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Abstract

Most social networks present complex structures. They can be both multi-modal and multi-

relational. In addition, each relationship can be observed across time occasions. Relational

data observed in such conditions can be organized into multidimensional arrays and statistical

methods from the theory of multiway data analysis may be exploited to reveal the underlying

data structure. In this paper, we adopt an exploratory data analysis point of view, and we

present a procedure based on multiple factor analysis and multiple correspondence analysis to

deal with time-varying two-mode networks. This procedure allows us to create static displays

in order to explore network evolutions and to visually analyze the degree of similarity of

actor/event network profiles over time while preserving the different statuses of the two

modes.

Keywords: multiple factor analysis, multiple correspondence analysis, two-mode networks, time-

varying networks

1 Introduction

Heterogeneous networks (Memon & Wiil, 2013) may arise when we consider two-

mode networks where the two modes are linked by several different relationships

or by the same type of relationship, and they may also be observed across time

occasions. In the first two cases, we have a three-way data structure, while in the last

case we observe a four-way data structure (actors-by-events under different types of

relationships across time occasions).

This type of network is of interest in a number of fields, such as organizational,

economic, sociological, and political studies. For example, in organizational studies,

there is considerable interest in interlocking directorates and in the processes of

directors’ appointment to and departure from boards over time (Seierstad & Opsahl,

2011; Conaldi et al., 2012; Koskinen & Edling, 2012; Opsahl, 2013). In economic
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studies, the performances of public programs in the R&D sector can be evaluated in

terms of outcome trajectories over time (Gordon & Heinrich, 2004) or by comparing

actors’ collaboration trajectories over time (D’Esposito et al., 2014b). In sociological

studies, interest may lie in the evolution of web communities, group memberships and

Facebook-like forum participation, employment preferences, scientific collaboration

(Holme et al., 2007; Kang et al., 2007; Leydesdorff & Schank, 2008; Memon &

Wiil, 2013; Opsahl, 2013; Snijders et al., 2013). In political studies, examples of two-

mode longitudinal networks are found in the analysis of the dynamics of people’s

affiliation to organizations and their participation in political events (Faust et al.,

2002; Gagliolo et al., 2014). Examples of multi-modal and multi-relational networks

are also found in the marketing research when considering the market basket analysis

where customers buy, rent, or rate products (Horvat & Zweig, 2012) or in biological

studies where diseases and genes are linked with respect to the different criteria

(Davis et al., 2011).

In this paper, we focus on time-varying two-mode networks. Analytical methods

for such networks are rare (Horvat & Zweig, 2012) and often rely on the one-

mode projection procedure. On the other hand, several visual exploration methods

have been proposed, mainly based on the graph drawing techniques, which can

furnish either a static or a dynamic network representation (Batagelj & Mrvar,

1998; Freeman, 2000; Baur et al., 2002; Tversky et al., 2002; Moody et al., 2005;

Bender-deMoll & McFarland, 2006; Perer & Shneiderman, 2006; Brandes et al.,

2007; Kang et al., 2007; Ghani et al., 2012; Memon & Wiil, 2013).

As these observed time-varying two-mode networks can be organized into mul-

tidimensional arrays, statistical methods from the theory of multiway data analysis

(Kroonenberg, 2008; Coppi, 1994) may be exploited to reveal the underlying

data structure. Among all such existing methods, we propose to consider factorial

methods, and we focus on the Multiple Factor Analysis (MFA) (Escofier & Pagés,

1988; Escofier & Pagés, 1994). To this end, we present a procedure based on the

MFA and Multiple Correspondence Analysis (MCA) (Greenacre, 2006; D’Esposito

et al., 2014a). In order to preserve the complexity of the network, we adopt a direct

approach (Borgatti & Halgin, 2011) without projecting the two-mode network into

two one-mode networks. We obtain a set of statistical visualizations (Correa & Ma,

2011) that incorporate both the temporal dimension and the network analytical

description and allow us to create static displays in order to analyze network

evolutions over time while preserving the different statuses of the two modes.

We exemplify our approach by using a dataset provided by MacFarland (1999).

These data concern the extracurricular memberships—entailing various forms of

interactions, such as sports, interschool contests, and collective performances—of 36

classes in two schools (River High and Magnet High) over three years from 1996 to

1998. The data are an example of a time-varying affiliation network. The students

represent the actors, and the events are the student’s extracurricular activities and

association to clubs.

The paper is organized as follows. In Section 2, we present and discuss our

approach providing analytical details of the MFA applied to two-mode network

data, while in Section 3, we highlight the features of the proposed methods through

MacFarland data. Section 4 offers some concluding remarks.
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20 G. Ragozini et al.

2 MFA for two-mode heterogeneous networks

A time-varying two-mode network can be represented by a set of K two-mode

networks {Gk}k=1,...,K . The k index refers to different time points, and in the following

we will generally refer to them as occasions. Each two-mode network Gk consists

of two sets of relationally connected units (which we will call actors and events, as

in the affiliation network setting, without loss of generality), and can be represented

by a triple Gk (V1k, V2k,Rk) composed of two disjoint sets of nodes—V1k and V2k of

cardinality Nk and Jk , respectively—and one set of edges or arcs, Rk ⊆ V1k × V2k .

By definition, V1k ∩ V2l = ∅,∀k.
For the sake of presentation, in this paper we assume that V1k = V1 ∀k.1 The set

V1 = {a1, a2, . . . , aN} represents the set of N actors, whereas V2k = {e1k, e2k, . . . , eJk}
represents the set of Jk events. We are thus considering networks in which the set of

actors is fixed over time while the events can be fixed or fleeting occurrences over

time. The edge rijk = (ai, ejk), rijk ∈ Rk is an ordered couple and indicates whether

or not an actor ai attends an event ejk .

Each set V1 ×V2k can be fully represented by a binary affiliation matrix Fk = (fijk),

i = 1, . . . , N, j = 1, . . . , Jk, k = 1, . . . , K , with fijk = 1 if (ai, ejk) ∈ Rk and 0 otherwise.

Given Fk , the row and column marginals fi.k =
∑Jk

j=1 fijk and f.jk =
∑N

i=1 fijk
coincide with the degree dik of the ith actor at occasion k and the size sjk of the jth

event at occasion k, respectively, i.e., fi·k = dik and f·jk = sjk . The set of all affiliation

matrices {Fk}k=1,...,K can be represented through a data table, usually called the

grand table, F = [F1| . . . |FK ] = (fijk), with fijk ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , Jk ,

k = 1, . . . , K . The grand table F is built up by stacking the subtables {Fk}k=1,...,K

side by side; its form is depicted in Figure 1. Given F , for each i, i = 1, . . . , N, the

row marginal fi.. =
∑Jk

j=1

∑K
k=1 fijk coincides with the total degree of the ith actor,

di = di.., and L =
∑N

i=1

∑Jk
j=1

∑K
k=1 fijk is the total number of edges over all the

occasions.

We aim to (i) analyze the structure embedded in each affiliation matrix Fk in

terms of relational similarity between actors/events, (ii) cumulatively analyze the K

occasions by looking at the general relational structure embedded in F , (iii) highlight

the differences between the K occasions in terms of global structure, and (iv) analyze

the variations of actors/events over the occasions. Points (iii) and (iv) allow us to

study the longitudinal change and the behavior over time of the relational patterns

for both modes.

In order to pursue the previously listed aims, we will use the MFA, which provides

a unifying and general framework to deal with multiple-way matrices. The MFA

is an extension of factorial techniques (Escofier & Pagés, 1994) tailored to handle

multiple data tables (the same observations by different sets of variables or the

same variables measured on different sets of observations). This makes it possible

to jointly analyze quantitative and qualitative variables, providing displays in which

representations of the set of individuals associated with each group of variables are

superimposed.

1 The case of nodes in V1k that partially change over k can be treated by considering V1 as the overall
set of nodes that includes all the V1k ’s, i.e., V1 = ∪Kk=1V1k .
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Occasions 1 k K

Events 1 J1 1          j          Jk 1 JK 

Actors fijk i 

1 

N 

Fig. 1. The grand table � for a time varying two-mode network. The fijk element of the

affiliation matrix Fk codes the participation/non-participation of actor i in event j at occasion

k.

In the perspective of MFA, we identify the following four steps corresponding to

the previously listed aims:

1. Analyze each affiliation matrix Fk , k = 1, . . . , K through a suitable factorial

analysis method (partial analysis);

2. Analyze the grand table � through a suitable factorial analysis (global

analysis);

3. Analyze which (if any) structural changes arise among the occasions (i.e., the

change of the relational patterns over time for both modes); and

4. Analyze actor and event variation over the occasion by projecting the weighted

affiliation matrices Fk on the global factorial plane.

2.1 Partial analyses

A key issue in MFA is the choice of factorial method (i.e., principal component

analysis, correspondence analysis, or MCA) to use in the separate analyses and in

the global analysis. Given the nature of two-mode networks, we assume that the

corresponding Fk matrices are case-by-variable data (Gower, 2006) matrices in which

a different status is assigned to the rows and columns. In such a case, MCA (Richards

& Seary, 2000; Greenacre, 2006) may be appropriate as MCA assigns different roles

to actors and events, thus allowing distinct features to be highlighted in each mode;

moreover, it makes it possible to add covariates to the analysis in order to improve

results interpretation and affords visualizations that can be easily interpreted in

terms of the similarities among actors/events network relations (D’Esposito et al.,

2014a; D’Esposito et al., 2014c). The use of MCA in the MFA procedure makes it

possible to interpret changes in the patterns over time as corresponding changes in

the relational similarity among actors/events.

In order to perform MCA on each Fk , we consider actors as observational units

and their participation in events as dichotomous categorical variables and apply

the usual correspondence analysis (CA) algorithm—singular value decomposition
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(SVD) of the doubled normalized and centered profile matrix (Greenacre, 2006)—

to the multiple indicator matrix, or simply indicator matrix, Zk derived from Fk

through a full disjunctive coding. To this end, we consider each event ejk as a

dichotomous variable with categories e+jk and e−
jk , where e+jk is a dummy variable

coding the participation in the event and e−
jk is a dummy variable coding the non-

participation. Each Zk matrix is a N × 2Jk matrix of the form: Zk ≡ [
F+
k ,Fk

−]
,

where F+
k = (e+jk) = Fk and F−

k = (e−
jk) = 1 − F+

k = 1 − Fk , with 1 the N× Jk all-ones

matrix. The indicator matrix Zk turns out to be a doubled matrix.

Given the affiliation matrices Fk , in order to perform the separate MCAs, the

profile matrices Pk and weight matrices Dak and Dek , k = 1, . . . , K , which are

characteristic of the CA algorithm and involved in the normalization step, are

defined as follows:

Pk =
Zk

NJ

with J =
∑K

k=1 Jk , the total number of events over all the occasions,

Dak = diag

(
1

N
, . . . ,

1

N

)

Dek = diag
( s1k
NJ

, . . . ,
s2Jk
NJ

)
Note that each actor ai has weight 1/N at each occasion k. Then Dak = Da, ∀k.

For each occasion k, k = 1, . . . , K , the centered and doubled normalized Zk is the

matrix Sk

Sk = D−1/2
a

(
Zk

NJ
− Da11TDek

)
D

−1/2
ek =

√
N

(
Zk

NJ
− 1

N
11TDek

)
D

−1/2
ek

where (1/N)1 is the vector of the actor weights and 1TDek is the vector of the event

weights.

The SVD of Sk gives

Sk = UkΛkV
T
k

where Λk is the diagonal matrix of singular values, and Uk , Vk are the matrices of

the left and right singular vectors, respectively.

The principal coordinates for the row and column categories, respectively, are

defined as:

Φk = D−1/2
a UkΛk =

√
NUkΛk (3)

Ψk = D
−1/2
ek VkΛk (4)

and the standard coordinates for the row and column categories, respectively, are

defined as:

Γk =
√
NUk (5)

Δk = D
−1/2
ek Vk (6)

The first two columns of Φk and Ψk , or of Γk and Δk , are used to construct

two-dimensional maps in which the data are graphically represented. In the two-

dimensional maps thus derived, the distances between actors and between events

optimally approximate the ones in the original spaces (Greenacre, 2006).

As usual in factor analysis, the quality of the approximation of the two-dimensional

maps can be obtained by evaluating the proportion of inertia explained by the first
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two factorial axes, i.e., by the sum of the first two singular values over the sum of

all singular values (λ1k + λ2k)/trace(Λk). In our case, since we are considering MCA,

it is known that the total inertia of Zk is inflated (Greenacre, 2006), and all the

percentages of inertia of the principal axis are artificially low. In order to overcome

this problem, for the sth factorial axis, the adjusted values for each λsk � 1/Jk are

calculated as

λ
adj
sk =

(
Jk

Jk − 1

)2 (
λsk − 1

Jk

)2

(7)

and used to evaluate the proportion of inertia explained by the first two factorial

axes.

The quality of representation of each single data point (actor or event) can also

be measured by the squared cosine between the vector from the origin to the data

point and its projection on the axis. The squared cosines for the ith actor (or for

the jth event) on the sth factorial axis for each k can be easily evaluated using the

principal coordinates in Equations 3 and 4 as follows:

cos2
i,sk =

φ2
i,sk∑
s φ

2
i,sk

and

cos2
j,sk =

ψ2
j,sk∑
s ψ

2
j,sk

.

If the squared cosines are close to one, the corresponding elements are well pro-

jected on the axis, and the distances between them can thus be correctly interpreted.

The principal coordinates are also used to evaluate the contribution of each row

(column) in determining the factorial axes as follows:

contri,sk =
φ2
i,sk∑
i φ

2
i,sk

(8)

and

contrj,sk =
ψ2
j,sk∑
j ψ

2
j,sk

. (9)

Within these steps, the relational patterns at each occasion can be visually analyzed

by:

i. Representing events in the actor space: Events can be represented in a two-

dimensional map by using the first two columns of the principal coordinates

Ψk in Equation (4). Each event ejk in the actor space is represented by two

opposite vectors, corresponding to the two poles e+jk and e−
jk , lying on the same

direction and passing through the origin. The cosine of the angle between

two event segments is the “correlation” between participation patterns in the

events. Then, if two event segments form a small angle and present the positive

pole on the same side, the corresponding events will have similar participation

patterns. If the two segments form a small angle, but the positive poles are

opposite, the events will have opposite participation patterns.

ii. Representing actors in the event space: Actors can be represented in a two-

dimensional map by using the first two columns of the principal coordinates

Φk in Equation (3). In this map, each actor corresponds to a point, and two
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actors corresponding to two close points in the map have similar participation

patterns. Actors corresponding to points close to the axes’ origin have a

common participation habit, while actors with corresponding points far from

the center have an unusual participation pattern. Isolated actors and groups

of actors can also be detected.

iii. Jointly representing actors and events: In order to represent actors and events

in a joint two-dimensional map, we can use the asymmetric biplot (Gabriel,

1995; Greenacre, 2010), where the actors are represented in principal coor-

dinates (Equation (3)) and the events in standard coordinates (Equation (6))

(Greenacre, 2010). The direction vector defined by each event is the biplot

axis. By projecting the points representing actors onto each biplot axis, we can

approximately appreciate their event participation profiles. This allows us to

characterize actors’ closeness or farness in terms of event participation.

2.2 Global analysis

In order to extract the information embedded in all the occasions and search for

factors which are common to them, it is necessary to look at the grand matrix

� = [F1| . . . |FK ] by performing a new global MCA. In the MFA approach, the

global MCA is performed as follows:

i. Derive the grand indicator matrix � = [Z1| . . . |ZK ].

ii. Derive the double normalized matrix:

� = �−1/2
a

(
�

NJ
− �a11T�e

)
�−1/2

e =
√
N

(
�

NJ
− 1

N
11T�e

)
�−1/2

e

with

�a = Da = diag

(
1

N
, . . . ,

1

N

)
,�e =

⎡
⎢⎢⎣
λ−1

(1)1De1 0 · · · 0

0 λ−1
(1)2De2 · · · 0

· · · · · · · · · · · ·
0 0 · · · λ−1

(1)KDeK

⎤
⎥⎥⎦

where λ(1)k is the largest eigenvalue obtained by the SVD of Sk in Step 1 for

each occasion k. Note that the use of the weights λ−1
(1)k balance the influence

of each occasion k in each global factor. Indeed, the maximum inertia of the

partial clouds defined at the different occasions is 1 in any direction (Abascal

et al., 2006).

iii. Perform the SVD of � = �ΛΛ�T , where ΛΛ is the diagonal matrix of singular

values and �, � are the matrices of the left and right singular vectors,

respectively, and obtain the principal coordinates

ΦΦ = �−1/2
a �ΛΛ =

√
N�ΛΛ (10)

ΨΨ = �−1/2
e �ΛΛ (11)

and the standard coordinates for the row and column categories, respectively,

defined as

ΓΓ =
√
N� (12)

ΔΔ = �−1/2
e �. (13)
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Note that each event ejk is weighted by the quantity
sjk

NJλ(1)k
. The weights of each event

involved in the global analysis make it possible to balance variability between the

different occasions, and thus each specific occasion cannot exert an important

influence on the global solution. By using the first columns of the principal

coordinates of ΦΦ in Equation (10), it is possible to represent actors in the global

event space. Actors with similar participation patterns in all the occasions will

be located close together on the factorial planes. By using the first columns of

the principal coordinates of ΨΨ in Equation (11), it is possible to represent the

events cumulatively for all the occasions on the same factorial planes by looking at

correlations (i.e., similar attendance patterns) both with respect to the events of the

same occasion and with respect to the events of the other occasions. The quality

of the approximation and the quality of representation of each data point can be

evaluated analogously to the case of partial analysis by using the singular values in

ΛΛ and the principal coordinates in ΦΦ and ΨΨ, respectively.

2.3 Longitudinal analysis

In the MFA, approach it is possible to analyze the differences and variations in

the occasions (i) of each actor/event relational pattern or (ii) of the whole network

structure.

With respect to point (i), in the case of longitudinal analysis, on the factorial

planes we can analyze the trajectories along the timeline of points corresponding to

actors or to events, if the latter are fixed over time. Trajectories highlight variations

in the relational patterns actor-wise and event-wise. For each actor, it is also possible

to compare his/her location on factorial planes both among the occasions and with

respect to their overall combination. With respect to point (ii), the analysis of

variations between the occasions aims at discovering similarities and differences in

the whole relational structure of the two-mode network in each occasion.

i. With respect to the actor-wise analysis, we note that the coordinates contained

in the ΦΦ matrix can be considered a sort of center of gravity or compromise

of the partial coordinates ΦΦ k . In order to analyze the variations in terms of

the participation patterns of each actor at the different occasions, it is possible

to project the single occasion table as supplementary points onto the global

factorial space (Nenadic & Greenacre, 2007; Abdi et al., 2013). From the

transition formula:

ΦΦ = D−1/2
a

Z

NJ
ΨΨΛΛ−1 = D−1/2

a

Z

NJ
ΔΔ

which expresses the actor’s principal coordinates as the weighted average of

the event standard coordinates with weights equal to the actor profiles, the

principal coordinates of actors at the k occasions with respect to the global

solution are expressed as

ΦΦ k = D−1/2
a

Zk

NJ
ΔΔ k,

where ΔΔ k is a sub-matrix of the standard coordinates referring to the occasion

k in ΔΔ. These coordinates make it possible to visualize the actor-wise evolution

and variability among the occasions on the factorial planes given by the global
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solution. We can draw actors’ trajectories by jointly representing points with

partial coordinates in ΦΦ k and connecting them. Short paths stand for small

differences, i.e., actors present a quite stable participation pattern. In addition,

for each actor we can use a star-type representation by connecting the points

with partial coordinates in ΦΦ k to their compromise point with coordinates in

ΦΦ. Small stars correspond to small variability, i.e., actors that display a similar

behavior over all the occasions.

The previous analysis can also be performed event-wise when the events are

not fleeting occurrences.

ii. With respect to the analysis of the whole network structure, the aim is to

discover similarities and differences among the two-mode networks in the

different occasions. In order to pursue this task, a K by K matrix that

contains all the Escoufier’s RV(k,k′) similarity coefficients (Robert & Escoufier,

1976) is computed as

RV(k,k′) =
Trace[(ZkZ

T
k )(Zk′ZT

k′ )]√
Trace[(ZkZ

T
k )(ZkZ

T
k )], T race[(Zk′ZT

k′ )(Zk′ZT
k′ ])

. (14)

The RV coefficient varies between 0 and 1 in relation to the shared amount of

variance between the two matrices, and it is a global measure of the similarities

in the co-attendance patterns of actors to events in the different occasions. Note

that the RV index is based on the evaluation of the ZkZ
T
k matrix, that is, in the

conversion approach, the actor-by-actor projection matrix. However, such matrix

contains for each couple of actors not only the number of co-attended events but

also the number of not co-attended events because we are adopting the doubling

approach.

Moreover, in the case of fixed events among all the occasions, we note that it

makes sense to compare the relational structure among the occasions by looking

at the event-by-event projection matrices ZT
k Zk . Since ZT

k is a doubled matrix, the

entries in ZT
k Zk are the number of actors that attended each pair of events and the

number of actors that did not attend each pair of events at the same time.

For each pair of occasions (k, k′) a new similarity index RV(k,k′) can be evaluated

as:

RV ′
(k,k′) =

Trace[(ZT
k Zk)(Z

T
k′ Zk′ )]√

Trace[(ZT
k Zk)(Z

T
k Zk)], T race[(Z

T
k′ Zk′ )(ZT

k′ Zk′ ])
.

In this case, the RV ′
(k,k′) coefficient measures the global similarity in the participa-

tion and non-participation patterns among the events in the different occasions.

Factorial maps may be obtained by using the factor scores of eigendecomposition

of the K by K between-table of the RV coefficients (and of the RV ′ coefficients when

they can be evaluated). On these maps, each two-mode network at a single occasion

(i.e., each sub-table) is represented by a single point. If the global relational structure

in two occasions k and k′ is similar, the points which represent the corresponding

sub-tables will be close to each other (Abdi et al., 2012). Note that this kind of

between-table analysis can be applied to both fixed and fleeting events among the

occasions.
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3 Features of the MFA representations

In the following, we exemplify the use of MFA by exploring the multi-mode time-

varying structure of the McFarland dataset. Our aim is not a thorough analysis

of the McFarland dataset. We only report the main results useful to illustrate

the steps of the methods presented in the previous section. The McFarland data

concern extracurricular memberships—entailing various forms of interactions, such

as sports, interschool contests, and collective performances—of 36 classes in two

schools (River High and Magnet High) over three years, 1996–1998. These data are

clearly an example of a time-varying affiliation network. Students represent actors,

and events are the students’ extracurricular activities and association to clubs. In the

following, we deal only with Magnet High school and students attending the 10th

grade in the starting year (1996).

As illustrated in the previous discussion, we use MCA for both the partial and

the global analyses—and interpret patterns in the event space, in the actor space,

and in the joint space.2.

3.1 Main features of the dataset

First of all, in order to avoid negligible patterns, we select only those associations

counting at least 10 members in a given year, i.e., we select only events having

sjk � 10. The resulting dataset is composed of N = 181 students, and J1 = 16 events

for 1996, J2 = 17 events for 1997 and J3 = 18 events for 1998 for a total of 51 events

and K = 3. Gender (male and female) and racial group (Hispanic, Asian, African

American, White, and Native American) are also available as actor attributes. The

rate of attendance in the events ranges globally from 5% to 34% with the majority

of values below 10%. The actor participation rate values vary from 2% (which

corresponds to an actor that attends only one event in the three year period) to

32%, with the majority of values below 10%. Altogether, these results imply that

the three affiliation matrices are quite sparse.

In order to have an idea of the overall quality of 2-D approximation of the the

MCA and MFA solution, we look (Table 1) at the unadjusted and adjusted values

(according to Equation (7)) of the proportion of inertia explained by the first two

factorial axes. We note that the adjusted proportions dramatically increase, and they

range, for the partial analysis, from 75% to 87%.

Given that the value for the global solution is around 56% and the correlations

between the factorial axes of the partial solutions and the global one are all greater

than 0.80, highlighting a good match among them, for the sake of presentation, in

the following we discuss only the global analysis results.

3.2 Events representation in the global actor space

The space spanned by all actors over all the occasions is represented in Figure 2.

In this space, each event is represented by a pair of points connected by a segment.

2 The analyses for all the steps have been performed by using the fully comprehensive procedure
AFMUL implemented in SPAD.TM (SPAD.TM Version 5.5, 2002). The network input data have been
preprocessed to obtain the grand indicator matrix �.
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Table 1. Unadjusted and adjusted proportion of inertia (%) explained by the first two

factorial axes.

Unadj. Adj.

Prop. In. Prop. In.

1996 24.67 75.31

1997 28.53 87.90

1998 28.67 87.11

AFM 19.67 55.81

Fig. 2. Global analysis: events’ representation in the actor space for all the occasions through

principal coordinates. Each event is represented by a couple of points connected by a segment.

Proportion of inertia: first factor = 33.37%, second factor 22.43%. (Color online)

Similarities, associations, and changes among attendance patterns of different events

and over time occasions can be visually analyzed. In the map, events related to the

year 1996 are labeled without suffixes, whereas events in 1997 and 1998 are suffixed

by 0.1 and 0.2, respectively. Two elements are of interest in the actor space: (i) the

angle between two event vectors, which is proportional to the correlation between

event attendance patterns; and (ii) the length of event vectors, which is connected

to the variability in the attendance pattern. By looking at the angles between event

attendance profiles over the occasions, it is possible to graphically appreciate the

presence of some groups of events characterized by a high relational similarity, since

the angle formed by their vectors is quite small.

For instance, we note three groups formed by: (1) clubs based on speech and

debate—“Forensic,” “Forensic (NFL),” and “Debate”—on the right-hand side; (2)

mainly male sport clubs—“Football 9th,” “Basketball Boys 9th,” and “Football

V.1’—on the bottom left; (3) mainly female sport clubs—“Volleyball 9th” and

“Basketball girls 9th” – on the top left, along with some choir associations,

cheerleading and Pep clubs. For the events in each group, the attendance patterns

are similar, and they are attended mainly by the same actors. The contribution

values (Equation (9)) will furnish greater insights for the interpretation. For example
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the events of the first group give the larger contribution to the first axis, while all

the sports give high contributions to the second and, partially, to the third axes.

Hence from this discussion and from a visual inspection of Figure 2, we note that the

x-axis can be seen as the axis of the speech and debate clubs (on the right-hand side)

versus the other clubs (on the left-hand side), whereas the y-axis can be named the

gender axis because female-oriented activities are characterized by large coordinates

and male-oriented activities by low coordinates. Around the origin, we find both

the most common event profiles, characterized by very low rates of attendance, and

events, such the foreign language clubs (French, Spanish, and German), that do not

contribute to the first two axes and are not well represented on the corresponding

factorial plane. In order to analyze these, we should look at the third and fourth

axes, to which these events make larger contributions. This implies that the foreign

language group can be interpreted as a fourth group.

In this global analysis, the visualization can also be interpreted event-wise, in the

sense that it is possible to study the time evolution of the attendance pattern of

the individual events. For instance, the attendance pattern of the event “Baseball

JV 10th” changes from 1996 to 1998, since its attendance gradually differs from the

other sports clubs along the time points (it might perhaps have been attended at

the beginning by students who did not participate in the other sport clubs in later

years). It is also important to note that, when events are positioned at opposite

poles, their participation patterns are negatively correlated, that is to say that actors

belonging to one club do not belong to the other. Figure 2 points out that, for

instance, “Baseball JV 10th.2” and “Latin Club.2” are negatively correlated, which

means that in 1998, students attending one of these events did not attend the other.

This negative correlation is also noticeable between sport clubs (see, for instance,

“Cheerleader JV” and “Baseball” in all three occasions), confirming that many

sports are segregated by gender (McFarland, 1999).

In this map, the variability of the attendance patterns can also be analyzed

by looking at the length of the event vectors. This length can be interpreted as a

measure of the event’s “peculiarity” or “elitism.” For instance, “Debate”, “Forensic”,

and “Forensic (NFL)” on the one hand and “Cheerleader JV” on the other hand

are the elite clubs, in which the students taking part in them typically do not attend

the others.3

3.3 Actors, and attributes, representation in the global event space

The space spanned by all the events over all the occasions is represented in Figure 3.

In this space, each point represents one actor, and its coordinates are the weighted

average of the coordinates over the three-year span. Students’ positions indicate the

tendency to be members of some specific associations over time. The proximity of

actor points can be interpreted in terms of relational similarities, specifically in terms

of the similarity of their participation patterns (i.e., actors who are members of the

3 In his doctoral dissertation, McFarland (1999) stated that in Magnet High, “Debate” and “Forensic
clubs”—clubs set up for inter-school tournaments on academic topics—are attended by strongly
motivated students, whereas access to the cheerleader club is highly formalized and competitive, and
the peculiarity is that, in order to take part in this club, the students need “to write an essay about
why they wanted to be a cheerleader” (McFarland, 1999, p.416).
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Fig. 3. Global analysis: actors’ representation in the event space through principal coordinates.

Each point represents one actor and its coordinates are the weighted average of the coordinates

over the three-years span. Actors’ attributes are added as supplementary points. Proportion

of inertia: first factor = 33.37%, second factor 22.43%. (Color online)

same clubs are likely to lie closer in the factorial plane). Then, it is easy to identify

groups of actors and isolated ones. Thanks to the axis interpretation, it is possible

to appreciate actor participation profiles through their positions. For instance, the

actors characterized by large x coordinates tend to participate exclusively in the

debate and speech clubs over the three years, whereas actors positioned close to

the origin are mainly characterized by non-participation. A fundamental feature

of MFA—and of MCA—is the possibility to enrich the results interpretation by

projecting the available actor attributes onto the factorial plane. In Figure 3, we use

both gender and racial groups. Attribute positions in the event space confirm that

the second factorial axis can be seen as the “gender” axis. Racial groups are instead

spanned along the first factorial axis, which discriminates between African American

(negative x coordinates) and the other racial groups (positive x coordinates). The

average position of the African American group—close to the female attribute and

hence to the female-based clubs—is explained by the higher ratio of females over

males in this racial group (42 females and only 18 males in the 10th grade) with

respect to the others.

3.4 Event and actor joint representation through the biplot

In order to represent actors and events in a joint two-dimensional map, we can use

the biplot (Gabriel, 1995). In order to keep the natural asymmetry of actors and

events in the representation, we use the so-called asymmetric biplot where the actors

are represented in principal coordinates and the events in standard coordinates

(Greenacre, 2010). Here the interpretation of actor positions with respect to events

is achieved by using the direction vector defined by each event, which represents the

biplot axis. By projecting the points representing actors onto each biplot axis, we can

get an approximate value of the event participation profile and explain why actors

are close together or far apart in the event space. Looking at the map in Figure 4,
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Fig. 4. Global analysis: events’ and actors’ joint representation. Asymmetric biplot of actors

(dots) and events (squares) with some events and actors highlighted. Actors are in principal

coordinates, and events are in standard coordinates. Proportion of inertia: first factor =

33.37%, second factor 22.43%. (Color online)

we identify a group of actors (namely, Actors 128,140, 157, and 176) who have the

largest coordinates on the biplot axes determined by the speech clubs. These actors

are characterized by high participation in these events along the time span. Another

group is given by Actors 163, 166, 167, and 178, who have the largest coordinates

on the biplot axes determined by their participation in the theater production club.

Note that these directions are somehow correlated to the speech clubs’ directions.

This implies that these clubs share some actors. Furthermore, we can spot some

isolated points. For instance, we have Actor 77 who is strongly characterized by his

participation in the “Baseball JV 10th” in 1998, and Actor 172 who is located in an

extreme position in the lower right corner. This is due to his/her strong participation

in the speech club along with the Baseball and Basketball clubs.

3.5 Variations over time and actor trajectories

In order to analyze the variations over time of the global relational structure,

Table 2 reports the values of the RV coefficients (Equation (14)). The values show

that the relation structure over the years changes quite considerably as all the values

are lower than 0.5—remember that RV values close to 1 correspond to very similar

tables. These results are in line with what can be expected, since these are fleeting

events over time. Interestingly, the participation patterns of two subsequent years

are closer (1996–1997 and 1997–1998) pointing to gradual changes in the students’

affiliation patterns over the years.

In the global event space, we can see the actors’ trajectories and variations,

which provide a combined visualization of the results of the partial analyses in

the global event space and clearly point out the temporal dimension in terms of

evolution and variability. Segments connecting points related to the same actor over

the partial analyses depict the actor trajectory over time occasions and provide a

graphical display of individual attendance pattern evolution. Figure 5 plots the time
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Table 2. RV coefficients over the years.

1996 1997 1998

1996 1 – –

1997 0.375 1 –

1998 0.198 0.358 1

Fig. 5. Global analysis: actors’ representation in the event space through principal coordinates.

Each point represents one actor at a given time. Some actors and relative trajectories are

highlighted. Proportion of inertia: first factor = 33.37%, second factor 22.43%. (Color online)

trajectories of Actors 73, 104, 138, 171, and 180. Actors 73, 104, and 138 have similar

trajectories given that they share participation in the Debate Club and Forensic Club

in 1996 and 1997. We note that in 1998, Actor 138 remains in the same part of the

map as he/she continues to attend the same kind of clubs, while Actors 73 and 104

move to the other side of the map close to the non-participation area (they stop

attending the clubs). From the trajectories of Actors 171 and 180, who participate in

the Pep Club, Cheerleaders JV, and Female Choirs, we can say that these two actors

preserve a similar attendance pattern for all three years with negligible variations.

Together with the evolution of actor behaviors highlighted by the trajectories,

we can also evaluate variability in the actors’ participation patterns by looking at

the points corresponding to the single occasions with respect to their barycenter. In

Figure 6, Actors 73, 171, and 172 are highlighted (dots correspond to actor position

in each year, diamonds to the barycentric points). The first (Actor 73) presents a

high variability with a great change in his/her participation pattern in the third year.

Actor 171 presents a smaller variability around the global point, indicating a fairly

stable participation pattern. Actor 172 presents an intermediate situation along with
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Fig. 6. Small dots represent the actors ai over all the time of the partial analyses. The

positions of Actor 73, Actor 171, and Actor 172 are highlighted by larger dots and diamonds

(coordinates of the global analysis). Proportion of inertia: first factor = 33.37%, second factor

22.43%. (Color online)

a regular change in his/her participation pattern passing from being quite isolated

to being more exclusively involved in the “Debate” and “Forensic” Clubs.

4 Concluding remarks

In this paper, we have discussed how MFA based on MCA can be used for the

visual analysis of time-varying two-mode networks. The proposed method provides

a variety of different statistical visualizations that allow different points of view

and insights into the data, as well as an interplay between analytical and visual

tools. It fits different data structures in which both actors and events may partially

change over time. When the same actors are linked to the same set of events in all

the occasions, additional analysis, such as event trajectories and comparison of the

event-by-event projection matrices, could be undertaken. In any case, the proposed

method provides a unique and coherent framework for both static and longitudinal

analyses.

Given the analytical properties of MCA, the proposed method allows the user

to visually analyze the degree of similarity of actor/event network profiles over

time and to characterize actors and events on the basis of their attendance and

non-attendance patterns. Distances on the factorial maps allow us to evaluate the

structural similarities among actors and events and how they change over time.

Furthermore it is also possible to visualize actor attributes or actor groups and their

evolution along the occasions.

In addition:

i. The procedure, with few modifications, could be applied to more complex

and heterogeneous structures, such as multi-modal, multi-relational networks

where different kinds of relationships (possibly observed over time occasions)
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are considered. In this case, we would consider K different types of relation,

and each Fk would refer to a specific relation;

ii. Due to the geometrical and analytical characteristics of the MFA, the results

could be easily included in a dynamic and interactive perspective. Indeed,

actors and events for all occasions have coordinates in the unique global

space—akin to that of Procrustes analysis. This makes it possible, on the

one hand, to draw trajectories in a static layout and, on the other, with few

calculations such as linear interpolations, to generate movie-like visualizations

of trajectories or of the star-type plot; and

iii. Factorial maps will benefit considerably from the use of interactive tools, e.g.,

point selection tools based on contributions or measurements of the quality of

representations or brushing. In order to achieve this, ad hoc routines should

be implemented.
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