
Mining Interpretable Spatio-Temporal
Logic Properties for Spatially Distributed

Systems

Sara Mohammadinejad1(B) , Jyotirmoy V. Deshmukh1 ,
and Laura Nenzi2,3

1
University of Southern California, Los Angeles, USA

{saramoha,jdeshmuk}@usc.edu
2

University of Trieste, Trieste, Italy
lnenzi@units.it

3
TU Wien, Vienna, Austria

Abstract. The Internet-of-Things, complex sensor networks, multi-
agent cyber-physical systems are all examples of spatially distributed
systems that continuously evolve in time. Such systems generate huge
amounts of spatio-temporal data, and system designers are often inter-
ested in analyzing and discovering structure within the data. There
has been considerable interest in learning causal and logical proper-
ties of temporal data using logics such as Signal Temporal Logic (STL);
however, there is limited work on discovering such relations on spatio-
temporal data. We propose the first set of algorithms for unsupervised
learning for spatio-temporal data. Our method does automatic fea-
ture extraction from the spatio-temporal data by projecting it onto the
parameter space of a parametric spatio-temporal reach and escape logic
(PSTREL). We propose an agglomerative hierarchical clustering tech-
nique that guarantees that each cluster satisfies a distinct STREL for-
mula. We show that our method generates STREL formulas of bounded
description complexity using a novel decision-tree approach which gen-
eralizes previous unsupervised learning techniques for Signal Temporal
Logic. We demonstrate the effectiveness of our approach on case studies
from diverse domains such as urban transportation, epidemiology, green
infrastructure, and air quality monitoring.

Keywords: Distributed systems ⋅ Unsupervised learning ⋅
Spatio-temporal data ⋅ Interpretability ⋅ Spatio-temporal reach and
escape logic

1 Introduction

Due to rapid improvements in sensing and communication technologies, embed-
ded systems are now often spatially distributed. Such spatially distributed

J. V. Deshmukh and L. Nenzi—Equal contribution.

c© Springer Nature Switzerland AG 2021
Z. Hou and V. Ganesh (Eds.): ATVA 2021, LNCS 12971, pp. 91–107, 2021.
https://doi.org/10.1007/978-3-030-88885-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88885-5_7&domain=pdf
http://orcid.org/0000-0002-4986-5553
http://orcid.org/0000-0003-4683-5540
http://orcid.org/0000-0003-2263-9342
https://doi.org/10.1007/978-3-030-88885-5_7


92 S. Mohammadinejad et al.

systems (SDS) consist of heterogeneous components embedded in a specific topo-
logical space, whose time-varying behaviors evolve according to complex mutual
inter-dependence relations [16]. In the formal methods community, tremendous
advances have been achieved for verification and analysis of distributed systems.
However, most formal techniques abstract away the specific spatial aspects of
distributed systems, which can be of crucial importance in certain applications.
For example, consider the problem of developing a bike-sharing system (BSS)
in a “sharing economy.” Here, the system consists of a number of bike stations
that would use sensors to detect the number of bikes present at a station, and
use incentives to let users return bikes to stations that are running low. The
bike stations themselves could be arbitrary locations in a city, and the design
of an effective BSS would require reasoning about the distance to nearby loca-
tions, and the time-varying demand or supply at each location. For instance, the
property “there is always a bike and a slot available at distance d from a bike
station” depends on the distance of the bike station to its nearby stations. Eval-
uating whether the BSS functions correctly is a verification problem where the
specification is a spatio-temporal logic formula. Similarly, consider the problem
of coordinating the movements of multiple mobile robots, or a HVAC controller
that activates heating or cooling in parts of a building based on occupancy.
Given spatio-temporal execution traces of nodes in such systems, we may be
interested in analyzing the data to solve several classical formal methods prob-
lems such as fault localization, debugging, invariant generation or specification
mining. It is increasingly urgent to formulate methods that enable reasoning
about spatially-distributed systems in a way that explicitly incorporates their
spatial topology.

In this paper, we focus on one specific aspect of spatio-temporal reasoning:
mining interpretable logical properties from data in an SDS. We model a SDS
as a directed or undirected graph where individual compute nodes are vertices,
and edges model either the connection topology or spatial proximity. In the past,
analytic models based on partial differential equations (e.g. diffusion equations)
[6] have been used to express the spatio-temporal evolution of these systems.
While such formalisms are incredibly powerful, they are also quite difficult to
interpret. Traditional machine learning (ML) approaches have also been used
to uncover the structure of such spatio-temporal systems, but these techniques
also suffer from the lack of interpretability. Our proposed method draws on
a recently proposed logic known as Spatio-Temporal Reach and Escape Logic
(STREL) [2]. Recent research on STREL has focused on efficient algorithms
for runtime verification and monitoring of STREL specifications [2,3]. However,
there is no existing work on mining STREL specifications.

Mined STREL specifications can be useful in many different contexts in the
design of spatially distributed systems; an incomplete list of usage scenarios
includes the following applications: (1) Mined STREL formulas can serve as
spatio-temporal invariants that are satisfied by the computing nodes, (2) STREL
formulas could be used by developers to characterize the properties of a deployed
spatially distributed system, which can then be used to monitor any subsequent



Mining Spatio-Temporal Logic Formulas 93

updates to the system, (3) Clustering nodes that satisfy similar STREL formulas
can help debug possible bottlenecks and violations in communication protocols
in such distributed systems.

There is considerable amount of recent work on learning temporal logic for-
mulas from data [8,11,14,15]. In particular, the work in this paper is closest to
the work on unsupervised clustering of time-series data using Signal Temporal
Logic [11]. In this work, the authors assume that the user provides a Parametric
Signal Temporal Logic (PSTL) formula, and the procedure projects given tem-
poral data onto the parameter domain of the PSTL formula. The authors use
off-the-shelf clustering techniques to group parameter values and identify STL
formulas corresponding to each cluster. There are a few hurdles in applying such
an approach to spatio-temporal data. First, in [11], the authors assume a mono-
tonic fragment of PSTL: there is no such fragment identified in the literature for
STREL. Second, in [11], the authors assume that clusters in the parameter space
can be separated by axis-aligned hyper-boxes. Third, given spatio-temporal data,
we can have different choices to impose the edge relation on nodes, which can
affect the formula we learn.

To address the shortcomings of previous techniques, we introduce PSTREL,
by treating threshold constants in signal predicates, time bounds in temporal
operators, and distance bounds in spatial operators as parameters. We then iden-
tify a monotonic fragment of PSTREL, and propose a multi-dimensional binary-
search based procedure to infer tight parameter valuations for the given PSTREL
formula. We also explore the space of implied edge relations between spatial
nodes, proposing an algorithm to define the most suitable graph. After defin-
ing a projection operator that maps a given spatio-temporal signal to parame-
ter values of the given PSTREL formula, we use an agglomerative hierarchical
clustering technique to cluster spatial locations into hyperboxes. We improve
the method of [11] by introducing a decision-tree based approach to systemat-
ically split overlapping hyperbox clusters. The result of our method produces
axis-aligned hyperbox clusters that can be compactly described by an STREL
formula that has length proportional to the number of parameters in the given
PSTREL formula (and independent of the number of clusters). Finally, we give
human-interpretable meanings for each cluster. We show the usefulness of our
approach considering four benchmarks: COVID-19 data from LA County, Out-
door air quality data, BSS data and movements of the customer in a Food Court.

Running Example: A Bike Sharing System (BSS). To ease the exposition
of key ideas in the paper, we use an example of a BSS deployed in the city of
Edinburgh, UK. The BSS consists of a number of bike stations, distributed over
a geographic area. Each station has a fixed number of bike slots. Users can pick
up a bike, use it for a while, and then return it to another station in the area.
The data that we analyze are the number of bikes (B) and empty slots (S) at
each time step in each bike station. With the advent of electric bikes, BSS have
become an important aspect in urban mobility, and such systems make use of
embedded devices for diverse purposes such as tracking bike usage, billing, and
displaying information about availability to users over apps. Figure 1b shows the



94 S. Mohammadinejad et al.

Fig. 1. Interpretable clusters automatically identified by our technique.

map of the Edinburgh city with the bike stations. Different colors of the nodes
represent different learned clusters as can be seen in Fig. 1a. For example, using
our approach, we learn that stations in orange cluster have a long wait time,
and stations in red cluster are the most undesirable stations as they have long
wait time and do not have nearby stations with bike availability. If we look at
the actual location of red points in Fig. 1b, they are indeed far away stations.

2 Background

In this section, we introduce the notation and terminology for spatial models
and spatio-temporal traces and we describe Spatio-Temporal Reach and Escape
Logic (STREL).

Definition 1 (Spatial Model). A spatial model S is defined as a pair ⟨L,W ⟩,
where L is a set of nodes or locations and W ⊆ L × R × L is a nonempty
relation associating each distinct pair �1, �2 ∈ L with a label w ∈ R (also denoted
�1

w
−→ �2).

There are many different choices possible for the proximity relation W ; for exam-
ple, W could be defined in a way that the edge-weights indicate spatial proximity,
communication network connectivity etc. Given a set of locations, unless there is
a user-specified W , we note that there are several graphs (and associated edge-
weights) that we can use to express spatial models. We explore these possibilities
in Sect. 3. For the rest of this section, we assume that W is defined using the
notion of (δ, d)-connectivity graph as defined in Definition 2.

Definition 2 ((δ, d)-connectivity spatial model). Given a compact metric
space M with the distance metric d ∶ M ×M → R

≥0, a set of locations L that is
a finite subset of M , and a fixed δ ∈ R, δ > 0, a (δ, d)-connectivity spatial model
is defined as ⟨L,W ⟩, where (�1, w, �2) ∈ W iff d(�1, �2) = w, and w < δ.



Mining Spatio-Temporal Logic Formulas 95

Example 1. In the BSS, each bike station is a node/location in the spatial model,
where locations are assumed to lie on the metric space defined by the 3D spher-
ical manifold of the earth’s surface; each location is defined by its latitude and
longitude, and the distance metric is the Haversine distance1. Figure 2b shows
the δ-connectivity graph of the Edinburgh BSS, with δ = 1 km.

Definition 3 (Route). For a spatial model S = ⟨L,W ⟩, a route τ is an infinite
sequence �0�1⋯�k⋯ such that for any i ≥ 0, �i

wi−−→ �i+1.

For a route τ , τ[i] denotes the i
th node �i in τ , τ[i..] indicates the suffix route

�i�i+1..., and τ(�) denotes min i ∣ τ[i] = �, i.e. the first occurrence of � in τ . Note
that τ(�) = ∞ if ∀iτ[i] ≠ �. We use T(S) to denote the set of routes in S, and
T(S, �) to denote the set of routes in S starting from � ∈ L. We can use routes to
define the route distance between two locations in the spatial model as follows.

Definition 4 (Route Distance and Spatial Model Induced Distance).
Given a route τ , the route distance along τ up to a location � denoted d

τ
S(�) is

defined as ∑
τ(�)
i=0 wi. The spatial model induced distance between locations �1 and

�2 (denoted dS(�1, �2)) is defined as: dS(�1, �2) = minτ∈T(S,�1) d
τ
S(�2).

Note that by the above definition, d
τ
S(�) = 0 if τ[0] = � and ∞ if � is not a part

of the route (i.e. τ(�) = ∞), and dS(�1, �2) = ∞ if there is no route from �1 to
�2.

Spatio-temporal Time-Series. A spatio-temporal trace associates each loca-
tion in a spatial model with a time-series trace. Formally, a time-series trace x is
a mapping from a time domain T to some bounded and non-empty set known as
the value domain V. Given a spatial model S = ⟨L,W ⟩, a spatio-temporal trace
σ is a function from L×T to V. We denote the time-series trace at location � by
σ(�).

Example 2. Consider a spatio-temporal trace σ of the BSS defined such that for
each location � and at any given time t, σ(�, t) is (B(t), S(t)), where B(t) and
S(t) are respectively the number of bikes and empty slots at time t.

2.1 Spatio-temporal Reach and Escape Logic (STREL)

Syntax. STREL is a logic that was introduced in [2] as a formalism for monitor-
ing spatially distributed cyber-physical systems. STREL extends Signal Tempo-
ral Logic [12] with two spatial operators, reach and escape, from which is possible
to derive other three spatial modalities: everywhere, somewhere and surround.
The syntax of STREL is given by:

ϕ ∶∶= true ∣ μ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 RD ϕ2 ∣ ED ϕ.

1
Haversine Formula gives minimum distance between any two points on sphere by
using their latitudes and longitudes.



96 S. Mohammadinejad et al.

Here, μ is an atomic predicate (AP) over the value domain V. Negation ¬ and
conjunction ∧ are the standard Boolean connectives, while UI is the temporal
operator until with I being a non-singular interval over the time-domain T. The
operators RD and ED are spatial operators where D denotes an interval over the
distances induced by the underlying spatial model, i.e., an interval over R

≥0.

Semantics. A STREL formula is evaluated piecewise over each location and
each time appearing in a given spatio-temporal trace. We use the notation
(σ, �) ⊧ ϕ if the formula ϕ holds true at location � for the given spatio-temporal
trace σ. The interpretation of atomic predicates, Boolean operations and tem-
poral operators follows standard semantics for Signal Temporal Logic: E.g., for
a given location � and a given time t, the formula ϕ1UIϕ2 holds at � iff there
is some time t

′ in t ⊕ I where ϕ2 holds, and for all times t
′′ in [t, t

′
), ϕ1 holds.

Here the ⊕ operator defines the interval obtained by adding t to both interval
end-points. We use standard abbreviations FIϕ = trueUIϕ and GIϕ = ¬FIϕ,
for the eventually and globally operators. The reachability (RD) and escape
(ED)operators are spatial operators. The formula ϕ1RDϕ2 holds at a location �
if there is a route τ starting at � that reaches a location �

′ that satisfies ϕ2, with
a route distance d

τ
S(�

′
) that lies in the interval D, and for all preceding locations,

including �, ϕ1 holds true. The escape formula EDϕ holds at a location � if there
exists a location �

′ at a route distance dS(�1, �2) that lies in the interval D and
a route starting at � and reaching �

′ consisting of locations that satisfy ϕ. We
define two other operators for notational convenience: The somewhere operator,
denoted 
[0,d]ϕ, is defined as trueR[0,d]ϕ, and the everywhere operator, denoted
⧈[0,d]ϕ is defined as ¬
[0,d] ¬ϕ, where d is a real positive value; their meaning
is described in the next example.

Example 3. In the BSS, we use atomic predicates S > 0 and B > 10, and the
formula G[0,3hours] 
[0,1km] (B > 10) is true if always within the next 3 h, at
a location �, there is some location �

′ at most 1 km from � where, the number
of bikes available exceed 10. Similarly, the formula ⧈[0,1km]G[0,30min](S > 0) is
true at a location � if for all locations within 1 km, for the next 30 mins, there
is no empty slot.

3 Constructing a Spatial Model

In this section, we present four approaches to construct a spatial model, and
discuss the pros and cons of each approach.

1. (∞, d)-connectivity spatial model: This spatial model corresponds to the
(δ, d)-connectivity spatial model as presented in Definition 2, where we set
δ = ∞. We note that this gives us a fully connected graph, i.e. where ∣W ∣
is O(∣L∣

2
). We remark that our learning algorithm uses monitoring STREL

formulas as a sub-routine, and from Lemma 2 in Appendix2, we can see that
2
Algorithms and Appendix of the paper are provided in the arXiv version
due to lack of space.

https://arxiv.org/abs/2106.08548


Mining Spatio-Temporal Logic Formulas 97

Fig. 2. Different approaches for constructing the spatial model for the BSS. (a)
shows an (∞, dhvrsn)-connectivity spatial model where dhvrsn is the Haversine distance
between locations. (b) shows a (δ, dhvrsn)-connectivity spatial model where δ = 1 km.
Observe that the spatial model is disconnected. (c) shows an MST-spatial model. (d)
shows an (α, dhvrsn) enhanced MSG spatial model with α = 2. Observe that this spatial
model is sparse compared even to the (δ, dhvrsn)-connectivity spatial model.

as the complexity of monitoring a STREL formula is linear in ∣W ∣, a fully
connected graph is undesirable.

2. (δ, d)-connectivity spatial model: This is the model presented in Defini-
tion 2, where δ is heuristically chosen in an application-dependent fashion.
Typically, the δ we choose is much smaller compared to the distance between
the furthest nodes in the given topological space. This gives us W that is
sparse, and thus with a lower monitoring cost; however, a small δ can lead
to a disconnected spatial model which can affect the accuracy of the learned
STREL formulas. Furthermore, this approach may overestimate the spatial
model induced distance between two nodes (as in Definition 4) that are not
connected by a direct edge. For instance, in Fig. 2b, nodes 1 and 8 are con-
nected through the route 1 → 9 → 8, and sum of the edge-weights along this
route is larger than the actual (metric) distance of 1 and 8.

3. MST-spatial model: To minimize the number of edges in the graph while
keeping the connectivity of the graph, we can use Minimum Spanning Tree
(MST) as illustrated in Fig. 2c. This gives us ∣W ∣ that is O(∣L∣), which makes
monitoring much faster, while resolving the issue of disconnected nodes in
the (δ, d)-spatial model. However, an MST can also lead to an overestimate
of the spatial model induced distance between some nodes in the graph. For
example, in Fig. 2c, the direct distance between nodes 1 and 8 is much smaller
than their route distance (through the route 1 → 2 → 3 → 4 → 5 → 6 → 7 →
8).

4. (α, d)-Enhanced MSG Spatial Model: To address the shortcomings of
previous approaches, we propose constructing a spatial model that we call the
(α, d)-Enhanced Minimum Spanning Graph Spatial model. First, we construct
an MST over the given set of locations and use it to define W and pick α
as some number greater than 1. Then, for each distinct pair of locations
�1, �2, we compute the shortest route distance dS(�1, �2) between them in the
constructed MST, and compare it to their distance d(�1, �2) in the metric
space. If dS(�1, �2) > α ⋅d(�1, �2), then we add an edge (�1, d(�1, �2), �2) to W .



98 S. Mohammadinejad et al.

The resulting spatial model is no longer a tree, but typically is still sparse3.
In our case studies, the cost of building the enhanced MSG spatial model was
insignificant compared to the other steps in the learning procedure4.

4 Learning STREL Formulas from Data

In this section, we first introduce Parametric Spatio-Temporal Reach and Escape
Logic (PSTREL) and the notion of monotonicity for PSTREL formulas. Then,
we introduce a projection function π that maps a spatio-temporal trace to a
valuation in the parameter space of a given PSTREL formula. We then cluster
the trace-projections using Agglomerative Hierarchical Clustering, and finally
learn a compact STREL formula for each cluster using Decision Tree techniques.

Parametric STREL (PSTREL). Parametric STREL (PSTREL) is a logic
obtained by replacing one or more numeric constants appearing in STREL for-
mulas by parameters; parameters appearing in atomic predicates are called mag-
nitude parameters PV, and those appearing in temporal and spatial operators
are called timing PT and spatial parameters PdS respectively. Each parameter in
PV take values from V, those in PT take values from T, and those in PdS take
values from R

≥0 (i.e. the set of values that the dS metric can take for a given
spatial model). We define a valuation function ν that maps all parameters in a
PSTREL formula to their respective values.

Example 4. Consider the PSTREL versions of the STREL formulas introduced
in Example 3 ϕ(pτ ,pd,pc) = G[0,pτ ] 
[0,pd] (B > pc). The valuation ν:
pτ ↦ 3 h, pd ↦ 1km, and pc ↦ 10 returns the STREL formula introduced
in Example 3.

Definition 5 (Parameter Polarity, Monotonic PSTREL). A polarity
function γ maps a parameter to an element of {+,−}, and is defined as fol-
lows:

γ(p) = +
def= ν

′
(p) > ν(p) ∧ (σ, �) ⊧ ϕ(ν(p)) ⇒ (σ, �) ⊧ ϕ(ν

′
(p))

γ(p) = −
def= ν

′
(p) < ν(p) ∧ (σ, �) ⊧ ϕ(ν(p)) ⇒ (σ, �) ⊧ ϕ(ν

′
(p))

The monotonic fragment of PSTREL consists of PSTREL formulas where all
parameters have either positive or negative polarity.

3
The complete algorithm, Algorithm 1 is provided in the arXiv version. Algorithm 1
is a simple way of constructing an (α, d)-enhanced MSG spatial model, and incurs a
one-time cost of O(∣L∣

2 ⋅(∣L∣+ ∣W ∣ ⋅ log(∣L∣))). We believe that the time complexity
can be further improved using a suitable dynamic programming based approach.

4
The runtimes of our learning approach for different kinds of spatial models on various
case studies is illustrated in Table 1 in the arXiv version.

https://arxiv.org/abs/2106.08548
https://arxiv.org/abs/2106.08548


Mining Spatio-Temporal Logic Formulas 99

In simple terms, the polarity of a parameter p is positive if it is easier to sat-
isfy ϕ as we increase the value of p and is negative if it is easier to satisfy ϕ
as we decrease the value of p. The notion of polarity for PSTL formulas was
introduced in [1], and we extend this to PSTREL and spatial operators. The
polarity for PSTREL formulas ϕ(d1, d2) of the form 
[d1,d2]ψ, ψ1R[d1,d2]ψ2, and
E[d1,d2]ψ are γ(d1) = − and γ(d2) = +, i.e. if a spatio-temporal trace satisfies
ϕ(ν(d1), ν(d2)), then it also satisfies any STREL formula over a strictly larger
spatial model induced distance interval, i.e. by decreasing ν(d1) and increas-
ing ν(d2). For a formula ⧈[d1,d2]ψ, γ(d1) = + and γ(d2) = −, i.e. the formula
obtained by strictly shrinking the distance interval. The proofs are simple, and
provided in Appendix for completeness.

Definition 6 (Validity Domain, Boundary). Let P = V∣PV∣ × T
∣PT∣ ×

(R
≥0
)
∣PdS ∣ denote the space of parameter valuations, then the validity domain

V of a PSTREL formula at a location � with respect to a set of spatio-temporal
traces Σ is defined as follows: V (ϕ(p), �, Σ) = {ν(p) ∣ p ∈ P, σ ∈ Σ, (σ, �) ⊧
ϕ(ν(p))} The validity domain boundary ∂V (ϕ(ϕ), �, Σ) is defined as the inter-
section of V (ϕ, �,Σ) with the closure of its complement.

Spatio-temporal Trace Projection. We now explain how a monotonic
PSTREL formula ϕ(p) can be used to automatically extract features from a
spatio-temporal trace. The main idea is to define a total order >P on the param-
eters p (i.e. parameter priorities) that allows us to define a lexicographic projec-
tion of the spatio-temporal trace σ at each location � to a parameter valuation
ν(p) (this is similar to assumptions made in [8,11]). We briefly remark how we
can relax this assumption later. Let νj denote the valuation of the j

th parameter.

Definition 7 (Parameter Space Ordering, Projection). A total order on
parameter indices j1 > . . . > jn imposes a total order ≺lex on the parameter space
defined as:

ν(p) ≺lex ν
′
(p) ⇔ ∃jk s.t. {

γ(pjk
) = + ⇒ νjk

< ν
′
jk

γ(pjk
) = − ⇒ νjk

> ν
′
jk

and ∀m <P k, νm = ν
′
m.

Given above total order, πlex(σ, �) = inf≺lex
{ν(p) ∈ ∂V (ϕ(p), {σ}}.

In simple terms, given a total order on the parameters, the lexicographic projec-
tion maps a spatio-temporal trace to valuations that are least permissive w.r.t.
the parameter with the greatest priority, then among those valuations, to those
that are least permissive w.r.t. the parameter with the next greater priority, and
so on. Finding a lexicographic projection can be done by sequentially performing
binary search on each parameter dimension [11]5. It is easy to show that πlex

returns a valuation on the validity domain boundary.

5
Algorithm 2 is provided in the arXiv version.

https://arxiv.org/abs/2106.08548


100 S. Mohammadinejad et al.

Remark 1. The order of parameters is assumed to be provided by the user and is
important as it affects the unsupervised learning algorithms for clustering that
we apply next. Intuitively, the order corresponds to what the user deems as more
important. For example, consider the formula G[0,3hours] 
[0,d] (B > c). Note
that γ(d) = +, and γ(c) = −. Now if the user is more interested in the radius
around each station where the number of bikes exceeds some threshold (possibly
0) within 3 h, then the order is d >P c. If she is more interested in knowing what
is the largest number of bikes available in any radius (possibly ∞) always within
3 h, then c >P d.

Remark 2. Similar to [18], we can compute an approximation of the validity
domain boundary for a given trace, and then apply a clustering algorithm on the
validity domain boundaries. This does not require the user to specify parameter
priorities. In all our case studies, the parameter priorities were clear from the
domain knowledge, and hence we will investigate this extension in the future.

Clustering. The projection operator πlex(σ, �) maps each location to a valuation
in the parameter space. These valuation points serve as features for off-the-shelf
clustering algorithms. In our experiments, we use the Agglomerative Hierarchical
Clustering (AHC) technique [5] to automatically cluster similar valuations. AHC
is a bottom-up approach that starts by assigning each point to a single cluster,
and then merging clusters in a hierarchical manner based on a similarity criteria6.
An important hyperparameter for any clustering algorithm is the number of
clusters to choose. In some case studies, we use domain knowledge to decide the
number of clusters. Where such knowledge is not available, we use the Silhouette
metric to compute the optimal number of clusters. Silhouette is a ML method
to interpret and validate consistency within clusters by measuring how well each
point has been clustered. The silhouette metric ranges from −1 to +1, where a
high silhouette value indicates that the object is well matched to its own cluster
and poorly matched to neighboring clusters [17].

Example 5. Figure 1a shows the results of projecting the spatio-temporal traces
from BSS through the PSTREL formula ϕ(τ, d) shown in Eq. (1).

ϕ(τ, d) = G[0,3](ϕwait(τ) ∨ ϕwalk(d)) (1)

In the above formula, ϕwait(τ) is defined as F[0,τ](B ≥ 1) ∧ (F[0,τ]S ≥ 1), and
ϕwalk(d) is 
[0,d](B ≥ 1) ∧ 
(S ≥ 1). ϕ(τ, d) means that for the next 3 h,
either ϕwait(τ) or ϕwalk(d) is true. Locations with large values of τ have long
wait times or with large d values are typically far from a location with bike/slot
availability (and are thus undesirable). Locations with small τ, d are desirable.
Each point in Fig. 1a shows πlex(σ, �) applied to each location and the result of
applying AHC with 3 clusters.

6
We used complete-linkage criteria which assumes the distance between clusters equals
the distance between those two elements (one in each cluster) that are farthest away
from each other.



Mining Spatio-Temporal Logic Formulas 101

Let numC be the number of clusters obtained after applying AHC to the
parameter valuations. Let C denote the labeling function mapping πlex(σ, �) to
{1, . . . ,numC }. The next step after clustering is to represent each cluster in
terms of an easily interpretable STREL formula. Next, we propose a decision
tree-based approach to learn an interpretable STREL formula from each cluster.

Learning STREL Formulas from Clusters. The main goal of this subsection
is to obtain a compact STREL formula to describe each cluster identified by
AHC. We argue that bounded length formulas tend to be human-interpretable,
and show how we can automatically obtain such formulas using a decision-tree
approach. Decision-trees (DTs) are a non-parametric supervised learning method
used for classification and regression[13]. Given a finite set of points X ⊆ R

m and
a labeling function L that maps each point x ∈ X to some label L(x), the DT
learning algorithm creates a tree whose non-leaf nodes nj are annotated with
constraints φj , and each leaf node is associated with some label in the range
of L. Each path n1, . . . , ni, ni+1 from the root node to a leaf node corresponds
to a conjunction ⋀i

j=1 hj , where hj = ¬φj if hj+1 is the left child of hj and φj

otherwise. Each label thus corresponds to the disjunction over the conjunctions
corresponding to each path from the root node to the leaf node with that label.

Recall that after applying the AHC procedure, we get one valuation πlex(σ, �)
for each location, and its associated cluster label. We apply a DT learning algo-
rithm to each point πlex(σ, �), and each DT node is associated with a φj of the
form pj ≥ vj for some pj ∈ p.

Lemma 1. Any path in the DT corresponds to a STREL formula of length that
is O((∣P∣ + 1) ⋅ ∣ϕ∣).

Proof. Any path in the DT is a conjunction over a number of formulas of the
kind pj ≥ vj or its negation. Because ϕ(p) is monotonic in each of its parameters,
if we are given a conjunction of two conjuncts of the type pj ≥ vj and pj ≥ v

′
j ,

then depending on γ(pj), one inequality implies the other, and we can discard
the weaker inequality. Repeating this procedure, for each parameter, we will be
left with at most 2 inequalities (one specifying a lower limit and the other an
upper limit on pj). Thus, each path in the DT corresponds to an axis-aligned
hyperbox in the parameter space. Due to monotonicity, an axis-aligned hyperbox
in the parameter space can be represented by a formula that is a conjunction of
∣P∣+1 STREL formulas (negations of formulas corresponding to the ∣P∣ vertices
connected to the vertex with the most permissive STREL formula, and the most
permissive formula itself) [11] (see Fig. 3a for an example in a 2D parameter
space). Thus, each path in the DT can be described by a formula of length
O((∣P∣ + 1) ⋅ ∣ϕ∣), where ∣ϕ∣ is the length of ϕ.

Example 6. The result of applying the DT algorithm to the clusters identified
by AHC (shown in dotted lines in Fig. 1a) is shown as the axis-aligned hyper-
boxes. Using the meaning of ϕ(τ, d) as defined in Eq. (1), we learn the formula
¬ϕ(17.09, 2100)∧¬ϕ(50, 1000.98)∧ ϕ(50, 2100) for the red cluster. The last of
these conjuncts is essentially the formula true, as this formula corresponds to



102 S. Mohammadinejad et al.

Fig. 3. Illustration of clustering on the BSS locations

the most permissive formula over the given parameter space. Thus, the formula
we learn is:

ϕred = ¬G[0,3](ϕwait(17.09)∨ϕwalk(2100))∧¬G[0,3](ϕwait(50)∨ϕwalk(1000.98))

The first of these conjuncts is associated with a short wait time and the second is
associated with short walking distance. As both are not satisfied, these locations
are the least desirable.

Pruning the Decision Tree. If the decision tree algorithm produces several
disjuncts for a given label (e.g., see Fig. 4a), then it can significantly increase the
length and complexity of the formula that we learn for a label. This typically
happens when the clusters produced by AHC are not clearly separable using
axis-aligned hyperplanes. We can mitigate this by pruning the decision tree to a
maximum depth, and in the process losing the bijective mapping between cluster
labels and small STREL formulas. We can still recover an STREL formula that
is satisfied by most points in a cluster using a k-fold cross validation approach
(The formal procedure is presented in Algorithm 3 in the arXiv version.) The
idea is to loop over the maximum depth permitted from 1 to N , where N is user
provided, and for each depth performing k-fold cross validation to characterize
the accuracy of classification at that depth. If the accuracy is greater than a
threshold (90% in our experiments), we stop and return the depth as a limit
for the decision tree. Figure 4b illustrates the hyper-boxes obtained using this
approach. For this example, we could decrease the number of hyper-boxes from
11 to 3 by miss-classifying only a few data points (less than 10% of the data).

5 Case Studies

We now present the results of applying the clustering techniques developed on
three benchmarks: (1) COVID-19 data from Los Angeles County, USA, [9] (2)

https://arxiv.org/abs/2106.08548


Mining Spatio-Temporal Logic Formulas 103

Outdoor Air Quality data from California, and (3) BSS data from the city of
Edinburgh [10] (running example)7. A summary of the computational aspects of
the results is provided in Table 1. The numbers indicate that our methods scale
to spatial models containing hundreds of locations, and still learn interpretable
STREL formulas for clusters.

Table 1. Summary of results.

Case ∣L∣ ∣W ∣ Run-time (secs) numC ∣ϕcluster ∣

COVID-19 235 427 813.65 3 3 ⋅ ∣ϕ∣ + 4

BSS 61 91 681.78 3 2 ⋅ ∣ϕ∣ + 4

Air Quality 107 60 136.02 8 5 ⋅ ∣ϕ∣ + 7

Food Court* 20 35 78.24 8 3 ⋅ ∣ϕ∣ + 4

COVID-19 Data from LA County. Understanding the spread pattern of
COVID-19 in different areas is vital to stop the spread of the disease. While this
example is not related to a software system, it is nevertheless a useful example
to show the versatility of our approach to spatio-temporal data. The PSTREL
formula ϕ(c, d) = 
[0,d]{F[0,τ](x > c) allows us to number of cases exceeding a
threshold c within τ = 10 days in a neighborhood of size d for a given location8.
Locations with small value of d and large value of c are unsafe as there is a large
number of new positive cases within a small radius around them.

We illustrate the clustering results in Fig. 4. Each location in Fig. 4a is asso-
ciated with a geographic region in LA county (shown in Fig. 4c), and the red
cluster corresponds to hot spots (small d and large c). Applying the DT classi-
fier on the learned clusters (shown in Fig. 4a) produces 11 hyperboxes, some of
which contain only a few points. Hence we apply our DT pruning procedure to
obtain the largest cluster that gives us at least 90% accuracy. Figure 4b shows
the results after pruning the Decision Tree. We learn the following formula:

ϕred = 
[0,4691.29](F[0,10](x > 3180)) ∨
[0,15000](F[0,10](x > 5611.5)),

7
We provide results on a fourth benchmark consisting of a synthetic dataset for track-
ing movements of people in a food court building and detailed descriptions for each
benchmark in the Appenidx. All experiments were performed on an Intel Core-i7
Macbook Pro with 2.7 GHz processor and 16 GB RAM. We use an existing monitor-
ing tool MoonLight [3] in Matlab for computing the robustness of STREL formu-
las. For Agglomerative Hierarchical Clustering and Decision Tree techniques we use
scikit-learn library in Python and the Statistics and Machine Learning Toolbox in
Matlab.

8
We fix τ to 10 days and focus on learning the values of c and d for each location.



104 S. Mohammadinejad et al.

This formula means that within 4691.29 m from any red location, within 10
days, the number of new positive cases exceeds 3180. The COVID-19 data that
we used is for September 20209.

Outdoor Air Quality Data from California. We next consider Air Qual-
ity data from California gathered by the US Environmental Protection Agency
(EPA). Among reported pollutants we focus on PM2.5 contaminant, and try to
learn the patterns in the amount of PM2.5 in the air using STREL formulas.
Consider a mobile sensing network consisting of UAVs to monitor pollution, such
a STREL formula could be used to characterize locations that need increased
monitoring.

We use the PSTREL formula ϕ(c, d) = G[0,10](E[d,16000](PM2.5 < c)) and
project each location in California to the parameter space of c, d. A location �
satisfies this property if it is always true within the next 10 days, that there exists
a location �

′ at a distance more than d, and a route τ starting from � and reaching
�
′ such that all the locations in the route satisfy the property PM2.5 < c. Hence,

it might be possible to escape to a location at a distance greater than d always
satisfying property PM2.5 < c. The results are shown in Fig. 5a. Cluster 8 is
the best cluster as it has a small value of c and large value of d which means
that there exists a long route from the locations in cluster 8 with low density of
PM2.5. Cluster 3 is the worst as it has a large value of c and a small value of
d. The formula for cluster 3 is ϕ3 = ϕ(500, 0)∧¬ϕ(500, 2500)∧¬ϕ(216, 0). ϕ3

holds in locations where, in the next 10 days, PM2.5 is always less than 500,
but at least in 1 day PM2.5 reaches 216 and there is no safe route (i.e. locations
along the route have PM2.5 < 500) of length at least 2500.

Fig. 4. Procedure to learn STREL formulas from COVID-19 data

9
In Fig. 6 in the appendix of the arXiv version, we show the results of STREL cluster-
ing for 3 different months in 2020, which confirms the rapid spread of the COVID-19
virus in LA county from April 2020 to September 2020. Furthermore, we can clearly
see spread of the virus around the hot spots during the time, a further validation of
our approach.

https://arxiv.org/abs/2106.08548


Mining Spatio-Temporal Logic Formulas 105

Fig. 5. Clustering experiments on the California Air Quality Data

6 Related Work and Conclusion

Traditional ML Approaches for Time-Series Clustering. Time-series
clustering is a popular area in the domain of machine learning and data min-
ing. Some techniques for time-series clustering combine clustering methods such
as KMeans [7], Hierarchical Clustering, agglomerative clustering [4] and etc.,
with similarity metrics between time-series data such as the Euclidean distance,
dynamic time-warping (DTW) distance, and statistical measures (such as mean,
median, correlation, etc.). Some recent works such as the works on shapelets
automatically identify distinguishing shapes in the time-series data [19]. Such
shapelets serve as features for ML tasks. All these approaches are based on
shape-similarity which might be useful in some applications; however, for appli-
cations that the user is interested in mining temporal information from data,
dissimilar traces might be clustered in the same group [11]. Furthermore, such
approaches may lack interpretability as we showed in BSS case study.

STL-Based Clustering of Time-Series Data. There is considerable amount
of recent work on learning temporal logic formulas from time-series data using
logics such as Signal Temporal Logic (STL) [8,11,14,15]; however, there is no
work on discovering such relations on spatio-temporal data. In particular, the
work in [11] which addresses unsupervised clustering of time-series data using
Signal Temporal Logic is closest to our work. There are a few hurdles in applying
such an approach to spatio-temporal data as explained in Sect. 1. We address
all the hurdles in the current work.

Monitoring Spatio-temporal Properties. There is considerable amount of
recent work such as [2,3] on monitoring spatio-temporal properties. Particularly,
MoonLight [3] is a recent tool for monitoring of STREL properties, and in our
current work, we use MoonLight for computing the robustness of spatio-temporal
data with respect to STREL formulas. MoonLight uses (δ, d)-connectivity app-
roach for creating a spatial model, which has several issues, including dis-
connectivity and distance overestimation. We resolve these issues by proposing
our new method for creating the spatial graph, which we call Enhanced MSG.



106 S. Mohammadinejad et al.

While there are many works on monitoring of spatio-temporal logic, to the best
of our knowledge, there is no work on automatically inferring spatio-temporal
logic formulas from data that we address in this work.

Conclusion. In this work, we proposed a technique to learn interpretable
STREL formulas from spatio-temporal time-series data for Spatially Distributed
Systems. First, we introduced the notion of monotonicity for a PSTREL formula,
proving the monotonicity of each spatial operator. We proposed a new method
for creating a spatial model with a restrict number of edges that preserves con-
nectivity of the spatial model. We leveraged quantitative semantics of STREL
combined with multi-dimensional bisection search to extract features for spatio-
temporal time-series clustering. We applied Agglomerative Hierarchical cluster-
ing on the extracted features followed by a Decision Tree based approach to
learn an interpretable STREL formula for each cluster. We then illustrated with
a number of benchmarks how this technique could be used and the kinds of
insights it can develop. The results show that while our method performs slower
than traditional ML approaches, it is more interpretable and provides a better
insight into the data. For future work, we will study extensions of this approach
to supervised and active learning.

Acknowledgments. We thank the anonymous reviewers for their comments. The
authors also gratefully acknowledge the support by the National Science Foundation
under the Career Award SHF-2048094, the NSF FMitF award CCF-1837131, the Aus-
trian FWF projects ZK-35, and a grant from Toyota R&D North America.

References

1. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp.
147–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-
8 12

2. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L.: Monitoring mobile and spatially
distributed cyber-physical systems. In: Proceedings of MEMOCODE (2017)

3. Bartocci, E., Bortolussi, L., Loreti, M., Nenzi, L., Silvetti, S.: MoonLight: a
lightweight tool for monitoring spatio-temporal properties. In: Deshmukh, J.,
Ničković, D. (eds.) RV 2020. LNCS, vol. 12399, pp. 417–428. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-60508-7 23

4. Cobo, G., Garćıa-Solórzano, D., Santamaŕıa, E., Morán, J.A., Melenchón, J.,
Monzo, C.: Modeling students’ activity in online discussion forums: a strategy
based on time series and agglomerative hierarchical clustering. In: Educational
Data Mining (2010)

5. Day, W.H., Edelsbrunner, H.: Efficient algorithms for agglomerative hierarchical
clustering methods. J. Classif. 1(1), 7–24 (1984)

6. Fiedler, B., Scheel, A.: Spatio-temporal dynamics of reaction-diffusion patterns. In:
Kirkilionis, M., Krömker, S., Rannacher, R., Tomi, F. (eds.) Trends in Nonlinear
Analysis, pp. 23–152. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
662-05281-5 2

https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/978-3-030-60508-7_23
https://doi.org/10.1007/978-3-662-05281-5_2
https://doi.org/10.1007/978-3-662-05281-5_2


Mining Spatio-Temporal Logic Formulas 107

7. Huang, X., Ye, Y., Xiong, L., Lau, R.Y., Jiang, N., Wang, S.: Time series k-means:
a new k-means type smooth subspace clustering for time series data. Inf. Sci. 367,
1–13 (2016)

8. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. IEEE Trans. CAD 34(11), 1704–1717 (2015)

9. Kiamari, M., Ramachandran, G., Nguyen, Q., Pereira, E., Holm, J., Krishna-
machari, B.: Covid-19 risk estimation using a time-varying sir-model. In: Pro-
ceedings of the 1st ACM SIGSPATIAL International Workshop on Modeling and
Understanding the Spread of COVID-19, pp. 36–42 (2020)

10. Kreikemeyer, J.N., Hillston, J., Uhrmacher, A.: Probing the performance of the
Edinburgh bike sharing system using SSTL. In: Proceedings of the 2020 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 141–152
(2020)

11. Vazquez-Chanlatte, M., Deshmukh, J.V., Jin, X., Seshia, S.A.: Logical clustering
and learning for time-series data. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 305–325. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9 15

12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-
3 12

13. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
14. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G.: Mining environment

assumptions for cyber-physical system models. In: Proceedings of ICCPS (2020)
15. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,

Donzé, A.: Interpretable classification of time-series data using efficient enumera-
tive techniques. In: Proceedings of HSCC (2020)

16. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. LMCS 14(4)
(2018)

17. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

18. Vazquez-Chanlatte, M., Ghosh, S., Deshmukh, J.V., Sangiovanni-Vincentelli, A.,
Seshia, S.A.: Time-series learning using monotonic logical properties. In: Colombo,
C., Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 389–405. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03769-7 22

19. Zakaria, J., Mueen, A., Keogh, E.: Clustering time series using unsupervised-
shapelets. In: 2012 IEEE 12th International Conference on Data Mining, pp. 785–
794. IEEE (2012)

https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-319-63387-9_15
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-030-03769-7_22

	Mining Interpretable Spatio-Temporal Logic Properties for Spatially Distributed Systems
	1 Introduction
	2 Background
	2.1 Spatio-temporal Reach and Escape Logic (STREL)

	3 Constructing a Spatial Model
	4 Learning STREL Formulas from Data
	5 Case Studies
	6 Related Work and Conclusion
	References




