ∈ BC(0, δs), φ
(
z(t)e j

)

solves (1.1) for z(t) = e−i� j (|ze j |2)t z.

Proof Since (ze j )m = 0 for m ∈ Rmin, we see that from (1.20) and (1.22) the
remainder terms

∑
m∈Rmin

z(t)mGm +R(z(t)) are 0 in (1.22). Therefore, we have the
conclusion.

Remark 1.13 If the eigenvalues of H are not simple the above does not hold anymore
in general. See Gustafson-Phan [12].

We call solitons, or standing waves, the functions

φ j (z) := φ(ze j ). (1.23)

The main result, which have first proved in [6] is the following.

Theorem 1.14 Under the Assumptions 1.1, 1.2 and 1.8, there exist δ0 > 0 and C > 0
s.t. for all u0 ∈ H1 with ‖u0‖H1 < δ0, there exists j ∈ {1, · · · , N }, z ∈ C1(R, C),
η+ ∈ H1 and ρ+ ≥ 0 s.t.

lim
t→∞ ‖u(t) − φ j (z(t)) − eit�η+‖H1 = 0,

and

lim
t→∞ |z(t)| = ρ+, C−1‖u0‖2H1 ≤ ρ2+ + ‖η+‖2H1 ≤ C‖u0‖2H1 .

The organization of the paper is the following. In the rest of this section, we outline
the proof of the main theorem (Theorem 1.14). In Section 2, we introduce the mod-
ulation and Darboux coordinate and compute the Taylor expansion of the energy. In
section 3 we prove the main theorem (Theorem 1.14). In section 4 we prove Proposi-
tion 1.11. In section 5, we state an abstract Darboux theorem with error estimate and
apply it to prove Proposition 2.4. In the appendix of this paper, we prove Lemma 1.5
and Proposition 1.10.

We now outline the proof of Theorem 1.14. First of all, the fact that NLS (1.1) is
Hamilton is crucial. Indeed, when we consider the symplectic form


0(·, ·) := 〈i·, ·〉 , 〈u, v〉 := Re(u, v) where (u, v) :=
∫

R3
u(x)v(x) dx, (1.24)
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and the energy (Hamiltonian) by

E(u) = 1

2
〈Hu, u〉 + 1

2

∫

R3
G(|u(x)|2) dx, (1.25)

where G(s) := ∫ s
0 g(s) ds, we can rewrite NLS (1.1) as

∂t u = X (0)
E (u).

Here, for F ∈ C1(H1, R), X (0)
F is the Hamilton vector field of F associated to the

symplectic form 
0 defined, for DF is the Fréchet derivative of F , by


0(X
(0)
F , ·) = DF .

Next, as usual for the study of stability of solitons, we give a modulation coordinates
in H1 in the neighborhood of 0. In this paper, we use

(z, η) �→ u = φ(z) + η, (1.26)

while in [6] we were using

(z, η) �→ u =
∑

j=1,...,N

φ j (z j ) + R(z)η, (1.27)

for specific near identity operator R(z)whichwas first introduced in [13]. Here, in both
(1.26) and (1.27), η is taken from the continuous component of H . That is, Pcη = η,
where

Pcu := u −
∑

j=1,...,N

(〈
u, φ j

〉
φ j + 〈

u, iφ j
〉
iφ j

)
. (1.28)

The difference between the two coordinates (1.26) and (1.27) is that in (1.26) we are
using the refined profile which takes into account the nonlinear interactions within the
discrete modes. While the discrete part in (1.26) is more complicate than in (1.27), to
prove Theorem 1.14 for N > 1 we do not need the R(z) in front of η.

Unfortunately, even though 
0 is a deceptively simple symplectic form, in the
coordinates (1.26) it is complicated (it is very complicated also using coordinates
(1.27)). We thus introduce a new symplectic form


1(·, ·) := 
0(Dzφ(z)Dz ·, Dzφ(z)Dz ·) + 
0(Dη ·, Dη·), (1.29)

which is equal to 
0 at u = 0. Here, Dz is the Fréchet derivative w.r.t. the z variable.
By Darboux theorem there exists near 0 an almost identity coordinate change ϕ

such that
1 = ϕ∗
0. In section 5we give a rather simple proof of the type of Darboux
theorem needed, viewing it in an abstract framework simplifying the analogous part
of [6].
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For K = ϕ∗E , the system becomes

i∂tz = (1 + O(‖z‖2))∇zK , i∂tη = ∇ηK ,

where ∇z and ∇η are the gradient corresponding to the Fréchet derivative w.r.t. z and
η. In the new coordinates, the energy K expands

K = E(φ(z)) + E(η) + 〈R̃(z), η
〉 + error.

When using the coordinate system (1.27), in order to estimate the solutions it is
necessary like in [6] to make further normal forms changes of variables. But using
coordinates (1.26) we are ready for the estimates and there is no need of normal forms.
First of all, we have R̃(z) = ∑

m∈Rmin
zmGm + error, see the First Cancellation

Lemma, Lemma 2.6. This implies that

i∂tη = Hη + Pcg(|η|2)η +
∑

m∈Rmin

〈
zmGm, η

〉 + error. (1.30)

Thus, by the endpoint Strichartz estimate, to show that η scatters it suffices to show
zm ∈ L2(R) form ∈ Rmin. To check this point, we consider

d

dt
E(φ(z)) =

∑

m∈Rmin

{
E(φ(z)),

〈
zmGm, η

〉}+ error,

where {·, ·} is the Poisson bracket associated to 
1. We obtain

{
E(φ(z)),

〈
zmGm, η

〉} = (ω · m)
〈
izmGm, η

〉 + error, (1.31)

where, see below (3.11) and as a consequence of the Second Cancellation Lemma,
Lemma 2.8,

|error| � |z|
∑

m∈Rmin

|zm| for all |z| ≤ 1.

Notice that z�1 does not satisfy this inequality no matter how large we take � ∈ N, so
the error term in (1.31) is not just small, but has a specific combinatorial structure. In
[6], to get the structure (1.30) and to bound z, a painstaking normal forms argument
was required, but here these fact come for free.

From this point on, the proof ends in a standard way. Since η ∼ −zm(H − ω ·
m − i0)−1Gm, where the latter is the solution of (1.30) without the nonlinear term
and “error”, we have, omitting errors

d

dt
E(φ(z)) =

∑

m∈Rmin

(ω · m)|zm|2
〈
iGm, (H − ω · m − i0)−1Gm

〉
.
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Since
〈
iGm, (H − ω · m − i0)−1Gm

〉
equals (1.15) in Assumption 1.8 which we have

assumed positive, this above idealized identity yields

E(φ(z(t))) +
∑

m∈Rmin

‖zm‖2L2(0,t) ≤ E(φ(z(0))).

Using this, we can close estimates.
We conclude with a few comments on refined profiles, which play a central role

in our proof. One of the distinctive features of our system is the existence or non
existence of small quasi–periodic solutions which are not periodic. Sigal [20] stated
their absence, and this follows from [6] and our analysis here. The zmGm terms in R̃(z)
are resonant, cannot be eliminated from the equation exactly if (1.15) holds and are an
obstruction to the existence of quasi–periodic solutions. On the other hand, there are
no resonant terms in the discrete NLS with N = 2, where quasi-periodic solutions are
proved to exist in Maeda [15]. Furthermore, in Maeda [15] an equivalence is observed
between being able to see quasi–periodic solutions, absence of resonant terms in the
equations and, finally, existence of coordinate systemswhere themixed term

〈R̃(z), η
〉
,

that is nonlinear degree 1 in η, is absent from the energy. Our main insight here is that,
since there are no small quasi–periodic solutions, we might try to replace them with
a surrogate (refined profiles), in the expectation of an equivalence, analogous to that
considered inMaeda [15], between this surrogate and optimal coordinate systems. This
works and, while in [6] we searched directly, and with great effort, for the coordinates,
here we find, with a relatively elementary method, the refined profiles. Starting from
the refined profiles we define a natural coordinate system. It turns out that these
coordinates are optimal, as is seen in elementary fashion noticing that the fact that
the refined profiles are approximate solutions of (1.1), specifically they solve (1.22),
provides us the twoCancellation Lemmas,which in turn guarantee that our coordinates
are optimal. We end remarking that refinements of the ansatz were already in the great
series by Merle and Raphael [16–19], which has inspired our notion of refined profile.

2 Darboux Coordinate and Energy Expansion

We start from constructing the modulation coordinate. First, we have the following.

Lemma 2.1 For any s ∈ R there exist δs > 0 and z ∈ C∞(B
−s (0, δs), C
N ) s.t.

u − φ(z(u)) ∈ Pc

−s,

where Pc is given by (1.28).

Proof This is an immediate consequence of the implicit function theorem.We consider

Fj (z, u) = 〈
φ(z) − u, φ j

〉 + i
〈
u − φ(z), iφ j

〉
for j = 1, ..., N .

Wehave F := (F1, ..., FN ) ∈ C∞(
−s×BCN (0, δ0), C
N ) for δ0 > 0 given in Propo-

sition 1.11. Obviously F |(z,u)=(0,0) = 0 and from ψm(0) = 0 for all m ∈ NR1 , it

123
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follows DzF |(z,u)=(0,0) = IdCN , where DzF is the Fréchet derivative w.r.t. the z vari-
able. By implicit function theorem we obtain the desired z ∈ C∞(B
−s (0, δs), C

N )

for some δs > 0.

By Lemma 2.1, we have our first (modulation) coordinate.

Proposition 2.2 For any s ∈ R there exist δs > 0 s.t. the map

BCN (0, δs) × BPcX−s (0, δs) � (z, η) �→ φ(z) + η ∈ X−s, Xs = 
s or Hs,

(2.1)

is a C∞ local diffeomorphism. Moreover, we have

‖u‖Xs ∼s ‖z‖ + ‖η‖Xs .

Proof It is an direct consequence of Lemma 2.1.

For Banach spaces X ,Y , we set L(X ,Y ) to be the Banach space of all bounded
linear operators from X to Y . Moreover, we set L(X) := L(X , X).

For F ∈ C1(BH1(0, δ), R), we write

F(z, η) := F(φ(z) + η).

We define DηF(z, η) ∈ C(BH1(0, δ),L(PcH1, R)) and ∇ηF(z, η) ∈ C(BH1(0, δ),
PcH−1) by

∀Y ∈ PcH
1, DηF(z, η)Y = 〈∇ηF(z, η),Y

〉 := d

dε

∣∣∣∣
ε=0

F(z, η + εv).

Here, for Banach spaces A, B, L(A, B) is the Banach space of all bounded operators
from A to B. Similarly, we define ∇zF(u) = ∇zF(z, η) ∈ C(BH1(0, δ), C

N ) by

∀w ∈ C
N , 〈∇zF(z, η),w〉

CN := DzF(z, η)w = d

dε

∣∣∣∣
ε=0

F(z + εw, η),

where 〈w1,w2〉CN = Re
∑N

j=1 w1 jw2 j for wk = (wk1, · · · , wkN ).

Using the above notations, for u ∈ BH1(0, δ) and Y ∈ H1, we have

DF(z, η)Y = 〈∇zF(z, η), DzY 〉
CN + DηF(z, η)DηY , (2.2)

where Dz and Dη are Fréchet derivatives of functions z(u), η(u) := u − φ(z(u)).
Notice that, since the Fréchet derivative of the identity map u �→ u is an identity,

we have

IdXs = Du = Dzφ(z)Dz + Dη. (2.3)

Remark 2.3 Even though η = Pcη, Dη is not Pc except at u = 0.
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By (2.3), we have


0 = 
0(Dzφ(z)Dz, Dzφ(z)Dz) + 
0(Dη, Dη) + 
0(Dzφ(z)Dz, Dη)

+ 
0(Dη, Dzφ(z)Dz).

Therefore, removing the cross terms (the latter two terms), we have the symplectic
form
1 given in (1.29). Given F ∈ C1(BH1(0, δ), R), the Hamilton vector field X (1)

F

associated to the symplectic form
1 is defined by 
1(X
(1)
F , ·) = DF . Thus, by (2.2),

we have
〈
iDzφ(z)DzX (1)

F , Dzφ(z)DzY
〉
+
〈
iDηX (1)

F , DηY
〉
= 〈∇zF, DzY 〉

CN + DηFDηY .

(2.4)

In particular, we have

iDηX (1)
F = ∇ηF . (2.5)

We turn to z. Setting ψ(z) := ∑
m∈NR1

zmψm(|z|2), we have φ(z) = z · φ + ψ(z)
with ‖ψ(z)‖
s �s ‖z‖3. Then, since ∇zφ(z)w = w · φ + OL(CN ,
s )(‖z‖2)w,
〈iw1 · φ,w2 · φ〉 = 〈iw1,w2〉CN and L(CN × C

N , R) � L(CN ), we see there exists
Ã ∈ C∞(BCN (0, δ0),L(CN )) s.t.

〈
iDzφ(z)DzX (1)

F , Dzφ(z)DzY
〉
=
〈
i
(
1 + Ã(z)

)
DzX (1)

F , DzY
〉

CN
,

with ‖ Ã(z)‖L(CN ) � ‖z‖2. Thus, setting A ∈ C∞(BCN (0, δ0),L(CN )) by 1+A(z) =
(1 + Ã(z))−1, we have ‖A(z)‖L(CN ) � ‖z‖2 and

iDzX (1)
F = (1 + A(z))∇zF . (2.6)

The following proposition allows us to move to the “diagonalized” symplectic form

1.

Proposition 2.4 For any s > 0 there exists δs > 0 and ϕ ∈ C∞(B
−s (0, δs),
−s)

satisfying

‖ϕ(u) − u‖
s ≤ Cs‖z(u)‖2‖η(u)‖
−s (2.7)

which is a local diffeomorphism and such that

ϕ∗
0 = 
1.

We give the proof of Proposition 2.4 in section 5. It will be a direct consequence
of an abstract Darboux theorem with error estimate (Proposition 5.8).
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We study the dynamics of u∗ = ϕ−1(u), where u is the solution of NLS (1.1) with
‖u(0)‖H1 � 1, which reduces to the study of the dynamics of z(u∗) and η(u∗). Since
u(t) is the integral curve of the Hamilton vector field X (0)

E , u∗(t) is the integral curve
of the Hamilton vector field X (1)

K , where K := ϕ∗E = E(ϕ(·)). By (2.5), (2.6), we
have

i∂tη = ∇ηK (z, η), i∂tz = (1 + A(z))∇zK (z, η). (2.8)

To compute the r.h.s. of (2.8), we expand K . Before going into the expansion, we
prepare a notation to denote some reminder terms.

Definition 2.5 Let F ∈ C1(BH1(0, δ), R) for some δ > 0. We write F = R1 if, for
s ≥ 0, there exists δs > 0 s.t. for ‖u‖H1 < δs we have

‖∇ηF(u)‖
s + | 〈∇zF(u), iα(z)〉 | �s ‖u‖2H1

⎛

⎝‖η‖2

−s +

∑

m∈Rmin

|zm|2
⎞

⎠ , (2.9)

where α(z) = z or ‖α(z)‖ �
∑

m∈Rmin
|zm|. In our notation, if F = R1 and G = R1,

we will have F + G = R1. So, an equation like F + R1 = R1 will not mean F = 0
but only F = R1. This rule will also be applied to R2 below.

By Taylor expanding F(s, t) = K (sz, tη), we have

K (z, η) = K (0, η) + K (z, 0) +
∫ 1

0
∂s∂t K (sz, 0) ds

+
∫ 1

0

∫ 1

0
(1 − t)∂s∂

2
t K (sz, tη) dtds. (2.10)

Since ϕ(η) = η by (2.7), we have K (0, η) = E(η). Similarly, since ϕ(φ(z)) = φ(z),
we have K (z, 0) = E(φ(z)). The third term of the r.h.s. of (2.10) is

∫ 1

0
∂s∂t K (sz, 0) ds = ∂t K (z, 0) = 〈∇ηK (z, 0), η

〉
,

because DηK (0, 0) = 0. The following lemma is the crux of this paper.

Lemma 2.6 (First Cancellation Lemma) We have, near the origin,

∇ηK (z, 0) = PcDϕ(φ(z))∗
⎛

⎝
∑

m∈Rmin

zmGm + R(z)

⎞

⎠ . (2.11)

Proof We fix arbitrary z0 = (z01, · · · , z0N ) ∈ BCN (0, δ0) with δ0 sufficiently small.
It is enough to prove (2.11) with z = z0. We set z0(t) = (z01(t), · · · , z0N (t)) ∈ C

N

with
z0 j (t) = e−i� j (|z0|2)t z0 j ,
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where� j is also given in Proposition 1.11. Consider the non-autonomousHamiltonian

Ez0(u, t) := E(u) −
∑

m∈Rmin

〈
z0(t)mGm, u

〉 − 〈R(z0(t)), u〉 .

Then, the Hamilton vector field X (0)
Ez0

(u, t) of Ez0(u, t) associated with the symplectic
form 
0 is

iX (0)
Ez0

(u, t) = Hu + g(|u|2)u −
∑

m∈Rmin

z0(t)mGm − R(z0(t)) .

Thus, by Proposition 1.11, φ(z0(t)) is the integral curve of this flow with initial value
φ(z0).
Consider now the pullback of Ez0(u, t) by the ϕ of Proposition 2.4. By Taylor expan-
sion we get

ϕ∗Ez0 (u, t) = K (u) −
〈

∑

m∈Rmin

z0(t)
mGm + R(z0(t)), ϕ(u)

〉
=

K (u) −
〈

∑

m∈Rmin

z0(t)
mGm + R(z0(t)), φ(z) + Dϕ(φ(z))η +

∫ 1

0
(1 − s)D2ϕ(φ(z + sη))(η, η)

〉
.

Differentiating in η at η = 0, yields

∇η

(
ϕ∗Ez0 (t)

)∣∣
η=0 = ∇ηK

∣∣
η=0 − Pc(Dϕ(φ(z)))∗

⎛

⎝
∑

m∈Rmin

z0(t)mGm + R(z0(t))

⎞

⎠ .

Because of (2.7), we know that ϕ−1(φ(z)) = φ(z) for all z. Then, φ(z0) is an integral
trajectory also for ϕ∗Ez0(u, t). But since, in (z, η), integral trajectories satisfy iη̇ =
∇η

(
ϕ∗Ez0(t)

)
, from η ≡ 0 and, thus, from η̇ ≡ 0, it follows that ∇η

(
ϕ∗Ez0(t)

)∣∣
η=0 ≡

0. So, for t = 0, we obtain (2.11).

By Proposition 2.4, Definition 2.5 and (2.11), we have

〈∇ηK (z, 0), η
〉 =

∑

m∈Rmin

〈
zmGm, η

〉 + R1. (2.12)
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We next study the last term in r.h.s. of (2.10). By direct computation, for the linear
part of the energy we have

∂s∂
2
t 〈Hϕ(sφ(z) + tη), ϕ(sφ(z) + tη)〉
= 4

〈
HD2ϕ(sφ(z) + tη)(φ, η), Dϕ(sφ(z) + tη)η

〉

+ 2
〈
HD2ϕ(sφ(z) + tη)(η, η), Dϕ(sφ(z) + tη)φ

〉

+ 2
〈
HD3ϕ(sφ(z) + tη)(φ, η, η), ϕ(sφ(z) + η)

〉
.

Thus,

1

2

∫ 1

0

∫ 1

0
(1 − t)∂s∂

2
t 〈Hϕ(sφ(z) + tη), ϕ(sφ(z) + tη)〉 dtds = R1. (2.13)

For the nonlinear part of the energy, we have

∂s∂
2
t

∫

R3
G(|ut,s |2) dx = 4

〈
2g′′ut,s

(
Re

(
ut,s η̃

))2 + 2g′η̃Re
(
ut,s η̃

) + g′ut,s |̃η|2, φ̃
〉

+ 2
〈
2g′ut,sRe

(
ut,s D2ϕ(η, η)

)
+ gD2ϕ(η, η), φ̃

〉

+ 4
〈
2g′ut,sRe

(
ut,s η̃

) + gη̃, D2ϕ(φ(z), η)
〉

+ 2
〈
gut,s, D

3ϕ(φ(z), η, η)
〉
. (2.14)

where ut,s := ϕ(sφ(z) + tη), η̃ = Dϕ(sφ(z) + tη)η, φ̃ = Dϕ(sφ(z + tη))φ(z),
g(k) = g(k)(|ut,s |2) and Dk+1ϕ = Dk+1ϕ(sφ(z) + tη) for k = 0, 1, 2.

To handle these terms, we introduce another notation of error terms.

Definition 2.7 Let δ > 0 and F ∈ C3(BH1(0, δ), R). We write F = R2 if F is a
linear combination of functions of the form

∫ 1

0

∫ 1

0
(1 − t)

〈
f (ut,s), f(ut,s)(φ, η, η)

〉
dtds,

where f (u)(x) = f̃ (Re u(x), Im u) with f̃ ∈ C∞(R2, C) and where either one or
the other of the following two conditions are satisfied:

(I) | f̃ (s1, s2)| � |s| 〈s〉2, |∂s j f̃ (s1, s2)| � 〈s〉2 ( j = 1, 2), |∂s j ∂sk f̃ (s1, s2)| � 〈s〉
( j, k = 1, 2) and f(u)(φ, η, η) := (Dϕ(u)φ) (Dϕ(u)η)2;

(II) | f̃ (s1, s2)| � |s|2 〈s〉2, |∂s j f̃ (s1, s2)| � |s| 〈s〉2 ( j = 1, 2), |∂s j ∂sk f̃ (s1, s2)| �
〈s〉2 ( j, k = 1, 2) and f(u)(φ, η, η) := (Dϕ(u)φ) D2ϕ(u)(η, η) or Dϕ(u)ηD2ϕ

(u)(φ, η) or D3ϕ(u)(φ, η, η).

Here, s = (s1, s2) and |s| = (s21 + s22 )
1/2, 〈s〉 = (1 + s21 + s22 )

1/2.
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Thus, we have

1

2

∫ 1

0

∫ 1

0
(1 − t)∂s∂

2
t

∫

R3
G(|ϕ(sφ(z) + η)|2) dx = R2. (2.15)

We record that under the assumption ‖u‖H1 � 1, we have

‖∇zR2‖ � ‖u‖H1‖η‖2L6 . (2.16)

Summarizing, (2.10), (2.12), (2.13) and (2.15) we have

K (u) = E(φ(z)) + E(η) +
∑

m∈Rmin

〈
zmGm, η

〉 + R1 + R2. (2.17)

We can study the structure of E(φ(z)) by an argument similar to the proof of Lemma
2.6.

Lemma 2.8 (Second Cancellation Lemma) We have

(1 + A(z))∇zE(φ(z)) = �(|z|2)z + B(z), (2.18)

where, �(|z|2)w := (�1(|z|2)w1, · · · ,�N (|z|2)wN ) and ‖B(z)‖ �
∑

m∈Rmin
|zm|.

Proof Fix z0 ∈ BCN (0, δ0) and consider z0(t) and Ez0(u, t) as in the proof of Lemma
2.6. Then (z0(t), 0) is an integral curve of ϕ∗Ez0(u, t) and for t = 0 we have

�(|z0|2)z0 = (1 + A(z0)) ∇z|z=z0,η=0,t=0
(
ϕ∗Ez0(u, t)

)

= (1 + A(z0)) ∇z|z=z0

⎛

⎝E(φ(z)) −
〈

∑

m∈Rmin

zm0 Gm + R(z0), φ(z)

〉⎞

⎠ .

This yields the equality (2.18) at z = z0 with the desired bound on the remainder term,
thanks to

∥∥∥∥∥∥
∇z|z=z0

〈
∑

m∈Rmin

zm0 Gm + R(z0), φ(z)

〉∥∥∥∥∥∥
=
∥∥∥∥∥∥

〈
∑

m∈Rmin

zm0 Gm + R(z0), ∇z|z=z0 φ(z)

〉∥∥∥∥∥∥

≤
∥∥∥∥∥∥

∑

m∈Rmin

zm0 Gm + R(z0)

∥∥∥∥∥∥
L2(R3)

‖ ∇z|z=z0 φ(z)‖L2(R3) �
∑

m∈Rmin

|zm0 |.

3 Proof of theMain Theorem

Given an interval I ⊆ R we set

Stz j (I ) := L∞
t H j (I ) ∩ L2

t W
j,6(I ), Stz∗ j (I ) := L1

t H
j (I ) + L2

t W
j,6/5(I ), j = 0, 1,
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where H0 = L2 and W 0,p = L p. We will be using the Strichartz inequality, see [26]:

‖e−it H Pcv‖Stz j � ‖v‖H j , ‖
∫ t

0
e−i(t−s)H f (s) ds‖Stz j � ‖ f ‖Stz∗ j , j = 0, 1.

We now consider the Hamiltonian system in the (z, η) with Hamiltonian K and sym-
plectic form 
1. Then we have the following.

Theorem 3.1 (Main Estimates) There exist δ0 > 0 and C0 > 0 s.t. if the constant
‖u0‖H1 < δ0 for I = [0,∞) and C = C0 we have:

‖η‖Stz1(I ) +
∑

m∈Rmin

‖zm‖L2
t (I )

≤ C‖u0‖H1 , (3.1)

‖z‖W 1,∞
t (I ) ≤ C‖u0‖H1 . (3.2)

Furthermore, there exists ρ+ ∈ [0,∞)N s.t. there exist a j0 with ρ+ j = 0 for j �= j0,
and there exists η+ ∈ H1 with ‖η+‖H1 ≤ Cε for C = C0, such that

lim
t→+∞ ‖η(t) − eit�η+‖H1 = 0 , lim

t→+∞ |z j (t)| = ρ+ j . (3.3)

Note that from the energy and mass conservation, Definitions 2.5 and 2.7, (2.16),
(2.17) and Lemma 2.8 and we have the apriori bound

‖z‖W 1,∞
t (R)

+ ‖η‖L∞
t H1(R) � ‖u0‖H1 .

The proof that Theorem 3.1 implies Theorem 1.14 is like in [6]. Furthermore, by
completely routine arguments discussed in [6], (3.1) for I = [0,∞) is a consequence
of the following Proposition.

Proposition 3.2 There exists a constant c0 > 0 s.t. for any C0 > c0 there is a value
δ0 = δ0(C0) s.t. if (3.1) holds for I = [0, T ] for some T > 0, for C = C0 and for
u0 ∈ BH1(0, δ0), then in fact for I = [0, T ] the inequalities (3.1) holds for C = C0/2.

The rest of this section is devoted to the proof of Proposition 3.2. In the following,
we always assume (3.1) holds for C = C0 and the integration w.r.t. t is always be over
I .

We fist estimate the contribution of R j , j = 1, 2.

Lemma 3.3 Under the assumption of Proposition 3.2, there is a constant C(C0) such
that

‖∇ηR j‖Stz∗1 ≤ C(C0)‖u0‖3H1 , j = 1, 2.
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Proof For R1, we have

‖∇ηR1‖Stz∗1 ≤ ‖∇ηR1‖L2
t 


1(I ) � ‖u0‖2H1

⎛

⎝‖η‖Stz1(I ) +
∑

m∈Rmin

‖zm‖L2
t (I )

⎞

⎠ � C0‖u0‖3H1 .

We next estimate type (I) of R2. Ignoring the integral w.r.t. t and s and the complex
conjugate, which are irrelevant in the estimate, we have

DηR2w = 〈
f ′(u)w, φ̃η̃2

〉 + 〈
f (u), D2ϕ(u)(φ,w)̃η2 + 2φ̃η̃D2ϕ(u)(η,w) + 2φ̃η̃w

〉
. (3.4)

where f ′(u)w = ∂R f (u)Rew + ∂I f (u) Imw and φ̃, η̃ are defined in (2.14). The
contribution of the first term in the r.h.s. of (3.4) can be estimated as

‖ f ′(u)φ̃η̃2‖L2
t L6/5 � ‖z‖L∞

t
‖η‖L∞

t L6‖η‖L2
t L6 � C3

0‖u0‖3H1 , (3.5)

where we have used ‖ 〈u〉 ‖L∞+L6 � 1 and the Sobolev embedding H1 ↪→ L6.
Furthermore,

‖∇x

(
f ′(u)φ̃η̃2

)
‖L2

t L6/5 � ‖ f ′′(u)∇xuφ̃η̃2‖L2
t L6/5 + ‖ f ′(u)∇x φ̃η̃2‖L2

t L6/5

+ ‖ f ′(u)φ̃η̃∇x η̃‖L2
t L6/5 , (3.6)

and, using Sobolev’s embedding W 1,6 ↪→ L∞,

‖ f ′′(u)∇xuφ̃η̃2‖L2
t L6/5 � ‖ 〈u〉 φ̃‖L∞

t L6‖∇xu‖L∞
t L2‖η‖L2

t L∞‖η‖L∞
t L6 � C3

0‖u0‖3H1 .

Similar estimates hold for the other two terms in (3.6).
Turning to the contribution of the second term in (3.4), we have

sup
‖w‖

(W1,6/5)∗ ≤1

∣∣〈 f (u), D2ϕ(u)(φ,w)̃η2
〉∣∣ � ‖ f (u)η2‖
−1‖φ‖
−1‖w‖
−1 � ‖z‖‖ f (u)η2‖L6/5

� ‖z‖‖u‖L2∩L6‖ 〈u〉 ‖2L6+L∞‖η‖2L6 .

where we have used (W 1,6/5)∗ ↪→ 
−1 and L6/5 ↪→ 
−1 which hold by duality.
Thus, we have the estimate � C0‖u0‖3H1 for this term too. The third term in (3.4) can
be estimated just as the second term and the fourth term can be estimated just as the
first term.

The estimates of the type (II) terms in R2 is similar, easier and is omitted.

From

i∂tη = ∇ηK (u) = Pc

⎛

⎝Hη + g(|η|2)η +
∑

m∈Rmin

zmGm + ∇ηR1 + ∇ηR2

⎞

⎠ ,
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by Lemma 3.3 we obtain

‖η‖Stz1 � ‖u0‖H1 + C(C0)‖u0‖3H1 +
∑

m∈Rmin

‖zm‖L2
t
. (3.7)

We need bounds on z. We set Z := ∑
m∈Rmin

zmR+(m · ω)PcGm and ξ := η + Z ,
where R+(λ) := (H − λ − i0)−1. Then,

i∂tξ = Pc
(
Hξ + g(|η|2)η + ∇ηR1 + ∇ηR2 + R3

)
,

where R3 := i∂t Z − HZ + ∑
m∈Rmin

zmPcGm, which satisfies

R3 =
∑

m∈Rmin

amR+(m · ω)PcGm, where am := i∂t (zm) − (m · ω)zm.

Lemma 3.4 Under the assumption of Proposition 3.2, there is a constant C(C0) such
that

‖am‖L2
t (I )

≤ C(C0)‖u0‖3H1 . (3.8)

Proof We have am = ∑N
j=1 am, j with

am, j =
{
m j (i∂t z j − ω j z j )

zm
z j

ifm j > 0

m j (i∂t z j − ω j z j )
zm
z j

ifm j < 0.
(3.9)

By (2.6), (2.17) and Lemma 2.8, we have

i∂t z j − ω j z j = (i∂tz − �(0)z) · e j

=
⎛

⎝(�(|z|2) − �(0)
)
z + B(z) + (1 + A(z))∇z

⎛

⎝
∑

Rmin

〈
zmGm, η

〉 + R1 + R2

⎞

⎠

⎞

⎠ · e j .

(3.10)

We estimate each am, j by distinguishing the contribution coming from the terms in
the last line in (3.10).
Using

(
�(|z|2) − �(0)

)
z · e j = (� j (|z|2) − ω j )z j , for the first term we have

m j‖
(
�(|z|2) − �(0)

)
z · e j z

m

z j
‖L2

t
= m j‖(� j (|z|2) − ω j )zm‖L2

t

� ‖z‖2L∞
t

‖zm‖L2
t

≤ C3
0‖u0‖3H1 .
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Similarly, by Lemma 2.8,

m j‖B(z) · e j z
m

z j
‖L2

t
�

∑

n∈Rmin

m j‖zn z
m

z j
‖L2

t
≤

∑

n∈Rmin

m j‖zn‖L2
t
‖ z

m

z j
‖L∞

t
� C3

0‖u0‖3H1 ,

from the fact that m ∈ Rminimplies ‖m‖ ≥ 3.
For n ∈ Rmin, we have

m j‖(1 + A(z))∇z
〈
znGm, η

〉 · e j z
m

z j
‖L2

t
� m j‖η‖L2

t L6
x
‖∇zzn‖L∞

t
‖ z

m

z j
‖L∞

t
� C5

0‖u0‖5H1 .

Similar estimates using (2.9) and (2.16) can be obtained for the terms with R1 and
R2.

When we seek for the nonlinear effect of the radiation η on the z, we think of Z as
the main term and of ξ as a remainder term. We first estimate ξ .

Lemma 3.5 Under the assumption of Proposition 3.2, there is a constant C(C0) such
that

‖ξ‖L2
t 


0− � ‖u0‖H1 + C(C0)‖u0‖3H1 .

Here, the the key difference from (3.7) is that the last summation in the r.h.s. of
(3.7) has been eliminated. This because the formula ξ = η + Z is a normal form
expansion designed exactly to eliminate that summation from the equation of ξ .

Proof Since ξ = η + Z , we have

‖ξ‖L2
t 


0− �‖e−it Hη(0)‖Stz0 + ‖e−it H Z(0)‖L2
t 


0− + ‖g(|η|2)η‖Stz∗0 + ‖∇ηR1‖Stz∗0

+ ‖∇ηR2‖Stz∗0 + ‖
∫ t

0
e−i(t−s)H PcR3 ds‖L2

t 

0− .

Using the estimate ‖e−it H R+(m · ω)Pc f ‖
0− � 〈t〉−3/2 ‖ f ‖
0 for m ∈ Rmin, we
have

‖e−it H Z(0)‖L2
t 


0− �
∑

m∈Rmin

‖z(0)‖‖m‖ � ‖u0‖3H1 and

∥∥∥∥
∫ t

0
e−i(t−s)H PcR3 ds

∥∥∥∥
L2
t 


0−
� ‖am‖L2

t
� C(C0)‖u0‖3H1

Therefore, we have the conclusion.

We recall that for F,G ∈ C1(BH1(0, δ), R) we have the Poisson brackets given by

{F,G} := DFX (1)
G = 
1(X

(1)
F , X (1)

G ).
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Obviously {F,G} = −{G, F}. The relevance here is that, if u(t) is an integral curve
of the Hamilton vector field X (1)

G , then d
dt F(u(t)) = {F,G}. Therefore

d

dt
E(φ(z)) = {E(φ(z)), K (z, η)} =

⎧
⎨

⎩E(φ(z)),
∑

m∈Rmin

〈
zmGm, η

〉 + R1 + R2

⎫
⎬

⎭ ,

(3.11)

where we used that {E(φ(z)), E(φ(z))} = {E(φ(z)), E(η)} = 0 because Poisson
brackets are anti-symmetric and the symplectic form is diagonal w.r.t. z and η. For the
main Poisson bracket in the r.h.s. (3.11) we claim

∑

m∈Rmin

{
E(φ(z)),

〈
zmGm, η

〉} = −
∑

m∈Rmin

〈
∇z

〈
zmGm, η

〉
, DzX (1)

E(φ(z))

〉

CN

=
∑

m∈Rmin

〈
i(ω · m)zmGm, η

〉 + R4, (3.12)

where R4 = ∑
m∈Rmin

〈iãmGm, η〉 with ãm = Dz(zm)
(
(�(|z|2) − �(0))z + B(z)

)
.

To prove formula (3.12), using Lemma 2.8 we compute

{
E(φ(z)),

〈
zmGm, η

〉} = −
〈
∇z

〈
zmGm, η

〉
, DzX (1)

E(φ(z))

〉

CN

= 〈∇z
〈
zmGm, η

〉
, i(1 + A(z)E(φ(z))

〉
CN = 〈∇z

〈
zmGm, η

〉
, i�(0)z

〉
CN

+
〈
∇z

〈
zmGm, η

〉
, i
(
(�(|z|2) − �(0))z + B(z)

)〉

CN
.

By elementary computations, we have the following, which completes the proof of
(3.12):

〈∇z
〈
zmGm, η

〉
, i�(0)z

〉
CN = 2−1

∑

j=1,...,N

〈∇zzm(Gm, η) + ∇zzm(Gm, η), iω j z je j
〉
CN

= 2−1
∑

j=1,...,N

[
∂z j

(
zm(Gm, η) + zm(Gm, η)

)
iω j z j − ∂z j

(
zm(Gm, η) + zm(Gm, η)

)
iω j z j

]

= 2−1i(ω · m)zm(Gm, η) − 2−1i(ω · m)zm(Gm, η) = 〈
i(ω · m)zmGm, η

〉
.

Proceeding as in Lemma 3.4 we have

‖ãm‖L2
t (I )

≤ C(C0)‖u0‖3H1 . (3.13)

Entering the expansion η = −Z + ξ , we obtain

∑

m∈Rmin

〈
i(ω · m)zmGm, η

〉 = −
∑

m∈Rmin

(ω · m)|z|2|m| 〈iPcGm, R+(m · ω)PcGm〉 + R5 + R6,

(3.14)
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where

R5 = −
∑

m,n∈Rmin, m �=n

〈
i(ω · m)zmGm, znR+(m · ω)PcGn

〉
,

R6 =
∑

m∈Rmin

〈
i(ω · m)zmGm, ξ

〉
.

Lemma 3.6 We have, for a fixed constant c0

∑

j=1,2

‖
〈
∇zR j , DzX (1)

E(φ(z))

〉
‖L1

t (I )
+

∑

j=4,6

‖R j‖L1
t (I )

≤ c0C0‖u0‖2H1

+ C(C0)
(
‖u0‖3H1 + ‖u0‖4H1

)
. (3.15)

Here the crucial point is that in the quadratic term we have C0 instead of C2
0 , while

the exact dependence in C0 of C(C0) is immaterial.

Proof The main bound is the following, using Lemma 3.5 and the a priori estimate
(3.1),

‖R6‖L1
t (I )

� ‖ξ‖L2
t 


0−
∑

m∈Rmin

‖zm‖L2
t (I )

� C0

(
‖u0‖H1 + C(C0)‖u0‖3H1

)
‖u0‖H1 .

Turning to the remainders, for j = 1 the upper bound ≤ C(C0)‖u0‖3H1 follows from
(2.9) combined with Lemma 2.8 and for j = 2 follows from (2.16) and the a priori
estimates (3.1). The upper bound ≤ C(C0)‖u0‖4H1 for j = 4 follows from (3.13).

Lemma 3.7 We have
∣∣∣∣
∫

I
R5 dt

∣∣∣∣ � C2
0‖u0‖4H1 . (3.16)

Proof Let m �= n. By (2.8), (2.17) and Lemma 2.8, we have

i∂t (zmz−n) = (m − n) · ωzmz−n + R7,

where

R7 =(m − n) · (� (|z|2) − ω)zmz−n

+ Dz(zmz−n)

⎛

⎝B(z) + (1 + A(z))

⎛

⎝∇z

⎛

⎝
∑

Rmin

〈
zmGm, η

〉 + R1 + R2

⎞

⎠

⎞

⎠

⎞

⎠ .

Then, we have

‖R7‖L2 � C0‖u0‖4H1 .
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Therefore, since

〈
i(ω · m)zmGm, znR+(ω · n)Gn

〉

= − ω · m
(m − n) · ω

(
∂t
〈
zmGm, znR+(ω · n)Gn

〉 + 〈R7Gm, R+(ω · n)Gn〉
)
,

integrating the above equation over I , we have (3.16).

From (3.11), (3.12), (3.14), Lemmas 3.6 and 3.7, and

〈
iGm, (H − ω · m − i0)−1Gm

〉
= 1

16π
√

ω · m
∫

|ζ |2=ω·m
|Ĝm(ζ )| dζ � 1,

(for the latter see (H − ω ·m − i0)−1 = P.V. 1
H−ω·m + iπδ(H − ω ·m) and formula

(2.5) p. 156 [23]) and Assumption 1.8, we have

∑

m∈Rmin

‖zm‖2L2 � C0‖u0‖2H1 + C(C0)‖u0‖3L2 . (3.17)

By taking ‖u0‖H1 < δ0 with δ0 > 0 sufficiently small, the l.h.s. in (3.17) is smaller
than c20C0‖u0‖2H1 for a fixed c0. Adjusting the constant and using (3.7) we conclude
that (3.1) with C = C0 implies

‖η‖Stz1(I ) +
∑

m∈Rmin

‖zm‖L2
t (I )

≤ c0
√
C0‖u0‖H1 <

C0

2
‖u0‖H1

where c0 is a fixed constant and we are free to choose C0 > 4c20, so that the last
inequality is true. This completes the proof of Proposition 3.2. ��

4 Soliton and Refined Profile

In this section, we prove Proposition 1.11.We first note that due to our notation (1.17),
zm1zm2 is not zm1+m2 in general. In fact, we have the following elementary lemma.

Lemma 4.1 Let m1,m2 ∈ Z
N and z ∈ C

N . Then,

zm1zm2 = |z||m1|+|m2|−|m1+m2|zm1+m2 .

Proof It suffices to consider N = 1, where m1,m2 ∈ Z. If they are both
≥ 0 or ≤ 0, then |m1| + |m2| − |m1 + m2| = 0 and it is immediate from
(1.17) that zm1zm2 = zm1+m2 . Otherwise, we reduce to m1 > 0 > m2. Then
|m1| + |m2| − |m1 + m2| = 2|m j0 | with |m j0 | = min j |m j |. If j0 = 2, we have
zm1zm2 = zm1 z̄|m2| = |z|2|m2|zm1+m2 , which is the desired formula. If j0 = 1, then
zm1zm2 = zm1 z̄|m2| = |z|2m1 z̄|m2|−m1 = |z|2m1zm1+m2 , which again is the desired
formula.
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Remark 4.2 Each component of |m1| + |m2| − |m1 + m2| are nonnegative and even
integers.

Proof of Proposition 1.11 Recall φ = (φ1, · · · , φN ) ∈ (
∞)N are the eigenvectors of
H given in Assumption 1.2. We look for an approximate solution of (1.1) of form
u = φ(z(t)) for appropriate

φ(z) := z · φ +
∑

m∈NR1

zmψm(|z|2), (4.1)

with real valuedψm andorthogonality conditions
〈
ψe j , φ j

〉 = 0 for all j ∈ {1, · · · , N }.
We set

φ̃m(|z|2) :=
{

φ j + ψe j (|z|2) ifm = e j ,
ψm(|z|2) ifm ∈ NR1 \ NR0.

(4.2)

Remark 4.3 We will show that φ̃m(|z|2) for z = 0 are equal to the φ̃m(0) given in
(1.10) and (1.11).

Assuming z j (t) = e−i� j (|z|2)t z j , with � j to be determined, from d
dt |z j (t)|2 = 0 we

have

i∂tφ(z) =
∑

m∈NR1

zm (� · m) φ̃m. (4.3)

Next, we have

Hφ(z) =
∑

m∈NR1

zmH φ̃m. (4.4)

We need to Taylor expand the nonlinearity g till the remainder becomes sufficiently
small. We will expand now g(|φ(z)|2)φ(z) = ∑

m∈NR1
zmgm + R̃ with ‖R̃‖
s �s

‖z‖2∑Rmin
|zm|. We start with

|φ(z)|2 =
⎛

⎝
∑

m1∈NR1

zm1 φ̃m1

⎞

⎠

⎛

⎝
∑

m2∈NR1

z−m2 φ̃m2

⎞

⎠

=
∑

m∈NR1

|z|2|m|φ̃2
m +

∑

m1,m2∈NR1
m1 �=m2

zm1z−m2 φ̃m1 φ̃m2 .
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Claim 4.4 Assume ‖φ̃m‖
s �s 1 for all m ∈ NR1. Then, there exists M > 0 s.t. for
all z ∈ C

N with ‖z‖ ≤ 1,

∥∥∥∥∥∥∥

⎛

⎝
∑

m1 �=m2

zm1z−m2 φ̃m1 φ̃m2

⎞

⎠
M+1⎛

⎝
∑

m3∈NR1

zm3 φ̃m3

⎞

⎠

∥∥∥∥∥∥∥

s

�s ‖z‖2
∑

m∈Rmin

|zm|.

(4.5)

Proof An M ∈ N such that ω1 + M min1≤ j≤N−1
(
ω j+1 − ω j

)
> 0 will work. To

begin, we remark that for ‖z‖ ≤ 1 we have |zm1z−m2 | ≤ ‖z‖2 for m1 �= m2. Indeed,
by Lemma 4.1 this can only fail if |m1| + |m2| − |m1 − m2| = 0. This implies
m1 jm2 j ≥ 0 for all j = 1, ..., N . Furthermore, if the inequality fails, we can reduce
to the case |m1| − |m2| = e j0 for an index j0. So m1 j = m2 j for all j �= j0, and
m1 j0 = m2 j0 ± 1. This is incompatible with

∑
m1 = ∑

m2 = 1.
With the above remark, we can take one of the factors of the M + 1–th power in
(4.5) bounding it with ‖z‖2, concluding that to prove (4.5) it suffices to show that for
m1 j ,m2 j ,m3 ∈ NR1 withm1 j �= m2 j , there exists m ∈ Rmin s.t.

|zm3 |
M∏

j=1

|zm1 j z−m2 j | ≤ |zm3 |
M∏

j=1

|zm1 j−m2 j | ≤ |zm| when ‖z‖ ≤ 1, (4.6)

where the first inequality follows from Lemma 4.1. Noticing that complex conjugation
does not change absolute value, we conclude that each factor |zm1 j−m2 j | has at least
one factor |za j zb j | with a j > b j . There is a nonzero component m3k �= 0 of m3. Set

n := ek +
M∑

j=1

(
ea j − eb j

)
.

Obviously
∑

n = 1. Moreover, n ∈ R, since, by our choice of M ,

ω · n = ωk +
M∑

j=1

(
ωa j − ωb j

) ≥ ω1 + M min
1≤ j≤N−1

(
ω j+1 − ω j

)
> 0.

But for any n ∈ R there exists an m ∈ Rmin s.t. |m| � |n|. Obviously, all the factors
of the l.h.s. of (4.6) which we ignored are ≤ 1. This proves (4.6) and completes the
proof of Claim 4.4.
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We consider a Taylor expansion

g(|φ(z)|2)φ(z)

=
⎛

⎝
M∑

m=0

1

m! g
(m)

⎛

⎝
∑

m∈NR1

|z|2|m|φ̃2
m

⎞

⎠

⎛

⎝
∑

m1 �=m2

|z||m1|+|m2|−|m1−m2|zm1−m2 φ̃m1 φ̃m2

⎞

⎠
m⎞

⎠

×
⎛

⎝
∑

m3∈NR1

zm3 φ̃m3

⎞

⎠ + R̃, (4.7)

where R̃ = O (‖z‖2∑m∈Rmin
|zm|), by Claim 4.4, and so can be absorbed in the

R(z(t)) in (1.22). Thus, we only have to consider the contribution of the summation.
For 0 ≤ m ≤ M , we have

⎛

⎝
∑

m1 �=m2

|z||m1|+|m2|−|m1−m2|zm1−m2 φ̃m1 φ̃m2

⎞

⎠
m ⎛

⎝
∑

m3∈NR1

zm3 φ̃m3

⎞

⎠

=
∑

m1 j �=m2 j
m3

|z|
∑m

j=1(|m1 j |+|m2 j |)+|m3|−|∑m
j=1(m1 j−m2 j )+m3|

×
⎛

⎝
m∏

j=1

φ̃m1 j φ̃m2 j

⎞

⎠ φ̃m3z
∑m

j=1(m1 j−m2 j )+m3

Thus, if for each m ∈ Z
N , we set

gm := gm(|z|2, {ψm}m∈NR1 ) :=
M∑

m=0

1

m! g
(m)

⎛

⎝
∑

n∈NR1

|z|2|n|φ̃2
n

⎞

⎠

×
∑

m3,mk j∈NR1, k=1,2, j=1,··· ,m∑m
j=1(m1 j−m2 j )+m3=m

m1 j �=m2 j

|z|
∑m

j=1(|m1 j |+|m2 j |)+|m3|−|m|
⎛

⎝
m∏

j=1

φ̃m1 j φ̃m2 j

⎞

⎠ φ̃m3 ,

for R̃ the term given in (4.7) we obtain

g(|φ(z)|2)φ(z) =
∑

m∈NR1

zmgm +
∑

m/∈NR1

zmgm + R̃. (4.8)

Remark 4.5 Notice that gm(|z|2, {ψm(|z|2)}m∈NR1)
∣∣
z=0 coincides with the gm(0) in

(1.10) and (1.12).
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Summing up, we obtain the following (where in the 2nd line we have a finite sum)

i∂tφ(z) − Hφ(z) − g(|φ(z)|2)φ(z) =
∑

m∈NR1

zm
(
(� · m)φ̃m − H φ̃m − gm

)

−
∑

m/∈NR1

zmgm − R̃.

(4.9)

Notice that, by the definition of NR1 and Rmin, we have

‖
∑

m/∈NR1∪Rmin

zmgm‖
s � ‖z‖2
∑

m∈Rmin

|zm|.

Thus, entering Gm form ∈ Rmin defined in (1.14) and

R(z) :=
∑

m/∈NR1∪Rmin

zmgm +
∑

m∈Rmin

zm
(
gm(|z|2) − Gm

)
+ R̃,

we have the estimate (1.20). Thus the proof of Proposition 1.11 follows if the 1st
summation in the r.h.s. of (4.9) cancels out, that is, if we solve the system

(� · m)φ̃m = H φ̃m + gm, m ∈ NR1. (4.10)

Here the unknowns are � and ψm, since the latter determines φ̃m by (4.2), while gm
are given functions of both the variables |z|2 and {ψm}m∈NR1 . We will later determine
{ψm}m∈NR1 as a function of |z|2, and so at the end� and gm will depend only on |z|2.
We first focus on (4.10) for m = e j splitting in the direction parallel to φ j and the
space orthogonal to φ j . In the direction parallel to φ j , that is taking inner product with
φ j (and recalling assumption

〈
ψe j , φ j

〉 = 0), we have

� j (|z|2, {ψm}m∈NR1) = ω j +
〈
ge j (|z|2, {ψm}m∈NR1), φ j

〉
. (4.11)

This determines � as a function of |z|2 and {ψm}m∈NR1 . Later we will determine
{ψm}m∈NR1 as a function of |z|2, so in the end � will be a function of |z|2. Notice
also that � j (0, {ψm}m∈NR1) = ω j because ge j (0, {ψm}m∈NR1) = 0, as can be seen
from the definition of gm.
Next, set

Am :=
⎧
⎨

⎩

(
(H − ω j )

∣∣{φ j }⊥
)−1

m = e j ∈ NR0,

(H − m · ω)−1 m ∈ NR1 \ NR0.

The following lemma is standard and we skip the proof.

Lemma 4.6 For all m ∈ NR1 and any s ∈ R we have ‖Am‖
s→
s+2 �s 1.
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It is elementary that (4.10) holds if and only if both (4.11) and the following system
hold:

Fm(|z|2, {ψn}n∈NR1) := ψm − Am ((� − ω) · mψm − gm) = 0, m ∈ NR1.

(4.12)

We have {Fm}m∈NR1 ∈ C∞(RN × 
s
NR1

, 
s
NR1

), for


s
NR1

= 
s
NR1

(R3, R)

:=
{
{ψm}m∈NR1 ∈ (
s(R3, R))�NR1 | 〈ψe j , φ j

〉 = 0, j = 1, · · · , N
}

.

Since, for D{ψm}m∈NR1 F the Fréchet derivative of F w.r.t. the {ψm}m∈NR1 ,

{Fm(0, 0)}m∈NR1 = 0 and D{ψm}m∈NR1 F(0, 0) = Id
s
NR1

,

by implicit function theorem there exist δs > 0 and {ψm(·)}m∈NR1 ∈ C∞(BRN (0, δs),

s

NR1
) s.t.

Fm(|z|2, {ψn(|z|2)}n∈NR1) = 0, m ∈ NR1.

Setting� (|z|2) := � (|z|2, {ψn(|z|2)}n∈NR1), gm(|z|2) := gm(|z|2, {ψn(|z|2)}n∈NR1),

and u(t) = φ(z(t)) with z j (t) = e−� j (|z|2)t z j and φ defined in (4.1), we obtain the
conclusions of Proposition1.11.

Remark 4.7 From (4.12) we have ψe j (0) = 0, since ge j (0) = 0 and � j (z, {ψm}m ∈
NR1)

∣∣∣
z=0

= ω j , as we remarked under (4.11).

5 Darboux Theorem and Proof of Proposition 2.4

In this section, we will always assume B ⊂dense H (i.e. B is a dense subset of H )
where B is a reflexive Banach space and H is a Hilbert space. We further always
identify H∗ with H by the isometric isomorphism H � u �→ 〈u, ·〉 ∈ H∗, where 〈·, ·〉
is the inner product of H . We will also denote the coupling between B∗ and B by
〈 f , u〉.

When we have B ⊂dense H ⊂dense B∗, we think B as a “regular” subspace of H
and B∗. We introduce several notation.

Definition 5.1 LetU ⊂ B∗. Let ϕ be aC∞-diffeomorphism fromU ⊂ B∗ to ϕ(U ) ⊂
B∗. We call ϕ a (B-)almost identity if ϕ(u) − u ∈ C∞(U , B).

Definition 5.2 Let U ⊂ B∗. We define B-regularizing vector fields X�(U ) and regu-
larizing 1–forms 
1

�(U ) by

X�(U ) := C∞(U , B) ⊂ X(U ) := C∞(U , B∗) and 
1
�(U ) := 
1(U ).
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Here, for a Banach space B1 and an open subset U1 ⊂ B1, the space of k-forms is
given by 
k(U1,Lk

a(B1, R)) where Lk
a(B1, R) is the Banach space of anti-symmetric

k-linear operators.

Remark 5.3 B-regularizing 1–forms are mere 1–forms on B∗. However, if we think
“standard” 1–forms as differential forms defined on H , B-regularizing 1–forms are
more regular than “standard” 1–forms because they make sense with more “rough”
vectors which are in B∗ and not in H . We further remark


1
�(U ) = C∞(U ,L(B∗, R)) � C∞(U , B) = X�(U ).

Definition 5.4 (Symplectic forms)LetU ⊂ H .We say that
 ∈ 
2(U ) is a symplectic
form on U if d
 = 0 and if for each u ∈ U the following map is an isomorphism:

H � v �→ 
(u)(v, ·) ∈ H∗ � H (5.1)

Following [7],we call themap in (5.1) symplector, denoting it by J (u). The symplector
satisfies J ∈ C∞(U ,L(H)). If there exists an open set V ⊂ B∗ s.t. U ⊂ V and we
can extend J and J−1 on V so that both are in C∞(V ,L(B)), we say that 
 is a
B-compatible symplectic form.

Remark 5.5 Our symplectic form is the strong symplectic form of [1].

Let 
 be a symplectic form and J be the associated symplector. Then, we have


(u)(X ,Y ) = 〈J (u)X ,Y 〉 , X ,Y ∈ H . (5.2)

Moreover, if 
 is a B-compatible symplectic form, then for X ∈ B and Y ∈ B∗,
we can define 
(u)(X ,Y ) by (5.2). Of course we can also define 
(u)(Y , X) by

(u)(Y , X) := −
(u)(X ,Y ).

The symplector corresponding to the symplectic form
0 given in (1.24) is J (u) =
i. Obviously, this symplectic form is B compatible for any Banach space B ⊂dense H
satisfying the property f ∈ B ⇒ i f ∈ B. In particular, if H = L2(R3, C) and
B = Hs

γ (R3, C), 
0 is a Hs
γ (R3, C)-compatible symplectic form.

We next consider a small perturbation of a B-compatible symplectic form.

Lemma 5.6 LetU1 ⊂ H andU2 ⊂ B∗ withU1 ⊂ U2,
 be a B-compatible symplectic
form and F ∈ 
1

�(U2). Let u0 ∈ U1 and assume F(u0) = 0 and DF(u0) = 0. Then,
there exists an open set V ⊂ U1 in H s.t. 
+dF is an B-compatible symplectic form
on V , where dF ∈ 
2(U ) is the exterior derivative of F.

Remark 5.7 Since F ∈ 
1
�(U ) = C∞(U ,L(B∗, R)), we have DF ∈ C∞(U ,L2(B∗,

R)). If DF(u0) = 0, then from the definition of exterior derivative, we have dF(u0) =
0 too.
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Proof We identify L2(B∗, R) with L(B∗,L(B∗, R)) = L(B∗, B∗∗) � L(B∗, B). In
this case, we can write DF(u)(X ,Y ) = 〈DF(u)X ,Y 〉 for X ,Y ∈ B∗. Therefore, we
have

dF(u)(X ,Y ) = 〈DF(u)X ,Y 〉 − 〈DF(u)Y , X〉 = 〈(
DF(u) − (DF(u))∗

)
X ,Y

〉
,

where (DF(u))∗ ∈ L(B∗, B) is the adjoint of DF(u) ∈ L(B∗, B). Thus, for J ∈
C∞(U1,L(H)) the symplector of 
, we have


(u)(X ,Y ) + dF(u)(X ,Y ) = 〈(
J (u) + DF(u) − (DF(u))∗

)
X ,Y

〉
. (5.3)

Since DF(u0) = 0, there exists an open neighborhood V of u0 in B∗ s.t. J (u) +
DF(u)−(DF(u))∗ is invertible for all u ∈ V . Hence
+dF is a symplectic formwith
symplector J (u) + DF(u) − (DF(u))∗. Since DF(u) − (DF(u))∗ ∈ L(B∗, B), the
restriction of DF(u)− (DF(u))∗ to B is inL(B). Therefore, we have the conclusion.

We are now in the position to prove a Darboux theorem with appropriate error
estimates.

Proposition 5.8 (Darboux theorem) Let U1 ⊂ H and U2 ⊂ B∗ be open sets with
U1 ⊂ U2 and let 
1 be a B-compatible symplectic form and F ∈ 
1

�(U2). Let
u0 ∈ U1 and assume F(u0) = 0 and DF(u0) = 0. Set 
2 := 
1 + dF. Then, there
exists an open neighborhood V ⊂ U2 of u0 in B∗ and a map ϕ ∈ C∞(V , B∗) s.t.
ϕ∗
2 = 
1, and

∀u ∈ V , ‖ϕ(u) − u‖B � ‖F(u)‖B . (5.4)

Proof We first set


s+1 := 
1 + s(
2 − 
1) = 
1 + sdF,

and look for a vector field Xs+1 that satisfies iXs+1
s+1 := 
s+1(Xs+1, ·) = −F .

Claim 5.9 There exists an open neighborhood V1 of u0 in B∗ s.t. there exists

X·+1 ∈ C∞((−2, 2) × V1, B) satisfying iXs+1
s+1 = −F (5.5)

and such that there exists a C1 > 0 s.t.

sup
s∈(−2,2)

‖Xs+1(u)‖B ≤ C1‖F(u)‖B for all u ∈ V1. (5.6)

Proof of Claim 5.9 Since F ∈ 
1
�(U2) = C∞(U2,L(B∗, R)) � C∞(U2, B), we can

express F(u)X = 〈F(u), X〉 for any X ∈ B∗. Therefore, using also (5.3), (5.5) can
be expressed as

(J1(u) + s
(
DF(u) − (DF(u))∗

)
)Xs+1 = −F(u),
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where J1 ∈ C∞(U ,L(H)) is the symplector of 
1. Since 
1 is a B-compatible
symplectic form, we can extend J1 to J1 ∈ C∞(V ′,L(B)) for some U ⊂ V ′ with
V ′ ⊂ B∗.

Take now δ1 > 0 sufficiently small, so that BB∗(u0, δ1) ⊂ V ′ and

sup
u∈BB∗ (u0,δ1)

‖DF(u)‖L(B∗,B) ≤ (8 sup
u∈BB∗ (u0,δ1)

‖J1(u)−1‖L(B))
−1.

Then, we have

∀u ∈ BB∗(u0, δ1), ‖J1(u)−1 (DF(u) − (DF(u))∗
) ‖L(B∗,B) ≤ 1

4

Thus, by Neumann series we have

Xs+1(u) = −
∞∑

n=0

(
s J1(u)−1 (DF(u) − (DF(u))∗

))n
J1(u)−1F(u),

where the r.h.s. absolutely converges uniformly for s ∈ (−2, 2). Therefore, setting
V1 = BB∗(u0, δ1), we have the conclusion. ��
Claim 5.10 There exit an open neighborhood V2 ⊂ V1 of u0 in B∗ and a map ϕ̃· ∈
C∞((−2, 2) × V2, B) s.t.

d

ds
ϕ̃s(u) = Xs+1(u + ϕ̃s(u)), ϕ̃0(u) = 0 (5.7)

and

sup
s∈[0,1]

‖ϕ̃s(u)‖B ≤ 2C1‖F(u)‖B for all u ∈ V2. (5.8)

Proof of Claim 5.10 The existence of ϕ̃ satisfying (5.7) is standard so we concentrate
on the estimate (5.8). First, by the assumption F(u0) = 0 and DF(u0) = 0, there
exists δ2 ∈ (0, δ1] s.t. for u ∈ BB∗(u0, δ2), we have ‖F(u)‖B ≤ 1

4C1
‖u − u0‖B∗ ,

where C1 > 0 is the constant (5.6). We define s∗(u) ∈ [0, 1] by

s∗(u) := min(inf{s ∈ (0, 2) | ϕs(u) /∈ BB∗(u0, δ2/2)}, 1).

Then, since ϕ̃s is continuous, we have s∗(u) > 0 for u ∈ BB∗(u0, δ2/2). Furthermore,

sup
s∈[0,s∗(u)]

‖ϕ̃s(u)‖B∗ ≤ sup
s∈[0,s∗(u)]

∫ s

0
‖Xs′+1(u + ϕ̃s′ (u))‖B∗ ds′

≤ C1 sup
s∈[0,1]

‖F(u + ϕ̃s(u))‖B ≤ 1

4

(
‖u − u0‖B∗ + sup

s∈[0,1]
‖ϕ̃s(u)‖B∗

)
.
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Thus, we conclude that s∗(u) = 1 from

sup
s∈[0,s∗(u)]

‖ϕ̃s(u)‖B∗ ≤ 1

3
‖u − u0‖B∗ ≤ 1

6
δ2 <

1

2
δ2. (5.9)

Since B ⊂ H ⊂ B∗, there exists C2 ≥ 1 s.t. for all u ∈ B, ‖u‖B∗ ≤ C2‖u‖B . Now,
take δ3 ∈ (0, δ2] s.t. if u ∈ BB∗(u0, δ3), then ‖DF(u)‖L(B∗,B) ≤ (2C1C2)

−1. Then,
for all u ∈ BB∗(u0, δ3/2) and all s, s1 ∈ [0, 1], we have u + s1ϕ̃s(u) ∈ BB∗(u0, δ3)
by (5.9). Therefore, by Taylor expansion and (5.5),

sup
s∈[0,1]

‖ϕ̃s(u)‖B ≤ C1‖F(u)‖B + C1 sup
s1∈[0,1]

‖DF(u + s1ϕ̃s(u))‖L(B∗,B)‖ϕ̃(u)‖B∗

≤ C1‖F(u)‖B + 1

2
sup

s∈[0,1]
‖ϕ̃s(u)‖B .

This completes the proof of Claim 5.10. ��
We set ϕs(u) := u + ϕ̃s(u). Then, by Cartan’s formula, see (7.4.6) [1], we have

d

ds
ϕ∗
s 
s+1 = ϕ∗

s

(LXs+1
s+1 + dF
) = ϕ∗

s

((
diXs+1 + iXs+1d

)

s+1 + dF

) = 0.

(5.10)

Therefore, since ϕ0 = id, we have


2 = ϕ∗
1
1.

Setting ϕ := ϕ1, we have the conclusion.
We show now that Proposition 2.4 follows from Proposition 5.8.

Proof of Proposition 2.4 Let B = 
s and H = L2. Set F := 2−1
0(Dzφ(z)Dz, η).
Then, by F ∈ 
1

�(B
−s (0, δs)) and by the identification 
1
�(B
−s (0, δs)) �

C∞(B
−s (0, δs),
s), we have F(u) = −i2−1(Dzφ(z)Dz)∗iη. Notice the cancel-
lation

(Dzφ(z)Dz)∗iη = (Dzφ(z)Dz − Dz(zφ)Dz)∗iη.

So from (4.1) and by ‖(Dz(zmψm(|z|2))Dz)∗‖L(
−s ,
s ) = ‖D(zmψm(|z|2))Dz
‖L(
−s ,
s ), we have

‖F(u)‖
s ≤
∑

m∈NR1

‖(Dz(zmψm(|z|2))Dz)∗iη‖
s

≤
∑

m∈NR1

‖D(zmψm(|z|2))Dz‖L(
−s ,
s )‖η‖
−s .
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Next we use the fact that, for m ∈ NR1, we have

‖Dz(zmψm(|z|2))Dz‖L(
−s ,
s ) ≤ ‖Dz(zmψm(|z|2))‖
s‖Dz‖L(
−s ,CN ) ≤ Cs‖z‖2,

where for m ∈ NR0, ‖Dz(zmψm(|z|2))‖
s ≤ C‖z‖2 follows from Remark 4.7, and
for m ∈ NR1\NR0 it follows from |zm| ≤ ‖z‖3, since zm has an odd number of
factors.
Summing up, we have proved

‖F(u)‖
s ≤ Cs‖z‖2‖η‖
−s . (5.11)

Then the statement of Proposition 2.4 is a consequence of 
0 = 
1 + dF and of
Proposition 5.8.
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A Proofs of Lemma 1.5 and of Proposition 1.10

Proof of Lemma 1.5 For j, k ∈ {1, · · · , N }, j < k, set n jk to be the smallest integer

satisfying n jk(ωk −ω j )+ωk > 0. Then, form( jk) = (m( jk)
1 , · · · ,m( jk)

N ) defined by

m( jk)
j = −n jk, m( jk)

k = n jk + 1 and m( jk)
l = 0 (l �= j, k), (A.1)

we have m( jk) ∈ Rmin. Suppose Rmin is an infinite set. Then, there exists j ∈
{1, · · · , N } and {mk}∞k=1 ⊂ Rmin s.t. |mkj | k→∞−−−→ ∞. If there exists M > 0 s.t.
for all l �= j , |mkj | ≤ M , then mk cannot satisfy

∑
mk = 1. Therefore, if neces-

sary taking a subsequence, there exists l �= j s.t. |mkl | k→∞−−−→ ∞. However, for k
sufficiently large, we have |m( jl)| ≺ |mk | with m( jl) ∈ Rmin defined by (A.1). This,
by the definition of Rmin in (1.8), implies mk /∈ Rmin, contradicting the hypothesis
mk ∈ Rmin.

Letm ∈ NR1. It is elementary, by the definition ofNR1 (1.9), that for all n ∈ Rmin,
either there exists j s.t. |n j | > |m j | or |n| = |m|. So, for n = m( jk) in (A.1),

we have either |m| = |m( jk)| or |ml | < |m( jk)
l | for l = j or k. Since there are

finitely many m ∈ NR1 s.t. |m| = |m( jk)|, we can assume |m| �= |m( jk)| for all
j < k. Thus, for all j < k, we have |ml | < m( jk)

l for at least one of l ∈ { j, k}.
It is easy to conclude that |m j | ≤ max1≤k<l≤N (|nkl | + 1) for all j except for at
most one. However, from

∑
m = 1 it is immediate that this special j must satisfy

|m j | ≤ N max1≤k<l≤N (|nkl | + 1). Thus, m is in a fixed bounded set. Hence NR1 is
a finite set.

Proof of Proposition 1.10 The simple proof is analogous to Bambusi and Cuccagna [2,
p.1444]. For m ∈ Rmin set N � Lm := ‖m‖−1

2 . Then from (1.13)–(1.14), for any
m ∈ Rmin we have
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Gm = Nm
g(Lm)(0)

Lm! φm + Km,

where Nm ∈ N is the number of elements of A(Lm,m), which in this particular case
is given by the set

A(Lm,m) =
⎧
⎨

⎩{e� j }‖m‖
j=1 ∈ (NR0)

‖m‖ |
Lm∑

j=0

e�2 j+1 −
Lm∑

j=1

e�2 j = m

⎫
⎬

⎭ ,

and where

Km :=
∑

1≤m<Lm

1

m!g
(m)(0)

∑

(m1,··· ,m2m+1)∈A(m,m)

φ̃m1(0) · · · φ̃m2m+1(0).

So, expanding we have on the sphere Sm = {ξ : |ξ |2 = m · ω} we obtain

‖Ĝm‖2L2(Sm)
=
(
Nm

g(Lm)(0)

Lm!
)2

‖φ̂m‖2L2(Sm)

+ 2Nm
g(Lm)(0)

Lm!
〈
φ̂m, K̂m

〉
L2(Sm)

+ ‖K̂m‖2L2(Sm)
.

Equating the above to 0 we obtain, in view of (1.16), a quadratic equation for g(Lm)(0)
which expresses it in terms of (g′(0), ...., g(Lm−1)(0)). This proves Proposition 1.10.

��
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