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ABSTRACT
The development of trajectory-based operations and the rolling network operations plan in Euro-
pean air traffic management network implies a move towards more collaborative, strategic flight
planning. This opens up the possibility for inclusion of additional information in the collabora-
tive decision-making process. With that in mind, we define the indicator for the economic risk
of network elements (e.g., sectors or airports) as the expected costs that the elements impose
on airspace users due to Air Traffic Flow Management (ATFM) regulations. The definition of
the indicator is based on the analysis of historical ATFM regulations data, that provides an in-
dication of the risk of accruing delay. This risk of delay is translated into a monetary risk for
the airspace users, creating the new metric of the economic risk of a given airspace element.
We then use some machine learning techniques to find the parameters leading to this economic
risk. The metric is accompanied by an indication of the accuracy of the delay cost prediction
model. Lastly, the economic risk is transformed into a qualitative economic severity classifi-
cation. The economic risks and consequently economic severity can be estimated for different
temporal horizons and time periods providing an indicator which can be used by Air Navigation
Service Providers to identify areas which might need the implementation of strategic measures
(e.g., resectorisation or capacity provision change), and by Airspace Users to consider operation
of routes which use specific airspace regions.

1. Introduction
After the reduction and stagnation in the period between 2008-2010, European air traffic started to increase again

in 2011, bringing the same trend to the delays (EUROCONTROL, 2017), an occurrence everyone prefers to avoid. At
the time of writing, the aviation is experiencing an unprecedented decrease in traffic1 due to the COVID-19 pandemic,
meaning that congestion and consequently delays are currently not a problem. Draft traffic scenarios2 produced in
April 2020 envisioned traffic increase throughout the remainder of the year, growing to the levels 30-20% lower than
in 2019. The September update to traffic scenarios, and the actual numbers show that the forecast was rather optimistic
as the traffic is still at about 40% of 2019 levels. The current scenario envisions very slow recovery in the early months
of 2020 to about 50% of the previous traffic. Hopefully, the vaccinations and other measures will enable slow return
to normal which could lead to traffic growth later on. With traffic increase, the congestion and delays will return.

In the current European ATM, airlines enjoy high flexibility in the flight planning process - they are required to
submit the flight plans from 120 to 3 hours before the flight, which gives them the opportunity to account for various
uncertainty factors, like the weather, or aircraft frame availability (Network Manager, 2018). As a consequence, the
accurate load on the airspace network (i.e., howmany flights, where and at what time) is known on the day of operations.
Conversely, the Air Navigation Service Providers (ANSPs) start preparing their capacity offer a year to six months
before, considering historical traffic levels and staff availability. This mismatch in the planning horizons can result in
capacity-demand imbalances, generating delay. Earlier sharing of information on flight intentions, or on the economic
impact of flying through certain airspace at specified times could help both airlines and ANSPs obtain better demand-
capacity management in the collaborative manner.
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Declarations of interest: none.
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1Over 90% decrease in traffic in April 2020, and still less than 50% in August and September 2020 in Europe.
2See https://www.eurocontrol.int/covid19#traffic-scenarios
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Economic severity of Air Traffic Flow Management regulations

As mentioned above, significant portion of delays is the consequence of the demand-capacity imbalance. When
excess demand is expected, if capacity can not be adjusted, the ANSPs and Network Manager (NM) agree on ATFM
measures that reduce the demand over the overloaded part of the network. A common ATFMmeasure is the issuing of
regulations at specific traffic volumes (which can be usually identified as a portion of airspace), stating the start time,
duration and agreed capacity. ATFM delays are imposed on flights which plan to use those resources, considering a
First Planned - First Served principle as defined by the Computer Assisted Slot Allocation (CASA) algorithm (EU-
ROCONTROL, 2018a). This delay is assigned to a flight, as ground delay prior to departure, ensuring that flows are
smoothed over the congested area. ATFM delays can be caused by either airport or en-route related issues, which could
be due to several different reasons. In the past five years, en-route delay accounted for 50–60% of total ATFM delay,
apart from 2018 and 2019 when en-route contributed to 75% and 72% of delay, respectively. The rest of ATFM delay
was accrued at the airports (EUROCONTROL, 2020). The major share of the en-route ATFM delay in the last years
was due to the air traffic control (ATC) capacity, and ATC staffing, meaning that the available capacity of a portion of
airspace was below the expected traffic demand.

The average ATFM delay between 2015 and 2017 remained stable at around 1.5 minutes per flight, and markedly
increased in 2018 and 2019 to 2.33 and 2.18 minutes per flight respectively, which is very close to the maximum of 2.88
minutes recorded in 2010 (which had 13% less traffic than 2018) (EUROCONTROL, 2019, 2020). In 2019 there was
an increment of 5% of the number of flights issued ATFM delay with respect to 2018, with a total of over 1.4 million
flights delayed, 40% of those with more than 15 minutes of delay (EUROCONTROL, 2020). Considering an average
ATFM delay cost of 100 e/min (Cook and Tanner, 2015), total ATFM delay accrued in these years would imply delay
costs to the airspace users that exceed 1 Be per year. As described in Cook and Tanner (2015), there is, however, no
direct linear relation between delay and cost of the delay. Therefore, detailed analysis needs to be carried out to gain
understanding on the economic impact the regulations issued in different airspace regions have on flights (Delgado
et al., 2015).

Previous research has focused on the identification of regions with capacity-demand imbalance and measures to be
applied pre-tactically, for example, managing the take-off times of flights to reduce congestion in the airspace (Nosedal
et al., 2014, 2015), adjusting dynamically the sectorisation to adjust capacity to demand (Tang et al., 2012), or balancing
both modification of trajectories to adjust demand, and opening schemes3 to adjust sectorisations to demand (Xu et al.,
2020b). Further work linked with pre-tactical decision making explored managing the ATFM delay distribution in
order to reduce propagation of delay and improve airport slot adherence (Ivanov et al., 2017) and analysing trade-offs
between efficiency and fairness in allocating ATFM delay when capacity at the destination airport is reduced, taking
into account both flight and passenger indicators (Montlaur and Delgado, 2020). Several papers address the strategic
flight (and pre-tactical) planning striving to redistribute the traffic across the network to respect the airspace and airport
capacities (Bolić et al., 2017a), or to achieve redistribution through peak-load pricing (Bolić et al., 2017b), or through
modulation of charges (Jovanović et al., 2014). The mentioned studies assume that sector and airport capacity values
are fixed and not modifiable. This constraint is instead relaxed in the context of the “Coordinated capacity ordering
and trajectory pricing for better-performing ATM” (COCTA) project where the balancing between air traffic demand
and airspace capacity is achieved by applying economic instruments on the demand as well as on the capacity side
(Ivanov et al., 2019; Starita et al., 2020). In this latter case, the authors mention the possibility that the NM can make
capacity "orders". Based on scheduled traffic information and accounting for a portion of non-scheduled demand, NM
can request one or more ANSPs to increase, or decrease the nominal capacity in some specific sectors to obtain better
personnel management and therefore a reduction of ANS provision costs.

Other research has focused on understanding the impact different factors have on delay and congestion (Schultz
et al., 2018). However, further efforts are required to enable the consideration of congestion and its impact strategically.
The development of trajectory based operations and the rolling network operations plan provides this further collab-
orative environment which could be used as part of the strategic flight planning, opening the possibility for inclusion
of additional information in the collaborative decision-making process (SESAR Joint Undertaking, 2020). Xu et al.
(2020a) propose a collaborative ATFM framework for pre-tactical time horizon, where the airlines can decide how to
deal with the saturated airspace elements, based on their own cost calculations.

Having strategic collaborative flight planning in mind, in this paper, we define quantitative (economic risk) and
qualitative (economic severity) indicators to assess the expected impact of the costs ATFM regulations would impose
on airspace users. In particular, we present a methodological framework to estimate thesemetrics andwe apply it to real

3Opening scheme determines which sectors are open, operational, at a certain time.
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data. As a part of this framework, a model to estimate average cost of ATFM delay as a function of average assigned
delay is developed and presented. This historical analysis of the economic severity of ATFM regulations provides an
initial strategic indication, which can be used by ANSPs to identify regions more prone to having a higher economic
impact in the system. This might trigger the development of mitigation strategies such as new sectorisations and/or
procedures. Further, a more detailed view can be used by airspace users as an indication of regions prone to generate a
“costly” disruption of their operations and, once again, consider strategic mitigation actions such as planning flights to
avoid inconvenient regions (e.g., re-routing, flight level capping) or, if possible, modifying planned buffers to reduce
this expected impact.

The work presented in this paper is part of the ADAPT project which proposes a solution to enhance predictability
while at the same time preserving and quantifying flexibility to be used strategically. Estimating the economic severity
of ATFM regulations improves the understanding of the economic effect of hotspots (i.e., saturated portions of network)
on airline operations.

Section 2 presents the methodological framework used to devise the economic severity of airspace sectors. Sec-
tion 3 presents the computations performed on historical data in order to create the economic risk and severity indicator.
It comprises the data sources (Section 3.1), the estimation of cost of delay as a function of the average delay experienced
by flights at given sectors (Section 3.2), and the computation of the economic severity of the airspace (Section 3.3).
The conclusions are presented in Section 4.

2. Methodology
Framework for the definition of the economic severity of sectors

The methodology section describes the framework to estimate an economic severity of different sectors/airspace
which can be used in strategic, collaborative flight planning. The detailed description of data needed and specifics of
calculations are then given in the Section 3. The economic severity can be calculated for different time-frames, which
is also discussed later on. The economic severity framework is composed of following steps:

1. An analysis of the impact of regulations by estimating the total expected cost generated by a regulation at a given
sector (TC(s)). This process is described in Section 2.1. The total expected cost depends on:

• The number of flights expected to be affected by a regulation issued on a sector (delayed flights),
• The probability of affected flights being assigned delay, and the magnitude of delays (based on average

delay issued for each regulation), and
• A transformation of the expected total delay into cost, to move from classical flight-delay metrics to cost-

related indicator.
2. An estimation of the total economic risk of a sector (TR(s)), a quantitative measure, by considering the regula-

tions issued at sectors and their impact (see Section 2.2). The total economic risk of a sector depends on:
• The expected cost of a regulation at a given sector (TC(s)),
• The probability of a regulation being issued at a given sector while it is in operation, and
• The probability of a sector being in operation.

3. Transformation of the total economic risk of a sector into a qualitative, economic severity indicator, the use of
which can be easier by decision makers. This is detailed below, in Section 2.3.

2.1. Total expected cost of a regulation at a sector (TC(s))
As described in Cook and Tanner (2015), the relationship between delay and cost is not linear, and depends on

several factors, such as aircraft size or location where delay is accrued. Section 3.2 presents more details on this
relationship, and describes the estimation of average cost of delay for a given regulation.

As the flight execution time horizon approaches, the amount of available information increases, allowing more
accurate predictions of the expected cost of a regulation to be incurred by airspace users (e.g., better estimations on the
distribution of the issued delay, or even of the expected average delay could be obtained). However, in this paper, we
focus on the strategic phase and hence, we consider only information coming from historical data (usually, the only
data available strategically). Historical data could be at a high aggregation level and some parameters, such as the type
of regulation might not even be available.
Delgado et al.: Preprint submitted to Elsevier Page 3 of 19
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With all these considerations, we define the total expected costs of a regulation at sector s (TC(s)) as:

TC(s) = AFDR(s) × AD(s) × ACD(s) (1)
where:

• AFDR(s) denotes the average number of flights which are assigned delay when a regulation is issued at sector
s: When the flight plan crosses an active regulation, there is a probability that some delay will be assigned to
it (e.g., around 63% of flights which enter at least one regulation get delay assigned according to an analysis of
historical data (three months of data from AIRAC4 1409,1702,1709)).

• AD(s) is the average delay per delayed flight: The total amount of delay that is assigned by a given regulation
varies as a function of different parameters which are related to the regulation reason and its duration, location
and severity. From historical data, it is possible to estimate the individual delay that a given flight might experi-
ence and then transform this estimation into expected cost considering the flight characteristics. However, this
information is usually available only on the day of operations. Therefore, at strategic level, instead of focusing
on individual flights, we consider the average delay that each historic regulation assigned.

• ACD(s) is the average cost per minute of delay: Once the expected delay that a regulation generates is estimated,
we need to assess the economic cost that airlines will incur due to this delay. As described in Cook and Tanner
(2015) and Delgado et al. (2015), this relationship is not linear and depends on several factors, such as aircraft
size or location where delay is accrued. Section 3.2 describes in detail the transformation of average assigned
delay to average assigned cost.

2.2. Total economic risk of a sector (TR(s))
After estimating the total expected cost of a given regulation in a given sector (TC(s)), we turn to estimating the

associated risk (TR(s)) of experiencing this cost. TR(s) depends on the probability of sector s being regulated (Ps),leading to:

TR(s) = TC(s) × Ps(regulated) (2)
The total risk for each sector can be computed for different time periods (e.g., yearly, quarterly or monthly) and repre-
sents a quantitative measure of risk. Note that the adequate time-horizon could vary as a function of the intended use
of data by different stakeholders5.

Airspace sectors are not always active. The configuration of the airspace varies according to the opening scheme
which adapts the provided capacity6 to the expected demand considering operational constraints. Therefore, the prob-
ability of element s being regulated can be defined as:

Ps(regulated) = Ps(regulated|open) × Ps(open). (3)
The probability of a sector being ‘open’ refers to the fraction of time sector s is active ΔTo (i.e., open), within the

time horizon TH of the analysis.

Ps(open) =
ΔTo
TH

, (4)

In order to calculate the probability of a sector being regulated, we merge the data from two data sources: one con-
taining information on the regulations (their location and duration), and another containing the information on sector

4Aeronautical information regulation and control (AIRAC) period, always composed of 28 days. AIRAC 1409 stands for 28 days, mostly falling
in September(09) of 2014 (14).

5The stakeholders in this case are airlines and ANSPs.
6Through the choice of number of sectors to open and their general characteristics.
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opening times (from historical opening schemes). We estimate the probability of a sector s being under regulation if
it is open, by computing:

Ps(regulated|open) = ΔTr
T
, (5)

where ΔTr is the duration of the regulation and T the time during which the sector is open7.
Therefore, combining Equations 1, 2, 3 and 5 we obtain that the economic risk associated with a sector s in a given

time-frame can be estimated as:

TR(s) = AFDR(s) × AD(s) × ACD(s) ×
ΔTr
T

× Ps(open) (6)

As presented, the proposed quantitative metric of economic risk only requires high-level aggregated data: the
average number of flights with delay issued due to regulations in the sector, the average delay per delayed flight and
the average cost per minute of delay, to estimate the cost of the regulations in the sector; and the ratio of time the sector
is regulated over the time it is open, times the probability of being in operation.
2.3. Economic severity of a sector

The total economic risk provides a quantitative value for each sector, but we consider that the severity should
be described in a qualitative manner. Qualitative description eases understanding of criticality of sectors in a more
operational approach. Grouping numerical values in a small number of categories reduces complexity, especially if
groupings are created with a specific usage in mind. Each category can then be given a qualitative description which
can help the stakeholders in their operational decision making.

Different categorisations could be devised based on the total risk values. Of course, for the proposed metric to be
put in use, the input from stakeholders is required to capture their preferences. In this paper, we are proposing and
testing the metric, and as an example, we compute the economic severity of a sector by ranking the sectors considering
their economic risks and classifying them in one of five severity category based on their economic risk percentile as:
very low, low, medium, high and very high severity.

Table 1 presents the relationship between the percentile of the total risk and the severity that we have used as an
example in this paper. For this example, we use categories assigned across quantiles that are not uniformly distributed.
We chose this crisp set of categories for simplicity. Note that in this particular severity categorisation, severity is defined
relative to the total risk of the set of sectors included in the analysis and being classified. Therefore, for example, the
sectors with the higher total risk (i.e., the top 10% from the set being classified) will be assigned a ‘very high’ category
regardless of the absolute value of their risk. This type of categorisation needs to be taken into account if we want
to compare economic severities which have been assigned from different datasets. A definition which considers the
absolute risk value could also be designed, but in this case, input from stakeholders is required in order to consider
their needs and preferences.
Table 1. RELATIONSHIPBETWEENPERCENTILEOFTOTALECONOMICRISKOFSECTORSANDECONOMICSEVER-

ITY USED AS AN EXAMPLE
Percentile of total economic risk Economic severity

[0.0 - 0.1] Very Low
(0.1 - 0.3] Low
(0.3 - 0.6] Medium
(0.6 - 0.9] High
(0.9 - 1.0] Very High

7In case ΔTr is greater than T , we limit ΔTr to be equal to T .
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3. Economic risk and severity computation
In this section we describe in detail used data sources and demonstrate the application of the presented framework

on a specific dataset. The main contribution here is the use of machine learning techniques to transform the delay
information into costs. The model appropriateness, statistical significance and errors the chosen model brings are very
important for understanding of information the proposed indicators (economic risk and economic severity) convey to
users.
3.1. Data sources

The study presented in this paper uses two datasets - aggregate regulations and flight delay. The aggregate
regulations is the main, historical data set used for calculation of probabilities and delays, as explained in the Section 2.
Conversely, the flight delay dataset enables us to estimate the relationship between average delay and average cost.

Let us begin with the aggregate regulations dataset that contains historical data on the ATFM regulations and their
impact, along with the airspace usage (i.e., configurations in operation). This dataset is used to compute the economic
risk and severity of different airspace regions. The regulation data is sourced from the Daily ATFCM Summary files,
from the EUROCONTROL’s Network Manager ATFCM statistics website, and the airspace configuration data and the
sector opening times from the Demand Data Repository 2 (DDR2) environmental files. The data covers three years:
2016, 2017, and 2018. The ATFCM daily summary reports contain ten different reports on the impact of regulations
on different parts of the network and stakeholders, in varying levels of aggregation. For our purposes, we use data
from three reports, more specifically the following fields:

• Date of regulation,
• Regulation name,
• Number of regulated flights (those affected by the regulation),
• Number of delayed flights (those assigned delay due to the regulation),
• Total delay (minutes),
• Average delay per regulated flight (minute/flight),
• Average delay per delayed flight (minute/flight),
• Reference location (unique name of the sector, navigation point or airport over which the regulation is imposed),
• Location type (airport or en-route),
• Regulation duration (in minutes, can be negative in case the regulation has been cancelled before its scheduled

start time), and
• Regulation reason8 description.

There are 16 regulation reasons, some can be applied only at airport, or en-route, and some can be applied in both
categories. Regulations issued due to different reasons tend to assign different total amount of delay, as shown in
Figure 1. This is related to the link between the regulation type and other parameters such as duration of the regulation
or capacity reduction.

The DDR2 environmental data contains two file types that report the available configurations and the opening
times of the configurations in each AIRAC cycle. From these two files, the configurations can be extracted, and
consequently obtain the information on openings and duration of openings of individual sectors. This data is merged
with the regulation data to form our aggregate regulation dataset, containing three years of data.

Finally, the presented framework requires the estimation of average cost of the ATFMdelay experienced by airspace
users, theACD(s)mentioned in Section 2.2. This is a complex relationship and a more detailed flight-by-flight dataset
is needed to estimate the individual cost of delay of flights. Thus, the second dataset (flight delay) contains data on
individual regulated flights, aircraft type used, and assigned ATFM delay, as well as the name of regulation that caused

8We use terms "regulation reason" or "regulation type" interchangeably.
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Figure 1. Total delay assigned per regulation per ATFM reason.

(a) Delay (b) Cost of delay

Figure 2. Experimental cumulative distribution (ECDF) of delay and cost of delay as a function of ATFM regulation reason.

the delay. These have been sourced from theDDR2 flight data. These detailed data were available only for the AIRACs
1313-1413 and 1702, 1709. Initial analysis of this data is presented in Figure 2, depicting how the expected delay (and
associated cost) for a given regulated flight might differ across regulation type. These relations are explored in detail
in the next section.
3.2. Estimation of cost of average ATFM delay

As presented in Equation 6, the economic risk of a sector is computed based on the expected total cost generated by
ATFM regulations issued in that sector. In order to obtain the expected total costs, we need to model the relationship
between ATFM delay and the cost experienced by airspace users. The cost of delay for a given flight is very well
documented in Cook and Tanner (2015) and depends on several factors, in particular:

Delgado et al.: Preprint submitted to Elsevier Page 7 of 19
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• The phase of the flight where delay is produced: at-gate, taxi, or airborne,
• The type of aircraft: which affects operational parameters, such as fuel consumption, number and type of crew,

or number of passengers, among others,
• The type of airline: Cook and Tanner (2015) provides low, baseline and high estimated cost profiles (that can be

assigned to different types of airlines),
• Passengers on-board and type of operations: number of passengers and if they are point-to-point or connecting

passengers.
The different costs that an airspace user experiences due to delay can be divided in:
• Passenger costs, which are further decomposed in hard costs (due to duty of care, compensation due to Regulation

261 (European Parliament and the Council, 2013) and missed connections handling) and, soft costs (due to the
potential loss of market share due to delay experienced by passengers),

• Non-passenger costs, composed of: crew, maintenance and fuel costs,
• Reactionary costs due to the propagation of delay.
In this research, we consider the cost of delay as the “at-gate” costs (as the ATFM delay is performed at gate before

push-back), using the baseline9 cost profile which includes all the above-mentioned estimated costs. As the intended
use of the metric is in the strategic collaborative flight planning, we use baseline cost profile.

Figure 3. Cost of delay at gate for different aircraft types (presented as different√MTOW), data from AIRACs 1313-1413, 1702,
1709.

The relationship between delay and cost is non-linear and it has been demonstrated that there is a good correlation
between the square root of maximum take-off weight (MTOW) of an aircraft and the cost experienced over the amount
of delay (Cook and Tanner, 2015). This is due to the link between√MTOW and the parameters which affect this cost
of delay (e.g., number of passengers or fuel consumption). Hence, if no details are available on the flight (e.g., number
of passengers on board) and type of airline operations, the MTOW of the aircraft can be used to estimate the cost of
delay. Figure 3 shows the costs of delay per delay duration for different aircraft types (presented as the √MTOW)
computed following Cook and Tanner (2015).

From the presented cost of delay relationships, one can observe that the average delay in a single flight delay-cost
relationship cannot be used as there are non-linearities:

• Early flight (negative delay) does not yield, in general, any advantage for the airline, and
• The cost grows non-linearly with the delay, i.e., the cost of higher delays is proportionally much higher than the

cost of small delays.
9Baseline is a mid-point cost scenario presented in Cook and Tanner (2015).
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These non-linearities can be captured by the following equation:

cd(�) =

{

�� + ��2 , if � > 0
0 , otherwise (7)

where cd if the cost of delay given the delay �, and � and � are two positive parameters.
Due to the non-linearity and the dependence on operational parameters such as √MTOW, in general, the full

distribution of delay and aircraft experiencing the delay is needed in order to properly estimate the cost of delay.
However, the full distribution of delay per aircraft type is not always available, especially at the strategic phase. For
this reason, the transformation of delay into cost will be estimated considering the average cost of delay (ACD(s)),
which is available from historical datasets. Therefore, we need to provide a model able to infer the average cost of
delay using degraded information, i.e., only the average delay, and maybe the type (reason) of regulation, as these
might be the only information available (or that can be estimated) strategically. We also want to have an estimation of
the error incurred by considering only these predictors instead of using a more detailed dataset with individual delays
and aircraft types.

We estimate the model presented in Equation 7 using data on individual regulated flights contained in AIRACs
1313-1413 and 1702, 1709 (i.e., about 17 months). Dataset comprises a total of 1 029 699 flights regulated in 25 728
regulations (9 631 (37%) due to ATC Capacity (C), 4 532 (18%) due to Weather (W), 3 584 (14%) due to Aerodrome
Capacity (G), 1 912 (7.4%) due to ATC Staffing (S), 7 981 (24%) for all other reasons). For each flight we have the
exact amount of ATFM delay that was assigned, the aircraft type, and the regulation.

For each of those regulated flights, the expected cost of delay has been computed considering their√MTOW and
the ATFM delay assigned following Cook and Tanner (2015). In the next step, the delays and costs of individual
regulated flights are allocated to the regulations based on the most penalising regulation principle, i.e., the regulation
indicated as the most penalising regulation for each flight is considered to have that delay (and cost) allocated to it.
Note that in some cases, regulations might not generate delay as they might not be the most penalising ones for any
flight, if flights cross more than one regulation.

As expected, there is a relationship between the total delay that a regulation assigns and the cost that it creates for
the airspace users. Figure 4 presents the total cost of the delay generated for each regulation as a function of the total
delay assigned per regulation and how it can be approximated with a quadratic fit having an R2 of 0.925.

Figure 4. Total cost generated per regulation as a function of total delay assigned per regulation (AIRACs 1313-1413, 1702 and
1709).

In this research, the focus is on the estimation of the cost, based on the average delayed flight in a regulation, at
the strategic level. As already mentioned, the characteristics of the traffic are not fully known strategically, and the
regulation reason is usually not known strategically. Thus, we analyse the regulations by considering all the flights
going through a given regulation having delay and averaging their delay and corresponding costs. However, as shown
in Figure 2 the amount of expected delay can differ across different regulation reasons, due to the link between the
regulation type, regulation duration and capacity reduction. Thus, even though strategically the regulation type is not
known, the type of regulation is explored to understand if and how they increase the predictive level of the model.

Delgado et al.: Preprint submitted to Elsevier Page 9 of 19
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To explore the data, and in particular the impact of the type of regulations, we start by plotting the two variables:
delay and cost restricted to the several regulation reasons (types). Figure 5 shows the average delay and cost for four
types of regulations (Weather (W), Industrial action (I), ATC staffing (S), and Aerodrome capacity (G) as those account
for majority of total delay), with a few outliers removed. From the figure, it seems that the data exhibits the quadratic
behaviour hypothesised in the cost function (see Equation 7). Clearly, some costs are below the average behaviour
at high delay. Moreover, it seems all the points of the different types of regulations are roughly aligned on the same
curve, even if some of them explore the curve to a different extent (for instance industrial delays are more likely to be
high, but so is their associated cost).

Figure 5. Average cost incurred by a flight with ATFM delay issued by a regulation versus the average delay issued by those
regulations.

As shown in Figure 2, the reason of a regulation might impact the probability of having a given amount of delay
assigned, but here we are interested in the relationship between delay and cost. Thus, from a statistical point of view,
the first question is whether or not we need the regulation reason variable to predict the cost, given that we have access
to the average delay. To test this, we performed an ordinary least-square (OLS) regression, using as predictors the
average delay and all dummy variables related to the different regulation types present in the dataset:

c = �� + �DI + DW + ...

Given that there are a few outliers, we restricted the data to the points with a z-score 10 smaller than 3 in cost
and 5 in average delay. In all the following analyses, we control overfitting by using a technique common in machine
learning and divide our dataset into two parts: the training part (in-sample), composed of 75% of the dataset randomly
selected, and the testing set (out-sample), composed of the rest. The relative fitness scores of the regressions in these
two samples allow to control overfitting.

The dummy variables do not have a strong predictive power (see Table 2). Only the reasons I, M, and O are found
statistically significant, and it is likely more related to the magnitude of the delays of these regulations rather than to
the structural difference in the cost-delay relationship. We are not interested in the former, since we are computing
independently the average delay conditioned on the reason. The regulation reason might play a role in the estimation
of the expected average delay (as presented in the previous section).

Given this result, we then consider a simple quadratic fitting between the average cost and the average delay, using
all the data available, not restricted to any regulation type:

c̄ = ��̄ + ��̄2 (8)
The regression fit is good, as shown in Figure 6, representing quite well the entire dataset, independently of the

regulation type (� = 23.1 e per minute, � = 1.05 e per minute square). Both in-sample and out-sample have R2 of
0.93.

10Z-score, or standard score, is a measure of how far a given data point is from the empirical mean in the dataset (measured in units of standard
deviation). Very high z-scores indicate outliers.
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Table 2. COEFFICIENTS GIVEN BY THE OLS PROCEDURE WITH ASSOCIATED STANDARD DEVIATIONS (* denotes
statistically significant coefficient at a 1% level)

Coefficient Standard error
Intercept -0.093 0.055
�* 0.90 0.003
DC 0.14 0.055
DG 0.033 0.056
DI* 0.16 0.059
DM* 0.20 0.060
DO* 0.22 0.057
DP 0.10 0.057
DR 0.069 0.060
DS 0.12 0.056
DT 0.080 0.059
DV 0.0005 0.065
DW -0.019 0.056

Figure 6. Quadratic fit with in-sample R2 = 0.93 and out-sample R2 = 0.93.

Even though the regression fit of the quadratic model is good, we wanted to further explore the exact impact of the
regulation reason, in case we can find a better fitting model. To do so, a non-linear regression method, the gradient
boosting tree (GBT), has been used. This technique is based on decision trees and is very powerful with categorical
variables. When mixed with continuous variables, it allows to capture simultaneously different regression functions
(Friedman, 2001). The downside of decision trees is that they are prone to overfitting. The results of the GBT are
illustrated in Figure 7, where we show the application of the tree, trained on all the (training) data, to different sub-
samples corresponding to four regulation types (the same ones displayed in Figure 5). The figure shows that the GBT
can capture different regressions for different regulations. However, the main differences lie in the high delay parts,
which are overfitted.

To see the impact of the regulation on the tree, one can display the relative importance of the predictors within the
trees inferred by the model, as shown in Figure 8. The figure has a logarithmic scale (in percentage), and it clearly
shows that different reasons have a marginal impact in predicting the average cost, as opposed to the average delay
itself. In conclusion, a model more complex than the quadratic regression based on the average delay is not justified,
as the inclusion of information on the regulation type does not improve the predictive power of the model significantly.

However, since we also know that the average delay is not enough to represent all the variations of the cost, we
compute a metric to indicate the potential error when using this approximated formula. For this, we use the standard
deviation, as it is the most well-known and probably the most intuitive measure of dispersion for a distribution. We
want an indication of the variance of the cost, based on a given average ATFM delay in an airspace, to estimate how
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Figure 7. Average cost vs. average delay for different regulations. Red line is the result of the GBT fitting.

Figure 8. Relative importance of the predictors in the prediction of the average cost. The abscissa has a log scale, showing 0.1%
or less importance of regulation reason in the prediction.

typical is the average. To represent a typical standard deviation for this point, we decide to bin the data in equal parts
using equally spaced quantiles. For each quantile, we compute the standard deviation of the cost of delay for the points
within the quantile. This allows to have good statistics for each point, since they are computed on the same number of
points. Figure 9 shows the standard deviation computed on 10 quantiles and its evolution with respect to the centre of
the bin. The deviation increases a lot when the cost of delay increases, from around 50e up to 1000e. Interestingly,
it is also the case for the ratio between the standard deviation and the mean, which suggests the above model fails at
high delays. It is particularly noticeable on the last point, where the error goes from less than 30% (0.30 in Figure 9)
to more than 45%. Finally, it is interesting to note that the very low delays have a high relative error too. This is due
to the fact that even when the average delay is close to 0, there is some dispersion in the data and thus the ratio of
standard deviation over mean diverges.

To sum up, based on the presented analyses, the quadratic model is chosen to estimate average costs from average
delay. The model parameters and the model errors are given in the Table 3.
3.3. Economic risk and severity

Finally, for each historical regulation present in the aggregate regulation dataset, for which the average ATFM delay
is available, the regression model to estimate the average cost and standard deviation of the cost have been applied.
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Figure 9. Standard deviation in the different quantile bins as a function of the average ATFM delay in the bin (blue), ratio between
the standard deviation and the mean on the same bins (red).

Table 3. AVERAGE COST AND STANDARD DEVIATION - MODEL ESTIMATES
Model

Average cost c̄ = ��̄ + ��̄2 � = 23.1 Euros per minute, � = 1.05 Euros per minute square

Model error

Average ATFM delay (minutes) Std deviation cost (e), (percentage w.r.t mean)
1.0 – 9.13 74.5 (43%)
9.13 – 11.0 75.1 (25%)
11.0 – 12.5 95.2 (25%)
12.5 – 13.9 118 (26%)
13.9 – 15.3 144 (26%)
15.3 – 17.1 169 (26%)
17.1 – 19.7 213 (27%)
19.7 – 24.4 292 (27%)
24.4 – 59.2 982 (48%)

For each regulated sector we estimate expected average cost. We can then plot the sector map, colored according to
the value of expected average cost, see Figure 10.

(a) Average cost per delayed flight (b) Standard deviation of average cost

Figure 10. Estimated average cost per delayed flight with standard deviation of average cost per sector.

Figure 10a, shows the estimated average cost per delayed flight per sector. Note that some sectors might overlap in
this representation. Some regions present higher average costs than others. This might be due to the type of airspace,
traffic, or regulation types that were produced on those areas. Finally, in Figure 10b the standard deviation of the cost
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with respect to the estimates presented before are depicted. As discussed previously, there is a correlation between
high cost areas and higher uncertainty (variance) on the average delay cost that will be experienced by flights.

In the next step, the expected average costs (TC(s)) per delayed flight are combined with the probability of being
regulated. In other words, we apply Equation 6 to generate economic risk (TR(s)) for each sector. To illustrate the
impact of different components used in the calculation of economic risk, Figure 11 presents their influence for the 30
sectors with highest total risk for the period 2016-2018.

Figure 11. Parameters influencing the severity of sectors.

The subplots in Figure 11 are ordered following the different parameters presented in the Equation 6: average
number of delayed flights when a regulation is issued in the sector, average delay per delayed flight and average cost per
minute of delay. Note how these parameters change across sectors. Some sectors/regions might have flights operated
with larger aircraft which on average have higher cost of delay or higher average delay per delayed flight. These
parameters lead to the total expected cost per regulation (shown in the fourth subplot from the top). The expected costs
when regulated does not lead directly to the total risks of the sector, as this is experienced when there is a regulation,
therefore, we consider the probability of sector being open and probability of being regulated if the sector is open.
Figure 11 presents how these parameters combine to experience different levels of total risk. A given sector might
have a larger expected cost per regulation but be open very seldom. Or, it might have a low probability for being
regulated if open but being in use most of the time.

The economic risk of sectors is then transformed into economic severity, using the relationship between the per-
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(a) Quarter Q1 (b) Quarter Q2

(c) Quarter Q3 (d) Quarter Q4

Figure 12. Severity of sectors, divided by quarters and aggregated across all years (2016-2018).

centile of economic risk and economic severity category, as listed in Table 1. The economic severity indicator can be
aggregated over different time horizons.

Figure 12 presents the severity of different sectors which had at least one regulation in the period 2016-2018.
The data has been aggregated per quarters for the whole 2016-2018 period: Q1 (January-March), Q2 (April-June),
Q3 (July-September), Q4 (October-December). This particular aggregation gives an indication on how the situation
changes over the seasons. Note how, as expected, Q2 and Q3 have the most high and very high severe sectors. This is
aligned with a higher amount of traffic in summer season. We expect to see a correlation between severity and high
demand and complexity, as more complex airspace with higher demand is more likely to be regulated. It is worth
noticing how some areas in Europe might not be affected by regulations at different periods of the year (e.g., Balkan
region in Q1). In the presented examples, we are computing the severity of different sectors by analysing the ATFM
regulations issued on them. However, in some cases, ATFM regulations apply to other airspace elements, beyond
sectors, such as Traffic Volumes (TV). These TVs might not have a unique relationship with sectors and, in those
cases, they are not included in this severity analysis. For this reason, some areas, such as the Italian airspace seem not
to have regulated regions in the figures. The framework presented in this paper could be extended to other airspace
elements in the future.

Figure 13 presents the severity of the sectors in Europe for Q3 quarters across the 2016-2018 period. In this
example, we aggregate the data to calculate economic risk and consequently the economic severity for each quarter
in the period under analysis. The same criteria to classify the sectors into the different severity categories as in the
previous case has been used. It is interesting to observe how the number of sectors in the higher categories of severity
has increased over the 2016-2018 period. This is aligned with the trend of increasing traffic, number of regulations
and consequent ATFM delay in Europe over the analysed period (EUROCONTROL, 2018b).

4. Discussion and conclusions
In current operations, there is a mismatch in time horizons between the capacity planning by ANSPs and the flight

planning by airspace users, which often results in capacity-demand imbalances. These imbalances lead to ATFM
regulations, delays, and consequently costs. The European ATMMaster Plan (SESAR Joint Undertaking, 2020) envi-
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(a) 2016 Q3 (b) 2017 Q3

(c) 2018 Q3

Figure 13. Severity of sectors across 2016-2018 Q3

sions earlier sharing of information and collaborative planning, through the application of trajectory based operations
and rolling network operations plan (EUROCONTROL, 2019). With the use of available data and machine learning
techniques, we can envision different improvements in the information sharing aimed at collaborative decision making.

In this paper we described the methodology behind the newly proposed metric of the economic severity of airspace.
The goal is to convey the information on the economic impact ATFM regulations have on different portions of airspace,
to be used in the strategic flight planning. This metric aims at improving the information sharing between stakeholders
and the decision making processes.

The economic severity is based on the economic risk of an airspace element (e.g., sector), which is defined con-
sidering the cost a regulation in that airspace imposes on airspace users. The risk is computed using only historically
available data: the delay generated by each airspace element based on the (historical) average number of flights de-
layed by regulations issued in that airspace, the average delay generated on those regulations, and the probability of
having that specific airspace operational and, in that case regulated. The detailed estimation of the cost experienced
by airspace users depends on various operational parameters. These parameters can be approximated by estimating
the costs as a function of the √MTOW of the aircraft and the delay assigned to each individual flight, capturing the
non-linearity of delay and costs. However, these detailed data (delay issued per individual aircraft) might not be avail-
able strategically (as then data is usually reported at a higher level of aggregation). To overcome this limitation, in this
paper, a relationship between average delay and average cost is developed. We demonstrated that a simple quadratic
model (c̄ = ��̄+��̄2, with � = 23.1e per minute and � = 1.05e per minute square) is able to capture this relationship.
We also concluded that including the information on the regulation reason does not increase the estimation capacity
of this cost of delay model. The quantitative economic risk can then be transformed into qualitative economic severity
by grouping the values of economic risk in economic severity categories.

The information the economic severity provides could help ANSPs and airspace users. ANSPs could identify re-
gions posing higher economic risk and therefore require further operational improvements. The improvements can take
different forms, such as using different opening schemes at different times of day or even designing new sectorisations
to better capture traffic demand complexities. To be able to vary opening schemes, ANSPs have to match them with
the available controllers, thus impacting the controller rosters (within ANSP impact) and offered airspace capacity
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(external impact). Note that by focusing on cost and not on delay, we are able to provide an airspace user-centric view
of the impact regulations have on the system, another important step in mutual understanding between the ANSPs,
NM and airspace users. The temporal evolution of the system is captured by selecting different historical time-frames
to compute the severity of the sectors. Airspace users could, in their turn, also benefit from this view of the network.
Adjusting the time-frame used for the analysis can help them to identify regions which could pose a higher risk to
their operations and to consider this strategically to minimise their impact (e.g., adjusting buffers on specific flight
segments).

To be able to use the metric operationally, two things are deemed necessary: first, further development of the visu-
alisation of the rolling network operations plan; second, consultation with the stakeholders to define the categorisation
of the economic risk into economic severity.

As presented in Figures 12 and 13 the economic severity can easily be used in visualisation tools, thus being
easily shared among different stakeholders. Figure 14 shows the current version of the initial network plan at the
EUROCONTROL’s public Network Operations Portal, intended for the pre-tactical time frame. The current rolling
seasonal network operations plan (EUROCONTROL, 2021) is available in the form of a long document, listing planned
interventions on the ATM infrastructure, forecast traffic, bottlenecks, mitigation actions and other concerns. In the
future, we could imagine having a visual representation of the (strategic) rolling network plan, overlaying the economic
severity visualisation on such a map, similar to the one shown in Figure 14.

Figure 14. Screenshot of the current initial network plan available on the EUROCONTROL’s public Network Operations Portal.

In this paper, the economic risk is classified using quantiles into five easily understood categories: very low,
low, medium, high and very high. It might happen that the suggested categorisation is not the most suitable for the
stakeholders. For example, the airspace users might be interested only in the very high risk areas. This characteristic
of the economic severity metric should be further explored with the stakeholders.

We presented two types of data aggregation for metric calculation: one for different quarters across three years and
another one on quarter by quarter basis. It is very probable that the quarter by quarter calculation is the most useful
for the stakeholders, as it avoids conflating other influences (e.g., traffic increase or decrease, weather). In some cases,
however, a monthly aggregation might be preferred. Feedback from stakeholders is required to select the most suitable
time-frame.

To sum up, we defined the methodology for economic severity metric, the model for cost of delay to be included in
the metric, and presented the results on the three years of ATFM regulation data. The ultimate goal behind this work is
to use the knowledge obtained from data to better the strategic planning-decision processes. Future work would entail
the stakeholder consultations to further fine-tune the details that would help make the metric usable in the stakeholder
operations.

Delgado et al.: Preprint submitted to Elsevier Page 17 of 19



Economic severity of Air Traffic Flow Management regulations

Acknowledgment
This work has been performed as part of the ADAPT project which has received funding from the SESAR Joint

Undertaking under grant agreement No 783264 under European Union’s Horizon 2020 research and innovation pro-
gramme.

Glossary
Acronym - Definition

AIRAC - Aeronautical Information Regulation And Control
ANSP - air navigation service provider
ATC - air traffic control
ATFCM - air traffic flow control management
ATFM - air traffic flow management
ATM - air traffic management
C - ATC capacity regulation type
CASA - Computer Assisted Slot Allocation
DDR2 - demand data repository 2
ECDF - experimental cumulative distribution
G - aerodrome capacity regulation type
GBT - gradient boosting tree
I - industrial action regulation type
M - airspace management regulation type
MTOW - maximum take-off weight
NM - Network Manager
O - other regulation type
S - ATC staffing regulation type
TV - traffic volume
W - weather regulation type
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