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The extreme energy densities generated by ultra-relativistic 
collisions between heavy atomic nuclei produce a state of matter that 
behaves surprisingly like a fluid, with exceptionally high 
temperature and low viscosity1. Non-central collisions have angular 
momenta of the order of 1,000ћ, and the resulting fluid may have a 
strong vortical structure2–4 that must be understood to describe the 
fluid properly. The vortical structure is also of particular interest 
because the restoration of fundamental symmetries of quantum 
chromodynamics is expected to produce novel physical effects in 
the presence of strong vorticity5. However, no experimental 
indications of fluid vorticity in heavy ion collisions have yet been 
found. Since vorticity represents a local rotational structure of the 
fluid, spin–orbit coupling can lead to preferential orientation of 
particle spins along the direction of rotation. Here we present 
measurements of an alignment between the global angular 
momentum of a non-central collision and the spin of emitted 
particles (in this case the collision occurs between gold nuclei and 
produces Λ baryons), revealing that the fluid produced in heavy 
ion collisions is the most vortical system so far observed. (At high 
energies, this fluid is a quark–gluon plasma.) We find that Λ and Λ  
hyperons show a positive polarization of the order of a few per cent, 
consistent with some hydrodynamic predictions6. (A hyperon is a 
particle composed of three quarks, at least one of which is a strange 
quark; the remainder are up and down quarks, found in protons 
and neutrons.) A previous measurement7 that reported a null result, 
that is, zero polarization, at higher collision energies is seen to be 
consistent with the trend of our observations, though with larger 
statistical uncertainties. These data provide experimental access to 
the vortical structure of the nearly ideal liquid8 created in a heavy 
ion collision and should prove valuable in the development of 
hydrodynamic models that quantitatively connect observations to 
the theory of the strong force.

The primary objective of the Relativistic Heavy Ion Collider 
(RHIC) at Brookhaven National Laboratory is to produce a large 
(relative to the size of a proton) system of matter at temperatures of 
T ≈ 200 MeV/kB ≈ 2.3 × 1012 K by colliding gold nuclei travelling at 
96.3% to 99.995% of the speed of light. Such temperatures, more than 
100,000 times that at the Sun’s core, characterized the Universe only 
a few microseconds after the Big Bang9. Under these extreme condi-
tions, the protons and neutrons that comprise our everyday world melt 
into a state of deconfined quarks and gluons called the quark–gluon 
plasma1,10. Before RHIC was turned on in 1999, the expectation was 
that this plasma would be weakly coupled and highly viscous. However, 
the discovery of strong collective behaviour led to the surprising con-
clusion that the system generated in these collisions was in fact a liquid 
with the lowest ratio of viscosity to entropy density ever observed8.

Since then, a large programme of experimental investigation 
combined with increasingly sophisticated hydrodynamic theory 
have succeeded in reproducing observed properties of the fluid11. A 
complete understanding of this fluid may provide deep insights into 
the strongest and most poorly understood of the fundamental forces 
in nature. Quantum chromodynamics is the theory of the strong 
interactions between quarks and gluons, but experimental input from 

RHIC is essential to understand quark confinement and the origin 
of hadron mass.

A collaboration of physicists from 13 countries operates the STAR 
detector system12, which has recorded billions of collisions at RHIC. 
A rendering of the STAR experiment is shown in Fig. 1. Opposing 
beams of gold nuclei collide in the centre of the time projection 
chamber (TPC), generating a spray of charged particles. The TPC 
signal from a single event is shown in Fig. 2. Forward- and backward- 
travelling particles and fragments that experience only a small deflec-
tion are measured in the beam–beam counters.

Most collisions at RHIC are not head-on, and so involve substantial 
angular momentum, of the order of 1,000 ћ (where ћ is the reduced 
Planck constant) for a typical collision. A slight sideward deflection of 
the forward- and backward-travelling fragments13 from a given colli-
sion allows experimental determination of the direction of the overall 
angular momentum Ĵsys. as shown schematically in Fig. 3.

Recently, Takahashi et al.14 reported the first observation of a cou-
pling between the vorticity of a fluid and the internal quantum spin 
of the electron, opening the door to a new field of fluid spintronics. 
In their study, the vorticity ω—a measure of the ‘swirl’ of the velo
city flow field around any point (non-relativistically, ω = ½∇ × v)—is 
generated through shear viscous effects as liquid mercury flows next 
to a rigid wall.

In a heavy ion collision, shear forces generated by the interpenetrat-
ing nuclei may present an analogous situation, introducing vorticity to 
the fluid. Indeed, hydrodynamic calculations15 with initial conditions 
tuned to reproduce measured momentum anisotropies predict tremen-
dous vorticity in the fluid at RHIC. So far, no experimental evidence 
of vorticity at RHIC has been reported, and its role in the evolution 
of the fluid has not been explored extensively at the theoretical level.

TPC

Beam–beam counters

Beamline

Time of �ight

Figure 1 | The STAR detector system. Gold nuclei travelling at nearly 
the speed of light travel along the beamline and collide in the centre of 
the detector system. Charged particles emitted at mid-rapidity (that is, 
having a relatively small component of velocity along the beam direction) 
are measured in the TPC (see also Fig. 2) and the time-of-flight detectors. 
Forward- and backward-going beam fragments are detected in the  
beam–beam counters.
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The vorticity is currently of intense interest, since it is a key ingredi-
ent in theories that predict observable effects associated with chiral 
symmetry restoration and the production of false quantum chromo-
dynamics vacuum states5. Spin–orbit coupling can generate a spin 
alignment, or polarization, along the direction of the vorticity in the 
local fluid cell, which, when averaged2,3 over the entire system, is par-
allel to Ĵsys. Thus, polarization measurements of hadrons emitted from 
the fluid can be used to determine ωω≡ .

It is difficult to measure the spin direction of most hadrons emitted 
in a heavy ion collision. However, Λ and Λ  hyperons are ‘self-analysing’. 
That is16, in the weak decay Λ → p + π−, the proton tends to be emitted 
along the spin direction of the parent Λ. If θ* is the angle between the 
daughter proton (antiproton) momentum ∗pp

 and the Λ (Λ ) polariza-
tion vector H in the hyperon rest frame, then

θ
α θ= +

∗
∗Nd

d cos
1
2

(1 cos ) (1)H H

The subscript H denotes Λ or Λ , and the decay parameter17 
α α=− = . ± .Λ Λ 0 642 0 013  . The angle θ* is indicated in Fig. 3, in which  
Λ hyperons are depicted as tops spinning about their polarization 
direction.

The polarization of the hyperon in its rest frame depends on the 
vorticity of the fluid element (in the laboratory frame3,18) and thus may 
depend on the momentum of the emitted hyperons. However, when 
averaged over all phase space, symmetry demands that H  is parallel 
to Ĵsys. Because our limited sample sizes prohibit exploration of these 
dependencies, our analysis assumes that H is independent of momen-
tum, and we extract only an average projection of the polarization on 
Ĵsys. This average may be written7 as
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where φ Ĵsys
 is the azimuthal angle of the angular momentum of the 

collision, φ∗p is the azimuthal angle of the daughter proton (antiproton)
momentum in the Λ Λ( ) rest frame, and REP

(1) is a factor that accounts 
for the finite resolution7 with which we determine φ Ĵsys

. The overbar on 
 H denotes an average over events and the angle brackets denote the 
momenta of Λ hyperons detected in the TPC. Equation (2) is strictly 
valid only in a perfect detector; angle-dependent detection efficiency 
requires a correction factor7 that shifts the results in the present analysis 
by about 3%.

A relativistic heavy ion collision can produce several hundred 
charged particles in our detectors. For a given energy, a head-on col-
lision produces the maximum number of emitted particles, while a 
glancing one produces only a few. To concentrate on collisions with 
sufficient overlap to produce a fluid with large angular momentum, we 
select events producing an intermediate number of tracks in the TPC. 
Of all observed collisions 20% produce more tracks than the collisions 
studied here, while 50% produce fewer; in the parlance of the field, this 
is known as a 20–50% centrality selection.

Equation (2) quantifies an average alignment between hyperon spin 
and a global feature of the collision and is hence a “global polarization”2. 
This is distinct from the well known phenomenon of Λ polarization 
at very forward angles in proton–proton collisions19. The polarization 
direction from this latter effect depends on Λ momentum and not the 
global angular momentum; it has zero magnitude at mid-rapidity.

The solid symbols in Fig. 4 show our new measurements as a func-
tion of collision energy, sNN . Systematic uncertainties are shown  
as boxes and are generally smaller than statistical ones. Λ hyperons in 
the rapidity region |yΛ| < 1.0 and transverse momentum 0.4 < pT <  
3.0 GeV/c are used in the analysis. The peak in the invariant mass dis-
tribution at mΛ is about five times the background level, and the inte-
grated Λ contribution in our selected mass window is about twice that 
of the combinatoric background. Our results have been corrected for 
the ‘diluting’ effect of this combinatoric background. At each energy, a 
positive polarization at the level of 1.1–3.6 times the statistical uncer-
tainty is observed for both Λ and Λ . Taken in aggregate, the data are 
statistically consistent with the hypothesis of energy-independent 
polarization of 1.08 ± 0.15 (stat) ± 0.11 (sys) and 1.38 ± 0.30 
(stat) ± 0.13 (sys) per cent for Λ and Λ , respectively. Some models pre-
dict that the polarization may decrease with collision energy4,20,21. 
While our data are consistent with such a trend, increased statistics 
would be required to test these predictions definitively. Also shown as 
open symbols in Fig. 4 are previously published7 measurements at  

sNN  = 62.4 GeV and 200 GeV. The null result reported7 may be seen  
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Figure 2 | A single Au + Au collision in the STAR TPC. Charged 
particles from a collision ionize the gas in the TPC, forming tracks that 
curve in the magnetic field of the detector. The tracks are reconstructed in 
three dimensions, making them relatively easy to distinguish, but are 
projected onto a single plane in this figure. As the tracks exit the outer 
radius, they leave a signal in the time-of-flight detector. The species of 
charged particles is determined by the amount of ionization in the TPC 
and the flight time as measured by time of flight. Charged daughters from 
the weak decay Λ → p + π− are extrapolated backwards, and the parent is 
identified through topological selection. A clear peak at the Λ mass, 
obtained by summing over many events, is observed in the invariant-mass 
distribution π−mp, .
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Forward-going
beam fragment

Beam–beam
counter

Beam–beam
counter

Quark–gluon
plasma

pp
*

*

Λ

Λ

Figure 3 | A sketch of a Au + Au collision in the STAR detector system. 
The vorticity of fluid created at mid-rapidity is suggested. The average 
vorticity points along the direction of the angular momentum of the 
collision Ĵsys. This direction is estimated experimentally by measuring the 
sidewards deflection of the forward- and backward-going fragments and 
particles in the beam–beam counter detectors. Λ hyperons are depicted as 
spinning tops; see text for details. Obviously, elements in this depiction are 
not drawn to scale: the fluid and beam fragments have sizes of a few 
femtometers, whereas the radius of each beam–beam counter is about 1 m.
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as consistent with our measurements, within reported statistical 
uncertainty.

We have performed several checks that indicate a zero polarization 
‘signal’, as expected, in the combinatoric background of proton–pion 
pairs that do not come from Λ hyperons. This includes analysis of pro-
ton–pion pairs with invariant masses slightly different from the mass 
of a Λ hyperon mΛ. Nevertheless, these checks have finite statistical 
precision, so we consider the possibility of fluctuations in the back-
ground that could contribute to the polarization signal. This dominates 
the systematic uncertainties in the signal. Uncertainties due to Λ iden-
tification criteria (such as requirements for the spatial proximity of the 
proton and π daughters) are negligible. There are also small systematic 
uncertainties in the overall scale, which would scale both the value of 
 H and the statistical uncertainty, thus not affecting the statistical sig-
nificance of the signal. These include the uncertainties in the Λ decay 
parameter α (2%)17, the reaction-plane resolution (about 2%)22, and 
detector efficiency corrections (about 3.5%).

The fluid vorticity may be estimated from the data using the hydro-
dynamic relation18

ω≈ + /′ ′Λ Λ k T ħ( ) (3)B

where T is the temperature of the fluid at the moment when particles 
are emitted from it. The subscripts Λ′ and Λ ′ in equation (3) indicate 
that these polarizations are for ‘primary’ hyperons emitted directly from  
the fluid. However, most of the Λ and Λ  hyperons at these collision  
energies are not primary, but are decay products from heavier particles 
(for example, ∑*,+ → Λ + π+), which themselves would be polarized 
by the fluid. The data in Fig. 4 contain both primary and these ‘feed-
down’ contributions. At these collision energies, the effect of feed-down 
is estimated18 to produce differences of only about 20% between the 
polarization of primary and of all hyperons.

The sNN-averaged polarizations indicate a vorticity of ω ≈ (9 ± 1) ×  
1021 s−1, with a systematic uncertainty of a factor of two, mostly owing 

to uncertainties in the temperature. This far surpasses the vorticity of 
all other known fluids, including solar subsurface flow23 (10−7 s−1); 
large-scale terrestrial atmospheric patterns24 (10−7–10−5 s−1); supercell 
tornado cores25 (10−1 s−1); the great red spot of Jupiter26 (up to 
10−4 s−1); and the rotating, heated soap bubbles (100 s−1) used to model 
climate change27. Vorticities of up to 150 s−1 have been measured in 
turbulent flow28 in bulk superfluid He II, and Gomez et al.29 have 
recently produced superfluid nanodroplets with ω ≈ 107 s−1.

Relativistic heavy ion collisions are expected to produce intense mag-
netic fields30 parallel to Ĵsys. Coupling between the field and the intrinsic 
magnetic moments of emitted particles may induce a larger polariza-
tion for Λ  hyperons than for Λ hyperons18. This is not inconsistent with 
our observations, but probing the field will require more data to reduce 
statistical uncertainties as well as potential effects related to differences 
in the measured momenta of Λ and Λ  hyperons.

The discovery of global Λ polarization in non-central heavy ion colli-
sions opens up new directions in the study of the hottest, least viscous—
and now, most vortical—fluid produced in the laboratory. Quantitative 
estimates of extreme vorticity yield a more complete characterization 
of the system and are crucial input to studies of phenomena related to 
chiral symmetry restoration that may provide insight into the complex 
interactions between quarks and gluons.

Online Content Any Extended Data display items and Source Data are available in 
the online version of the paper; references unique to these sections appear only in 
the online paper.

Data Availability The polarization data published here are available in the HEPdata 
repository http://dx.doi.org/10.17182/hepdata.77494.
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Extended Data Figure 1 | The uncorrected average polarization in  
Au + Au collisions. The polarization signal plotted in Fig. 4 is plotted  
without applying the reaction-plane resolution correction. As in Fig. 4,  
statistical uncertainties are indicated by error bars, while boxes indicate  
systematic uncertainty. Although the number of particles used to estimate  
φ Ĵsys

 increases with the energy of a collision, the resolution (REP
(1)) with

which φ Ĵsys
 is estimated actually decreases with increasing sNN . This is  

because the strength of the momentum–space anisotropy (called ‘directed  
flow’) generated in the collision is greater22 at low sNN . Therefore, the  
polarization signal falls more steeply with sNN  if the resolution correction 
is not applied. The uncorrected signal is shown in Extended Data Fig. 1, 
which may be compared to Fig. 4. Since for a given sNN , REP

(1) varies 
slightly with collision multiplicity, the raw signal is measured separately 
for three bins in centrality (20–30%, 30–40% and 40–50%). These are each 
corrected with the corresponding resolution factor, and a weighted sum is 
reported in Fig. 4.
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